JP2004238223A - Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal - Google Patents

Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2004238223A
JP2004238223A JP2003026772A JP2003026772A JP2004238223A JP 2004238223 A JP2004238223 A JP 2004238223A JP 2003026772 A JP2003026772 A JP 2003026772A JP 2003026772 A JP2003026772 A JP 2003026772A JP 2004238223 A JP2004238223 A JP 2004238223A
Authority
JP
Japan
Prior art keywords
compound semiconductor
melt
single crystal
semiconductor single
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003026772A
Other languages
Japanese (ja)
Inventor
Takuji Nagayama
卓司 長山
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003026772A priority Critical patent/JP2004238223A/en
Publication of JP2004238223A publication Critical patent/JP2004238223A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for growing a compound semiconductor single crystal, in which the solid-liquid interface can be prevented from being concaved by accelerating the dissipation of heat transferred to the compound semiconductor single crystal from a melt of the compound semiconductor; and to provide a method for manufacturing the compound semiconductor single crystal. <P>SOLUTION: The apparatus for growing the compound semiconductor single crystal is characterized in that a crucible 5 in which a GaAs melt 7 and a B<SB>2</SB>O<SB>3</SB>melt 8 which covers the upper face of the GaAs melt 7 are accommodated, and a radiation prevention member 11 which is arranged at the upper part of the B<SB>2</SB>O<SB>3</SB>melt 8 and blocks radiation heat transmission from the B<SB>2</SB>O<SB>3</SB>melt 8 are provided. Further, the apparatus is characterized by efficiently preventing the rise of the temperature in a space at the upper part of the radiation prevention member 11 by changing the shape, the position and the size of the radiation prevention member 11 for covering the upper part of the B<SB>2</SB>O<SB>3</SB>melt 8. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は化合物半導体単結晶成長装置及び化合物半導体単結晶の製造方法に係り、特に液体封止チョクラルスキー法(Liquid Encapsulated Czochralski process:以下、LEC法という。)による化合物半導体単結晶作製時に、化合物半導体融液から化合物半導体単結晶に伝達された熱を効率良く放熱することができる技術に関する。
【0002】
【従来の技術】
従来の化合物半導体単結晶成長装置には、LEC法を用いたものが知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−143387号公報 (第2,3頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、従来の化合物半導体単結晶成長装置では、化合物半導体融液から化合物半導体単結晶へ伝達された熱の放熱が十分でなく、固液界面が凹化するという問題があった。凹化が進むと、化合物半導体単結晶が成長する過程において結晶格子がずれ、多結晶化が促進されることが知られている。
【0005】
本発明は、上記事情を考慮し、化合物半導体融液から化合物半導体単結晶に伝達された熱の放熱を促進することにより固液界面の凹化を抑止することができる化合物半導体単結晶成長装置及び化合物半導体単結晶の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の化合物半導体単結晶成長装置は、化合物半導体融液とこの化合物半導体融液の上面を覆う封止剤融液とが収容された坩堝と、前記封止剤融液の上方に配置され、前記封止剤融液からの輻射伝熱を遮断する輻射防止部材とを有することを特徴とする。
【0007】
