JP2004233485A - Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator - Google Patents

Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator Download PDF

Info

Publication number
JP2004233485A
JP2004233485A JP2003019817A JP2003019817A JP2004233485A JP 2004233485 A JP2004233485 A JP 2004233485A JP 2003019817 A JP2003019817 A JP 2003019817A JP 2003019817 A JP2003019817 A JP 2003019817A JP 2004233485 A JP2004233485 A JP 2004233485A
Authority
JP
Japan
Prior art keywords
polarization
photonic crystal
polarized light
delay difference
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019817A
Other languages
Japanese (ja)
Inventor
Hiroshi Honma
洋 本間
Takashi Sato
尚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonic Lattice Inc
Original Assignee
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonic Lattice Inc filed Critical Photonic Lattice Inc
Priority to JP2003019817A priority Critical patent/JP2004233485A/en
Publication of JP2004233485A publication Critical patent/JP2004233485A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus which has simple and compact structure or high performance and imparts delay difference to polarized light components and to provide a polarization mode dispersion compensator using the apparatus. <P>SOLUTION: In the apparatus which imparts a delay difference to polarized light components and is composed of a polarization separation element and a reflection means, as the polarization separation element, a polarization separation element capable of performing polarization separation action at an incident angle which is a right angle or an angle close to the right angle, particularly a two-dimensional or a three-dimensional photonic crystal polarization separation element is used. Further, an appropriate optical coupling system and a various optical components are added. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は通信速度の向上のために用いられる,光通信における信号劣化の原因の1つである偏波モード分散を補償する偏波モード分散補償装置の構成,動作に関するものである.また特に偏波モード分散補償装置の構成要素である偏光成分に対する遅延差を付与するデバイスに関する.
【0002】
【従来の技術】
偏波モード分散(Polarization Mode Dispersion:PMD)は,ファイバコアの非対称により光ファイバの伝搬モードの縮退が解けることによって生じる直交する2つの偏波モード間に群遅延差のことである.偏波モード分散は光ファイバの構造の対称性が不十分だった古い時代に敷設された光ファイバや,光ファイバアンプに用いられるエルビウムドープファイバなどで生じ,温度変化などに伴い偏波モード分散は時間変動を有する.また複屈折結晶を用いて偏光成分の分離合成を行う光アイソレータ等にも偏波モード間の群遅延差を生じさせるものがある.
【0003】
偏波モード分散による伝送特性劣化は非特許文献1ですでに定式化され知られている.なお偏波モード分散についての詳細は非特許文献2に詳しい.また偏波モード分散測定方法については非特許文献3に詳しい.
【0004】
偏波モード分散補償装置は基本的に図42に示すように偏波コントローラ4201,偏光成分に対する遅延差を付与する装置4202からなり,他にカプラ4203,モニタ装置4204,制御装置4205等が付随する.さらに偏光成分に群遅延差を付与する装置は基本的に偏光分離/合成機構と光遅延装置からなる.
【0005】
まず偏波コントローラについて述べる.偏波コントローラはランダムな偏光状態を任意の偏光状態に変換する装置のことで,1/2波長板と1/4波長板を組み合わせたもの,ファイバクランクによるもの,位相変調部を有するニオブ酸リチウム導波路等が知られている.
【0006】
実験段階では,複屈折結晶波長板を回転させることによる電動型無限回転偏波制御装置のような,偏光状態および方位角を連続かつ無限に変化させることが可能なものが用いられることが多い.なお波長板に複屈折結晶を用いる場合は,たとえば複数種の結晶を組み合わせて1つの波長板として動作させた広帯域波長板のような波長による位相差のずれの少ないものを用いることが望ましい.
【0007】
通信用途においては寸法,損失,駆動電力などの面で,液晶を用いた回転波長板からなる偏波コントローラが適する.非特許文献4によれば,偏光状態および方位角を連続かつ無限に変化させることが可能で,応答時間3.7msecと高速でまた非特許文献5のように偏波アナライザ(モニタ装置)および制御装置と組み合わせることで,偏波スタビライザとして動作できることが知られる.図43に偏波コントローラの基本構成図を示す.偏波コントローラは1/4波長板4301と1/2波長板4302,分岐装置4303,モニタ装置4304,制御装置4305を備えてなる.
【0008】
また損失,偏波依存性損失(Polarization DependentLoss:PDL)の許容量が大きい場合であれば,特許文献1記載の位相変調部を有するニオブ酸リチウム導波路等による偏波コントローラを用いてもかまわない.
【0009】
次に偏光成分間に遅延差を付与する装置について述べる.偏光成分間に遅延差を付与する装置には固定型と可変型があり,1次偏波モード分散補償器には可変型が用いられる.固定型の偏光成分間に遅延差を付与する装置としては,特許文献2記載の装置などがあげられる.
【0010】
可変型の偏光成分に群遅延差を付与する装置は基本的に偏光分離/合成機構と光可変遅延装置からなる.
【0011】
偏光分離/合成機構として用いられるものとしては,偏光ビームスプリッタ(Polarization Beam Splitter:以下PBS)が知られる.PBSは高・低屈折率誘電体交互多層薄膜表面への斜め入射時の透過と反射による偏光の空間分離を行う素子であり,一般には入射角45度で用いられる.他の偏光分離/合成機構に用いられるものとしてルチル結晶などによるウォークオフ型偏光子が知られている.これらはいずれもバルク光学部品である.一方光ファイバカプラや光導波路による方向性結合器型の偏光分離/合成機構もよく知られるところである.なお偏光分離素子は相反性により,偏光合成素子としても動作する.
【0012】
光可変遅延装置としては特許文献3(または特許文献4)記載の光可変遅延装置のようにコリメータとミラーの距離を可変にすることで遅延を与えるものが知られる.
【0013】
前記のような偏光無依存型の光可変遅延装置と偏波分岐/合成装置を個別に作製した上で,光ファイバで接続することで偏光成分間に遅延差を付与する装置が実現できる.たとえば特許文献3(または特許文献4)記載の光可変遅延装置とたとえば特許文献5または特許文献6記載の偏波合成モジュールを組み合わせることで,偏光成分間に遅延差を付与する装置を実現できる.
【0014】
偏光無依存型の光可変遅延装置と偏光分離/合成装置を一体化したものとしては,以下のような形態が知られている.
【0015】
まず導波路を偏光分離および偏光成分間に遅延差を付与する装置として用いたものとして,特許文献7(以下従来例1とする)が知られる.
【0016】
またいわゆるバルク光学部品を用いたものの例として,特許文献7中の図7記載の偏波分散補償回路のようなPBSと可動ミラーを組み合わせたものが知られる(以下従来例2とする).なお特許文献7中の図7は非特許文献6からの引用である.また別の例として知られる非特許文献7(以下従来例3)はPBSと1/4波長板,ミラーを組み合わせたもの(以下従来例3)で従来例2に比べ必要とするPBSが少ないという利点があるが2枚の1/4波長板を必要とする.また特許文献8中の図7記載の可変偏波モード分散デバイス(以下従来例4)のような偏光ビームスプリッタと可動ミラーおよび固定ミラーを各1台組み合わせた構成も知られている.
【0017】
従来例2に記載されている従来の偏波分散補償回路の構成に,光結合系を加えた例を図44に示す.図44において,入力ポートから入力された光信号は,偏光コントローラ4401を介してコリメートビームとして第1のPBS4404に入力される.ここで,P偏光は直進する方向に出力され,S偏光は直交する方向に出力され,偏光分離が行われる.S偏光は2枚のミラーを含む機械的可動ミラー4406を介して第2のPBS4405に入力され,直接入力されるP偏光と偏光合成されて出力光ファイバ4408に出力される.この機械的可動ミラー4106を移動させることにより,S偏光が空間的に伝搬する距離が変化し,S偏光とP偏光の遅延量が調整されて偏波分散補償が行われる.ここで機械的可動ミラー4406を動かしても結合損失が変化しないようコリメートビームを用いる必要がある.
【0018】
なお偏光分離,各偏波成分を個別の光路に伝播,反射,再偏波合成させるという一連の動作は,特許文献9や特許文献10などですでに知られている.
【0019】
また偏光分離/合成を行わずに光伝送路の偏波モード分散と逆の変波モード分散を与える装置として特許文献11記載の偏波モード分散補償モジュール(以下従来例5とする)が知られる.これは導波路に応力を付与することで偏波モード分散を発生させる装置である.
【0020】
また電気光学結晶による可変リタデーション部と固定遅延部を用いた構成として,特許文献25(以下従来例6とする)も知られている.
【0021】
【特許文献1】アメリカ合衆国特許第5212743号
【特許文献2】アメリカ合衆国特許第5600738号
【特許文献3】アメリカ合衆国特許第6356377号
【特許文献4】特開2001−208988
【特許文献5】アメリカ合衆国特許第6282025号
【特許文献6】公開特許広報特開平8−86936
【特許文献7】公開特許広報特開2001−42272
【特許文献8】公開特許広報特開2000−31903
【特許文献9】公開特許広報特開平11−160663
【特許文献10】公開特許広報特開平11−44721
【特許文献11】公開特許広報特開2002−148571
【特許文献12】日本国特許第3288976号
【特許文献13】公開特許広報特開平11−196046
【特許文献14】アメリカ合衆国特許第5930414号
【特許文献15】公開特許広報特開平7−221705
【特許文献16】公開特許広報特開平2000−31903
【特許文献17】日本国特許第2539563号
【特許文献18】アメリカ合衆国特許第5596448号
【特許文献19】アメリカ合衆国特許第6111697号
【特許文献20】公開特許広報特開平4−110808
【特許文献21】公開特許広報特開平10−90553
【特許文献22】公開特許広報特願2002−237212
【特許文献23】公開特許広報特開2000−75165
【特許文献24】公開特許広報特開平11−264954
【特許文献25】アメリカ合衆国公開特許公報2002/0012487号
【特許文献26】アメリカ合衆国特許第4213677号
【特許文献27】公開特許広報特開平7−281128
【特許文献28】公開特許広報特開平5−257084
【特許文献29】アメリカ合衆国特許第6349157号
【特許文献30】アメリカ合衆国特許第5553093号
【特許文献31】公開特許広報特開2000−224109
【非特許文献1】
C.D.Poole et al.,IEEE Photon.Technol.Lett.,vol.3,No.1,pp.68−70,1991
【非特許文献2】
川上彰二郎 白石和男 大橋正治 著,光ファイバとファイバ型デバイス,4章,6章,培風館
【非特許文献3】
三木哲也,須藤昭一 編,光通信技術ハンドブック,第6部(オプトロニクス社,2002)
【非特許文献4】
Ohtera,Chiba,Kawakami, Liquid Crystal Roatatable Waveplate,IEEE PHOTONICS TECHNOLOGYLETTERS,VOL.8,NO.3,MARCH1996
【非特許文献5】
Chiba,Ohtara,kawakami,Palarization Stabiliser Using Liquid Crystal Roatatable Waveplate,JORNAL OF LIGHTWAVE TECHMOLOGY,VOL.7,NO.5,MAY 1999
【非特許文献6】
F.Heismann et al.,AUTOMATIC COMPENSATION OF FIRST−ORSER POLARIZATIONMODEDISPERSION IN A 10 Gb/s TRANSMISSION SYSTEM, WdC11, ECOC’98, 1998
【非特許文献7】
Jungho Kim, Hosung Yoon,Namkyoo Park,and Byoungho Lee,Polarization−mode−dispersion compensator using a polarization beam splitter and quarter−wave plates,September 2001 Vol. 40, No. 25 APPLIED OPTICS 4473
【非特許文献8】
K.O.Hill et al,.Tech.Dig.Conf on OFC7,94,PD2,pp.17−20,San Jose,1994
【非特許文献9】
川上彰二郎監修,フォトニック結晶技術とその応用,株式会社シーエムシー出版,2002
【非特許文献10】
Michael F. Weber et al,Giant Birefringent Optics in Multilayer Polymer Mirros, SCIENCE vol.287,2000,pp2451
【非特許文献11】
河野 健治著,光デバイスのための光結合系の基礎と応用,現代工学社,1991
【非特許文献12】
K.Shiraishi,Y.Aizawa and S.Kawakami,Beam Expanding Fiber Using Thermal Diffusion of the Dopant,J.Lightwave Tech.,vol.8,pp.1151−1161,Augast,1990.
【非特許文献13】
川上彰二郎 白石和男 大橋正治 著,光ファイバとファイバ型デバイス,8章,11章,培風館
【非特許文献14】
川上彰二郎 白石和男 大橋正治 著,光ファイバとファイバ型デバイス,10章,培風館
【非特許文献15】
M.Shirasaki et al.,,ECOC2000 PD2.3.,VIPA型分散補償器
【非特許文献16】
大寺,千葉,川上,IEEE PHOTONICS TECHNOLOGYLETTERS,VOL.8,NO.3,MARCH 1996,Liquid Crystal Roatatable Waveplate
【非特許文献17】
Ohkubo et.al.,Fabrication and Evaluation of multichannel wavelength selective filters consisting of Ta2O5/SiO2 3D photonic crystals,TD−3,The 9thinternational Workshop on Femtosecond Technology,June 27−28,2002 Tsukuba,Japan
【非特許文献18】
マーク ジャンボロンスキー他,層状光薄膜全波長透過分散補償デバイスによる光ファイバの分散補償,住友大阪セメントTECHNICAL REPORT 2001,pp21
【非特許文献19】
電子情報通信学会2002年ソサイエティー大会C−4−20
【0022】
【発明が解決しようとする課題】
しかしながら,偏波モード分散補償器などに用いられる従来の偏光成分間に遅延差を付与する装置は,いずれもサイズ,特性,コストの面で不十分である.
【0023】
従来例1は,温度によるコントロールのため,PMDの時間変動が小さいときでも常時エネルギー消費があり,運用コスト上の問題がある.またWDM(Wavelength Division Multiplex,波長分割多重)伝送における種々の波長に対応するためには各波長毎に偏光成分間に遅延差を付与する装置を必要とし,サイズの面での問題点もある.また導波路型偏光分離素子の性能に起因する特性上の問題点も生じる.
【0024】
従来例2,従来例3,従来例4は偏光分離方向が90度であるPBSを偏光分離素子として用いているため偏光成分間に遅延差を付与する装置のサイズおよび偏光成分間に遅延差を付与する装置を用いた偏波モード分散補償器のサイズが大きくなる問題がある.またPBSの性能に起因する特性上の問題点も生じる.またWDM伝送における種々の波長に対応するためにはサイズのみならずコスト面での問題点もある各波長毎の偏光成分間に遅延差を付与する装置および周辺装置をもちいるか,光成分間に遅延差を付与する装置および周辺装置の部品の共有化または統合化が必要になるが,光成分間に遅延差を付与する装置および周辺装置の部品の共有化を行った場合でも共有化または統合化できる部品が少なくコスト削減は困難である.
【0025】
従来例5は,導波路の最初曲げ半径の制限からサイズが大きくなることと,波長分散(色分散)が生じる問題がある.またWDM伝送における種々の波長に対応するためには各波長毎に偏光成分間に遅延差を付与する装置を必要とするため,運用コスト上の問題がある.
【0026】
従来例6は,大量の結晶部品を必要とするためサイズおよびコストの面で不利であり,大量の結晶部品を必要とするため,損失が大きいという問題がある.
【0027】
本発明は,斯かる実情に鑑み,単純かつ小型な構成または高い性能または低コストな偏光成分に対する遅延差を付与するデバイスと,前記装置を用いた単純かつ小型な構成または高い性能または低コストな偏波モード分散補償装置を提供しようとするものである.
【0028】
【課題を解決するための手段】
本発明では偏光分離素子と反射手段からなる偏光成分に対する遅延差を付与する装置において,偏光分離素子として垂直入射または垂直入射に近い入射角度で偏光分離動作が可能な偏光分離素子を用いる.
【0029】
また本発明では前記反射手段として,誘電多層膜ミラー,垂直入射で偏光分離素子として動作しうる反射型偏光分離素子,波長選択フィルタ,PBS,光ファイバグレーティングなどの波長分散を与えうる反射手段を用いる.
【0030】
また本発明では前記解決手段に適用できる種々の光結合系を用いる.
【0031】
また本発明では前記解決手段に加え,複屈折結晶ウォークオフ偏光子,波長板,プリズム,波長選択フィルタなどの種々の光機能部品を加えることもあり得る.
【0032】
また本発明では前記偏光分離素子と反射手段のいずれかまたは双方が移動しうることもあり得る.
【0033】
また本発明では光導波路として偏波保持光導波路(偏波保持光ファイバ)を用いることもあり得る.
【0034】
また本発明では前記反射手段が反射型偏光分離素子であり,かつ前記反射型偏光分離素子の後方に受光装置を配置することもある得る.
【0035】
また前記特に偏光分離素子として2次元または3次元フォトニック結晶偏光分離素子を用いることが有効である.
【0036】
また本発明では偏波モード分散補償器において,前記解決手段を用いた偏光成分に対する遅延差を付与する装置と偏波コントローラ,モニタ装置(偏波アナライザ),制御装置等を備える.
【0037】
【発明の実施の形態】
以下,本発明の実施の形態を添付図面を参照して説明する.
【0038】
(実施例1)
【0039】
図1は本発明の最も基本的な偏光成分間に可変の遅延差を付与するデバイス(以下可変DGDとする.なおDGDはDifferential Group Delayの略である)の略図である.偏波保持ファイバ101の先端に反射型偏光分離素子102が接着され,偏波保持ファイバ101とレンズ103はいわゆるファイバコリメータを成す.ミラー104はコリメートビームの進行方向(Z軸方向)と垂直に配置され,コリメートビームを入射光と同一軸上に反射する.またミラー104は圧電アクチュエータでZ軸方向に可動である.
【0040】
図1では省略される偏波コントローラから偏波保持ファイバを通り,反射型偏光分離素子102に入射する遅延を有する直交する直線偏光成分を有するビームの内,反射型偏光分離素子102におけるTE成分は反射して偏波保持ファイバに戻される.TM成分は反射型偏光分離素子102を透過後ミラー104で反射して再度反射型偏光分離素子102を透過して偏波保持ファイバ101に戻される.戻された光は図では省略される光サーキュレータや方向性結合器で取り出せばよい.
【0041】
なお反射型偏光分離素子102の透過偏光方向(この場合TM偏波)と遅延を有する直交する直線偏光成分の一方の成分の偏波方向が一致している必要がある.
【0042】
この一連の光の振る舞いによって偏波成分間に遅延差が生じる.さらに反射型偏光分離素子102とミラー104との間の光路長を変えることで偏波成分間の遅延量が調整されて時間変動を含めた1次の偏波モード分散補償が行われるが,ここではミラー104を移動させることで偏波成分間の遅延量が調整されて時間変動を含めた1次の偏波モード分散補償を行う.
【0043】
制御系に関しては,偏波コントローラ前後に方向性結合器などのタップを設け偏波状態を測定しコンピュータで偏波コントローラを制御する.さらに可変DGDの後にもタップを設け,PMDを測定してコンピュータで制御する.PMDの測定,制御方法等に関しては,特許文献13(または特許文献14)に準ずる.または特許文献15や特許文献16に準じた制御方法を用いることも有効である.
【0044】
(実施例2)
【0045】
本発明の第2の実施例を図2,図3を用いて説明する.図2は偏波モード分散補償装置のうち,光ファイバ線路の概略を示す.信号源に接続された光ファイバ201から入射した信号光は光サーキュレータ202を経て,偏波コントローラ203に入射して遅延を有する直交する直線偏光成分に変換され,可変DGD204に入射する.その後再度偏波コントローラ203を透過し,光サーキュレータ202を経て出力され,一部はカプラ205からモニタ装置206に入力される.
【0046】
ここで用いられる光サーキュレータ202に偏波モード分散があると不都合であるので,原理的に偏波モード分散の発生しない構造のものが望ましい(たとえば特許文献17記載の構造など).また方向性結合器を光サーキュレータの代替えとして用いることも可能であるが損失が大きいため光サーキュレータを用いることが望ましい.
【0047】
なおこのような光サーキュレータと反射手段を用いた波長分散補償器の例としては非特許文献8や特許文献18等が知られている.
【0048】
図3は図2記載の可変DGD204であり,かつ図1記載の可変DGDを元にした,より高い性能を得られる構成である.
【0049】
フォトニック結晶偏光分離素子302は,合成石英基板上にサブミクロンの溝を加工しその上にSiO2,アモルファスシリコンなど屈折率差の大きな物質をを交互に積層することで,2次元周期構造体としたもので,たとえば特許文献12記載の偏光分離素子である.特許文献12記載の偏光分離素子は3次元の直交座標 x,y,z において,透明で高屈折率の媒質からなる高屈折率媒質層と透明低屈折率の媒質からなる低屈折率媒質層が交互に積層された交互層をz軸方向の周期的な繰り返し構造の単位として,前記各媒質層をz軸方向に前記周期的な繰り返し構造を有するように積層したz軸方向の多層構造体であって,前記各媒質層の形状が,x軸方向には使用される光波長以下の周期的な凹凸構造を有し,y軸方向には一様な構造あるいはx軸方向より大きい長さの周期的または非周期的な凹凸構造を有し,xy平面に垂直または斜めに入射する光に対して,電界がy軸方向に直交する偏波あるいはx軸方向に直交する偏波のどちから―方が光波のバンドギャップに入るように,x軸方向の周期的凹凸構造の周期およびz軸方向の周期的な繰り返し構造の周期がそれぞれ選択される.波長1.3μmから2μm用のフォトニック結晶を構成する低屈折率媒質としてはCaF2,NaF,MgF2などのフッ化物結晶またはSiO2が適し,高屈折率媒質としてはアモルファスシリコン,TiO2,Ta2O5,SiON,ジルコニア等が適する.特許文献12にはCaF2,NaF,MgF2などのフッ化物結晶,SiON,ジルコニアの記述は無いものの,特許文献12が材料としてCaF2,NaF,MgF2などのフッ化物結晶,SiON,ジルコニアを除外していないことは明白である.さらにフォトニック結晶は一般に強い偏光依存性を有することから3次元フォトニック結晶も偏光分離素子として有用である.なおフォトニック結晶に関する技術分野全般ついては,非特許文献9に詳しい.