請求項1に記載の発明によれば、輻射防止部材により封止剤融液からの輻射伝熱が遮断され、輻射防止部材上方の空間の昇温が抑止され、化合物半導体融液や封止剤融液等から化合物半導体単結晶に伝達された熱の放熱が化合物半導体単結晶自身又はその取付治具等から効率良く行われる。そのため、化合物半導体単結晶と化合物半導体融液との固液界面の凹化が抑止される。ひいては、化合物半導体単結晶の多結晶化が抑止され、高品質の化合物半導体単結晶を作製することが可能となる。
【0008】
請求項2に記載の化合物半導体単結晶成長装置は、請求項1に記載の化合物半導体単結晶成長装置において、前記化合物半導体融液としてGaAs融液を用い、前記封止剤融液の表面に対して垂直に光を投射した場合の前記輻射防止部材の射影面積Aと、前記坩堝の内径Dと、前記坩堝から引き上げられた化合物半導体単結晶の径dと、係数αと、を用いてA=π/4(D2−d2)×αという関係式を成立させた場合に、前記係数αの値は、0.35以上1未満であることを特徴とする。
【0009】
請求項2に記載の発明によれば、係数αの値が0.35以上1未満とされている。αが1の場合は、坩堝の内側の径方向断面積πD2/4が化合物半導体単結晶の径方向断面積πd2/4と輻射防止部材の射影面積Aとの和になり、これ以上αを大きくすると化合物半導体単結晶の径方向断面積πd2/4が坩堝の内側の径方向断面積πD2/4と輻射防止部材の射影面積Aとの差よりも大きくなり、化合物半導体単結晶を引き上げることが不可能となる。そのため、1未満にする必要がある。また、係数αの値の変化に対する歩留りの割合を調べたところ、0.35以上で歩留りが良くなることが分かった。そのため、係数αの値を0.35以上1未満とすることにより歩留りの良い化合物半導体単結晶の作製を行うことができる。
【0010】
請求項3に記載の化合物半導体単結晶の製造方法は、化合物半導体融液とこの化合物半導体融液の上面を覆う封止剤融液とが収容された坩堝と、前記封止剤融液の上方に配置され、輻射伝熱を遮断する輻射防止部材とを有し、前記封止剤融液の上方を覆う前記輻射防止部材の形状、位置、及び大きさを変化させることにより、前記輻射防止部材上方の空間の昇温を効率良く抑止することを特徴とする。
【0011】
請求項3に記載の発明によれば、封止剤融液の上方を覆う輻射防止部材の形状、位置、及び大きさを変化させるので、輻射防止部材の射影面積Aの大きさや輻射防止部材上方への輻射状態が変化し、輻射防止部材上方の空間の昇温を抑止することが可能である。輻射防止部材上方の空間の昇温を抑止すると、化合物半導体融液や封止剤融液等から化合物半導体単結晶に伝達された熱の放熱が化合物半導体単結晶自身又はその取付治具等から効率良く行われ、化合物半導体単結晶と化合物半導体融液との固液界面の凹化が抑止される。ひいては、化合物半導体単結晶の多結晶化が抑止され、高品質の化合物半導体単結晶を作製することが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0013】
図1は、本発明の化合物半導体単結晶成長装置の一実施形態を示す説明図である。この一実施形態の化合物半導体単結晶成長装置1は、円筒状のチャンバー3を有している。このチャンバー3内には、カップ状の熱分解窒化ホウ素(Pyrolitic Boron Nitride:以下、PBNという。)製の坩堝5が設けられ、この坩堝5には、化合物半導体融液であるGaAs融液7とこのGaAs融液7の上面を覆う封止剤融液であるB融液8が収容されている。GaAs融液7及びB融液8は、坩堝5に多結晶原料及び封止剤を収容し、加熱溶融させることで形成される。ここでは、多結晶原料としてGaAsが約7kg、封止剤としてBが約300mg装填されている。GaAsは、他の化合物半導体材料と比べ熱伝導率が高い傾向にある。例えば、常温では54W/(m・K)の熱伝導率を示す。これは、炭素鋼と同程度の値である。これに比べて、例えば常温において、ZnSeは19W/(m・K)、ZnTeは18W/(m・K)、CdTeは20W/(m・K)、InSbは17W/(m・K)、CdTeは7.5W/(m・K)の熱伝導率を示す。
【0014】
坩堝5の外周には、電磁誘導加熱用のコイル部9が設けられている。さらに、コイル部9の外周には、輻射防止部材11を固定するための支持部13が設けられている。支持部13は、橋桁状の底部15と、この底部15から立設した2重の筒構造を有する筒部17と、この筒部17の上端に配置された輪環部19とを有している。
【0015】
輻射防止部材11は、取外し及び取付けができるように輪環部19に不図示の締結部材により連結されている。また、輻射防止部材11は、円筒状に形成され上端側が拡径されている。そして、この上端に輪環部19と連結させるためのフランジ部11aが形成されている。また、輻射防止部材11は、例えばセラミックファイバー等の耐火物製で、その内部に冷却水通水用の配管20が設けられており、配管20を流れる冷却水によって常時冷却されている。また、この冷却水はチャンバー3内で昇温された後、チャンバー3外で熱交換器により冷却される。
【0016】
また、輻射防止部材11は、B融液8の表面に対して垂直に光を投射した場合の輻射防止部材11の射影面積Aと、坩堝5の内径Dと、坩堝5から引き上げられた化合物半導体単結晶21の径dと、係数αとを用いて、
A=π/4(D2−d2)×α
という関係式を成立させた場合に、係数αの値が、0.35以上1未満になるような形状及び大きさに形成されている。また、坩堝5の中心と輻射防止部材11の中心とは同心軸上に位置している。
【0017】
坩堝5の底部中央には、坩堝5を回転させ坩堝5内の多結晶原料や封止剤の状態を周方向に均一にするための回転軸23が連結されている。また、チャンバー3の上方からは、化合物半導体単結晶21を引き上げるための引上軸25が挿入され、この引上軸25の下端側には、種結晶27が取り付けられた種結晶固定アダプタ29が設けられている。種結晶27は、化合物半導体単結晶21を成長させ始めるためのもので上下方向に(100)の面方位を有している。また、化合物半導体単結晶21の先端側には、GaAs融液7との境界に固液界面22が形成されている。
【0018】