【0050】
SiO2とアモルファスシリコンからなる現行のフォトニック結晶偏光分離素子302には0.1dB程度の透過損失があり,光結合系の結合損失が0.2dB存在するため,図1の構成ではTE偏波とTM偏波の間に0.4dB程度の損失差が生じる.偏波成分間の損失の差はPDLと呼ばれ,ビットエラーレート(BER)の劣化原因となるため抑制が必要である.そこで偏波保持ファイバ301先端を0.9度斜めに研磨し,その上にフォトニック結晶偏光分離素子302を接着した.これによりTE偏波戻り光の偏波保持ファイバ301との結合損失が0.4dB程度生じ,TM偏波の損失とつりあうためPDLは減少する.
【0051】
ただし光ファイバ先端は光のエネルギー密度が最大になるため,この位置に安易に接着剤を用いることは耐入力光強度性能を劣化させるため,接着剤の選定には注意が必要である.具体的にはより吸収損失が低く,耐熱温度の高いものが望ましい.
【0052】
なお特許文献12記載のフォトニック結晶偏光分離素子はその構造から原理的には入射角度依存性を有するが,実際には一方の偏波がバンドギャップ波長に当たる波長域においては,特許文献12図2中のX軸の周りに±10度傾けても,TM偏波透過損失,TE偏波反射損失ともに垂直入射の場合とほとんど変わらず,0.9度程度の入射角度は問題にならない.
【0053】
さらに図1記載の構成では反射型偏光分離素子102とミラー104の双方への入射ビームが垂直入射であるため,多重反射によるマルチパス障害が発生し,信号品質を低下させるが,本実施例のようにフォトニック結晶偏光分離素子302を傾けることで抑制できる.このようにマルチパス障害を抑制するために偏光分離素子を傾けることが可能で,それに伴う損失増加,偏光度(ここでは楕円偏光の短軸方向成分と長軸方向成分の比)の劣化等の特性への影響が発生しないことも,特にフォトニック結晶偏光分離素子302を用いた本実施例の利点である.
【0054】
ここでフォトニック結晶偏光分離素子302をPBSに置き換えた場合,PBS反射光は偏波保持ファイバ301に結合しないため,PBSを用いて図3のような可変DGDを構成することはできない.
【0055】
ミラー304は誘電体多層膜ミラーを用いているが,ビームが垂直に入射するため,金属ミラーを使用してもよい.
【0056】
本実施形態ではフォトニック結晶偏光分離素子を用いた例に関して説明したが,垂直入射またはたとえば10度以内の入射角で偏光分離素子として作用する偏光分離素子であるならば,本実施形態と等価の構成を実現しうることは当業者には容易に推測可能であろう.たとえば特許文献19(または非特許文献10または商品として3M社Infrared Polarizer Film IRP−155) のような複屈折材料からなる多層膜が反射型偏光分離素子となることが知られているが,本実施例はこのような反射型偏光分離素子を用いても実現可能である.しかしながら特性および無機物であることによる高い信頼性および高い設計の自由度からフォトニック結晶偏光分離素子が本発明に対しては最適と考える.
【0057】
さらにコリメートレンズ303にかえて,1/4ピッチの先球屈折率分布型ロッドレンズを用い,フォトニック結晶偏光分離素子と接着することも有効である.なおファイバの研磨角度が1度程度の場合,フォトニック結晶基板裏面に反射防止膜を付けない場合は,フォトニック結晶基板裏面でTM偏波の一部が反射するが,基板と同程度の屈折率を持つ接着剤を用いて屈折率分布型ロッドレンズを接着することで,TM偏波の反射を防ぎ,反射防止膜加工の費用も削減できる.
【0058】
可変DGDが生じさせうるTE偏波とTM偏波間の遅延量は光路長差と光速から容易に求められるが,たとえば300psecの遅延量が必要とする光路長差は90mmで,フォトニック結晶偏光分離素子302とミラー304の間隔を45mmの範囲で変化すればよい.
【0059】
ミラー304を稼働させる機構は圧電セラミクスからなるアクチュエータを用いる.圧電セラミクスのアクチュエータは,周囲の気密封止とあわせれば陸上の局内で用いられるならば十分な信頼性が得られる.なお本実施形態では,圧電アクチュエータについてのみ述べたが,高精度で移動できるものであればその種類は問われない.たとえば特許文献3記載のMEMSを用いたものや高分解能ステッピングモータなどが挙げられる.
【0060】
制御系に関しては,偏波コントローラ前後に方向性結合器などのTAPカプラを設け偏波状態を測定しコンピュータで偏波コントローラを制御する.さらに可変DGDの後にもタップを設け,PMDまたはアイパターンを測定してコンピュータで制御する.
【0061】
またHalf−orderの偏波モード分散を補償する用途であれば,本実施例の機械可動部を半固定にすることで対応できることは容易に推測できるであろう.
【0062】
また本実施例では機械的に可動するミラー304を用いたが,代わりにミラーとたとえば電極を取り付けた電気光学結晶を用い,電気光学結晶の屈折率変化によって,遅延量を可変にすることも原理的には可能である.しかしながら現時点では電気光学定数が十分に大きな材料が存在しないため実用的ではない.
【0063】
(実施例3)
【0064】
本発明の第3の実施例の可変DGDを図4から図7を用いて説明する.
【0065】
本実施例では,反射型偏光分離素子反射光(主にTE偏波)に含まれるTM偏波成分とミラーで反射後に反射型偏光分離素子を透過するTM偏波成分の干渉や遅延による信号品質の劣化をを防止できる実施例である.
【0066】
一般にPBS,フォトニック結晶偏光分離素子等の反射型偏光分離素子は反射光の偏光度が透過偏光の偏光度に比較して悪いという問題がある.そのため前記のような干渉や遅延の問題が生ずるが,一方よく知られた偏光分離素子の一種である複屈折結晶によるウォークオフ偏光子は,常光,異常光成分ともに透過光の偏光度が大きく,たとえばルチル結晶の場合はともに55dB以上を得られる.
【0067】
そこで本実施形態では図1の構成にウォークオフ偏光子を加え,それに伴う光結合系の変更を行う.
【0068】
具体的には図4のように偏波保持ファイバ401の先端に屈折率分布型ロッドレンズ402を接着し,フォトニック結晶偏光分離素子405の間にルチル平行平板ウォークオフ偏光子404を挿入する.場合によってはルチル平行平板ウォークオフ偏光子404上にフォトニック結晶偏光分離素子を形成することも可能である.
【0069】
また図4の偏波保持ファイバ401と屈折率分布型ロッドレンズ402の組み合わせは,Virtual Fiberと呼ばれるスポットサイズが拡大された仮想的な光ファイバである.Virtual Fiberは非特許文献11に詳しいが,本実施例では40μmのモードフィールド径を持つコア拡大光ファイバ(TECファイバ)と等価な作用を持たせる.
【0070】
図4ではモードフィールド径40μmのTECファイバ相当のVirtualFiber403と厚さ500μmのルチル平行平板ウォークオフ偏光子404を用いた.ルチル平行平板ウォークオフ偏光子404は約50μmのウォークオフ量をもつ.
【0071】
ここから図4の拡大図である図5を用いて説明する.
【0072】
この構成において,Virtual Fiber403から射出した光はルチル平行平板ウォークオフ偏光子404で偏光分離され,ルチル平行平板ウォークオフ偏光子404における常光成分501はフォトニック結晶偏光分離素子405にTE偏波として入射するため反射する.この時反射するビームは偏光度が55dBから約25dBまで劣化する.反射したビームは再度偏光分離され常光成分はVirtual Fiber403に結合損失0.4dBで結合し,再度偏光分離された異常光成分502(偏光度劣化成分)はビームシフトによりVirtual Fiber403から50μm離れた位置に集光するため,Virtual Fiber403に対する結合損失は25dBに達し,実質的にVirtual Fiber403には入射しないと同等である.ここで異常光成分502(偏光度劣化成分)とはフォトニック結晶偏光分離素子405で反射したビームにおける電界振動方向の長軸方向成分(主たる偏光成分)と短軸方向成分(副次的な偏光成分)とからなる楕円偏光の短軸方向成分を主に含むビームである.
【0073】
またルチル平行平板ウォークオフ偏光子404における異常光成分503はフォトニック結晶偏光分離素子405にTM偏波として入射するためほぼ全てが透過するものの0.3%(−25dB)程度が反射する.この反射光は主に屈折率差によるフレネル反射によるもので主にTM偏波成分からなる.このフレネル反射は偏光子に限らず一般の光学部品で生じるものであるので,一般的なフレネル反射を抑制する方法の1つであるルチル結晶偏光分離素子とフォトニック結晶偏光分離素子を接着することで対応できる(図6として例示する).当然ながらルチル平行平板ウォークオフ偏光子404とフォトニック結晶偏光分離素子405の接着される面は対接着材用のARコートがなされる.また反射によりTE成分も生じるものの,ルチル平行平板ウォークオフ偏光子404によって再度偏光分離され,常光としてビームシフトせずにVirtual Fiber403には25dBの大きな結合損失をもって結合する(ほとんど結合しないともいってよい)
【0074】
ここから再度図4を用いて説明する.フォトニック結晶偏光分離素子405を透過したTM偏波成分はコリメートレンズ303で平行ビームに変換されミラー304で反射して,同一経路を経て,Virtual Fiber403に結合損失0.2dB程度で結合する.フォトニック結晶偏光分離素子405の透過損失が往復で0.2dB程度なので,合計の損失は約0.4dBである.
【0075】
以上からいずれの偏波成分においても損失約0.4dB,PDLがほぼ0dBの可変DGDが実現できる.
【0076】
以上からフォトニック結晶偏光分離素子における反射光の偏光度劣化成分の影響を抑えられることがわかる.
【0077】
ここで図7のようにフォトニック結晶偏光分離素子を用いずに,ルチル平行平板ウォークオフ偏光子702の常光成分のビーム領域に対してのみミラー703を形成することも考えられるが,その場合は常光成分と異常光成分を(ビーム径の2倍程度の距離に)分離する必要があるため,ウォークオフ結晶を長大にする必要があるが,Virtual Fiber701とミラー703の間の距離も同時に増えるため,結合損失が大きくなる.そのため図7のようにミラー703を用いることは不適切で,図4のように反射型偏光分離素子を用いるのが望ましい.
【0078】
本実施例の要件の1つであるウォークオフ偏光子の追加は,従来例2および従来例3および従来例4にも適用できる.たとえば従来例2記載の偏光プリズムとミラーを組み合わせたものと組み合わせた場合は図8(a)のような構成になる.図8(a)に示すように,入射側PBS804の前と出射側PBS805の後ろにルチル平行平板ウォークオフ偏光子803,807を加えても従来例2と同じ動作が可能になる.しかしながらコリメートビームとの組み合わせが必須のため,図8(b)のように平行平板ウォークオフ偏光子807で分離した偏光度劣化成分810,811は原理的には結合効率が低くなるものの光ファイバ809のコアに集光するため,偏光度劣化成分の除去が実効を得るためには偏光成分分離量の大きなウィークオフ偏光子が必要になる.たとえばコリメートレンズ802,808の焦点距離が10mmで,光ファイバ801,809のモードフィールド径が9.5μmの場合に,偏光度劣化成分の結合損失が25dBを得るには厚さ17000μmのルチル平行平板ウォークオフ偏光子が必要になる.しかしながら厚さ17000μmのルチル平行平板ウォークオフ偏光子は高価になる.
【0079】
また従来例3,従来例4に平行平板ウォークオフ偏光子を追加することも可能であるが,図8記載の構成と同様に非常に厚い平行平板ウォークオフ偏光子が必要になり,価格面から現実的ではない.
【0080】
なお図4から図8では平行ビームのビームの中心のみ記述している.
【0081】
なお偏波保持ファイバの先端にグレーデッドインデックス型マルチモード光ファイバを取り付け,グレーデッドインデックス型マルチモード光ファイバを一種のレンズとして用いることでも前記Virtual Fiber403と同様の動作が可能であり,例としては,特許文献20,特許文献21が知られている.ただし本実施例では特許文献20,特許文献21のようにファイバコリメータとはせず,偏波保持ファイバとグレーデッドインデックス型マルチモード光ファイバを組み合わせて,モードフィールド径40μmのコア拡大光ファイバと等価な動作をさせる必要がある.
【0082】
また本実施例のVirtual Fiberにかえて,コア拡大光ファイバを用いることも原理的には可能であるが,偏波保持ファイバをモードフィールド径40μmまで拡大することは困難であり,本実施例の構成ではVirtual Fiberを用いることが適当である.
【0083】
(実施例4)
【0084】
本発明の第4の実施形態を図9を用いて説明する.実施例3では単結晶のウォークオフ偏光子を用いたため,偏波保持ファイバの先に屈折率分布型ロッドレンズを取り付け,コア拡大光ファイバと同様の作用を持たせたが,図9中のLPS(Laminated Polarization Splitter)902のような積層型偏光分離素子を用いることで偏波保持ファイバ901のみで低い結合損失に抑えることができることを示す.
【0085】
LPSはSiO2とSi等の屈折率差の大きい材質の交互多層膜からなり,分離角は18度以上が得られる.これはルチル結晶の3倍以上で,そのため偏光度劣化成分の除去が実効を得るために必要な厚さが少なく,偏波保持ファイバのみで実施例3と同様の効果を実現できる.
【0086】
LPS902は厚さ40μmで偏光分離量12μmを持つ.このときフォトニック結晶偏光分離素子903で反射したLPS902における常光成分906が偏波保持ファイバ901に結合する損失は約0.4dBになる.フォトニック結晶偏光分離素子903の透過損失が0.1dBであるので,LPS902における異常光成分907の結合効率が0.2dB程度であればPDLは相殺される.このとき偏光度劣化成分の結合損失は25dBに達する.以上から実施例3と同等の特性が得られることがわかる.
【0087】
本実施例ではLPS902における常光成分に関してレンズまたはそれに類する機構を用いないで結合させているが,このようなレンズを用いない光結合系の結合効率や,レンズを用いない光結合系と偏光子の組み合わせに関しては,非特許文献12や非特許文献13に詳しい.またLPSについては非特許文献14に詳しい.
【0088】
(実施例5)
【0089】
本発明の第5の実施形態を図10を用いて説明する.これまでの実施例では反射率がほぼ100%のミラーを用いてきたが,ミラーに替えて反射型偏光分離素子を用いることも可能である.基本的に吸収型の偏光子2枚を用いることですべての偏光状態の入射光を遮断することができるが,反射型偏光分離素子2枚を用いる場合は,すべての偏光状態の入射光を反射として遮断することが可能になる.さらに消光比の小さい偏光分離素子を用いれば,ビームの分岐が可能になり,一方を信号状態のモニタリングに利用することが可能になる.
【0090】
また偏光分離素子の消光比を小さくすることは容易であり,たとえばフォトニック結晶偏光分離素子の場合は層数を削減することで容易に実現できるためコスト低減にもつながる.ここで偏光子または偏光分離素子の消光比はランダムな偏光に対する透過損失の最大値と最小値の差とする.
【0091】
図10(a)は図3のミラー304をフォトニック結晶偏光分離素子1004に替え,偏波モニタ装置1005を加えたものである.
【0092】
さらにフォトニック結晶偏光分離素子1002,1004はいずれも消光比が10dBのもので,偏波モニタ1005にはPANADAファイバ1001入力光の約10%が入射する.偏波モニタ1005から外部のコンピュータに接続し,コンピュータで偏波状態の解析および偏波コントローラを制御する.このため図43記載の偏波コントローラ後の信号光のモニタ装置4304に光を入力するためのカプラ4303が不要になり,光ファイバの引き回しが簡略化される.
【0093】
図10(b),(c),(d)は各位置での偏波状態とその強度の模式図であり,偏波保持ファイバ内では図10(b)で記載されるように直交する偏光状態であり,偏光分離素子1002透過後では図10(c)に記載されるように一方の偏光成分のみが−10dBに減衰する.さらに偏光分離素子1004透過後では図10(d)に記載されるようにもう一方の偏光成分のみが−10dBに減衰し,図10(b)に比べ,両偏光成分ともに−10dBに減衰するため,偏光成分間の強度比は保存される.
【0094】
また偏波モニタ1005として特許文献22記載の偏光解析装置を用いる.前記偏光解析装置もまたフォトニック結晶偏光分離素子を用いたもので,小型化および集積化に適し本実施例との組み合わせに最適である.
【0095】
(実施例6)
【0096】
本発明の偏波モード分散補償装置の実施形態の一例を図11から図14を用いて詳述する.PMDはチャンネル内でも波長依存性を有する場合があるため,通信に用いられる光ファイバや通信速度,波長によってはPMDの波長依存性を含めたPMD補償が必要になる場合がある.
【0097】
一般に図11のように偏波コントローラ1101,偏光分離機構1102と可変波長分散付与機構1104,可変遅延装置1105,偏光合成機構1103を組み合わせることでPMDの波長依存性を含めたPMD補償が可能になるが,前記偏波コントローラ1101,偏光分離機構1102,可変波長分散付与機構1104,可変遅延装置1105,偏光合成機構1103を個別に作製し光ファイバで接続すると非常に大掛かりな装置になる.
【0098】
可変波長分散付与機構として,特許文献23記載のVIPA型分散補償器(または非特許文献15)が知られる.図12は特許文献23中の図21(a)と同じで,VIPA(Virtually Imaged Phased Array)は波長分波器の一種で,分離角の大きな分散プリズムのような振る舞いをする.
【0099】
図13は本実施例における可変DGDで,図12記載のVIPA型分散補償器の光ファイバ1201を偏波保持ファイバ1301に変更し,かつ偏波保持ファイバ1301の先端に垂直入射で動作しうる反射型偏光分離素子であるフォトニック結晶偏光分離素子1302を加えることでPMDの波長依存性を含めたPMD補償が可能になる.偏波保持ファイバ1301,フォトニック結晶偏光分離素子1302の組み合わせは実施例2と同様である.
【0100】
図14は本実施例の光ファイバ経路の略図である.図13記載の可変DGDを用いるため,光サーキュレータと組み合わせて偏波モード分散補償装置とする.
【0101】
(実施例7)
【0102】
図15を用いて,本発明の第7の実施例の可変DGDと偏波モード分散補償器を説明する.本実施例の特徴は,偏波コントローラを偏光子と隣り合う位置に配置することで構成をより単純化することである.光ファイバ1501,光ファイバ1503,光ファイバ1510は非偏波保持のシングルモードファイバで,光ファイバ1503射出光はコリメートレンズ1504で平行ビームに変換される.
【0103】
平行ビームは液晶回転1/4波長板1505および液晶回転1/2波長板1506からなる偏波コントローラを透過後,フォトニック結晶偏光分離素子1507で偏光分離され反射成分は光ファイバ1503に結合する.一方,フォトニック結晶偏光分離素子1507透過光はフォトニック結晶偏光分離素子1508で反射し,光ファイバ1503に結合する.フォトニック結晶偏光分離素子1507とフォトニック結晶偏光分離素子1508の透過偏光方向は互いに直交しているが,ここでフォトニック結晶偏光分離素子1507,1508に透過光の消光比が10dB程度の物を用いることで,光ファイバ1503射出光のうち10%が偏波モニタ1509に入射し,コンピュータで偏波状態の解析,および液晶回転1/4波長板1505および液晶回転1/2波長板1506からなる偏波コントローラの制御を行う.
【0104】
以上より偏波コントローラと可変DGDを統合し,実施例2などで必要であった偏波コントローラと偏波分散素子間の接続用光ファイバが不要になる.
【0105】
本実施例では液晶回転1/4波長板1505,液晶回転1/2波長板1506を用いているが,液晶回転1/4波長板1505,液晶回転1/2波長板1506は非特許文献16記載のものを用いる.前記文献の液晶回転波長板は可動部がなく,かつ小型であるため本実施例に用いる偏波コントローラに最適である.
【0106】
また本実施例では偏波モニタ1509として特許文献22記載の偏光解析装置を用いるが,レンズ,偏波保持ファイバを通して外部の偏波モニタを使用することも可能である.
【0107】
(実施例8)
【0108】
本発明の第8の実施例を図16を用いて説明する.本実施形態では2つの偏波保持ファイバ1601,1602が平行に並んだ2芯偏波保持ファイバアレイとコリメートレンズ1603からなる2芯コリメータとフォトニック結晶偏光分離素子1604,ミラー1605を用いることで,実施例7までで必要であった光サーキュレータまたは方向性結合器を用いることなく偏波モード分散補償が可能になる.
【0109】
具体的にはフォトニック結晶偏光分離素子1604,ミラー1605の双方にコリメートビームを有意量の入射角度をもって入射させるが,フォトニック結晶偏光分離素子1604,ミラー1605の双方に対する入射角度が同一であれば,いずれの反射光も一点に集光するので,その位置に光ファイバ1602を配置すれば,いずれの偏波成分も光ファイバ1602に結合する.
【0110】
本実施例では,フォトニック結晶偏光分離素子1604とミラー1605の距離に応じて,偏光分離素子反射光とミラー反射光のずれが生じる.前記のズレは光ファイバへの入射角ずれとなり,結合損失を生じさせるが,このとき2本の偏波保持ファイバの間隔が小さく,かつコリメートレンズ1603の焦点距離fが十分に大きければ結合損失の発生を実用上問題ない程度まで抑制できる.
【0111】
またミラーのZ軸方向の前後動の際の傾きの影響も受けにくい光結合系が望ましいが,焦点距離を大きくするほど前記フォトニック結晶偏光分離素子1604,ミラー1605へのビームの入射角度による損失が大きくなる.
【0112】
2芯偏波保持ファイバアレイのピッチはクラッド径の都合から125μmとし,コリメートレンズ1603はf=15mmの非球面レンズを用いた.フォトニック結晶偏光分離素子1604は実施例2記載のものと同じものでコリメートレンズ1603の焦点位置より8mmだけコリメートレンズ1603に近い位置に配置され,偏波保持ファイバ1601射出光TE成分に対する偏波保持ファイバ1602への結合時の損失は約0.75dBである.(最適結合状態から意図的にずらしている).
【0113】
以上の構成でフォトニック結晶偏光分離素子1604とミラー1605の間隔の可動範囲を0〜45mm(300psecのPMDを補償する範囲)とした場合,偏波保持ファイバ1601射出光TM成分(ミラー1605で反射する成分)に対する偏波保持ファイバ1602への結合時の損失は,0.67dBから0.8dBの範囲で変動する(基本結合損失0.45dB,可動による過剰損失は0〜0.23dB,偏光子透過損失0.12dB).そのため,PDLは0dBから0.08dBの範囲で変動することになる.
【0114】
またフォトニック結晶偏光分離素子1604およびミラー1605に対するビームの入射角度は0.24度である.
【0115】
本実施例では可変DGDの損失及びPDLはたとえば実施例2などに比べ増加しているが,損失およびPDLの増加量は光サーキュレータの損失およびPDLと同等以下であり,光サーキュレータを省略できることで相殺できる上,光サーキュレータを省略することによるコスト低減効果と光サーキュレータの持つ波長依存性の排除の効果がある.
【0116】
(実施例9)
【0117】
本発明の第9の実施例を図17を用いて説明する.また図16についても参照する.図17は本実施例を示す偏波モード分散補償器のブロック図である.本実施例では図16記載の可変DGDと,図16記載の可変DGDにおけるフォトニック結晶偏光分離素子1604が可動しミラー1605が固定された構成の可変DGDを,直列に接続することが特徴である.
【0118】
図16記載の可変DGDは可動範囲を大きくするに伴い,PDLが大きくなるため,少ない可動範囲の可変DGDを複数組み合わせることが適切である.図16記載の可変DGDにおけるフォトニック結晶偏光分離素子1604が可動し,ミラー1605が固定された構成ではTM偏波の損失が一定でTE偏波の損失が変動することになるため,図16記載の可変DGDと組み合わせれば,PDLを相殺しつつ1台の可変DGDの2倍のPMDの補償が可能になる.
【0119】
たとえば2芯ファイバのピッチが125μm,レンズの焦点距離が15mm,位置が固定されたフォトニック結晶偏光分離素子と可動するミラーの間隔の可動範囲が0〜22.5mm(150psecのPMDを補償する範囲)の可変DGD1702の損失は,TE偏波が0.6dB(前記実施例5に対し意図的な損失を低下させている),TM偏波が0.57dB〜0.63dBの範囲で変動する.(基本結合損失0.45dB,可動による過剰損失0〜0.06dB,偏光子透過損失0.12dB).従ってPDLは0〜0.03dBの範囲で変動する.
【0120】
また2芯ファイバのピッチが125μm,レンズの焦点距離が15mm,可動するフォトニック結晶偏光分離素子と位置が固定されたミラーの間隔の可動範囲が0〜22.5mm(150psecのPMDを補償する範囲)の可変DGD1703の損失は,TM偏波が0.6dB(意図的に損失を劣化させている),TE偏波が0.57dB〜0.63dBの範囲で変動する.(基本結合損失0.45dB,可動による過剰損失0〜0.06dB,偏光子透過損失0.12dB).
【0121】
以上のような可変DGD1702と可変DGD1703を用いて直列に接続すれば,実施例8記載の可変DGDと同じく300psecのPMDを補償できるが,損失は増加するものの,原理的にはPDLの変動量は相殺できる.
【0122】
以上のように部品点数は2倍になるものの,大きなPMD補償量と低PDL変動を同時に求める場合は本実施例が適する事がわかる.
【0123】
(実施例10)
【0124】
本発明の第10の実施例を図18を用いて説明する.図18は本実施例を示す偏波モード分散補償器のブロック図である.本実施例では可変DGDを2台用いる点は実施例9と同じものの,2台の可変DGDが各々直交する偏波成分に対して群遅延差を付与することが特徴である.
【0125】
図18中の可変DGD1802は図17記載の可変DGD1702と同じものである.また可変DGD1803は可変DGD1702と直交する偏波方向に遅延を付与する可変DGDである.この2つの可変DGDを用いることで,遅延を有する直交する直線偏光成分に対し,−150ps〜+150psまでの逆偏波分散付与が可能になる.
【0126】
これまでの実施例1から実施例9および従来例2,従来例3が,プラス側またはマイナス側の逆偏波モード分散付与しかできなかったのに対し,複数の可変DGDを用いることで偏波モード分散の時間変動に対してより柔軟な対応が可能になる.特に実施例8であっても厳密には対応が困難な,逆偏波モード分散付与量が0psにも対応できることが有効である.
【0127】
(実施例11)
【0128】
本発明の第11の実施例を図19から図21を用いて説明する.図19は本実施例を示す偏波モード分散補償器のブロック図である.可変DGD1903は図16記載の可変DGDと同じものである.半固定DGD1902は後述する.
【0129】
ある既設ファイバのPMD量の時間変動を測定し図20のように有る値以上を保つ場合は,PMDの最小値程度を半固定DGDによって補償し,時間変動分のみ可変DGDで補償することが有効である.可変DGD1903に限らず,可変の偏波成分に群遅延差を付与する装置のみで全てのPMD補償量を得ようとする場合は,寸法や損失の増大などの問題を伴うことが多いが,本実施例のように半固定DGDと組み合わせることで解決できる.
【0130】
図21は半固定DGD1902の詳細を示す.半固定DGD1902は偏光分離装置2101,偏波保持ファイバ2102,偏光合成装置2103,偏波保持ファイバ2104からなり,偏波保持ファイバ2104の長さを変えることで,用いられる伝送路によって異なる前記のPMD最小値に個別対応できる.
【0131】
また図21記載の半固定DGD1902にかえて,図16記載の可変DGDにおけるミラー1605の位置を固定することでも可能で,半固定DGD1902に比べサイズや波長分散の点で有利であるが半固定DGD1902に比べコスト増になるため,状況によって使い分ける必要がある.
【0132】
(実施例12)
【0133】
本発明の第12の実施例を図22を用いて説明する.図22は本実施例を示す偏波モード分散補償器のブロック図である.可変DGD2202,2204は図16記載の可変DGDと同じものである.
【0134】
特許文献15にも記載されているように,偏波コントローラと固定または可変DGDからなる偏波分散補償器を多数段に接続することで,性能向上が図れる事が知られているが,図16記載の可変DGDは入出射用の2ポートを持ち,かつ単純な構成により小型化が可能であることから多数段接続に用いることに適している.
【0135】
(実施例13)
【0136】
本発明の第13の実施例を図23を用いて説明する.本実施例の特徴は,平行に並んだ2つの光ファイバとコリメートレンズからなる2芯コリメータとプリズムを用いることにある.
【0137】
一般に2芯コリメータをなす2本の光ファイバから射出されたビームはレンズの焦点位置で交差する.そのため焦点位置に反射部品を適切に配置すれば,前記2本の光ファイバ間の結合が実現する.しかしながら焦点位置以外では焦点位置からの距離に応じた損失が生じる.本実施例ではプリズムを用いてビームの方向をファイバ射出光と同じ方向にすることで焦点位置以外に配置された反射部品も十分小さい損失に抑えることが可能である.なお2芯コリメータとプリズムを組み合わせ,ビームの方向を制御することは例えば特許文献24中の図3や従来例6等で知られている.
【0138】
図23は平行に並んだ2つの偏波保持ファイバ2301,2302,コリメートレンズ2303,フォトニック結晶偏光分離素子2304,プリズム2305,2枚の45度入射のミラーが一体化されたミラーブロック2306からなる可変DGDである.
【0139】
フォトニック結晶偏光分離素子2304はコリメートレンズ2303の焦点位置に配置され,偏波保持ファイバ2301射出光はコリメートレンズ2303を経てフォトニック結晶偏光分離素子2304に入射し,フォトニック結晶偏光分離素子2304に対するTE偏波成分は反射して,レンズ2303を経て偏波保持ファイバ2302に結合する.一方フォトニック結晶偏光分離素子2304に対するTM偏波成分はフォトニック結晶偏光分離素子2304を透過し,プリズム2305でビーム方向を変えられ,ミラーブロック2306で反射後に再度プリズム2305でビーム方向を変えられ,フォトニック結晶偏光分離素子2304を再度透過し,レンズ2303を経て偏波保持ファイバ2302に結合する.
【0140】
本実施例ではフォトニック結晶偏光分子素子2304をレンズ2303の焦点位置に配置し,フォトニック結晶偏光分離素子2304透過光を偏波保持ファイバ2301射出光と同じ方向にするプリズム2305を用いること,および2枚の45度入射のミラーが一体化されたミラーブロック2306を用いることによりフォトニック結晶偏光分離素子2304反射光とミラーブロック2306反射光のコリメートレンズ2303と偏波保持ファイバ2302間の距離が常に一致するため,ミラーブロック2306の位置を変化させた場合でも損失が変動しない.
【0141】
なお本実施例は2枚の45度入射の一体化されたミラーブロック2306を用いることで実施例1,実施例2,実施例3,実施例4,実施例5に比べ装置サイズが大きくなるが従来例2記載の偏光プリズムとミラーを組み合わせた構成と同等かそれ以下のサイズは実現可能である.また45度入射のミラー2枚に替えて,曲面ミラーやPBSを用いることも可能である.
【0142】
(実施例14)
【0143】
本発明の第14の実施例を図24を用いて説明する.本実施例の特徴は前記実施例13におけるレンズを0.25ピッチの屈折率分布型ロッドレンズに替え,光ファイバ,屈折率分布型ロッドレンズ,フォトニック結晶偏光分離素子を有機接着にて一体化することである.
【0144】
図24は平行に並んだ2つの偏波保持ファイバ2401および偏波保持ファイバ2402,0.25ピッチの屈折率分布型ロッドレンズ2403,フォトニック結晶偏光分離素子2404,プリズム2405,2枚の45度入射が一体化されたミラーブロック2406からなる可変DGDである.
【0145】
ここでフォトニック結晶偏光分離素子2404ではなく波長選択フィルタであった場合,2つの偏波保持ファイバ2401および偏波保持ファイバ2402,0.25ピッチの屈折率分布型ロッドレンズ2403,波長選択フィルタの組み合わせは特許文献26中のfig.4bとほぼ同様の構成であることがわかる.
【0146】
0.25ピッチの屈折率分布型ロッドレンズ2403はコリメートレンズとして動作し,フォトニック結晶偏光分離素子2404は屈折率分布型ロッドレンズ2403の端面に配置され,偏波保持ファイバ2401射出光は屈折率分布型ロッドレンズ2403を経てフォトニック結晶偏光分離素子2404に入射し,フォトニック結晶偏光分離素子2404に対するTE偏波成分は反射して,屈折率分布型ロッドレンズ2403を経て偏波保持ファイバ2402に結合する.
【0147】
一方フォトニック結晶偏光分離素子2404に対するTM偏波成分はフォトニック結晶偏光分離素子2404を透過し,プリズム2405を経てミラーブロック2406で反射後に再度プリズム2405を経てフォトニック結晶偏光分離素子2404を透過し,屈折率分布型ロッドレンズ2403を経て偏波保持ファイバ2402に結合する.
【0148】
なおフォトニック結晶偏光分離素子2404に対するビームの入射角度は2つの偏波保持ファイバのコア間隔が250μmで屈折率分布型ロッドレンズとして日本板硝子株式会社の波長1.55μm向け外径1.8mmの製品を用いた場合,約1.5度となるが前述のとおり特性劣化の原因にはならない.
【0149】
本実施例ではフォトニック結晶偏光分離素子2404を屈折率分布型ロッドレンズ2403の端面に配置し,かつ2つの偏波保持ファイバのコア間の中心位置を屈折率分布型ロッドレンズ2403の中心軸上に配置させる.この場合各部品の精度が十分高ければ,光学測定を伴う光軸調整をすることなく高効率の光結合系になりうる.例えば偏波保持ファイバを屈折率分布型ロッドレンズと同じ外径を持つ2穴ガラスキャピラリに固定した上で,屈折率分布型ロッドレンズとともに屈折率分布型ロッドレンズの外形とほぼ同じ内径をもつ筐筒に圧入するなどの工法が有効である.
【0150】
(実施例15)
【0151】
本発明の第15の実施例を図25を用いて説明する.本実施例の特徴は実施例13におけるプリズムに替えて,0.25ピッチの屈折率分布型ロッドレンズを3つ用いることである.
【0152】
図20は平行に並んだ2つの偏波保持ファイバ2501および偏波保持ファイバ2502,0.25ピッチの屈折率分布型ロッドレンズ2503,フォトニック結晶偏光分離素子2504,0.25ピッチの屈折率分布型ロッドレンズ2505,0.25ピッチの屈折率分布型ロッドレンズ2506,0.25ピッチの屈折率分布型ロッドレンズ2507,ミラーブロック2508からなる可変DGDである.
【0153】
ここでフォトニック結晶偏光分離素子2504ではなく波長選択フィルタであった場合,2つの偏波保持ファイバ2501および偏波保持ファイバ2502,0.25ピッチの屈折率分布型ロッドレンズ2503,波長選択フィルタ,0.25ピッチの屈折率分布型ロッドレンズ2505の組み合わせは特許文献26fig.1とほぼ同様の構成であることがわかる.
【0154】
0.25ピッチの屈折率分布型ロッドレンズ2503はコリメートレンズとして動作し,フォトニック結晶偏光分離素子2504は屈折率分布型ロッドレンズ2503の端面に配置され,偏波保持ファイバ2501射出光は屈折率分布型ロッドレンズ2503を経てフォトニック結晶偏光分離素子2504に入射し,フォトニック結晶偏光分離素子2504に対するTE偏波成分は反射して,屈折率分布型ロッドレンズ2503を経て偏波保持ファイバ2502に結合する.
【0155】
一方フォトニック結晶偏光分離素子2504に対するTM偏波成分はフォトニック結晶偏光分離素子2504を透過し,屈折率分布型ロッドレンズ2505の端面2509でビームウェイストを持つ.ついでビームウェイスト位置に軸中心を持0.25ピッチの屈折率分布型ロッドレンズ2506で平行ビームに変換され,ミラーブロック2508で反射後に0.25ピッチの屈折率分布型ロッドレンズ2507,0.25ピッチの屈折率分布型ロッドレンズ2505を透過し,再度フォトニック結晶偏光分離素子2504を透過して,屈折率分布型ロッドレンズ2503を経て偏波保持ファイバ2502に結合する.
【0156】
以上より実施例14と等価な動作ができることがわかる.
【0157】
(実施例16)
【0158】
本発明の第16の実施形態を図26を用いて説明する.本実施例の特徴は前記実施例13に加えてルチル平行平板偏光分離/合成素子による偏光度劣化成分を除去する機構を備えることにある.
【0159】
図26は平行に並んだ2つの偏波保持ファイバ2601,2602,ルチル平行平板偏光分離素子2603,ルチル平行平板偏光合成素子2604,コリメートレンズ2605,フォトニック結晶偏光分離素子2606,プリズム2607,2枚の45度入射のミラーが一体化されたミラーブロック2608からなる可変DGDである.
【0160】
フォトニック結晶偏光分離素子2606はコリメートレンズ2605の焦点位置に配置され,偏波保持ファイバ2601射出光のうちルチル平行平板偏光分離素子2603における異常光成分2609はコリメートレンズ2605を経てフォトニック結晶偏光分離素子2606で反射し,コリメートレンズ2605,ルチル平行平板偏光合成素子2604を異常光として透過し,その後偏波保持ファイバ2602に結合する.
【0161】
偏波保持ファイバ2601射出光のうち,ルチル平行平板偏光分離素子2603における常光成分2610はコリメートレンズ2605を経てフォトニック結晶偏光分離素子2606を透過し,プリズム2607を経てミラーブロック2608で反射後に再度プリズム2607を経てフォトニック結晶偏光分離素子2606を透過し,コリメートレンズ2605,ルチル平行平板偏光合成素子2604を経て偏波保持ファイバ2602に結合する.
【0162】
本実施例ではルチル平行平板ウォークオフ偏光分離素子2603,ルチル平行平板ウォークオフ偏光合成素子2604を用いることで,偏光度劣化成分を除去できる.ルチル平行平板はおおよそ厚さの1/10のウォークオフ量が得られることから,200μmのルチル平行平板を用いれば,偏波保持ファイバに結合する偏光度劣化成分を60dB以上減衰できる.
【0163】
なお偏波保持ファイバ2601,2602とコリメートレンズ2605の間にルチル平行平板ウォークオフ偏光分離/合成素子2603,2604が配置されるが,この場合ルチル平行平板ウォークオフ偏光分離/合成素子2603,2604における常光成分と異常光成分の光路長が異なるため,結合効率差が生じる.
【0164】
(実施例17)
【0165】
図27を用いて本発明の第17の実施例を説明する.実施例16ではルチル平行平板偏光分離素子2603,ルチル平行平板偏光合成素子2604を用いて偏光度劣化成分を除去することができたが,偏波保持ファイバ2602での各偏光ビームの集光位置を一致させるため,前記ルチル平行平板偏光分離素子2603とルチル平行平板偏光合成素子2604は厳密に同じウォークオフ量と180度異なる偏光分離方向を有する必要がある.
【0166】
前記必要事項を実現することは比較的容易であるが,本実施例では1枚のルチル平行平板偏光分離/合成素子2701と45度ファラデー回転子2702を用いることで代替できることを示す.なおファラデー回転子は一般に吸収損失が大きく,ファラデー回転係数が大きな温度依存性,波長依存性を有することから,本実施形態は温度制御された環境下で,比較的狭い波長帯域での使用に適する.
【0167】
偏波保持ファイバ2601射出光のうちルチル平行平板偏光分離/合成素子2701における常光成分2703はファラデー回転子2702で右回りに45度偏波面が回転し,コリメートレンズ2605を経てフォトニック結晶偏光分離素子2606で反射し,コリメートレンズ2605を透過後ファラデー回転子2702で右回りに45度偏波面が回転して,ルチル平行平板偏光分離/合成素子2701に異常光として入射し偏波保持ファイバ2602に結合する.
【0168】
偏波保持ファイバ2601射出光のうちルチル平行平板偏光分離/合成素子2701における異常光成分2704はファラデー回転子2702で右回りに45度偏波面が回転し,コリメートレンズ2605を経てフォトニック結晶偏光分離素子2606を透過し,プリズム2607を経てミラーブロック2608で反射後に再度プリズム2607を経てフォトニック結晶偏光分離素子2606を透過後ファラデー回転子2702で右回りに45度偏波面が回転して,ルチル平行平板偏光分離/合成素子2701に常光として入射し偏波保持ファイバ2602に結合する.
【0169】
以上から実施例16と同様の動作ができることが説明できた.
【0170】
なおファラデー回転子2702はコリメートレンズ2605とォトニック結晶偏光分離素子2606の間に配置してもかまわない.
【0171】
(実施例18)
【0172】
本発明の第18の実施例を図28を用いて説明する.実施例16において偏波保持ファイバ2601,2602とレンズ2605の間にルチル平行平板偏光分離素子2603,ルチル平行平板偏光合成素子2604が配置されことにより結合効率差が生じることを述べたが,本実施例ではルチル平行平板偏光分離素子2603,ルチル平行平板偏光合成素子2604により生じる偏光成分間の光路長差を補償出来る実施形態を示す.
【0173】
具体的には図28に記載されるように偏光分離を生じないルチル平行平板2801を加えることにより,ルチル平行平板偏光分離素子2603,ルチル平行平板偏光合成素子2604における常光成分と異常光成分の偏波保持ファイバ2601,2602とレンズ2605間の光路長は一致し,いずれの偏波成分も平行ビームにすることが可能になり,結合損失を抑制できる.なおこのような偏光分離素子によって生じる偏光成分間の光路長差を複屈折結晶平板で補償する方法については特許文献27等で知られている.
【0174】
またフォトニック結晶偏光分離素子2606のTM偏波透過損失によるところのPDLが生じるため,フォトニック結晶偏光分離素子2606を傾け,フォトニック結晶偏光分離素子2606に対するTE偏波成分の偏波保持ファイバ2602に対する結合損失を意図的に低下させることで,PDLを抑制することも可能である.なおフォトニック結晶偏光分離素子2606を傾けることで,フォトニック結晶偏光分離素子2606とミラーブロック2608の間での多重反射による信号品質低下を防止する働きは実施例2と同様である.
【0175】
また実施例17の構成に対しても,本実施例のように偏波保持ファイバとコリメートレンズの間に偏光分離を生じないルチル平行平板を加えることも可能かつ有効である.
【0176】
(実施例19)
【0177】
本発明の第19の実施例を図29を用いて説明する.図29(a)は平行に並んだ2つの偏波保持ファイバ2901,2902,コリメートレンズ2903,フォトニック結晶偏光分離素子2904,プリズム2905,1/4波長板2906,ミラー2907からなる可変DGDの構成を表す図である.
【0178】
本実施例は図23に1/4波長板2906を加え,かつミラーブロックを平板のミラー2907に変えたものに相当する.実施例1から実施例18では偏光子とミラー間の1往復に相当する偏光成分間の遅延差を与えてきたが,本実施例は1/4波長板2906を加えることで偏光分離素子とミラーの間の2往復に相当する遅延差を与えることができる.
【0179】
図29(b)はフォトニック結晶偏光分離素子2904で反射する偏波成分のビームの進行を示す図である.フォトニック結晶偏光分離素子2904はコリメートレンズ2903の焦点位置に配置され,偏波保持ファイバ2901射出光は,コリメートレンズ2903を経てフォトニック結晶偏光分離素子2904に入射し,フォトニック結晶偏光分離素子2904に対するTE偏波成分は反射して,コリメートレンズ2903を経て偏波保持ファイバ2902に結合する.
【0180】
図29(c)はフォトニック結晶偏光分離素子2904を透過する偏波成分のビームの進行を示す図である.偏波保持ファイバ2901射出光は,コリメートレンズ2903を経てフォトニック結晶偏光分離素子2904に入射し,TM偏波成分はフォトニック結晶偏光分離素子2904を透過し,プリズム2905を経て1/4波長板2906を透過後ミラー2907で反射し,再度1/4波長板2906を透過しプリズム2905を経てフォトニック結晶偏光分離素子2904に入射するが,この時TE偏波になっているため反射する.そしてプリズム2905,1/4波長板2906,ミラー2907を再度往復してフォトニック結晶偏光分離素子2904に入射するが,この時TM偏波になっているため透過する.その後コリメートレンズ2903を経て偏波保持ファイバ2902に結合する.
【0181】
上記によりフォトニック結晶偏光分離素子2904とミラー2907間を2往復する距離に相当する偏波モード分散を補償できるため,ミラーの可動範囲を小さくできる.また平板のミラー2907を使用できることも本実施例の利点である
【0182】
また図29記載の可変DGDに図26から図28と同様に偏光度劣化成分除去のためのウォークオフ偏光子の追加が有効もある.