次に、化合物半導体単結晶成長装置1の使用方法について説明する。化合物半導体単結晶成長装置1を使用するにあたっては、先ず、坩堝5に多結晶原料及び封止剤としてそれぞれGaAs及びBを収容し、チャンバー3内の残留気体を不図示のポンプにより吸引し、チャンバー3内を真空状態にする。次いで、Arガス等の不活性ガスをチャンバー3内に導入して、約6kg/cmに加圧する。次いで、コイル部9に周波数5kHzの高周波電流を通電し、GaAsの溶融速度を速めるためにチャンバー3内に設けられた不図示のカーボンリングを電磁誘導加熱する。すると、坩堝5内に収容された固体状のGaAs及びBは溶融し始める。そして、この溶融状態となったGaAs自身、高周波誘導に十分な電気伝導度を有するようになることにより、直接電磁誘導加熱される。なお、GaAs及びBは高融点材料であり、GaAsの融点は約1500Kである。
【0019】
次いで、GaAs及びBの多結晶原料が全て溶融した後、不図示の回転制御装置を作動させて回転軸23を回転させる。これにより、坩堝5内の融液の状態が周方向に均一にされる。次いで、コイル部9を用いた電磁誘導加熱のパワーを化合物半導体単結晶21の製造に適したパワーに落とす。
【0020】
次いで、引上軸25を下降させることにより種結晶固定アダプタ29を下降させ、種結晶27をGaAs融液7に接触させる。最後に、引上軸25を所定の速度で引き上げ、化合物半導体単結晶21を形成する。なお、引上軸25の上昇速度は、例えば20mm/hr程度とする。以下に、引上速度の算出式を示す。
【0021】
V=(1/ρH)×(KS×(dTS/dZ)−KL×(dTL/dZ))
V:引上速度
ρ:単結晶の密度
H:凝固潜熱
KS:単結晶の熱伝導率
KL:融液の熱伝導率
TS:単結晶の温度
TL:融液の温度
Z:引上軸方向の距離
次に、図2を用いて、係数αの値と歩留りとの関係について説明する。図2は、縦軸に歩留りを採り、横軸に係数αの値を採っている。図中の黒丸印は、生産現場で調査した歩留りを示している。図に示すように、係数αの値が0.3のとき歩留りは68%であり、係数αの値が0.35のとき歩留りは88%である。このことから係数αの値が0.3と0.35との間で大きく増加していることが分かる。そのため、係数αの値が0.35以上になるように輻射防止部材11の形状及び大きさを決定すれば、その取付位置の如何にかかわらず概ね良好な歩留りが達成される。
【0022】
以上述べたように本発明の一実施形態によれば、輻射防止部材11によりB融液8からの輻射伝熱が遮断され、輻射防止部材11の上方の空間の昇温が抑止され、GaAs融液7やB融液8等から化合物半導体単結晶21に伝達された熱の放熱が化合物半導体単結晶21自身又は種結晶固定アダプタ29等から効率良く行われる。そのため、化合物半導体単結晶21とGaAs融液7との固液界面22の凹化を抑止することができる。ひいては、化合物半導体単結晶21の多結晶化が抑止され、高品質の化合物半導体単結晶21を作製することが可能である。
【0023】
また、本発明の一実施形態によれば、係数αの値が0.35以上1未満とされている。αが1の場合は、坩堝5の内側の径方向断面積πD2/4が化合物半導体単結晶21の径方向断面積πd2/4と輻射防止部材11の射影面積Aとの和になり、これ以上αを大きくすると化合物半導体単結晶21の径方向断面積πd2/4が坩堝5の内側の径方向断面積πD2/4と輻射防止部材11の射影面積Aとの差よりも大きくなり、化合物半導体単結晶21を引き上げることが不可能となる。そのため、係数αの値を1未満にすることにより、かかる問題を回避することができる。
【0024】
また、係数αの値の変化に対する歩留りの割合を調べたところ、輻射防止部材11のような形状であれば、0.35以上で歩留りが良くなることが分かった。そのため、係数αの値を0.35以上1未満とすることにより歩留りの良い化合物半導体単結晶21の作製を行うことができる。
【0025】
さらに、本発明の一実施形態によれば、B融液8の上方を覆う輻射防止部材11の形状、位置、及び大きさを変化させるので、輻射防止部材11の射影面積Aの大きさや輻射防止部材11の上方への輻射状態が変化し、輻射防止部材11上方の空間の昇温を抑止することが可能である。輻射防止部材11上方の空間の昇温を抑止すると、GaAs融液7やB融液8等から化合物半導体単結晶21に伝達された熱の放熱が化合物半導体単結晶21自身又は種結晶固定アダプタ29等から効率良く行われ、化合物半導体単結晶21とGaAs融液7との固液界面22の凹化を抑止することができる。ひいては、化合物半導体単結晶21の多結晶化が抑止され、高品質の化合物半導体単結晶21を作製することが可能となる。
【0026】
なお、上述した一実施形態では、化合物半導体融液としてGaAs融液7を用いた例について説明したが、本発明はこれに限定されるものではない。化合物半導体単結晶を作製することができる融液であれば良い。
【0027】
また、上述した一実施形態では、封止剤融液としてB融液8を用いた例について説明したが、本発明はこれに限定されるものではない。化合物半導体単結晶を作製するときに化合物半導体融液が揮発するのを抑制したり、化合物半導体融液に酸化皮膜が生成するのを抑える役割を果たす融液であれば良い。
【0028】
さらに、上述した一実施形態では、輻射防止部材11は円筒状に形成され上端側が拡径されているが、本発明の輻射防止部材はかかる形状に限定されるものではない。例えば、単なる円筒状に形成しても良い。
【0029】
また、上述した一実施形態では、坩堝5の形状を円筒状とした例について説明したが、本発明はこれに限定されるものではない。例えば、角筒状であっても良い。
【0030】
【発明の効果】
以上説明したように、本発明によれば、輻射防止部材により封止剤融液からの輻射伝熱が遮断され、輻射防止部材上方の空間の昇温が抑止され、化合物半導体融液や封止剤融液等から化合物半導体単結晶に伝達された熱の放熱が化合物半導体単結晶自身又はその取付治具等から効率良く行われるので、化合物半導体単結晶と化合物半導体融液との固液界面の凹化を抑止することができる。
【図面の簡単な説明】
【図1】本発明の化合物半導体単結晶成長装置の一実施形態を示す説明図である。
【図2】図1の輻射防止部材の形状及び大きさを変化させたときの歩留りの変化を示す説明図である。
【符号の説明】
1 化合物半導体単結晶成長装置
5 坩堝
7 GaAs融液
8 B融液
11 輻射防止部材
21 化合物半導体単結晶
A 射影面積
D 坩堝の内径
d 化合物半導体単結晶の径
α 係数
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound semiconductor single crystal growth apparatus and a method of manufacturing a compound semiconductor single crystal, and particularly to a compound semiconductor single crystal produced by a liquid encapsulated Czochralski process (hereinafter, referred to as an LEC method). The present invention relates to a technique capable of efficiently radiating heat transmitted from a semiconductor melt to a compound semiconductor single crystal.
[0002]
[Prior art]
A conventional compound semiconductor single crystal growth apparatus using the LEC method is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-14387 (pages 2 and 3, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, the conventional compound semiconductor single crystal growth apparatus has a problem that heat transferred from the compound semiconductor melt to the compound semiconductor single crystal is not sufficiently dissipated, and the solid-liquid interface is concave. It is known that when the recession proceeds, the crystal lattice shifts in the process of growing the compound semiconductor single crystal, and polycrystallization is promoted.
[0005]
The present invention has been made in consideration of the above circumstances, and provides a compound semiconductor single crystal growth apparatus capable of suppressing depression of a solid-liquid interface by promoting heat radiation of heat transferred from a compound semiconductor melt to a compound semiconductor single crystal. An object of the present invention is to provide a method for producing a compound semiconductor single crystal.
[0006]
[Means for Solving the Problems]
The compound semiconductor single crystal growing apparatus according to claim 1, wherein a crucible containing a compound semiconductor melt and a sealant melt covering an upper surface of the compound semiconductor melt is provided above the sealant melt. A radiation preventing member disposed to block radiant heat transfer from the sealant melt.
[0007]
According to the first aspect of the present invention, the radiation prevention member blocks radiation heat transfer from the sealant melt, suppresses a temperature rise in the space above the radiation prevention member, and suppresses the compound semiconductor melt and the sealant. The heat radiated from the melt or the like to the compound semiconductor single crystal is efficiently dissipated from the compound semiconductor single crystal itself or its mounting jig. Therefore, depression of the solid-liquid interface between the compound semiconductor single crystal and the compound semiconductor melt is suppressed. Consequently, polycrystallization of the compound semiconductor single crystal is suppressed, and a high-quality compound semiconductor single crystal can be manufactured.