【0183】
(実施例20)
【0184】
本発明の第20の実施例を図30を用いて説明する.平行に並んだ2つの偏波保持ファイバ3001,3002,0.25ピッチの屈折率分布型ロッドレンズ3003,フォトニック結晶偏光分離素子3004,0.25ピッチの屈折率分布型ロッドレンズ3005,0.25ピッチの屈折率分布型ロッドレンズ3006,3007,45度ファラデー回転子3008,熱光学結晶3009,ミラー3010からなる可変DGDである.
【0185】
本実施例は実施例19と同じようにフォトニック結晶偏光分離素子3004とミラー3010の間を2往復させることで偏光成分間に遅延差を付与するが,1/4波長板に変えて45度ファラデー回転子3008を用い,ミラー3010を可動させる代わりに熱光学結晶3009の温度変化による屈折率変化を用いて遅延量を変化させる.熱光学効果は温度変化を用いるため反応速度が低いが,偏波モード分散量の時間変動も遅いため十分な追従性が得られる.
【0186】
偏光分離素子で反射する偏光成分については図25と同様であるため,偏光分離素子を透過する偏波成分のビームの進行について説明する.偏波保持ファイバ3001射出光は,屈折率分布型ロッドレンズ3003を経てフォトニック結晶偏光分離素子3004に入射し,TM偏波成分はフォトニック結晶偏光分離素子3004を透過し,屈折率分布型ロッドレンズ3005,屈折率分布型ロッドレンズ3006を経て45度ファラデー回転子3008,熱光学結晶3009を透過後ミラー3010で反射し,再度熱光学結晶3009,45度ファラデー回転子3008を透過し,屈折率分布型ロッドレンズ3006,屈折率分布型ロッドレンズ3005を経てフォトニック結晶偏光分離素子3004に入射するが,この時TE偏波になっているため反射する.そして屈折率分布型ロッドレンズ3005,屈折率分布型ロッドレンズ3007,45度ファラデー回転子3008,熱光学結晶3009,ミラー3010間を往復してフォトニック結晶偏光分離素子3004に入射するが,この時TM偏波になっているため透過する.その後屈折率分布型ロッドレンズ3003を経て偏波保持ファイバ3002に結合する.
【0187】
上記によりフォトニック結晶偏光分離素子3004とミラー3010間を2往復する距離に相当する偏波モード分散を補償できるため,熱光学結晶3009に印加する温度範囲を小さくできる.
【0188】
(実施例21)
【0189】
本発明の第21の実施例を図31を用いて説明する.図31(a)は平行に並んだ2つの偏波保持ファイバ3101,3102,コリメートレンズ3103,フォトニック結晶偏光分離素子3104,プリズム3105,45度ファラデー回転子3106,2枚の45度入射のミラーが一体化されたミラーブロック3107からなる可変DGDの構成を示す図である.
【0190】
本実施例は図23に45度ファラデー回転子3106を加えたものに相当し,フォトニック結晶偏光分離素子3104とミラーブロック3107の間の2往復に相当する遅延差を与えることができる.
【0191】
図31(b)はフォトニック結晶偏光分離素子3104に対するTE編波成分のビームの進行を示す図である.フォトニック結晶偏光分離素子3104はコリメートレンズ3103の焦点位置に配置され,偏波保持ファイバ3101射出光は,コリメートレンズ3103を経てフォトニック結晶偏光分離素子3104に入射し,フォトニック結晶偏光分離素子3104に対するTE偏波成分は反射して,コリメートレンズ3103を経て偏波保持ファイバ3102に結合する.
【0192】
図31(c)はフォトニック結晶偏光分離素子3104に対するTM偏波成分のビームの進行を示す図である.フォトニック結晶偏光分離素子3104に対するTM偏波成分はフォトニック結晶偏光分離素子3104を透過し,プリズム3105を経て45度ファラデー回転子3106を透過後,ミラーブロック3107で反射し,再度45度ファラデー回転子3106を透過しプリズム3105を経てフォトニック結晶偏光分離素子3104に入射するが,45度ファラデー回転子3106を2回透過するためTE偏波として反射する.そして同一の経路を再度往復してフォトニック結晶偏光分離素子3104に入射するが,45度ファラデー回転子3106を再度2回透過するためTM偏波として透過する.その後コリメートレンズ3103を経て偏波保持ファイバ3102に結合する.
【0193】
上記によりフォトニック結晶偏光分離素子3104とミラーブロック3107間を2往復する距離に相当する偏波モード分散を補償できるため,ミラーブロック3107の可動範囲を小さくできる.また45度ファラデー回転子3106に替えて,1/4波長板を用いても同様に偏光子とミラー間を2往復する距離に相当する偏波モード分散を補償できる.
【0194】
(実施例22)
【0195】
図32を用いて本発明の第22の実施例を説明する.図32(a)は平行に並んだ2つのシングルモードファイバ3201,3202,コリメートレンズ3203,液晶回転波長板からなる偏波コントローラ3204,フォトニック結晶偏光分離素子3205,プリズム3206,45度ファラデー回転子3207,フォトニック結晶偏光分離素子3208,フォトニック結晶偏光分離素子3209,偏波モニタ3210からなる可変DGDの構成を示す図である.
【0196】
図32(b)はフォトニック結晶偏光分離素子3205に対するTE偏波成分のビームの進行を示す図である.フォトニック結晶偏光分離素子3205はコリメートレンズ3203の焦点位置に配置され,シングルモードファイバ3201射出光は,コリメートレンズ3203を経て液晶回転波長板からなる偏波コントローラ3204で遅延を有する直交する直線偏光成分に変換され,フォトニック結晶偏光分離素子3205に入射し,フォトニック結晶偏光分離素子3205に対するTE偏波成分は反射して,偏波コントローラ3204とコリメートレンズ3203を経てシングルモードファイバ3202に結合する.
【0197】
図32(c)はフォトニック結晶偏光分離素子3205に対するTM偏波成分のビームの進行を示す図である.フォトニック結晶偏光分離素子3205に対するTM偏波成分はフォトニック結晶偏光分離素子3205を透過し,プリズム3206,45度ファラデー回転子3207を経てフォトニック結晶偏光分離素子3208で反射し,45度ファラデー回転子3207透過後に再度プリズム3206を経てフォトニック結晶偏光分離素子3205に入射するが,このとき45度ファラデー回転子3207を2度透過しているためTE偏波として反射する.その後プリズム3206,45度ファラデー回転子3207を透過し,フォトニック結晶偏光分離素子3209で反射し,45度ファラデー回転子3207透過後に再度プリズム3206を経てフォトニック結晶偏光分離素子3205に入射するが,このとき45度ファラデー回転子3207を2度透過しているためTM偏波として透過し,偏波コントローラ3204とコリメートレンズ3203を経てシングルモードファイバ3202に結合する.
【0198】
本実施例では図18記載の構造に偏波コントローラとモニタ装置を加えることが特徴であり,実施例6と同様に消光比が10dB程度のフォトニック結晶偏光分離素子3205とフォトニック結晶偏光分離素子3208を用いて,図32(d)に記載される経路を用い,シングルモードファイバ3201射出光の一部を偏波モニタ3210に入射させ偏波状態の分析に用いる.さらに2つのフォトニック結晶偏光分離素子3208,3209は同一基板上に異なるパターンを形成することで一体化する事が可能である(自己クローニング法で作製されたフォトニック結晶の特長).具体的にはSiO2基板上に90度異なる方向を向いた溝を形成した上で同一条件下でSiO2,Siの多層膜を形成する.なおフォトニック結晶偏光分離素子3209はミラーに変えても差し支えないが,別の基板を必要とするため実用上の利点はない.
【0199】
(実施例23)
【0200】
図33から図34を用いて本発明の第23の実施例を説明する.今後はアクセス系光通信網の普及に伴い,各チャンネル毎の偏波モード分散の補償が必要になるが,チャンネル毎にまったく異なる偏波モード分散を持つ場合があるため,偏波モード分散補償は技術的,価格的な困難を伴う.本実施例は簡便に各チャンネル毎の偏波モード分散の補償を実現しうるものである.
【0201】
図33に各チャンネル毎の偏波モード分散補償器のモデルを示す.図33によれば,分波,各チャンネルごとに偏波モード分散補償,合波の過程が必要になり,波長分離機構3301,各波長帯毎の偏波コントローラ3302,可変DGD3303,カプラ3304,モニタ装置3305および制御装置3306と波長合成機構3307が必要になる.
【0202】
本実施例の基本的な構成を図34に示す.本実施例の基本的な構成部品は,光サーキュレータ3402,光ファイバ3403,コリメートレンズ3404,波長選択フィルタ群3405,ミラー3409,液晶回転波長板による偏波コントローラ3410〜3412,フォトニック結晶偏光分離素子3413〜3418,コリメートレンズ3419,偏波モニタ3420,3421,3422,偏波保持ファイバ3423からなる.
【0203】
ここで波長選択フィルタ群3405とミラー3409が無ければ,光ファイバ3403,コリメートレンズ3404,液晶回転波長板群からなる偏波コントローラ3410,フォトニック結晶偏光分離素子3413,3414,偏波モニタ3420の組み合わせは図15記載の偏波モード分散デバイスと等価であることがわかる.一方,波長選択フィルタ群3405とミラー3409はよく知られた光多重分波回路である.
【0204】
光ファイバ3403から射出した波長A,波長B,波長C,波長Dを含むビームはコリメータレンズ3404で平行ビームに変換される.その後,波長選択フィルタ群3405内のフィルタ3406で波長Aは透過し,波長B,波長C,波長Dは反射する.波長Aに関してはフィルタ3406が無い場合と同等とみなしうるので,図15と同じ動作を経て,大部分は光ファイバ3403に戻り一部は偏波モニタ3420に入射して,偏波コントローラの制御および偏波モード分散の測定,制御に用いられる.
【0205】
波長B,波長C,波長Dからなるビームはミラー3409で反射して,波長選択フィルタ群3405内のフィルタ3407に入射し,波長Bは透過し,波長C,波長Dは反射する.波長Bは前記波長Aと同様に偏波分散補償がなされ,入射光の大部分は逆の経路を経て光ファイバ3403に戻り,一部は偏波モニタ3421に入射して,偏波コントローラの制御および偏波モード分散の測定,制御に用いられる.
【0206】
波長C,波長Dからなるビームはミラー3409で反射して,波長選択フィルタ群3405内のフィルタ3408に入射し,波長Cは透過し,波長Dは反射する.波長Cは前記波長Aと同様に偏波分散補償がなされ,入射光の大部分は逆の経路を経て光ファイバ3403に戻り,一部は偏波モニタ3422に入射して,偏波コントローラの制御および偏波モード分散の測定,制御に用いられる.
【0207】
波長Cからなるビームはミラーで反射して,偏波保持ファイバ3423に結合してその後任意の信号処理がなされる.
【0208】
以上のように各チャンネル毎の偏波モード分散の補償ができることが示された.本実施例では4チャンネルの場合を例示したが,本実施例の構成がより多くのチャンネルに展開できることは明白である.
【0209】
また図34では,フォトニック結晶偏光分離素子3413〜3418は全てビームが垂直に入射するよう配置されるが,図16のように同一波長に用いられる併置されたフォトニック結晶偏光分離素子を同じ角度傾けることで,戻り光の集光位置をずらしその位置に入射光ファイバとは別の光ファイバを設置すれば,光サーキュレータが不要になる.ただし結合効率が低くなるため実用的ではない.
【0210】
以下,本実施例に用いる各部品について説明する.波長選択フィルタ群3405は非特許文献17記載の自己クローニング法で作製されたフォトニック結晶フィルタを用いる.前記フォトニック結晶フィルタはチャンネル毎に溝の周期を変えた基板上に同時に成膜するだけで多チャンネル用のフィルタを同時に作製することができるため低コストであり,またフォトニックバンドギャップを用いることから,斜め入射時のPDLを抑制した設計が容易であり,本実施例への適用に最適である.ミラー3409についてもフォトニック結晶ミラーを用いることは容易であるが,斜め入射によるPDLが十分小さければ,通常用いられる誘電体多層膜ミラーでも差し支えない.図34におけるフォトニック結晶偏光分離素子3413,3415,3417は,特許文献12記載のフォトニック結晶偏光分離素子が自己クローニングで作製されるため大面積化が容易であることを利用して1枚に統合することも可能である.コリメートレンズ3404は本実施例ではビームを遠くまで飛ばす必要があるため,場合によってはコリメートレンズを1枚の非球面レンズではなく,複数枚のレンズを組み合わせた1群のコリメータレンズを用いる.ただしその場合はコスト上昇につながる.
【0211】
また本実施例では,フォトニック結晶偏光分離素子を移動させることにより補償しうる偏波モード分散を可変にしたが,図30と同じように熱光学結晶を用いることでフォトニック結晶偏光分離素子3414,3416,3418を固定にすることも可能である.その場合フォトニック結晶偏光分離素子3414,3416,3418を1枚に統合することが可能である.
【0212】
(実施例24)
【0213】
本発明の第24の実施例を図35を用いて説明する.図35(a)は本実施例における偏波モード分散補償器の構成を示す上面図で図35(b)は本実施例における偏波モード分散補償器の構成を示す側面図であり,併置された光ファイバ3501,3502,コリメートレンズ3503,波長選択フィルタ群3504,ミラー3508,液晶回転波長板による偏波コントローラ3509,3510,3511,フォトニック結晶偏光分離素子3512,プリズム3513,45度ファラデー回転子3514,各々透過偏光方向が90度異なる2枚のフォトニック結晶偏光分離素子が一体化された偏光分離素子群3515,3516,3517,コリメートレンズ3518,偏波モニタ3519,3520,3521,光ファイバ3522からなる.
【0214】
図35(b)より波長選択フィルタ群3504とミラー3508が無ければ,図32記載の偏波分散素子と等価であることがわかる.一方,波長選択フィルタ群3504とミラー3508はよく知られた光多重分波回路である.また各チャンネル毎の分離合成については実施例23と同様である.ここで45度ファラデー回転子3514がPMD補償されるすべてのチャンネルで共通化されているが,特許文献28記載のファラデー回転子を用いれば,チャンネル間のファラデー回転角の違いは生じない.
【0215】
(実施例25)
【0216】
本発明の第25の実施例を図36を用いて説明する.図33における可変DGDがチャンネル内のPMDの波長依存性を含めて補償できうるならば,実施例23に比べさらに高速の通信が可能になる.
【0217】
図36(a)は偏波モード分散補償器の一例で,TEC化された分散シフトファイバ3603,コリメートレンズ3604,波長選択フィルタ群3605,ミラー3609,偏波コントローラ3610,3611,3612,分岐プリズム3613,3614,3615,偏波モニタ装置3616,3617,フォトニック結晶偏光分離素子3619,3620,3621,コリメートレンズ3622,チャープドファイバブラッググレーティング3623,3634,3625,光ファイバ3626からなる可変DGDの上面図である.図36(b)は同じく側面図である.
【0218】
チャープドファイバブラッググレーティング3623,3624,3625に熱や応力を加えることで付与する波長分散量を可変にできることは,例えば特許文献29などですでに知られている.
【0219】
光ファイバ3603から射出した波長A,波長B,波長C,波長Dを含むビームはコリメートレンズ3604で平行ビームに変換される.その後,波長選択フィルタ群3605内のフィルタ3606で波長Aは透過し,波長B,波長C,波長Dは反射する.波長Aからなるビームは偏波コントローラ3610で遅延を有する直交する直線偏光成分に変換され,分岐プリズム3613でビームの一部は反射され,反射光は偏波モニタ3616に入射し,偏波コントローラの制御に用いられる.分岐プリズム透過光はフォトニック結晶偏光分離素子3619に入射して,偏光分離され,フォトニック結晶偏光分離素子3619に対するTE偏波成分は反射して,分散シフトファイバ3603に入射する.ただし分岐プリズム3613でビームの一部が反射して反射光はモニタ装置3617に入射し,偏波モード分散の測定に用いられる.
【0220】
フォトニック結晶偏光分離素子3619に対するTM偏波成分は透過して,チャープトファイバブッラググレーティング3623で反射し,分散シフトファイバ3603に入射する.ただし分岐プリズム3613でビームの一部が反射して反射光は偏波モニタ3617に入射し,偏波モード分散の測定に用いられる.
【0221】
波長B,波長C,波長Dからなるビームはミラー3609で再度反射して,フィルタ3607に入射し,波長Bは透過し,波長C,波長Dは反射する.波長Bは前記波長Aと同様に偏波モード分散補償がなされ,入射光の大部分は逆の経路を経て光ファイバ3403に戻る.
【0222】
波長C,波長Dからなるビームはミラー3609で再度反射して,フィルタ3608に入射し,波長Cは透過し,波長Dは反射する.波長Cは前記波長Aと同様に偏波モード分散補償がなされ,入射光の大部分は逆の経路を経て光ファイバ3603に戻る.
【0223】
波長Dからなるビームはミラー3609で再度反射して,光ファイバ3626に結合してその後任意の信号処理がなされる.
【0224】
本実施例ではチャープトファイバブッラググレーティングを用いたが,反射型の分散補償デバイスを用いれば本実施例と同様の動作が実現可能である.例えば非特許文献18記載のLOTADEなどがあげられる.
【0225】
(実施例26)
【0226】
本発明の第26の実施例を図37および図38を用いて説明する.図33における可変DGD3303がチャンネル内のPMDの波長依存性を含めて補償できうるならば,実施例23に比べさらに高精度のPMD補償が可能になるが,PMDの波長依存性を含めた補償は図37における波長分散補償器3702と可変DGD3704を組み合わせることでも可能である.
【0227】
波長分散補償器としては前述のVIPA型や熱勾配や応力を加えたチャープドファイバブラッググレーティング等を用いた例(特許文献29参照)が知られるが,これらは光サーキュレータとの組み合わせが前提となり,例えば図29記載の偏波分散付与デバイスとの組み合わせには適さない.
【0228】
図38は透過型波長分散補償器であり,対向するファイバコリメータと2個の等辺長分散プリズムからなる.2個の等辺長分散プリズムによる波長分散付与の例としては,特許文献30のような例が知られている.この2個の等辺長分散プリズム3803,3804に対する入射角度を変えることで付与する分散スロープを可変にできる.等辺長分散プリズム3803,3804に用いる材質としては波長分散の波長依存性が大きい材質が適するので,使用する波長から近い波長に吸収端を有する材質を使用することも有効である.本実施例では等辺長分散プリズムを用いたが,特許文献31記載の分散補償光回路を用いることも有効である.
【0229】
また図37中の可変DGD3704は図29記載の可変DGDが適し,図37中の波長分離機構3701と波長合成機構3708としてはAWGや波長選択フィルタ群とレンズおよびファイバを組み合わせたものなどが適する.
【0230】
(実施例27)
【0231】
本発明の第27の実施例を図39を用いて説明する.可変DGDは偏波分散補償のほかの利用形態もある.例えば非特許文献19で発表された偏光分離干渉型光スイッチによるビットレート可変波長変換装置でも用いられている.この使用例では1台の可変DGDで2つの経路に同量の遅延を与えているが,本発明でも同様のことは可能であり,かつより容易である.
【0232】
図39は偏波保持ファイバ3901,コリメートレンズ3902,フォトニック結晶偏光分離素子3903,ミラー3904,フォトニック結晶偏光分離素子3905,コリメートレンズ3906,偏波保持ファイバ3907からなる可変DGDである.
【0233】
偏波保持ファイバ3901,コリメートレンズ3902,フォトニック結晶偏光分離素子3903,ミラー3904の組み合わせは1台の可変DGDとして機能し,かつミラー3904,フォトニック結晶偏光分離素子3905,コリメートレンズ3906,偏波保持ファイバ3907も同様に1台の可変DGDとして動作する.またフォトニック結晶偏光分離素子3903とフォトニック結晶偏光分離素子3905を適切に前後動させることにより偏波保持ファイバ3901に入出射する光と偏波保持ファイバ3907に入出射する光に与える遅延量の大きさを容易に同量にすることができる.
【0234】
また1台の可変DGDで2つの経路に同量の遅延を与える可変DGDは図3や図4記載の可変DGDをもとにしても実現できる.具体的には,図3記載の可変DGDをもとにした場合は図39と同様にミラーの両側にレンズ,垂直入射または垂直入射に近い入射角度で偏光分離動作が可能な偏光分離素子,入出力ファイバを配置する.
【0235】
(実施例28)
【0236】
本発明の第28の実施例を図40から図41を用いて説明する.本実施例の特徴は実施例27では必要となる光サーキュレータを不要にするべく入射ポートと出射ポートを別にすることで,そのために図16と同様に偏光分離素子及びミラーを傾けることである.これにより光サーキュレータの損失や波長依存性を除くことが可能で,コスト低減の効果も大きい.
【0237】
図40(a)は偏波保持ファイバ4001,偏波保持ファイバ4002,偏波保持ファイバ4003,偏波保持ファイバ4004,コリメートレンズ4005,コリメートレンズ4006,フォトニック結晶偏光分離素子4007,ミラー4008からなる可変DGDの上面図である.ここで,偏波保持ファイバ4002は偏波保持ファイバ4001に,偏波保持ファイバ4004は偏波保持ファイバ4003に隠れて見えないものとする.
【0238】
図40(b)は図40(a)記載の可変DGDの側面図である.
【0239】
偏波保持ファイバ4001,偏波保持ファイバ4002,コリメートレンズ4005,フォトニック結晶偏光分離素子4007,ミラー4008の組み合わせは図16と同一で,可変DGDとして動作する.また偏波保持ファイバ4003,偏波保持ファイバ4004,コリメートレンズ4006,フォトニック結晶偏光分離素子4007,ミラー4008の組み合わせも記載されないものの図16と同一で,可変DGDとして動作する.
【0240】
本実施例では2台相当の可変DGDをフォトニック結晶偏光分離素子4007,ミラー4008を共通化することで与える遅延量の大きさを容易に同量にすることができる.それにより可動ミラーが1台で済み制御も容易になる.なお本実施例では2台相当の可変DGDを一体化したが,3台以上にも容易に拡張できる.
【0241】
また同様に図23から図31記載の可変DGDをもとにしても,本実施例の特徴である実施例27では必要となる光サーキュレータを不要にするべく入射ポートと出射ポートを別にすることが可能であることは容易に推測できるであろう.
【0242】
図41は非特許文献19で発表された偏光分離干渉型光スイッチによるビットレート可変波長変換装置に図40記載の可変DGDを組み合わせたビットレート可変波長変換装置の構成図である.