[0008]
The compound semiconductor single crystal growing apparatus according to claim 2 is the compound semiconductor single crystal growing apparatus according to claim 1, wherein a GaAs melt is used as the compound semiconductor melt, and a surface of the sealant melt is used. The projection area A of the radiation preventing member when vertically projecting light, the inner diameter D of the crucible, the diameter d of the compound semiconductor single crystal pulled up from the crucible, and a coefficient α are used to calculate A = When a relational expression of π / 4 (D2−d2) × α is satisfied, the value of the coefficient α is 0.35 or more and less than 1.
[0009]
According to the invention described in claim 2, the value of the coefficient α is 0.35 or more and less than 1. When α is 1, the radial cross-sectional area πD2 / 4 inside the crucible is the sum of the radial cross-sectional area πd2 / 4 of the compound semiconductor single crystal and the projected area A of the radiation preventing member. Then, the radial cross-sectional area πd2 / 4 of the compound semiconductor single crystal becomes larger than the difference between the radial cross-sectional area πD2 / 4 inside the crucible and the projected area A of the radiation preventing member, and it is impossible to pull up the compound semiconductor single crystal. It becomes possible. Therefore, it needs to be less than one. Further, when the ratio of the yield to the change in the value of the coefficient α was examined, it was found that the yield was improved at 0.35 or more. Therefore, by setting the value of the coefficient α to 0.35 or more and less than 1, a compound semiconductor single crystal with a high yield can be manufactured.
[0010]
The method for producing a compound semiconductor single crystal according to claim 3, wherein the crucible containing the compound semiconductor melt and the sealant melt covering the upper surface of the compound semiconductor melt is provided above the sealant melt. And a radiation preventing member that blocks radiant heat transfer, and by changing the shape, position, and size of the radiation preventing member that covers above the sealant melt, the radiation preventing member It is characterized in that the temperature rise in the upper space is efficiently suppressed.
[0011]
According to the third aspect of the present invention, since the shape, position, and size of the radiation preventing member covering the upper part of the sealant melt are changed, the size of the projected area A of the radiation preventing member and the position above the radiation preventing member are changed. The radiation state to the radiation changes, and it is possible to suppress the temperature rise in the space above the radiation prevention member. When the temperature rise in the space above the radiation preventing member is suppressed, the heat radiated from the compound semiconductor melt or the sealant melt to the compound semiconductor single crystal can be efficiently dissipated from the compound semiconductor single crystal itself or its mounting jig. It is performed well, and the depression of the solid-liquid interface between the compound semiconductor single crystal and the compound semiconductor melt is suppressed. Consequently, polycrystallization of the compound semiconductor single crystal is suppressed, and a high-quality compound semiconductor single crystal can be manufactured.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is an explanatory diagram showing one embodiment of the compound semiconductor single crystal growth apparatus of the present invention. The compound semiconductor single crystal growing apparatus 1 of this embodiment has a cylindrical chamber 3. In the chamber 3, a cup-shaped crucible 5 made of pyrolytic boron nitride (hereinafter, referred to as PBN) is provided. The crucible 5 contains a GaAs melt 7 which is a compound semiconductor melt. A B 2 O 3 melt 8 which is a sealant melt covering the upper surface of the GaAs melt 7 is accommodated. The GaAs melt 7 and the B 2 O 3 melt 8 are formed by accommodating a polycrystalline raw material and a sealant in the crucible 5 and melting them by heating. Here, about 7 kg of GaAs is loaded as a polycrystalline raw material, and about 300 mg of B 2 O 3 is loaded as a sealant. GaAs tends to have higher thermal conductivity than other compound semiconductor materials. For example, at room temperature, it exhibits a thermal conductivity of 54 W / (m · K). This is about the same value as carbon steel. On the other hand, for example, at room temperature, ZnSe is 19 W / (m · K), ZnTe is 18 W / (m · K), CdTe is 20 W / (m · K), InSb is 17 W / (m · K), and CdTe. Indicates a thermal conductivity of 7.5 W / (m · K).
[0014]
A coil 9 for electromagnetic induction heating is provided on the outer periphery of the crucible 5. Further, a support portion 13 for fixing the radiation prevention member 11 is provided on the outer periphery of the coil portion 9. The support portion 13 has a bridge girder-shaped bottom portion 15, a tube portion 17 having a double tube structure erected from the bottom portion 15, and a ring portion 19 disposed at an upper end of the tube portion 17. I have.
[0015]
The radiation prevention member 11 is connected to the ring portion 19 by a fastening member (not shown) so that the radiation prevention member 11 can be removed and attached. Further, the radiation prevention member 11 is formed in a cylindrical shape, and the upper end side is enlarged in diameter. Further, a flange portion 11a for connecting to the ring portion 19 is formed at the upper end. The radiation prevention member 11 is made of a refractory material such as a ceramic fiber, for example, and has a pipe 20 for passing cooling water therein, and is constantly cooled by cooling water flowing through the pipe 20. After the temperature of the cooling water is raised in the chamber 3, the cooling water is cooled by a heat exchanger outside the chamber 3.
[0016]
Further, the radiation prevention member 11 is lifted up from the crucible 5, the projected area A of the radiation prevention member 11 when light is projected perpendicular to the surface of the B 2 O 3 melt 8, the inner diameter D of the crucible 5. Using the diameter d of the compound semiconductor single crystal 21 and the coefficient α,
A = π / 4 (D2−d2) × α
When the relational expression is satisfied, the shape and the size are such that the value of the coefficient α is 0.35 or more and less than 1. Further, the center of the crucible 5 and the center of the radiation preventing member 11 are located on concentric axes.
[0017]
A rotating shaft 23 is connected to the center of the bottom of the crucible 5 to rotate the crucible 5 so that the state of the polycrystalline raw material and the sealant in the crucible 5 is uniform in the circumferential direction. A pulling shaft 25 for pulling up the compound semiconductor single crystal 21 is inserted from above the chamber 3, and a seed crystal fixing adapter 29 to which a seed crystal 27 is attached is provided at a lower end of the pulling shaft 25. Is provided. The seed crystal 27 is used to start growing the compound semiconductor single crystal 21 and has a (100) plane orientation in the vertical direction. In addition, a solid-liquid interface 22 is formed on the front end side of the compound semiconductor single crystal 21 at the boundary with the GaAs melt 7.
[0018]
Next, a method of using the compound semiconductor single crystal growing apparatus 1 will be described. In using the compound semiconductor single crystal growth apparatus 1, first, GaAs and B 2 O 3 are respectively stored in a crucible 5 as a polycrystalline raw material and a sealant, and a residual gas in the chamber 3 is sucked by a pump (not shown). Then, the inside of the chamber 3 is evacuated. Next, an inert gas such as an Ar gas is introduced into the chamber 3 and pressurized to about 6 kg / cm 2 . Next, a high-frequency current having a frequency of 5 kHz is applied to the coil portion 9 to heat the carbon ring (not shown) provided in the chamber 3 by electromagnetic induction in order to increase the melting speed of GaAs. Then, the solid GaAs and B 2 O 3 contained in the crucible 5 begin to melt. The molten GaAs itself has sufficient electric conductivity for high-frequency induction, and is directly heated by electromagnetic induction. GaAs and B 2 O 3 are high melting point materials, and the melting point of GaAs is about 1500K.
[0019]
Next, after all of the GaAs and B 2 O 3 polycrystalline raw materials are melted, the rotation shaft 23 is rotated by operating a rotation control device (not shown). Thereby, the state of the melt in the crucible 5 is made uniform in the circumferential direction. Next, the power of electromagnetic induction heating using the coil unit 9 is reduced to a power suitable for manufacturing the compound semiconductor single crystal 21.
[0020]
Next, the seed crystal fixing adapter 29 is lowered by lowering the pulling shaft 25, and the seed crystal 27 is brought into contact with the GaAs melt 7. Finally, the pulling shaft 25 is pulled up at a predetermined speed to form the compound semiconductor single crystal 21. The lifting speed of the pulling shaft 25 is, for example, about 20 mm / hr. The formula for calculating the lifting speed is shown below.
[0021]
V = (1 / ρH) × (KS × (dTS / dZ) −KL × (dTL / dZ))
V: pulling speed ρ: density of single crystal H: latent heat of solidification KS: thermal conductivity of single crystal KL: thermal conductivity of melt TS: temperature of single crystal TL: temperature of melt Z: temperature of pulling axis Distance Next, the relationship between the value of the coefficient α and the yield will be described with reference to FIG. In FIG. 2, the vertical axis indicates the yield, and the horizontal axis indicates the value of the coefficient α. The black circles in the figure indicate the yields investigated at the production site. As shown in the drawing, when the value of the coefficient α is 0.3, the yield is 68%, and when the value of the coefficient α is 0.35, the yield is 88%. This indicates that the value of the coefficient α greatly increases between 0.3 and 0.35. Therefore, if the shape and size of the radiation prevention member 11 are determined so that the value of the coefficient α is 0.35 or more, generally good yield can be achieved regardless of the mounting position.