【0243】
図40記載の可変DGDは反射光の偏光度劣化成分の影響は存在するが,本実施例のように信号光に対して用いない用途においては,構成の単純さから最適であるといえる.また図23から図31記載の可変DGDをもとに2台を並列化した可変DGDを用いても差し支えない.
【0244】
【発明の効果】
以上,説明したように本発明の請求項1〜13により,単純かつ小型な構成または高い性能または低コストな偏光成分に対する遅延差を付与するデバイスと,前記装置を用いた単純かつ小型な構成または高い性能または低コストな偏波モード分散補償装置が実現しうる.
【図面の簡単な説明】
【図1】偏光成分間に遅延差を付与するデバイス(可変DGD)の略図
【図2】実施例2記載の偏波モード分散補償器のうち,光ファイバ線路全体を示す図
【図3】図2記載の可変DGD204の詳細図
【図4】実施例3を示す可変DGDの構成図
【図5】図4の拡大図
【図6】図4における接着の例を示す図
【図7】図4と同様の機能をフォトニック結晶偏光分離素子に替えて,ミラーで実現する構成
【図8】従来例2に偏光度劣化成分除去機構を加えた図
【図9】実施例4を示す可変DGDの構成図
【図10】実施例5を示す可変DGDの構成図
【図11】PMDの波長依存性を含めたPMD補償器の装置構成の略図
【図12】VIPA型分散補償器の構成
【図13】実施例6記載の可変DGDの構成図
【図14】図13記載の可変DGDを用いた偏波モード分散補償器の光ファイバ経路の略図
【図15】実施例7を示す偏波モード分散補償器
【図16】実施例8を示すの可変DGDの構成図
【図17】実施例9を示すの偏波モード分散補償器略図
【図18】実施例10を示すの偏波モード分散補償器略図
【図19】実施例11を示すの偏波モード分散補償器略図
【図20】PMD量の時間変動のモデル図
【図21】反固定DGDの構成図
【図22】実施例12を示すの偏波モード分散補償器略図
【図23】実施例13を示す可変DGDの構成図
【図24】実施例14を示す可変DGDの構成図
【図25】実施例15を示す可変DGDの構成図
【図26】実施例16を示す可変DGDの構成図
【図27】実施例17を示す可変DGDの構成図
【図28】実施例18を示す可変DGDの構成図
【図29】実施例19を示す可変DGDの構成図
【図30】実施例20を示す可変DGDの構成図
【図31】実施例21を示す可変DGDの構成図
【図32】実施例22を示す可変DGDの構成図
【図33】各チャンネル毎の偏波モード分散補償器のモデル図
【図34】実施例23を示す偏波モード分散補償器の構成図
【図35】実施例24を示す偏波モード分散補償器の構成図
【図36】実施例25を示す偏波モード分散補償器の構成図
【図37】チャンネル内のPMDの波長依存性を補償する偏波モード分散補償器のモデル図
【図38】透過型波長分散補償器
【図39】実施例27を示す可変DGDの構成図
【図40】実施例28を示す可変DGDの構成図
【図41】ビットレート可変波長変換装置の構成図
【図42】基本的な偏波モード分散補償装置の構成例を示す図
【図43】偏波コントローラの基本構成図
【図44】従来例2の偏波分散補償回路の構成に光結合系を加えた図
【符号の説明】
101 偏波保持ファイバ
102 反射型偏光分離素子
103 レンズ
104 ミラー
201 光ファイバ
202 光サーキュレータ
203 偏波コントローラ
204 可変DGD
205 カプラ
206 モニタ装置
301 偏波保持ファイバ
302 フォトニック結晶偏光分離素子
303 レンズ
304 ミラー
401 偏波保持ファイバ
402 屈折率分布型ロッドレンズ
403 Virtual Fiber
404 ルチル平行平板ウォークオフ偏光子
405 フォトニック結晶偏光分離素子
406 常光成分
407 異常光成分
501 常光成分
502 反射光異常光成分(偏光度劣化成分)
503 異常光成分
504 反射光常光成分(偏光度劣化成分)
601 ルチル平行平板ウォークオフ偏光子
602 接着剤
603 フォトニック結晶偏光分離素子
701 Virtual Fiber
702 ルチル平行平板ウォークオフ偏光子
703 ミラー
704 レンズ
705 ミラー
801 光ファイバ
802 コリメートレンズ
803 ルチル平行平板ウォークオフ偏光子
804 入射側PBS
805 機械的可動ミラー
806 出射側PBS
807 ルチル平行平板ウォークオフ偏光子
808 コリメートレンズ
809 光ファイバ
810 偏光度劣化成分
811 偏光度劣化成分
901 偏波保持ファイバ
902 LPS
903 フォトニック結晶偏光分離素子
904 コリメートレンズ
905 ミラー
906 常光成分
907 異常光成分
1001 偏波保持ファイバ
1002 フォトニック結晶偏光分離素子
1003 コリメートレンズ
1004 フォトニック結晶偏光分離素子
1005 偏波モニタ装置
1101 偏波コントローラ
1102 偏光分離機構
1103 偏光合成機構
1104 可変波長分散付与機構
1105 可変遅延装置
1106 カプラ
1107 モニタ装置
1201 光ファイバ
1202 レンズ
1203 レンズ
1204 レンズ
1205 VIPA板
1206 レンズ
1207 ミラー
1301 偏波保持ファイバ
1302 フォトニック結晶偏光分離素子
1401 光ファイバ
1402 光サーキュレータ
1403 偏波コントローラ
1404 図14記載の可変DGD
1405 カプラ
1406 モニタ装置
1501 光ファイバ
1502 光サーキュレータ
1503 光ファイバ
1504 コリメートレンズ
1505 液晶回転1/4波長板
1506 液晶回転1/2波長板
1507 フォトニック結晶偏光分離素子
1508 フォトニック結晶偏光分離素子
1509 偏波モニタ
1510 光ファイバ
1601 偏波保持ファイバ
1602 偏波保持ファイバ
1603 コリメートレンズ
1604 フォトニック結晶偏光分離素子
1605 ミラー
1701 偏波コントローラ
1702 可変DGD
1703 可変DGD
1704 カプラ
1705 モニタ装置
1706 制御装置
1801 偏波コントローラ
1802 可変DGD
1803 可変DGD
1804 カプラ
1805 モニタ装置
1806 制御装置
1901 偏波コントローラ
1902 半固定DGD
1903 可変DGD
1904 カプラ
1905 モニタ装置
1906 制御装置
2101 偏光分離装置
2102 偏波保持ファイバ
2103 偏光合成装置
2104 偏波保持ファイバ
2201 偏波コントローラ
2202 可変DGD
2203 偏波コントローラ
2204 可変DGD
2205 カプラ
2206 モニタ装置
2207 制御装置
2301 偏波保持ファイバ
2302 偏波保持ファイバ
2303 コリメートレンズ
2304 フォトニック結晶偏光分離素子
2305 プリズム
2306 ミラーブロック
2401 偏波保持ファイバ
2402 偏波保持ファイバ
2403 屈折率分布型ロッドレンズ
2404 フォトニック結晶偏光分離素子
2405 プリズム
2406 ミラーブロック
2501 偏波保持ファイバ
2502 偏波保持ファイバ
2503 屈折率分布型ロッドレンズ
2504 フォトニック結晶偏光分離素子
2505 屈折率分布型ロッドレンズ
2506 屈折率分布型ロッドレンズ
2507 屈折率分布型ロッドレンズ
2508 ミラーブロック
2509 屈折率分布型ロッドレンズ2505の端面
2601 偏波保持ファイバ
2602 偏波保持ファイバ
2603 ルチル平行平板偏光分離素子
2604 ルチル平行平板偏光合成素子
2605 コリメートレンズ
2606 フォトニック結晶偏光分離素子
2607 プリズム
2608 ミラーブロック
2609 異常光成分
2610 常光成分
2701 ルチル平行平板偏光分離/合成素子
2702 45度ファラデー回転子
2703 偏波保持ファイバ2601射出光のうちルチル平行平板偏光分離/合成素子2701における常光成分
2704 偏波保持ファイバ2601射出光のうちルチル平行平板偏光分離/合成素子2701における異常光成分
2801 ルチル平行平板
2901 偏波保持ファイバ
2902 偏波保持ファイバ
2903 コリメートレンズ
2904 フォトニック結晶偏光分離素子
2905 プリズム
2906 1/4波長板
2907 ミラー
3001 偏波保持ファイバ
3002 偏波保持ファイバ
3003 屈折率分布型ロッドレンズ
3004 フォトニック結晶偏光分離素子
3005 屈折率分布型ロッドレンズ
3006 屈折率分布型ロッドレンズ
3007 屈折率分布型ロッドレンズ
3008 45度ファラデー回転子
3009 熱光学結晶
3010 ミラー
3101 偏波保持ファイバ
3102 偏波保持ファイバ
3103 コリメートレンズ
3104 フォトニック結晶偏光分離素子
3105 プリズム
3106 45度ファラデー回転子
3107 ミラーブロック
3201 シングルモードファイバ
3202 シングルモードファイバ
3203 コリメートレンズ
3204 偏波コントローラ
3205 フォトニック結晶偏光分離素子
3206 プリズム
3207 45度ファラデー回転子
3208 フォトニック結晶偏光分離素子
3209 フォトニック結晶偏光分離素子
3210 偏波モニタ
3301 波長分離機構
3302 偏波コントローラ
3303 可変DGD
3304 カプラ
3305 モニタ装置
3306 制御装置
3307 波長合成機構
3401 光ファイバ
3402 光サーキュレータ
3403 光ファイバ
3404 コリメートレンズ
3405 波長選択フィルタ群
3406 フィルタ
3407 フィルタ
3408 フィルタ
3409 ミラー
3410 偏波コントローラ
3411 偏波コントローラ
3412 偏波コントローラ
3413 フォトニック結晶偏光分離素子
3414 フォトニック結晶偏光分離素子
3415 フォトニック結晶偏光分離素子
3416 フォトニック結晶偏光分離素子
3417 フォトニック結晶偏光分離素子
3418 フォトニック結晶偏光分離素子
3419 コリメートレンズ
3420 偏波モニタ
3421 偏波モニタ
3422 偏波モニタ
3423 偏波保持ファイバ
3501 光ファイバ
3502 光ファイバ
3503 コリメートレンズ
3504 波長選択フィルタ群
3505 フィルタ
3506 フィルタ
3507 フィルタ
3508 ミラー
3509 偏波コントローラ
3510 偏波コントローラ
3511 偏波コントローラ
3512 フォトニック結晶偏光分離素子
3513 プリズム
3514 45度ファラデー回転子
3515 偏光分離素子群
3516 偏光分離素子群
3517 偏光分離素子群
3518 レンズ
3519 偏波モニタ
3520 偏波モニタ
3521 偏波モニタ
3522 光ファイバ
3601 光ファイバ
3602 光サーキュレータ
3603 TEC化された分散補償ファイバ
3604 コリメートレンズ
3605 波長選択フィルタ群
3606 フィルタ
3607 フィルタ
3608 フィルタ
3609 ミラー
3610 偏波コントローラ
3611 偏波コントローラ
3612 偏波コントローラ
3613 分岐プリズム
3614 分岐プリズム
3615 分岐プリズム
3616 偏波モニタ装置
3617 偏波モニタ装置
3619 フォトニック結晶偏光分離素子
3620 フォトニック結晶偏光分離素子
3621 フォトニック結晶偏光分離素子
3622 コリメートレンズ
3623 チャープドファイバブラッググレーティング
3624 チャープドファイバブラッググレーティング
3625 チャープドファイバブラッググレーティング
3626 光ファイバ
3701 波長分離機構
3702 波長分散補償器
3703 偏波コントローラ
3704 可変DGD
3705 カプラ
3706 モニタ装置
3707 制御装置
3708 波長合成機構
3801 光ファイバ
3802 コリメートレンズ
3803 等辺長分散プリズム
3804 等辺長分散プリズム
3805 コリメートレンズ
3806 光ファイバ
3901 偏波保持ファイバ
3902 コリメートレンズ
3903 フォトニック結晶偏光分離素子
3904 ミラー
3905 フォトニック結晶偏光分離素子
3906 コリメートレンズ
3907 偏波保持ファイバ
4001 偏波保持ファイバ
4002 偏波保持ファイバ
4003 偏波保持ファイバ
4004 偏波保持ファイバ
4005 コリメートレンズ
4006 コリメートレンズ
4007 フォトニック結晶偏光分離素子
4008 ミラー
4101 WDMカプラ
4102 SOA
4103 WDMカプラ
4104 ポンプ用LD
4105 フィルタ
4106 図40記載の可変DGD
4107 バビネソレイユ補償板
4108 偏光子
4201 偏波コントローラ
4202 偏光成分間に群遅延差を付与する装置
4203 カプラ
4204 モニタ装置
4205 制御装置
4301 1/4波長板
4302 1/2波長板
4303 分岐装置
4304 モニタ装置
4305 制御装置
4401 偏波コントローラ
4402 偏波保持ファイバ
4403 コリメートレンズ
4404 PBS
4405 PBS
4406 機械的可動ミラー
4407 コリメートレンズ
4408 出力光ファイバ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a configuration and operation of a polarization mode dispersion compensator for compensating for polarization mode dispersion, which is one of the causes of signal degradation in optical communication, used for improving communication speed. In particular, it relates to a device that gives a delay difference to the polarization component, which is a component of the polarization mode dispersion compensator.
[0002]
[Prior art]
Polarization Mode Dispersion (PMD) is the group delay difference between two orthogonal polarization modes caused by the degeneration of the propagation mode of an optical fiber due to the asymmetry of the fiber core. Polarization mode dispersion occurs in optical fibers laid in the old days when the structure of optical fibers was not sufficiently symmetrical, and in erbium-doped fibers used in optical fiber amplifiers. Has time fluctuation. Some optical isolators that separate and combine polarized components using a birefringent crystal also cause a group delay difference between polarization modes.
[0003]
Transmission characteristic degradation due to polarization mode dispersion has already been formulated and known in Non-Patent Document 1. The details of the polarization mode dispersion are described in Non-Patent Document 2. Further, Non-Patent Document 3 describes the polarization mode dispersion measurement method in detail.
[0004]
The polarization mode dispersion compensator basically comprises a polarization controller 4201 and a device 4202 for giving a delay difference to a polarization component as shown in FIG. 42, and additionally includes a coupler 4203, a monitor device 4204, and a controller 4205. . Furthermore, the device that gives the group delay difference to the polarization component basically consists of a polarization separation / combination mechanism and an optical delay device.
[0005]
First, the polarization controller is described. A polarization controller is a device that converts a random polarization state into an arbitrary polarization state. A combination of a half-wave plate and a quarter-wave plate, a fiber crank, and a lithium niobate having a phase modulation unit Waveguides are known.
[0006]
In the experimental stage, a device that can change the polarization state and azimuth continuously and infinitely, such as an electric infinite rotation polarization controller by rotating a birefringent crystal wave plate, is often used. When a birefringent crystal is used for the wave plate, it is desirable to use a crystal having a small phase difference shift due to wavelength, for example, a wide band wave plate operated as one wave plate by combining a plurality of kinds of crystals.
[0007]
For communication applications, a polarization controller consisting of a rotating wave plate using liquid crystal is suitable in terms of dimensions, loss, and driving power. According to Non-Patent Document 4, the polarization state and azimuth can be changed continuously and infinitely, and the response time is as high as 3.7 msec, and the polarization analyzer (monitor device) and control are performed as in Non-Patent Document 5. It is known that it can operate as a polarization stabilizer by combining with a device. Fig. 43 shows the basic configuration of the polarization controller. The polarization controller includes a quarter-wave plate 4301 and a half-wave plate 4302, a branching device 4303, a monitor device 4304, and a control device 4305.
[0008]
In addition, if the allowable amount of loss and polarization dependent loss (PDL) is large, a polarization controller such as a lithium niobate waveguide having a phase modulation unit described in Patent Document 1 may be used. .
[0009]
Next, we describe a device that gives a delay difference between polarization components. There are a fixed type and a variable type to give the delay difference between the polarization components, and the variable type is used for the primary polarization mode dispersion compensator. As an apparatus for giving a delay difference between fixed polarization components, there is an apparatus described in Patent Document 2.
[0010]
The device that gives the group delay difference to the variable polarization component basically consists of a polarization separation / combination mechanism and an optical variable delay device.
[0011]
As a polarization separation / combination mechanism, a polarization beam splitter (PBS) is known. The PBS is a device that performs spatial separation of polarized light by transmission and reflection when obliquely incident on the surface of alternating high / low refractive index dielectric multilayer thin films, and is generally used at an incident angle of 45 degrees. A walk-off polarizer made of rutile crystal or the like is known as another polarization separation / synthesis mechanism. These are all bulk optical components. On the other hand, a directional coupler type polarization separation / combination mechanism using an optical fiber coupler or an optical waveguide is also well known. In addition, the polarization splitting element operates as a polarization combining element due to reciprocity.
[0012]
As an optical variable delay device, there is known an optical variable delay device that gives a delay by making a distance between a collimator and a mirror variable, such as an optical variable delay device described in Patent Document 3 (or Patent Document 4).
[0013]
A polarization-independent variable optical delay device and a polarization splitting / combining device as described above are separately manufactured, and then connected by an optical fiber, thereby realizing a device for providing a delay difference between polarization components. For example, by combining an optical variable delay device described in Patent Document 3 (or Patent Document 4) and a polarization combining module described in Patent Document 5 or Patent Document 6, for example, a device for providing a delay difference between polarization components can be realized.
[0014]
The following forms are known as an integration of a polarization independent optical variable delay device and a polarization separation / combination device.
[0015]
First, Patent Document 7 (hereinafter referred to as Conventional Example 1) is known as a device using a waveguide as a device for separating polarization and providing a delay difference between polarization components.
[0016]
Further, as an example using a so-called bulk optical component, a combination of a PBS and a movable mirror such as a polarization dispersion compensation circuit described in FIG. 7 of Patent Document 7 is known (hereinafter referred to as Conventional Example 2). FIG. 7 in Patent Document 7 is a quotation from Non-Patent Document 6. Non-Patent Document 7 (hereinafter referred to as Conventional Example 3), which is another example, is a combination of a PBS, a quarter-wave plate and a mirror (hereinafter referred to as Conventional Example 3), and requires less PBS than Conventional Example 2. Although it has an advantage, it requires two quarter-wave plates. A configuration in which a polarization beam splitter such as a variable polarization mode dispersion device (hereinafter referred to as Conventional Example 4) described in FIG. 7 of Patent Document 8 and one movable mirror and one fixed mirror are combined is also known.
[0017]
FIG. 44 shows an example in which an optical coupling system is added to the configuration of the conventional polarization dispersion compensation circuit described in Conventional Example 2. In FIG. 44, an optical signal input from an input port is input to a first PBS 4404 as a collimated beam via a polarization controller 4401. Here, the P-polarized light is output in the direction of going straight, and the S-polarized light is output in the direction orthogonal, and polarization separation is performed. The s-polarized light is input to the second PBS 4405 via a mechanical movable mirror 4406 including two mirrors, is polarization-combined with the directly input p-polarized light, and is output to the output optical fiber 4408. By moving the mechanically movable mirror 4106, the distance over which the S-polarized light propagates spatially changes, and the amount of delay between the S-polarized light and the P-polarized light is adjusted to perform polarization dispersion compensation. Here, it is necessary to use a collimated beam so that the coupling loss does not change even if the mechanical movable mirror 4406 is moved.
[0018]
A series of operations of polarization separation, propagation of each polarization component to an individual optical path, reflection, and repolarization synthesis are already known in Patent Document 9 and Patent Document 10.
[0019]
Also, a polarization mode dispersion compensation module (hereinafter referred to as Conventional Example 5) described in Patent Document 11 is known as an apparatus for providing a polarization mode dispersion opposite to the polarization mode dispersion of an optical transmission line without performing polarization separation / combination. . This is a device that generates polarization mode dispersion by applying stress to the waveguide.
[0020]
Patent Document 25 (hereinafter referred to as Conventional Example 6) is also known as a configuration using a variable retardation unit and a fixed delay unit using an electro-optic crystal.
[0021]
[Patent Document 1] United States Patent No. 5,212,743
[Patent Document 2] United States Patent No. 5,600,738
[Patent Document 3] United States Patent No. 6,356,377
[Patent Document 4] JP-A-2001-208988
[Patent Document 5] United States Patent No. 6282025
[Patent Document 6] Japanese Patent Application Laid-Open No. Hei 8-86936
[Patent Document 7] Japanese Patent Application Laid-Open No. 2001-42272
[Patent Document 8] Published Patent Information JP2000-31903
[Patent Document 9] Japanese Patent Laid-Open Publication No. Hei 11-160663
[Patent Document 10] Japanese Patent Application Laid-Open No. H11-44721
[Patent Document 11] Japanese Patent Application Publication JP-A-2002-148571
[Patent Document 12] Japanese Patent No. 3288876
[Patent Document 13] Japanese Patent Application Laid-Open No. 11-196046
[Patent Document 14] U.S. Pat. No. 5,930,414
[Patent Document 15] Japanese Patent Application Laid-Open No. 7-221705
[Patent Document 16] Japanese Patent Laid-Open Publication No. 2000-31903
[Patent Document 17] Japanese Patent No. 2539563
[Patent Document 18] United States Patent No. 5,596,448
[Patent Document 19] US Patent No. 6111697
[Patent Document 20] Japanese Patent Application Laid-Open No. 4-110808
[Patent Document 21] Japanese Patent Application Laid-Open No. Hei 10-90553
[Patent Document 22] Japanese Patent Application Publication No. 2002-237212
[Patent Document 23] Japanese Patent Publication JP 2000-75165
[Patent Document 24] Japanese Patent Application Laid-Open No. H11-264954
[Patent Document 25] U.S. Patent Publication 2002/0012487
[Patent Document 26] U.S. Pat. No. 4,213,677
[Patent Document 27] Published Patent Information JP-A-7-281128
[Patent Document 28] Japanese Patent Application Laid-Open No. H5-257084
[Patent Document 29] United States Patent No. 6,349,157
[Patent Document 30] U.S. Pat. No. 5,555,093
[Patent Literature 31] Japanese Patent Laid-Open Publication No. 2000-224109
[Non-patent document 1]
C. D. Poole et al. , IEEE Photon. Technol. Lett. , Vol. 3, No. 1, pp. 68-70, 1991
[Non-patent document 2]
Shojiro Kawakami Kazuo Shiraishi Masaharu Ohashi, Optical Fiber and Fiber Devices, Chapters 4 and 6, Baifukan
[Non-Patent Document 3]
Tetsuya Miki, Shoichi Sudo, Optical Communication Technology Handbook, Part 6 (Optronics, 2002)
[Non-patent document 4]
Ohtera, Chiba, Kawakami, Liquid Crystal Rotatable Waveplate, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 8, NO. 3, MARCH 1996
[Non-Patent Document 5]
Chiba, Ohtara, kawakami, Parallelization Stabilizer Using Liquid Crystal Rotatable Waveplate, JORNAL OF LIGHTWAVE TECHMOLOGY, VOL. 7, NO. 5, MAY 1999
[Non-Patent Document 6]
F. Heismann et al. , AUTOMATIC COMPENSATION OF FIRST-ORSER POLARIZATION MODEDISPERSION IN A 10 Gb / s TRANSMISSION SYSTEM, WdC11, ECOC'98, 1998
[Non-Patent Document 7]
Jungho Kim, Hosung Yoon, Namkyoo Park, and Byungho Lee, Polarization-mode-dispersion compensator using a porport evolving beam chart. 40, no. 25 APPLIED OPTICS 4473
[Non-Patent Document 8]
K. O. Hill et al,. Tech. Dig. Conf on OFC7,94, PD2, pp. 17-20, San Jose, 1994
[Non-Patent Document 9]
Supervised by Shojiro Kawakami, Photonic crystal technology and its applications, CMC Publishing Co., Ltd., 2002
[Non-Patent Document 10]
Michael F. Weber et al, Giant Birefringent Optics in Multilayer Polymer Mirros, SCIENCE vol. 287, 2000, pp2451
[Non-Patent Document 11]
Kenji Kono, Basics and Applications of Optical Coupling System for Optical Devices, Hyundai Kogakusha, 1991
[Non-Patent Document 12]
K. Shiraishi, Y .; Aizawa and S.A. Kawakami, Beam Expanding Fiber Using Thermal Diffusion of the Dopant, J. Amer. Lightwave Tech. , Vol. 8, pp. 1151-1161, August, 1990.