[0022]
As described above, according to the embodiment of the present invention, the radiation prevention member 11 blocks the radiation heat transfer from the B 2 O 3 melt 8, and suppresses the temperature rise in the space above the radiation prevention member 11. The heat transmitted from the GaAs melt 7 or the B 2 O 3 melt 8 to the compound semiconductor single crystal 21 is efficiently radiated from the compound semiconductor single crystal 21 itself or the seed crystal fixing adapter 29 or the like. Therefore, the depression of the solid-liquid interface 22 between the compound semiconductor single crystal 21 and the GaAs melt 7 can be suppressed. As a result, polycrystallization of the compound semiconductor single crystal 21 is suppressed, and a high-quality compound semiconductor single crystal 21 can be manufactured.
[0023]
According to the embodiment of the present invention, the value of the coefficient α is set to 0.35 or more and less than 1. When α is 1, the radial cross-sectional area πD2 / 4 inside the crucible 5 is the sum of the radial cross-sectional area πd2 / 4 of the compound semiconductor single crystal 21 and the projected area A of the radiation prevention member 11, and When α is increased, the radial sectional area πd2 / 4 of the compound semiconductor single crystal 21 becomes larger than the difference between the radial sectional area πD2 / 4 inside the crucible 5 and the projected area A of the radiation preventing member 11, and The crystal 21 cannot be pulled up. Therefore, by setting the value of the coefficient α to be less than 1, such a problem can be avoided.
[0024]
Further, when the ratio of the yield to the change in the value of the coefficient α was examined, it was found that the yield was improved at 0.35 or more if the shape was such as the radiation prevention member 11. Therefore, by setting the value of the coefficient α to 0.35 or more and less than 1, the compound semiconductor single crystal 21 with a good yield can be manufactured.
[0025]
Furthermore, according to one embodiment of the present invention, the shape, position, and size of the radiation prevention member 11 that covers the upper part of the B 2 O 3 melt 8 are changed, so that the projected area A of the radiation prevention member 11 is large. The radiating state of the sheath 11 above the radiation preventing member 11 changes, and it is possible to suppress the temperature rise in the space above the radiation preventing member 11. When the temperature rise in the space above the radiation preventing member 11 is suppressed, the heat radiation of the heat transmitted from the GaAs melt 7, the B 2 O 3 melt 8, etc. to the compound semiconductor single crystal 21 causes the compound semiconductor single crystal 21 itself or the seed crystal. This can be efficiently performed by the fixing adapter 29 and the like, and the depression of the solid-liquid interface 22 between the compound semiconductor single crystal 21 and the GaAs melt 7 can be suppressed. As a result, polycrystallization of the compound semiconductor single crystal 21 is suppressed, and a high-quality compound semiconductor single crystal 21 can be manufactured.
[0026]
In the above-described embodiment, an example in which the GaAs melt 7 is used as the compound semiconductor melt has been described, but the present invention is not limited to this. Any melt that can produce a compound semiconductor single crystal may be used.
[0027]
Further, in the above-described embodiment, an example is described in which the B 2 O 3 melt 8 is used as the sealant melt, but the present invention is not limited to this. Any melt may be used as long as it suppresses the volatilization of the compound semiconductor melt when producing a compound semiconductor single crystal, or suppresses the formation of an oxide film on the compound semiconductor melt.
[0028]
Furthermore, in the above-described embodiment, the radiation prevention member 11 is formed in a cylindrical shape and the upper end side is enlarged in diameter. However, the radiation prevention member of the present invention is not limited to such a shape. For example, it may be formed in a simple cylindrical shape.
[0029]
Further, in the above-described embodiment, an example in which the shape of the crucible 5 is cylindrical has been described, but the present invention is not limited to this. For example, it may be a rectangular tube.
[0030]
【The invention's effect】
As described above, according to the present invention, the radiation prevention member blocks radiation heat transfer from the sealant melt, suppresses the temperature rise in the space above the radiation prevention member, and suppresses the compound semiconductor melt and the sealing. Dissipation of heat transferred from the compound melt to the compound semiconductor single crystal is efficiently performed by the compound semiconductor single crystal itself or its mounting jig, etc., so that the solid-liquid interface between the compound semiconductor single crystal and the compound semiconductor melt is Depression can be suppressed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing one embodiment of a compound semiconductor single crystal growth apparatus of the present invention.
FIG. 2 is an explanatory diagram showing a change in yield when the shape and size of the radiation prevention member in FIG. 1 are changed.