[Non-patent document 13]
Shojiro Kawakami Kazuo Shiraishi Masaharu Ohashi, Optical Fiber and Fiber Devices, Chapter 8, Chapter 11, Baifukan
[Non-patent document 14]
Shojiro Kawakami Kazuo Shiraishi Masaharu Ohashi, Optical Fiber and Fiber Device, Chapter 10, Baifukan
[Non-Patent Document 15]
M. Shirasaki et al. , ECOC2000 PD 2.3. , VIPA type dispersion compensator
[Non-Patent Document 16]
Odera, Chiba, Kawakami, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 8, NO. 3, MARCH 1996, Liquid Crystal Rotatable Waveplate
[Non-Patent Document 17]
Ohkubo et. al. , Fabrication and Evaluation of multichannel wavelength selective filters consisting of Ta2O5 / SiO2 3D photonic crystals, TD-3, The 9thinternational Workshop on Femtosecond Technology, June 27-28,2002 Tsukuba, Japan
[Non-Patent Document 18]
Mark Jumbolonski et al., Optical fiber dispersion compensation by layered optical thin film all-wavelength transmission dispersion compensation device, Sumitomo Osaka Cement TECHNICAL REPORT 2001, pp21
[Non-Patent Document 19]
IEICE 2002 Society Conference C-4-20
[0022]
[Problems to be solved by the invention]
However, conventional devices that provide a delay difference between polarization components used in polarization mode dispersion compensators, etc., are insufficient in size, characteristics, and cost.
[0023]
In the conventional example 1, since the temperature is controlled, the energy is always consumed even when the time variation of the PMD is small, and there is a problem in the operation cost. Further, in order to support various wavelengths in WDM (Wavelength Division Multiplex), a device for providing a delay difference between polarization components for each wavelength is required, and there is a problem in size. In addition, there is a problem in the characteristics due to the performance of the waveguide type polarization splitter.
[0024]
Conventional Example 2, Conventional Example 3, and Conventional Example 4 use a PBS having a polarization separation direction of 90 degrees as a polarization separation element, so that the size of the device for providing a delay difference between the polarization components and the delay difference between the polarization components are reduced. There is a problem that the size of the polarization mode dispersion compensator using the added device becomes large. In addition, there is a problem in characteristics due to the performance of PBS. Also, in order to cope with various wavelengths in WDM transmission, there is a problem not only in size but also in cost, and a device for giving a delay difference between polarization components for each wavelength and a peripheral device are used. It is necessary to share or integrate the components of the device that gives the delay difference and the peripheral device, but even if the components of the device and the peripheral device that give the delay difference between the optical components are shared, they can be shared or integrated. It is difficult to reduce cost because there are few parts that can be converted.
[0025]
Conventional example 5 has problems that the size is increased due to the limitation of the initial bending radius of the waveguide, and that chromatic dispersion (chromatic dispersion) occurs. In addition, in order to support various wavelengths in WDM transmission, a device that gives a delay difference between polarization components for each wavelength is required, and there is a problem in operation cost.
[0026]
Conventional example 6 is disadvantageous in terms of size and cost because it requires a large number of crystal parts, and has a problem that the loss is large because it requires a large number of crystal parts.
[0027]
In view of such circumstances, the present invention provides a simple and small configuration or a device that gives a delay difference to a high-performance or low-cost polarization component, and a simple and small configuration or a high-performance or low-cost The aim is to provide a polarization mode dispersion compensator.
[0028]
[Means for Solving the Problems]
In the present invention, in a device for providing a delay difference with respect to a polarized light component composed of a polarization splitting element and a reflection means, a polarization splitting element capable of performing a polarization splitting operation at normal incidence or an incidence angle close to normal incidence is used as the polarization splitting element.
[0029]
Further, in the present invention, as the reflection means, a reflection means capable of providing wavelength dispersion such as a dielectric multilayer mirror, a reflection type polarization separation element which can operate as a polarization separation element at normal incidence, a wavelength selection filter, a PBS, an optical fiber grating, etc. is used. .
[0030]
Further, in the present invention, various optical coupling systems applicable to the above-mentioned solving means are used.
[0031]
In the present invention, various optical functional components such as a birefringent crystal walk-off polarizer, a wave plate, a prism, and a wavelength selection filter may be added in addition to the above-mentioned solution.
[0032]
In the present invention, one or both of the polarization separation element and the reflection means may be movable.
[0033]
In the present invention, a polarization maintaining optical waveguide (polarization maintaining optical fiber) may be used as the optical waveguide.
[0034]
In the present invention, the reflection means may be a reflection type polarization splitting element, and a light receiving device may be arranged behind the reflection type polarization splitting element.
[0035]
In addition, it is effective to use a two-dimensional or three-dimensional photonic crystal polarized light separating element as the above-mentioned polarized light separating element.
[0036]
Further, in the present invention, the polarization mode dispersion compensator includes a device for giving a delay difference to a polarization component using the above-mentioned solving means, a polarization controller, a monitor device (polarization analyzer), a control device, and the like.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0038]
(Example 1)
[0039]
FIG. 1 is a schematic view of a device (hereinafter referred to as a variable DGD; DGD is an abbreviation of Differential Group Delay) for providing a variable delay difference between the most basic polarization components of the present invention. A reflection type polarization splitter 102 is adhered to the tip of the polarization maintaining fiber 101, and the polarization maintaining fiber 101 and the lens 103 form a so-called fiber collimator. The mirror 104 is disposed perpendicular to the traveling direction (Z-axis direction) of the collimated beam, and reflects the collimated beam on the same axis as the incident light. The mirror 104 is a piezoelectric actuator and is movable in the Z-axis direction.
[0040]
Of the beams having orthogonal linear polarization components having a delay and passing through the polarization maintaining fiber from the polarization controller omitted in FIG. 1 and entering the reflection type polarization splitter 102, the TE component in the reflection type polarization splitter 102 is The light is reflected and returned to the polarization maintaining fiber. The TM component transmits through the reflection type polarization splitting element 102, is reflected by the mirror 104, passes through the reflection type polarization splitting element 102 again, and returns to the polarization maintaining fiber 101. The returned light can be extracted by an optical circulator or directional coupler not shown in the figure.
[0041]
It is necessary that the polarization direction of the transmitted polarization direction (TM polarization in this case) of the reflection type polarization separation element 102 and the polarization direction of one of the orthogonal linear polarization components having a delay coincide with each other.
[0042]
A delay difference occurs between the polarization components due to this series of light behaviors. Further, by changing the optical path length between the reflection type polarization splitting element 102 and the mirror 104, the amount of delay between the polarization components is adjusted, and the first-order polarization mode dispersion compensation including time variation is performed. By moving the mirror 104, the amount of delay between the polarization components is adjusted, and the first-order polarization mode dispersion compensation including time fluctuation is performed.
[0043]
As for the control system, taps such as directional couplers are installed before and after the polarization controller to measure the polarization state and the computer controls the polarization controller. A tap is also provided after the variable DGD, and the PMD is measured and controlled by a computer. The measurement and control method of the PMD are based on Patent Document 13 (or Patent Document 14). Alternatively, it is also effective to use a control method according to Patent Document 15 or Patent Document 16.
[0044]
(Example 2)
[0045]
A second embodiment of the present invention will be described with reference to FIGS. Figure 2 shows the outline of the optical fiber line in the polarization mode dispersion compensator. The signal light incident from the optical fiber 201 connected to the signal source passes through the optical circulator 202, enters the polarization controller 203, is converted into orthogonal linear polarization components having a delay, and enters the variable DGD 204. Thereafter, the light passes through the polarization controller 203 again, is output through the optical circulator 202, and a part is input from the coupler 205 to the monitor device 206.
[0046]
Since it is inconvenient if the optical circulator 202 used here has polarization mode dispersion, a structure in which polarization mode dispersion does not occur is desirable in principle (for example, the structure described in Patent Document 17). It is also possible to use a directional coupler as an alternative to an optical circulator, but it is desirable to use an optical circulator because of the large loss.
[0047]
Non-Patent Document 8, Patent Document 18 and the like are known as examples of such a wavelength dispersion compensator using an optical circulator and a reflection means.
[0048]
FIG. 3 shows the configuration of the variable DGD 204 shown in FIG. 2 and higher performance based on the variable DGD shown in FIG.
[0049]
The photonic crystal polarization splitting element 302 is formed with a two-dimensional periodic structure by forming submicron grooves on a synthetic quartz substrate and alternately laminating substances having a large difference in refractive index, such as SiO2 and amorphous silicon. This is, for example, a polarization separation element described in Patent Document 12. The polarization separation element described in Patent Document 12 has a high refractive index medium layer made of a transparent high refractive index medium and a low refractive index medium layer made of a transparent low refractive index medium in three-dimensional orthogonal coordinates x, y, z. A multi-layer structure in the z-axis direction in which the medium layers are stacked so as to have the periodic repetition structure in the z-axis direction, with the alternating layers stacked alternately as a unit of the periodic repetition structure in the z-axis direction. The shape of each of the medium layers has a periodic concavo-convex structure in the x-axis direction that is smaller than the light wavelength used, and has a uniform structure in the y-axis direction or a length longer than the x-axis direction. It has a periodic or aperiodic uneven structure, and for light incident perpendicularly or obliquely to the xy plane, the electric field is polarized from the direction orthogonal to the y-axis or the direction orthogonal to the x-axis. Periodic in the x-axis direction so that Period and the period in the z-axis direction of the periodic repeating structure of convex structures are selected, respectively. A fluoride crystal such as CaF2, NaF, MgF2 or SiO2 is suitable as a low refractive index medium constituting a photonic crystal for a wavelength of 1.3 μm to 2 μm, and amorphous silicon, TiO2, Ta2O5, SiON, Zirconia is suitable. Patent Document 12 does not describe fluoride crystals such as CaF2, NaF and MgF2, SiON and zirconia, but Patent Document 12 does not exclude fluoride crystals such as CaF2, NaF and MgF2, SiON and zirconia as materials. That is clear. Furthermore, since photonic crystals generally have strong polarization dependence, three-dimensional photonic crystals are also useful as polarization splitting elements. Non-Patent Document 9 describes the entire technical field related to photonic crystals.
[0050]
The current photonic crystal polarization separation element 302 made of SiO2 and amorphous silicon has a transmission loss of about 0.1 dB and a coupling loss of an optical coupling system of 0.2 dB. A loss difference of about 0.4 dB occurs between TM polarizations. The loss difference between the polarization components is called PDL, and it needs to be suppressed because it causes the bit error rate (BER) to deteriorate. Therefore, the tip of the polarization maintaining fiber 301 was polished at an angle of 0.9 degrees, and a photonic crystal polarization separation element 302 was adhered thereon. As a result, a coupling loss of the TE-polarized return light with the polarization maintaining fiber 301 is generated by about 0.4 dB, and the PDL is reduced because of the balance with the loss of the TM polarization.
[0051]
However, since the energy density of light at the tip of the optical fiber is maximized, using an adhesive at this position easily degrades the input light intensity performance, so care must be taken in selecting the adhesive. Specifically, it is desirable that the absorption loss is lower and the heat resistance temperature is higher.
[0052]
Although the photonic crystal polarization splitting element described in Patent Document 12 has an incident angle dependency in principle due to its structure, actually, in a wavelength range where one polarized light corresponds to a band gap wavelength, Patent Document 12 FIG. Even when tilted ± 10 degrees around the middle X axis, both the TM polarization transmission loss and the TE polarization reflection loss are almost the same as in the case of normal incidence, and the incident angle of about 0.9 degree does not matter.
[0053]
Further, in the configuration shown in FIG. 1, since the incident beam to both the reflection type polarization splitting element 102 and the mirror 104 is vertically incident, a multipath failure due to multiple reflections occurs and the signal quality deteriorates. The tilt can be suppressed by tilting the photonic crystal polarization splitting element 302 as described above. In this way, the polarization splitting element can be tilted to suppress multipath interference, resulting in an increase in loss and deterioration of the degree of polarization (here, the ratio of the short-axis component to the long-axis component of elliptically polarized light). The fact that the characteristics are not affected is also an advantage of the present embodiment using the photonic crystal polarization splitting element 302 in particular.
[0054]
Here, when the photonic crystal polarization separation element 302 is replaced with PBS, the PBS reflected light does not couple to the polarization maintaining fiber 301, so that a variable DGD as shown in FIG. 3 cannot be configured using PBS.
[0055]
As the mirror 304, a dielectric multilayer mirror is used, but a metal mirror may be used because the beam is incident vertically.
[0056]
In the present embodiment, an example using a photonic crystal polarized light separating element has been described. However, if the polarized light separating element acts as a polarized light separating element at normal incidence or at an incident angle of, for example, within 10 degrees, an equivalent of this embodiment will be described. It will be readily apparent to one skilled in the art that the configuration can be implemented. For example, it is known that a multilayer film made of a birefringent material such as Patent Literature 19 (or Non Patent Literature 10 or 3M Company Infrared Polarizer Film IRP-155) becomes a reflective polarization splitting element. The example can be realized by using such a reflection type polarization splitting element. However, the photonic crystal polarization splitting element is considered to be optimal for the present invention because of its high reliability and high design freedom due to its characteristics and inorganic properties.
[0057]
Further, it is also effective to use a 1/4 pitch refraction index distribution type rod lens instead of the collimating lens 303 and adhere to the photonic crystal polarization separation element. When the polishing angle of the fiber is about 1 degree, when the anti-reflection film is not provided on the back surface of the photonic crystal substrate, a part of the TM polarization is reflected on the back surface of the photonic crystal substrate. Adhesion of the gradient index rod lens using an adhesive with high refractive index prevents reflection of TM polarization and reduces the cost of processing the antireflection film.
[0058]
The delay amount between the TE polarization and the TM polarization which can be generated by the variable DGD can be easily obtained from the optical path length difference and the light speed. For example, the optical path length difference requiring a 300 psec delay amount is 90 mm, and the photonic crystal polarization separation is required. The distance between the element 302 and the mirror 304 may be changed within a range of 45 mm.
[0059]
The mechanism for operating the mirror 304 uses an actuator made of piezoelectric ceramics. Combined with the hermetic sealing of the surroundings, piezoelectric ceramic actuators can provide sufficient reliability if used in land-based stations. In this embodiment, only the piezoelectric actuator has been described, but the type is not limited as long as it can move with high accuracy. For example, a device using MEMS described in Patent Document 3 and a high-resolution stepping motor can be cited.
[0060]
As for the control system, a TAP coupler such as a directional coupler is installed before and after the polarization controller, the polarization state is measured, and the polarization controller is controlled by a computer. A tap is also provided after the variable DGD, and the PMD or eye pattern is measured and controlled by a computer.
[0061]
In addition, it can be easily presumed that if the purpose is to compensate for the half-order polarization mode dispersion, it can be dealt with by fixing the mechanical movable part of the present embodiment semi-fixed.
[0062]
In this embodiment, the mechanically movable mirror 304 is used. However, it is also possible to use an electro-optic crystal provided with a mirror and electrodes, for example, and to vary the delay amount by changing the refractive index of the electro-optic crystal. It is possible. However, at present, it is not practical because there is no material whose electro-optic constant is large enough.
[0063]
(Example 3)
[0064]
A variable DGD according to a third embodiment of the present invention will be described with reference to FIGS.
[0065]
In this embodiment, the signal quality due to interference or delay between the TM polarization component included in the reflected light of the reflection type polarization splitter (mainly TE polarized light) and the TM polarization component transmitted through the reflection type polarization splitter after being reflected by the mirror. This is an embodiment that can prevent the deterioration of.
[0066]
In general, reflective polarization splitters such as PBSs and photonic crystal polarization splitters have a problem that the degree of polarization of reflected light is lower than the degree of polarization of transmitted polarized light. Therefore, the problems of interference and delay occur as described above. On the other hand, a walk-off polarizer made of a birefringent crystal, which is a kind of a well-known polarization splitting element, has a large degree of polarization of transmitted light in both ordinary and extraordinary light components. For example, in the case of a rutile crystal, 55 dB or more can be obtained.
[0067]
Therefore, in the present embodiment, a walk-off polarizer is added to the configuration of FIG. 1 and the optical coupling system is changed accordingly.
[0068]
Specifically, as shown in FIG. 4, a gradient index rod lens 402 is adhered to the tip of the polarization maintaining fiber 401, and a rutile parallel plate walk-off polarizer 404 is inserted between the photonic crystal polarization separation elements 405. In some cases, it is possible to form a photonic crystal polarization splitting element on the rutile parallel plate walk-off polarizer 404.
[0069]
The combination of the polarization maintaining fiber 401 and the gradient index rod lens 402 in FIG. 4 is a virtual optical fiber called a virtual fiber with an increased spot size. The virtual fiber is described in detail in Non-Patent Document 11, but in this embodiment, an effect equivalent to a core-expanded optical fiber (TEC fiber) having a mode field diameter of 40 μm is provided.
[0070]
In FIG. 4, a virtual fiber 403 corresponding to a TEC fiber having a mode field diameter of 40 μm and a rutile parallel plate walk-off polarizer 404 having a thickness of 500 μm are used. The rutile parallel plate walk-off polarizer 404 has a walk-off amount of about 50 μm.
[0071]
The description will be made with reference to FIG. 5 which is an enlarged view of FIG.
[0072]
In this configuration, light emitted from the virtual fiber 403 is polarization-separated by the rutile parallel plate walk-off polarizer 404, and the ordinary light component 501 in the rutile parallel plate walk-off polarizer 404 enters the photonic crystal polarization separation element 405 as a TE polarized wave. To reflect. At this time, the reflected beam deteriorates in polarization degree from 55 dB to about 25 dB. The reflected beam is polarized and separated again, and the ordinary light component is coupled to the virtual fiber 403 with a coupling loss of 0.4 dB, and the extraordinary light component 502 (polarization degree degraded component) repolarized and separated is located at a position 50 μm away from the virtual fiber 403 due to the beam shift. Since the light is condensed, the coupling loss with respect to the virtual fiber 403 reaches 25 dB, which is equivalent to substantially not entering the virtual fiber 403. Here, the extraordinary light component 502 (polarization degree degradation component) refers to the major axis component (main polarization component) and the minor axis direction component (secondary polarization component) of the beam reflected by the photonic crystal polarization separation element 405 in the electric field oscillation direction. The beam mainly contains the short-axis component of elliptically polarized light consisting of
[0073]
The extraordinary light component 503 in the rutile parallel plate walk-off polarizer 404 is incident on the photonic crystal polarization separation element 405 as a TM polarized wave, and almost all of the light is transmitted, but about 0.3% (−25 dB) is reflected. This reflected light is mainly due to Fresnel reflection due to the difference in refractive index, and mainly consists of TM polarization components. Since this Fresnel reflection occurs not only in polarizers but also in general optical components, it is necessary to bond a rutile crystal polarization separation element and a photonic crystal polarization separation element, which is one of the methods for suppressing general Fresnel reflection. (Exemplified as FIG. 6). As a matter of course, the surface where the rutile parallel plate walk-off polarizer 404 and the photonic crystal polarization splitting element 405 are bonded is AR-coated for an adhesive. Although a TE component is also generated by reflection, it is again polarized and separated by the rutile parallel plate walk-off polarizer 404, and is coupled to the virtual fiber 403 with a large coupling loss of 25 dB without beam shift as ordinary light (almost no coupling may occur). )
[0074]
From here, it will be described again with reference to FIG. The TM polarized component transmitted through the photonic crystal polarization splitting element 405 is converted into a parallel beam by the collimating lens 303, reflected by the mirror 304, and coupled to the virtual fiber 403 through the same path with a coupling loss of about 0.2 dB. Since the transmission loss of the photonic crystal polarization splitting element 405 is about 0.2 dB for the round trip, the total loss is about 0.4 dB.
[0075]
From the above, a variable DGD with a loss of about 0.4 dB and a PDL of almost 0 dB can be realized for any polarization component.
[0076]
From the above, it can be seen that the influence of the polarization degree degradation component of the reflected light in the photonic crystal polarization separation element can be suppressed.
[0077]
Here, it is conceivable to form the mirror 703 only in the beam region of the ordinary light component of the rutile parallel plate walk-off polarizer 702 without using the photonic crystal polarization separation element as shown in FIG. Since it is necessary to separate the ordinary light component and the extraordinary light component (to a distance of about twice the beam diameter), it is necessary to increase the length of the walk-off crystal, but the distance between the virtual fiber 701 and the mirror 703 also increases at the same time. And the coupling loss increases. Therefore, it is inappropriate to use the mirror 703 as shown in FIG. 7, and it is desirable to use a reflection type polarization splitting element as shown in FIG.
[0078]
The addition of a walk-off polarizer, which is one of the requirements of the present embodiment, can be applied to Conventional Example 2, Conventional Example 3, and Conventional Example 4. For example, when it is combined with the combination of the polarizing prism and the mirror described in the conventional example 2, the configuration is as shown in FIG. As shown in FIG. 8A, the same operation as that of the conventional example 2 can be performed by adding the rutile parallel plate walk-off polarizers 803 and 807 before the input side PBS 804 and after the output side PBS 805. However, since the combination with the collimated beam is indispensable, the polarization degree degradation components 810 and 811 separated by the parallel plate walk-off polarizer 807 as shown in FIG. Since the light is focused on the core, a weak-off polarizer with a large polarization component separation is required to effectively remove the polarization degree degradation component. For example, when the focal length of the collimating lenses 802 and 808 is 10 mm and the mode field diameter of the optical fibers 801 and 809 is 9.5 μm, a rutile parallel plate with a thickness of 17000 μm is required to obtain a coupling loss of 25 dB for the degree of polarization degradation. Requires a walk-off polarizer. However, a rutile parallel plate walk-off polarizer with a thickness of 17000 μm is expensive.
[0079]
Although it is possible to add a parallel plate walk-off polarizer to Conventional Examples 3 and 4, it is necessary to use a very thick parallel plate walk-off polarizer as in the configuration shown in FIG. Not realistic.
[0080]
4 to 8, only the center of the parallel beam is described.
[0081]
The same operation as that of the virtual fiber 403 can be performed by attaching a graded-index multimode optical fiber to the tip of the polarization maintaining fiber and using the graded-index multimode optical fiber as a kind of lens. , Patent Document 20, and Patent Document 21 are known. However, in this embodiment, a fiber-collimator is not used as in Patent Documents 20 and 21, but a polarization maintaining fiber and a graded index type multi-mode optical fiber are combined to be equivalent to a core-enlarged optical fiber having a mode field diameter of 40 μm. It is necessary to make it work.
[0082]
Although it is possible in principle to use a core-expanded optical fiber instead of the virtual fiber of the present embodiment, it is difficult to expand the polarization maintaining fiber to a mode field diameter of 40 μm. It is appropriate to use Virtual Fiber in the configuration.
[0083]
(Example 4)
[0084]
A fourth embodiment of the present invention will be described with reference to FIG. In Example 3, since a single crystal walk-off polarizer was used, a gradient index rod lens was attached to the tip of the polarization maintaining fiber to have the same function as that of the core-enlarged optical fiber. (Laminated Polarization Splitter) 902 shows that the use of a stacked polarization splitting element such as a polarization maintaining fiber 901 can suppress the coupling loss to a low level.
[0085]
LPS is composed of alternating multilayer films of materials having a large difference in the refractive index such as SiO2 and Si, and a separation angle of 18 degrees or more can be obtained. This is more than three times that of the rutile crystal. Therefore, the thickness required for effectively removing the polarization degree deteriorating component is small, and the same effect as that of the third embodiment can be realized only with the polarization maintaining fiber.
[0086]
The LPS 902 has a thickness of 40 μm and a polarization separation amount of 12 μm. At this time, the loss at which the ordinary light component 906 in the LPS 902 reflected by the photonic crystal polarization splitter 903 is coupled to the polarization maintaining fiber 901 is about 0.4 dB. Since the transmission loss of the photonic crystal polarization separation element 903 is 0.1 dB, the PDL is canceled if the coupling efficiency of the extraordinary light component 907 in the LPS 902 is about 0.2 dB. At this time, the coupling loss of the polarization degree degradation component reaches 25 dB. From the above, it can be seen that characteristics equivalent to those of Example 3 can be obtained.
[0087]
In the present embodiment, the ordinary light component in the LPS 902 is coupled without using a lens or a mechanism similar thereto, but the coupling efficiency of such an optical coupling system that does not use a lens, and the coupling between the optical coupling system that does not use a lens and the polarizer. The details of the combination are described in Non-Patent Documents 12 and 13. Non-patent document 14 describes LPS in detail.
[0088]
(Example 5)
[0089]
A fifth embodiment of the present invention will be described with reference to FIG. In the embodiments described so far, a mirror having a reflectance of almost 100% has been used. However, it is also possible to use a reflection type polarization splitting element instead of the mirror. Basically, incident light in all polarization states can be cut off by using two absorption polarizers. However, in the case of using two reflective polarization separation elements, incident light in all polarization states is reflected. It becomes possible to cut off. Furthermore, if a polarization splitting element with a small extinction ratio is used, the beam can be split, and one of them can be used for monitoring the signal state.
[0090]
Also, it is easy to reduce the extinction ratio of the polarization separation element. For example, in the case of a photonic crystal polarization separation element, it can be easily realized by reducing the number of layers, which leads to cost reduction. Here, the extinction ratio of the polarizer or the polarization separation element is defined as the difference between the maximum value and the minimum value of the transmission loss for random polarized light.
[0091]
FIG. 10A shows a configuration in which the mirror 304 in FIG. 3 is replaced with a photonic crystal polarization splitting element 1004 and a polarization monitor 1005 is added.
[0092]
Furthermore, the photonic crystal polarization splitters 1002 and 1004 both have an extinction ratio of 10 dB, and about 10% of the input light of the PANADA fiber 1001 enters the polarization monitor 1005. The polarization monitor 1005 is connected to an external computer, and the computer analyzes the polarization state and controls the polarization controller. For this reason, the coupler 4303 for inputting light to the signal light monitoring device 4304 after the polarization controller shown in FIG. 43 becomes unnecessary, and the routing of the optical fiber is simplified.
[0093]
FIGS. 10 (b), (c), and (d) are schematic diagrams of the polarization state and the intensity at each position. In the polarization-maintaining fiber, orthogonally polarized light is written as shown in FIG. 10 (b). In this state, after transmission through the polarization splitting element 1002, only one of the polarization components is attenuated to -10 dB as shown in FIG. Further, after transmission through the polarization separation element 1004, only the other polarization component attenuates to -10 dB as shown in FIG. 10D, and both polarization components attenuate to -10 dB as compared to FIG. 10B. The intensity ratio between the polarization components is preserved.
[0094]
As the polarization monitor 1005, a polarization analyzer described in Patent Document 22 is used. The polarization analyzer also uses a photonic crystal polarization separation element, is suitable for miniaturization and integration, and is most suitable for combination with this embodiment.
[0095]
(Example 6)
[0096]
An example of the embodiment of the polarization mode dispersion compensator of the present invention will be described in detail with reference to FIGS. Since PMD may have wavelength dependence even in a channel, PMD compensation including PMD wavelength dependence may be required depending on the optical fiber used for communication, communication speed, and wavelength.
[0097]
In general, by combining the polarization controller 1101, the polarization separation mechanism 1102, the variable wavelength dispersion providing mechanism 1104, the variable delay device 1105, and the polarization combining mechanism 1103 as shown in FIG. 11, PMD compensation including the wavelength dependence of PMD can be performed. However, if the polarization controller 1101, the polarization separation mechanism 1102, the variable chromatic dispersion imparting mechanism 1104, the variable delay device 1105, and the polarization combining mechanism 1103 are individually manufactured and connected by an optical fiber, a very large-scale apparatus is obtained.
[0098]
As a variable wavelength dispersion providing mechanism, a VIPA type dispersion compensator (or Non-Patent Document 15) described in Patent Document 23 is known. FIG. 12 is the same as FIG. 21 (a) in Patent Document 23, and VIPA (Virtually Imaged Phased Array) is a type of wavelength demultiplexer and behaves like a dispersion prism with a large separation angle.
[0099]
FIG. 13 shows a variable DGD according to the present embodiment, in which the optical fiber 1201 of the VIPA type dispersion compensator shown in FIG. 12 is changed to a polarization maintaining fiber 1301, and a reflection which can operate at a vertical incidence on the tip of the polarization maintaining fiber 1301. By adding the photonic crystal polarization separation element 1302, which is a type polarization separation element, PMD compensation including the wavelength dependence of PMD can be performed. The combination of the polarization maintaining fiber 1301 and the photonic crystal polarization separation element 1302 is the same as in the second embodiment.
[0100]
FIG. 14 is a schematic diagram of the optical fiber path of this embodiment. Since the variable DGD shown in FIG. 13 is used, a polarization mode dispersion compensator is used in combination with an optical circulator.
[0101]
(Example 7)
[0102]
A variable DGD and a polarization mode dispersion compensator according to a seventh embodiment of the present invention will be described with reference to FIG. The feature of this embodiment is that the configuration is further simplified by arranging the polarization controller at a position adjacent to the polarizer. The optical fiber 1501, the optical fiber 1503, and the optical fiber 1510 are non-polarization-maintaining single mode fibers, and the light emitted from the optical fiber 1503 is converted into a parallel beam by a collimating lens 1504.
[0103]
The parallel beam passes through a polarization controller composed of a liquid crystal rotation quarter-wave plate 1505 and a liquid crystal rotation half-wave plate 1506, and is then polarization-separated by a photonic crystal polarization separation element 1507, and a reflection component is coupled to an optical fiber 1503. On the other hand, the transmitted light of the photonic crystal polarization splitting element 1507 is reflected by the photonic crystal polarization splitting element 1508 and coupled to the optical fiber 1503. Although the transmission polarization directions of the photonic crystal polarization separation element 1507 and the photonic crystal polarization separation element 1508 are orthogonal to each other, a photonic crystal polarization separation element 1507, 1508 having an extinction ratio of transmitted light of about 10 dB is used. By using this, 10% of the light emitted from the optical fiber 1503 is incident on the polarization monitor 1509, the polarization state is analyzed by a computer, and the liquid crystal rotation quarter-wave plate 1505 and the liquid crystal rotation half-wave plate 1506 are formed. Controls the polarization controller.
[0104]
As described above, the polarization controller and the variable DGD are integrated, and the optical fiber for connection between the polarization controller and the polarization dispersion element, which is required in the second embodiment, becomes unnecessary.
[0105]
In this embodiment, the liquid crystal rotating quarter-wave plate 1505 and the liquid crystal rotating half-wave plate 1506 are used. However, the liquid crystal rotating quarter-wave plate 1505 and the liquid crystal rotating half-wave plate 1506 are described in Non-Patent Document 16. Use The liquid crystal rotating wave plate described in the above document has no movable parts and is small in size, so that it is optimal for the polarization controller used in this embodiment.
[0106]
In this embodiment, the polarization analyzer described in Patent Document 22 is used as the polarization monitor 1509, but an external polarization monitor can be used through a lens and a polarization maintaining fiber.
[0107]
(Example 8)
[0108]
An eighth embodiment of the present invention will be described with reference to FIG. In this embodiment, by using a two-core collimator including a two-core polarization maintaining fiber array in which two polarization maintaining fibers 1601 and 1602 are arranged in parallel and a collimating lens 1603, a photonic crystal polarization splitting element 1604, and a mirror 1605, The polarization mode dispersion compensation can be performed without using the optical circulator or the directional coupler required in the seventh embodiment.
[0109]
Specifically, the collimated beam is made incident on both the photonic crystal polarization splitting element 1604 and the mirror 1605 at a significant incident angle, but if the incident angle on both the photonic crystal polarization splitting element 1604 and the mirror 1605 is the same. , Any reflected light is condensed at one point, and if the optical fiber 1602 is arranged at that position, any polarization component is coupled to the optical fiber 1602.
[0110]
In the present embodiment, a shift occurs between the reflected light from the polarization splitting element and the reflected light from the mirror according to the distance between the photonic crystal polarization separating element 1604 and the mirror 1605. The above-mentioned shift results in a shift of the incident angle to the optical fiber, causing a coupling loss. At this time, if the distance between the two polarization maintaining fibers is small and the focal length f of the collimating lens 1603 is sufficiently large, the coupling loss is reduced. Occurrence can be suppressed to the extent that there is no practical problem.
[0111]
Further, an optical coupling system that is not easily affected by the tilt of the mirror when it is moved back and forth in the Z-axis direction is desirable. However, as the focal length increases, the loss due to the incident angle of the beam to the photonic crystal polarization splitter 1604 and the mirror 1605 increases. Becomes larger.
[0112]
The pitch of the two-core polarization maintaining fiber array was set to 125 μm due to the diameter of the clad, and an aspherical lens with f = 15 mm was used as the collimating lens 1603. The photonic crystal polarization splitting element 1604 is the same as that described in the second embodiment, is disposed at a position 8 mm closer to the collimator lens 1603 than the focal position of the collimator lens 1603, and maintains the polarization of the TE component emitted from the polarization maintaining fiber 1601. The loss when coupling into fiber 1602 is about 0.75 dB. (It is deliberately shifted from the optimal connection state).
[0113]
In the above configuration, when the movable range of the interval between the photonic crystal polarization splitting element 1604 and the mirror 1605 is set to 0 to 45 mm (a range for compensating for 300 psec PMD), the TM component of the emitted light of the polarization maintaining fiber 1601 (reflected by the mirror 1605) Loss when coupling to the polarization maintaining fiber 1602 fluctuates in the range of 0.67 dB to 0.8 dB (basic coupling loss 0.45 dB, excess loss due to movement is 0 to 0.23 dB, polarizer). Transmission loss 0.12 dB). Therefore, the PDL varies in the range from 0 dB to 0.08 dB.
[0114]
The incident angle of the beam on the photonic crystal polarization splitting element 1604 and the mirror 1605 is 0.24 degrees.
[0115]
In this embodiment, the loss of the variable DGD and the PDL are increased as compared with, for example, the second embodiment. However, the loss and the increase of the PDL are equal to or less than the loss and the PDL of the optical circulator, and are offset by the fact that the optical circulator can be omitted. In addition to this, there is a cost reduction effect by omitting the optical circulator and an effect of eliminating the wavelength dependence of the optical circulator.
[0116]
(Example 9)
[0117]
A ninth embodiment of the present invention will be described with reference to FIG. Reference is also made to FIG. FIG. 17 is a block diagram of a polarization mode dispersion compensator according to the present embodiment. This embodiment is characterized in that the variable DGD shown in FIG. 16 and the variable DGD in which the photonic crystal polarization separation element 1604 in the variable DGD shown in FIG. 16 is movable and the mirror 1605 is fixed are connected in series. .
[0118]
Since the variable DGD shown in FIG. 16 has a larger PDL as the movable range is increased, it is appropriate to combine a plurality of variable DGDs with a smaller movable range. In the configuration in which the photonic crystal polarization separation element 1604 in the variable DGD shown in FIG. 16 is movable and the mirror 1605 is fixed, the loss of the TM polarization is constant and the loss of the TE polarization fluctuates. When combined with the variable DGD, the PMD can be compensated twice as much as one variable DGD while canceling the PDL.
[0119]
For example, the pitch of the two-core fiber is 125 μm, the focal length of the lens is 15 mm, and the movable range of the distance between the photonic crystal polarization separation element whose position is fixed and the movable mirror is 0 to 22.5 mm (a range that compensates for 150 psec PMD). The loss of the variable DGD 1702 in ()) is such that the TE polarization fluctuates in the range of 0.6 dB (the intentional loss is reduced compared to the fifth embodiment) and the TM polarization fluctuates in the range of 0.57 dB to 0.63 dB. (Basic coupling loss 0.45 dB, excess loss due to movement 0 to 0.06 dB, polarizer transmission loss 0.12 dB). Therefore, PDL fluctuates in the range of 0 to 0.03 dB.
[0120]
Further, the pitch of the two-core fiber is 125 μm, the focal length of the lens is 15 mm, and the movable range of the distance between the movable photonic crystal polarization separating element and the fixed position mirror is 0 to 22.5 mm (a range that compensates for 150 psec PMD). The loss of the variable DGD 1703 in ()) is such that the TM polarization fluctuates in the range of 0.6 dB (the loss is intentionally degraded) and the TE polarization fluctuates in the range of 0.57 dB to 0.63 dB. (Basic coupling loss 0.45 dB, excess loss due to movement 0 to 0.06 dB, polarizer transmission loss 0.12 dB).
[0121]
By connecting the variable DGD 1702 and the variable DGD 1703 in series as described above, the PMD of 300 psec can be compensated like the variable DGD described in the eighth embodiment, but the loss increases, but in principle, the fluctuation amount of the PDL is Can offset.
[0122]
As described above, although the number of parts is doubled, it can be seen that this embodiment is suitable for simultaneously obtaining a large amount of PMD compensation and low PDL fluctuation.
[0123]
(Example 10)
[0124]
A tenth embodiment of the present invention will be described with reference to FIG. FIG. 18 is a block diagram of a polarization mode dispersion compensator according to the present embodiment. This embodiment is the same as the ninth embodiment in that two variable DGDs are used, but is characterized in that the two variable DGDs impart a group delay difference to orthogonally polarized components.
[0125]
The variable DGD 1802 in FIG. 18 is the same as the variable DGD 1702 shown in FIG. A variable DGD 1803 is a variable DGD that gives a delay in a polarization direction orthogonal to the variable DGD 1702. By using these two variable DGDs, it becomes possible to provide reverse polarization dispersion from -150 ps to +150 ps to orthogonal linear polarization components with delay.
[0126]
In contrast to Embodiments 1 to 9 and Conventional Examples 2 and 3 in which only the plus or minus reverse polarization mode dispersion can be imparted, the polarization is improved by using a plurality of variable DGDs. It is possible to respond more flexibly to the time variation of mode dispersion. In particular, it is effective that the amount of imparting reverse polarization mode dispersion can correspond to 0 ps, which is difficult to deal with strictly even in the eighth embodiment.
[0127]
(Example 11)
[0128]
An eleventh embodiment of the present invention will be described with reference to FIGS. FIG. 19 is a block diagram of a polarization mode dispersion compensator according to the present embodiment. The variable DGD 1903 is the same as the variable DGD shown in FIG. The semi-fixed DGD 1902 will be described later.
[0129]
When the time variation of the PMD amount of a certain existing fiber is measured and kept above a certain value as shown in FIG. 20, it is effective to compensate for the minimum value of the PMD by the semi-fixed DGD and to compensate only the time variation by the variable DGD. . Not only the variable DGD 1903 but also a device for imparting a group delay difference to a variable polarization component to obtain all PMD compensation amounts often involves problems such as an increase in size and loss. This can be solved by combining with a semi-fixed DGD as in the embodiment.
[0130]
FIG. 21 shows details of the semi-fixed DGD 1902. The semi-fixed DGD 1902 includes a polarization splitting device 2101, a polarization maintaining fiber 2102, a polarization combining device 2103, and a polarization maintaining fiber 2104. The PMD that varies depending on the transmission path used by changing the length of the polarization maintaining fiber 2104. It can correspond individually to the minimum value.
[0131]
It is also possible to fix the position of the mirror 1605 in the variable DGD shown in FIG. 16 instead of the semi-fixed DGD 1902 shown in FIG. 21, and it is more advantageous than the semi-fixed DGD 1902 in terms of size and wavelength dispersion. Since the cost is higher than that of, it is necessary to use them properly depending on the situation.
[0132]
(Example 12)
[0133]
A twelfth embodiment of the present invention will be described with reference to FIG. FIG. 22 is a block diagram of a polarization mode dispersion compensator according to the present embodiment. The variable DGDs 2202 and 2204 are the same as the variable DGDs shown in FIG.
[0134]
As described in Patent Document 15, it is known that the performance can be improved by connecting a polarization controller and a polarization dispersion compensator composed of a fixed or variable DGD in multiple stages. The variable DGD described has two ports for input and output, and can be miniaturized by a simple configuration, so that it is suitable for use in multistage connection.
[0135]
(Example 13)
[0136]
A thirteenth embodiment of the present invention will be described with reference to FIG. The feature of this embodiment resides in the use of a two-core collimator including two optical fibers arranged in parallel and a collimator lens and a prism.
[0137]
Generally, beams emitted from two optical fibers forming a two-core collimator intersect at a focal position of a lens. Therefore, if the reflection component is appropriately arranged at the focal position, the coupling between the two optical fibers is realized. However, at positions other than the focal position, losses occur according to the distance from the focal position. In this embodiment, by using a prism to direct the beam in the same direction as the light emitted from the fiber, it is possible to suppress the reflection components disposed at positions other than the focal position to a sufficiently small loss. Controlling the beam direction by combining a two-core collimator and a prism is known, for example, in FIG.
[0138]
FIG. 23 includes two parallel polarization maintaining fibers 2301 and 2302, a collimator lens 2303, a photonic crystal polarization splitting element 2304, a prism 2305, and a mirror block 2306 in which two 45 ° incident mirrors are integrated. Variable DGD.
[0139]
The photonic crystal polarization separation element 2304 is arranged at the focal position of the collimator lens 2303, and the light emitted from the polarization maintaining fiber 2301 enters the photonic crystal polarization separation element 2304 via the collimator lens 2303, and is transmitted to the photonic crystal polarization separation element 2304. The TE polarization component is reflected and coupled to a polarization maintaining fiber 2302 via a lens 2303. On the other hand, the TM polarized component to the photonic crystal polarization splitting element 2304 passes through the photonic crystal polarization splitting element 2304, the beam direction is changed by the prism 2305, and after the reflection by the mirror block 2306, the beam direction is changed again by the prism 2305. The light passes through the photonic crystal polarization splitting element 2304 again and is coupled to the polarization maintaining fiber 2302 via the lens 2303.
[0140]
In the present embodiment, a photonic crystal polarization molecular element 2304 is arranged at the focal position of a lens 2303, and a prism 2305 is used to make the transmitted light of the photonic crystal polarization separation element 2304 the same direction as the emission light of the polarization maintaining fiber 2301; By using a mirror block 2306 in which two 45 ° incident mirrors are integrated, the distance between the collimating lens 2303 of the photonic crystal polarization separation element 2304 reflected light and the mirror block 2306 reflected light and the polarization maintaining fiber 2302 is always maintained. Since they match, the loss does not change even when the position of the mirror block 2306 is changed.
[0141]
In this embodiment, the size of the apparatus is larger than that of the first, second, third, fourth, and fifth embodiments by using two integrated mirror blocks 2306 with 45-degree incidence. A size equal to or smaller than the configuration of the combination of the polarizing prism and the mirror described in the conventional example 2 can be realized. It is also possible to use a curved mirror or PBS instead of two 45-degree incident mirrors.