[Explanation of symbols]
1 Compound Semiconductor Single Crystal Growth Apparatus 5 Crucible 7 GaAs Melt 8 B 2 O 3 Melt 11 Radiation Prevention Member 21 Compound Semiconductor Single Crystal A Projection Area D Inner Diameter of Crucible d Coefficient α of Compound Semiconductor Single Crystal

Claims (3)

化合物半導体融液とこの化合物半導体融液の上面を覆う封止剤融液とが収容された坩堝と、
前記封止剤融液の上方に配置され、前記封止剤融液からの輻射伝熱を遮断する輻射防止部材と、
を有することを特徴とする化合物半導体単結晶成長装置。
A crucible containing a compound semiconductor melt and a sealant melt covering the upper surface of the compound semiconductor melt,
A radiation prevention member that is disposed above the sealant melt and blocks radiant heat transfer from the sealant melt,
An apparatus for growing a compound semiconductor single crystal, comprising:
請求項1に記載の化合物半導体単結晶成長装置において、
前記化合物半導体融液としてGaAs融液を用い、
前記封止剤融液の表面に対して垂直に光を投射した場合の前記輻射防止部材の射影面積Aと、
前記坩堝の内径Dと、
前記坩堝から引き上げられた化合物半導体単結晶の径dと、
係数αと、
を用いて
A=π/4(D2−d2)×α
という関係式を成立させた場合に、
前記係数αの値は、0.35以上1未満であることを特徴とする化合物半導体単結晶成長装置。
The compound semiconductor single crystal growth apparatus according to claim 1,
Using a GaAs melt as the compound semiconductor melt,
Projection area A of the radiation prevention member when projecting light perpendicular to the surface of the sealant melt,
An inner diameter D of the crucible;
A diameter d of the compound semiconductor single crystal pulled up from the crucible,
Coefficient α,
A = π / 4 (D2−d2) × α using
When the relational expression is established,
The compound semiconductor single crystal growth apparatus, wherein the value of the coefficient α is not less than 0.35 and less than 1.
化合物半導体融液とこの化合物半導体融液の上面を覆う封止剤融液とが収容された坩堝と、
前記封止剤融液の上方に配置され、輻射伝熱を遮断する輻射防止部材と、
を有し、
前記封止剤融液の上方を覆う前記輻射防止部材の形状、位置、及び大きさを変化させることにより、前記輻射防止部材上方の空間の昇温を効率良く抑止することを特徴とする化合物半導体単結晶の製造方法。
A crucible containing a compound semiconductor melt and a sealant melt covering the upper surface of the compound semiconductor melt,
A radiation prevention member that is disposed above the sealant melt and blocks radiation heat transfer,
Has,
A compound semiconductor, wherein the shape, the position, and the size of the radiation preventing member covering the upper part of the sealant melt are changed to efficiently suppress a temperature rise in a space above the radiation preventing member. Single crystal production method.
JP2003026772A 2003-02-04 2003-02-04 Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal Withdrawn JP2004238223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026772A JP2004238223A (en) 2003-02-04 2003-02-04 Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026772A JP2004238223A (en) 2003-02-04 2003-02-04 Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2004238223A true JP2004238223A (en) 2004-08-26

Family

ID=32954677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026772A Withdrawn JP2004238223A (en) 2003-02-04 2003-02-04 Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2004238223A (en)

Similar Documents

Publication Publication Date Title
JP3944879B2 (en) Single crystal ingot production equipment
US8337616B2 (en) Apparatus and method for producing single crystal
KR20010102396A (en) Heat shield assembly for crystal puller
CN105887186A (en) Silicon single-crystal pulling equipment and growing method
US8628613B2 (en) Method for producing semiconductor wafers composed of silicon with reduced pinholes
JPS6153187A (en) Device for growing single crystal
JP2009132552A (en) Method of manufacturing silicon single crystal
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
JPH0971497A (en) Production of polycrystal semiconductor
JP2008222481A (en) Manufacturing method and device of compound semiconductor
JP2004238223A (en) Apparatus for growing compound semiconductor single crystal and method for manufacturing compound semiconductor single crystal
JP4144349B2 (en) Compound semiconductor manufacturing equipment
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JPH0416589A (en) Device for producing single crystal
JP3642174B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP2013119500A (en) Single crystal growth method and apparatus thereof
JP2558171Y2 (en) Heat shield for single crystal pulling
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2003165791A (en) Method for producing silicon single crystal and device using the same
KR101193678B1 (en) Method for Manufacturing large Diameter Single Crystal Ingot
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JP2004238225A (en) Semiconductor crystal manufacturing apparatus
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JP2004277267A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH05208891A (en) Single crystal growing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404