[0142]
(Example 14)
[0143]
A fourteenth embodiment of the present invention will be described with reference to FIG. The feature of this embodiment is that the lens of the thirteenth embodiment is replaced by a 0.25 pitch gradient index rod lens, and an optical fiber, a gradient index rod lens, and a photonic crystal polarization splitting element are integrated by organic bonding. It is to be.
[0144]
FIG. 24 shows two polarization maintaining fibers 2401 and polarization maintaining fibers 2402 arranged in parallel, a refractive index distribution type rod lens 2403 having a pitch of 0.25, a photonic crystal polarization splitting element 2404, a prism 2405, and two 45 degrees. The variable DGD is composed of a mirror block 2406 with an integrated incidence.
[0145]
When the wavelength selection filter is used instead of the photonic crystal polarization separation element 2404, the two polarization maintaining fibers 2401 and 2402, the refractive index distribution type rod lens 2403 having a 0.25 pitch, and the wavelength selection filter The combination is shown in FIG. It can be seen that the configuration is almost the same as 4b.
[0146]
The 0.25 pitch refractive index distribution type rod lens 2403 operates as a collimating lens, the photonic crystal polarization separation element 2404 is disposed on the end face of the refractive index distribution type rod lens 2403, and the light emitted from the polarization maintaining fiber 2401 has a refractive index. The light enters the photonic crystal polarization splitting element 2404 via the distribution type rod lens 2403, and the TE polarization component with respect to the photonic crystal polarization splitting element 2404 is reflected and passes through the refractive index distribution type rod lens 2403 to the polarization maintaining fiber 2402. Join.
[0147]
On the other hand, the TM polarization component to the photonic crystal polarization splitting element 2404 passes through the photonic crystal polarization splitting element 2404, passes through the prism 2405, is reflected by the mirror block 2406, passes through the prism 2405 again, and passes through the photonic crystal polarization splitting element 2404. Through a refractive index distribution type rod lens 2403 to a polarization maintaining fiber 2402.
[0148]
The incident angle of the beam with respect to the photonic crystal polarization splitting element 2404 is such that the core spacing between the two polarization maintaining fibers is 250 μm and the refractive index distribution type rod lens is Nippon Sheet Glass Co., Ltd. with an outer diameter of 1.8 mm for a wavelength of 1.55 μm. When this is used, the angle is about 1.5 degrees, but does not cause the characteristic deterioration as described above.
[0149]
In this embodiment, the photonic crystal polarization splitting element 2404 is arranged on the end face of the gradient index rod lens 2403, and the center position between the cores of the two polarization maintaining fibers is set on the central axis of the gradient index rod lens 2403. To be placed. In this case, if the precision of each component is sufficiently high, it can be a highly efficient optical coupling system without adjusting the optical axis with optical measurement. For example, a polarization maintaining fiber is fixed to a two-hole glass capillary having the same outer diameter as the gradient index rod lens, and then a housing having the same inner diameter as the outer diameter of the gradient index rod lens together with the gradient index rod lens. A method such as press fitting into a cylinder is effective.
[0150]
(Example 15)
[0151]
A fifteenth embodiment of the present invention will be described with reference to FIG. The feature of this embodiment is that three prisms having a refractive index distribution of 0.25 pitch are used in place of the prism in the thirteenth embodiment.
[0152]
FIG. 20 shows two polarization maintaining fibers 2501 and polarization maintaining fibers 2502 arranged in parallel, a refractive index distribution type rod lens 2503 having a 0.25 pitch, a photonic crystal polarization splitting element 2504, and a refractive index distribution having a 0.25 pitch. The variable DGD is composed of a shaped rod lens 2505, a 0.25 pitch refractive index distributed rod lens 2506, a 0.25 pitch refractive index distributed rod lens 2507, and a mirror block 2508.
[0153]
Here, when the wavelength selection filter is used instead of the photonic crystal polarization splitting element 2504, two polarization maintaining fibers 2501 and two polarization maintaining fibers 2502, a refractive index distribution type rod lens 2503 having a pitch of 0.25, a wavelength selection filter, A combination of a refractive index distribution type rod lens 2505 having a pitch of 0.25 is disclosed in Japanese Patent Application Laid-Open Publication No. 26-26095. It can be seen that the configuration is almost the same as that of No. 1.
[0154]
The 0.25 pitch gradient index rod lens 2503 operates as a collimating lens, the photonic crystal polarization splitting element 2504 is disposed on the end face of the gradient index rod lens 2503, and the polarization maintaining fiber 2501 emits light having a refractive index. The light enters the photonic crystal polarization splitting element 2504 via the distribution type rod lens 2503, and the TE polarization component with respect to the photonic crystal polarization separation element 2504 is reflected, and passes through the refractive index distribution type rod lens 2503 to the polarization maintaining fiber 2502. Join.
[0155]
On the other hand, the TM polarization component to the photonic crystal polarization splitting element 2504 passes through the photonic crystal polarization splitting element 2504 and has a beam waste at the end face 2509 of the gradient index rod lens 2505. The beam is then converted into a parallel beam by a 0.25-pitch gradient index rod lens 2506 having an axial center at the beam waste position, and reflected by a mirror block 2508. The 0.25 pitch gradient index rod lens 2507, 0.25 The light passes through the gradient index rod lens 2505 at the pitch, passes through the photonic crystal polarization separation element 2504 again, and is coupled to the polarization maintaining fiber 2502 via the gradient index rod lens 2503.
[0156]
From the above, it can be seen that an operation equivalent to that of the fourteenth embodiment can be performed.
[0157]
(Example 16)
[0158]
A sixteenth embodiment of the present invention will be described with reference to FIG. The feature of this embodiment lies in that a mechanism for removing the polarization degree deterioration component by the rutile parallel plate polarization separation / combination element is provided in addition to the thirteenth embodiment.
[0159]
FIG. 26 shows two polarization-maintaining fibers 2601, 2602, rutile parallel-plate polarized light separating element 2603, rutile parallel-plate polarized light combining element 2604, collimating lens 2605, photonic crystal polarized light separating element 2606, prism 2607. Is a variable DGD comprising a mirror block 2608 in which a 45-degree incident mirror is integrated.
[0160]
The photonic crystal polarization splitting element 2606 is arranged at the focal position of the collimating lens 2605, and the extraordinary light component 2609 in the rutile parallel plate polarization splitting element 2603 out of the polarization maintaining fiber 2601 is passed through the collimating lens 2605 to the photonic crystal polarization splitting. The light is reflected by the element 2606, transmitted as extraordinary light through the collimating lens 2605, and the rutile parallel plate polarization combining element 2604, and then coupled to the polarization maintaining fiber 2602.
[0161]
Of the light emitted from the polarization maintaining fiber 2601, the ordinary light component 2610 in the rutile parallel plate polarization splitting element 2603 passes through the collimating lens 2605, passes through the photonic crystal polarization splitting element 2606, passes through the prism 2607, and is reflected by the mirror block 2608 again. The light passes through a photonic crystal polarization splitting element 2606 via 2607, and is coupled to a polarization maintaining fiber 2602 via a collimating lens 2605 and a rutile parallel plate polarization combining element 2604.
[0162]
In this embodiment, the use of the rutile parallel-plate walk-off polarization splitting element 2603 and the rutile parallel-plate walk-off polarization combining element 2604 makes it possible to remove the degree of polarization degradation component. Since the rutile parallel plate can provide a walk-off amount of about 1/10 of the thickness, the use of a 200 μm rutile parallel plate can attenuate the polarization degradation component coupled to the polarization maintaining fiber by 60 dB or more.
[0163]
Note that rutile parallel plate walk-off polarization separation / combination elements 2603 and 2604 are arranged between the polarization maintaining fibers 2601 and 2602 and the collimating lens 2605. In this case, the rutile parallel plate walk-off polarization separation / combination elements 2603 and 2604 are used. Since the optical path lengths of the ordinary light component and the extraordinary light component are different, a coupling efficiency difference occurs.
[0164]
(Example 17)
[0165]
A seventeenth embodiment of the present invention will be described with reference to FIG. In the sixteenth embodiment, the polarization degree deteriorating component can be removed by using the rutile parallel plate polarization splitting element 2603 and the rutile parallel plate polarization combining element 2604. However, the focusing position of each polarized beam on the polarization maintaining fiber 2602 is changed. In order to make them coincide with each other, the rutile parallel-plate polarized light separating element 2603 and the rutile parallel-plate polarized light synthesizing element 2604 need to have exactly the same walk-off amount and polarization separation directions different by 180 degrees.
[0166]
It is relatively easy to realize the above requirements, but it is shown in this embodiment that it can be replaced by using a single rutile parallel-plate polarization separating / combining element 2701 and a 45-degree Faraday rotator 2702. The Faraday rotator generally has a large absorption loss, and the Faraday rotation coefficient has large temperature dependence and wavelength dependence. Therefore, this embodiment is suitable for use in a relatively narrow wavelength band under a temperature controlled environment. .
[0167]
Of the emitted light of the polarization maintaining fiber 2601, the ordinary light component 2703 in the rutile parallel plate polarization separation / combination element 2701 is rotated clockwise by 45 degrees clockwise by the Faraday rotator 2702, passes through the collimator lens 2605, and passes through the photonic crystal polarization separation element. After being reflected at 2606 and transmitted through the collimating lens 2605, the polarization plane is rotated clockwise by 45 degrees by the Faraday rotator 2702, enters the rutile parallel plate polarization separating / combining element 2701 as extraordinary light, and is coupled to the polarization maintaining fiber 2602. I do.
[0168]
Of the outgoing light of the polarization maintaining fiber 2601, the extraordinary light component 2704 in the rutile parallel plate polarization separation / combination element 2701 is rotated clockwise by 45 degrees clockwise by the Faraday rotator 2702, passes through the collimator lens 2605, and splits the photonic crystal polarization. The light passes through the element 2606, passes through the prism 2607, is reflected by the mirror block 2608, passes again through the prism 2607, passes through the photonic crystal polarization splitting element 2606, and is rotated by 45 degrees clockwise by the Faraday rotator 2702 to be parallel to the rutile. The light enters the plate polarization separating / combining element 2701 as ordinary light and is coupled to the polarization maintaining fiber 2602.
[0169]
From the above, it was explained that the same operation as in Example 16 could be performed.
[0170]
The Faraday rotator 2702 may be arranged between the collimator lens 2605 and the photonic crystal polarization splitting element 2606.
[0171]
(Example 18)
[0172]
An eighteenth embodiment of the present invention will be described with reference to FIG. In the sixteenth embodiment, it was described that the rutile parallel-plate polarized light separating element 2603 and the rutile parallel-plate polarized light combining element 2604 were arranged between the polarization maintaining fibers 2601, 602 and the lens 2605, resulting in a difference in coupling efficiency. In the example, an embodiment in which the optical path length difference between the polarization components generated by the rutile parallel plate polarization splitter 2603 and the rutile parallel plate polarization combiner 2604 is shown.
[0173]
Specifically, as shown in FIG. 28, by adding a rutile parallel plate 2801 that does not cause polarization separation, the polarization of the ordinary light component and the extraordinary light component in the rutile parallel plate polarization separation element 2603 and the rutile parallel plate polarization combination element 2604 is added. The optical path lengths between the wave holding fibers 2601, 602 and the lens 2605 match, and it becomes possible to convert any polarization component into a parallel beam, thereby suppressing coupling loss. A method of compensating the optical path length difference between the polarization components generated by such a polarization splitting element by using a birefringent crystal flat plate is known from Patent Document 27 and the like.
[0174]
Also, since PDL occurs due to the TM polarization transmission loss of the photonic crystal polarization separation element 2606, the photonic crystal polarization separation element 2606 is tilted, and the polarization maintaining fiber 2602 of the TE polarization component with respect to the photonic crystal polarization separation element 2606. It is also possible to suppress PDL by intentionally lowering the coupling loss for. By tilting the photonic crystal polarization splitting element 2606, the function of preventing signal quality deterioration due to multiple reflection between the photonic crystal polarization splitting element 2606 and the mirror block 2608 is the same as that of the second embodiment.
[0175]
Also in the configuration of the seventeenth embodiment, it is possible and effective to add a rutile parallel plate that does not cause polarization separation between the polarization maintaining fiber and the collimating lens as in the present embodiment.
[0176]
(Example 19)
[0177]
A nineteenth embodiment of the present invention will be described with reference to FIG. FIG. 29A shows the configuration of a variable DGD comprising two polarization maintaining fibers 2901, 2902, a collimating lens 2903, a photonic crystal polarization splitting element 2904, a prism 2905, a 1/4 wavelength plate 2906, and a mirror 2907 arranged in parallel. It is a figure showing.
[0178]
This embodiment corresponds to a configuration in which a quarter-wave plate 2906 is added to FIG. 23 and the mirror block is changed to a flat mirror 2907. In the first to eighteenth embodiments, the delay difference between the polarization components corresponding to one round trip between the polarizer and the mirror has been provided. In the present embodiment, the addition of the quarter-wave plate 2906 enables the polarization separation element and the mirror. A delay difference equivalent to two round trips between can be given.
[0179]
FIG. 29 (b) is a diagram showing the progress of the polarized component beam reflected by the photonic crystal polarization splitting element 2904. The photonic crystal polarization separation element 2904 is disposed at the focal position of the collimator lens 2903, and the light emitted from the polarization maintaining fiber 2901 enters the photonic crystal polarization separation element 2904 via the collimator lens 2903, and the photonic crystal polarization separation element 2904. Is reflected and coupled to a polarization maintaining fiber 2902 via a collimating lens 2903.
[0180]
FIG. 29C is a diagram showing the progress of the polarized component beam transmitted through the photonic crystal polarization splitting element 2904. The outgoing light of the polarization maintaining fiber 2901 enters the photonic crystal polarization separation element 2904 via the collimator lens 2903, and the TM polarization component transmits through the photonic crystal polarization separation element 2904, passes through the prism 2905, and is a quarter wavelength plate. After passing through 2906, the light is reflected by the mirror 2907, passes through the quarter-wave plate 2906 again, and enters the photonic crystal polarization splitting element 2904 through the prism 2905. At this time, the light is reflected because of the TE polarization. Then, the light reciprocates through the prism 2905, the quarter-wave plate 2906, and the mirror 2907 again and enters the photonic crystal polarization splitting element 2904. At this time, the light is transmitted because of the TM polarization. Thereafter, the light is coupled to a polarization maintaining fiber 2902 via a collimating lens 2903.
[0181]
As described above, since the polarization mode dispersion corresponding to the distance of two reciprocations between the photonic crystal polarization splitting element 2904 and the mirror 2907 can be compensated, the movable range of the mirror can be reduced. Another advantage of this embodiment is that a flat mirror 2907 can be used.
[0182]
In addition, it is effective to add a walk-off polarizer for removing the polarization degree degradation component to the variable DGD shown in FIG. 29 as in FIGS.
[0183]
(Example 20)
[0184]
A twentieth embodiment of the present invention will be described with reference to FIG. Two parallel polarization maintaining fibers 3001, 3002, a gradient index rod lens 3003 having a 0.25 pitch, a photonic crystal polarization splitting element 3004, a gradient index rod lens 3005, 0.25 pitch. The variable DGD is composed of a 25-pitch gradient index rod lens 3006, 3007, a 45-degree Faraday rotator 3008, a thermo-optic crystal 3009, and a mirror 3010.
[0185]
In this embodiment, a delay difference is provided between the polarization components by making two reciprocations between the photonic crystal polarization separation element 3004 and the mirror 3010 as in the nineteenth embodiment. Using the Faraday rotator 3008, the amount of delay is changed using the refractive index change due to the temperature change of the thermo-optic crystal 3009 instead of moving the mirror 3010. The thermo-optic effect has a low reaction rate due to the use of temperature change, but sufficient tracking performance is obtained because the time variation of the polarization mode dispersion is slow.
[0186]
Since the polarized light component reflected by the polarization splitting element is the same as that in FIG. 25, the progress of the beam of the polarized light component transmitted through the polarization splitting element will be described. The outgoing light of the polarization maintaining fiber 3001 is incident on the photonic crystal polarization separation element 3004 via the gradient index rod lens 3003, and the TM polarization component is transmitted through the photonic crystal polarization separation element 3004 to form the gradient index rod. After passing through a 45 ° Faraday rotator 3008 and a thermo-optic crystal 3009 through a lens 3005 and a refractive index distribution type rod lens 3006, it is reflected by a mirror 3010 and again passes through the thermo-optic crystal 3009 and a 45 ° Faraday rotator 3008 to obtain a refractive index. The light enters the photonic crystal polarization splitting element 3004 via the distribution rod lens 3006 and the refractive index distribution rod lens 3005, but is reflected at this time because of the TE polarization. Then, the light is reciprocated between the gradient index rod lens 3005, the gradient index rod lens 3007, the 45-degree Faraday rotator 3008, the thermo-optic crystal 3009, and the mirror 3010, and is incident on the photonic crystal polarization separation element 3004. Transmits because it is TM polarized. Thereafter, the light is coupled to a polarization maintaining fiber 3002 via a gradient index rod lens 3003.
[0187]
As described above, the polarization mode dispersion corresponding to the distance of two reciprocations between the photonic crystal polarization splitter 3004 and the mirror 3010 can be compensated, so that the temperature range applied to the thermo-optic crystal 3009 can be reduced.
[0188]
(Example 21)
[0189]
A twenty-first embodiment of the present invention will be described with reference to FIG. FIG. 31A shows two polarization maintaining fibers 3101, 3102, a collimating lens 3103, a photonic crystal polarization splitting element 3104, a prism 3105, a 45-degree Faraday rotator 3106, and two 45-degree incident mirrors arranged in parallel. FIG. 4 is a diagram showing a configuration of a variable DGD composed of a mirror block 3107 integrated with.
[0190]
This embodiment corresponds to a configuration obtained by adding a 45-degree Faraday rotator 3106 to FIG. 23, and can provide a delay difference corresponding to two round trips between the photonic crystal polarization splitting element 3104 and the mirror block 3107.
[0191]
FIG. 31 (b) is a diagram showing the progression of the beam of the TE knitted wave component with respect to the photonic crystal polarization splitting element 3104. The photonic crystal polarization separation element 3104 is disposed at the focal position of the collimator lens 3103, and the light emitted from the polarization maintaining fiber 3101 enters the photonic crystal polarization separation element 3104 via the collimator lens 3103, and is converted into the photonic crystal polarization separation element 3104. Is reflected and coupled to a polarization maintaining fiber 3102 via a collimating lens 3103.
[0192]
FIG. 31C is a diagram showing the progress of the beam of the TM polarization component with respect to the photonic crystal polarization splitting element 3104. The TM polarization component of the photonic crystal polarization splitting element 3104 passes through the photonic crystal polarization splitting element 3104, passes through the prism 3105, passes through the 45-degree Faraday rotator 3106, is reflected by the mirror block 3107, and is again rotated by 45-degree Faraday. After passing through the element 3106 and entering the photonic crystal polarization splitting element 3104 via the prism 3105, it is transmitted twice through the 45-degree Faraday rotator 3106 and reflected as TE polarized light. Then, the light reciprocates on the same path again and is incident on the photonic crystal polarization separation element 3104. However, the light is transmitted through the 45-degree Faraday rotator 3106 again twice, and is transmitted as TM polarized light. Thereafter, the light is coupled to a polarization maintaining fiber 3102 via a collimating lens 3103.
[0193]
As described above, since the polarization mode dispersion corresponding to the distance of two reciprocations between the photonic crystal polarization splitting element 3104 and the mirror block 3107 can be compensated, the movable range of the mirror block 3107 can be reduced. Even if a quarter-wave plate is used instead of the 45-degree Faraday rotator 3106, the polarization mode dispersion corresponding to the distance of two reciprocations between the polarizer and the mirror can be similarly compensated.
[0194]
(Example 22)
[0195]
A twenty-second embodiment of the present invention will be described with reference to FIG. FIG. 32A shows two single mode fibers 3201 and 3202 arranged in parallel, a collimator lens 3203, a polarization controller 3204 composed of a liquid crystal rotating wave plate, a photonic crystal polarization separation element 3205, a prism 3206, and a 45-degree Faraday rotator. FIG. 3 is a diagram showing a configuration of a variable DGD including a 3207, a photonic crystal polarization splitting element 3208, a photonic crystal polarization splitting element 3209, and a polarization monitor 3210.
[0196]
FIG. 32 (b) is a diagram showing the progression of the beam of the TE polarization component with respect to the photonic crystal polarization separation element 3205. The photonic crystal polarization separation element 3205 is arranged at the focal position of the collimator lens 3203, and the output light of the single mode fiber 3201 passes through the collimator lens 3203 and is orthogonally polarized light component having a delay by the polarization controller 3204 composed of a liquid crystal rotating wave plate. , And is incident on the photonic crystal polarization separation element 3205. The TE polarization component for the photonic crystal polarization separation element 3205 is reflected and coupled to the single mode fiber 3202 via the polarization controller 3204 and the collimator lens 3203.
[0197]
FIG. 32C is a diagram showing the progress of the beam of the TM polarization component with respect to the photonic crystal polarization splitting element 3205. The TM polarization component with respect to the photonic crystal polarization separation element 3205 passes through the photonic crystal polarization separation element 3205, passes through the prism 3206, the 45 degree Faraday rotator 3207, is reflected by the photonic crystal polarization separation element 3208, and is rotated by 45 degree Faraday. After passing through the element 3207, the light again enters the photonic crystal polarization separation element 3205 via the prism 3206. At this time, the light is reflected twice as a TE polarized wave because it is transmitted twice through the 45-degree Faraday rotator 3207. After that, the light passes through the prisms 3206 and the 45-degree Faraday rotator 3207, is reflected by the photonic crystal polarization separation element 3209, passes through the 45-degree Faraday rotator 3207, and enters the photonic crystal polarization separation element 3205 again through the prism 3206. At this time, since the light passes through the 45-degree Faraday rotator 3207 twice, it is transmitted as TM polarized light, and is coupled to the single mode fiber 3202 through the polarization controller 3204 and the collimating lens 3203.
[0198]
This embodiment is characterized in that a polarization controller and a monitor device are added to the structure shown in FIG. 18, and as in the sixth embodiment, a photonic crystal polarization separation element 3205 and a photonic crystal polarization separation element having an extinction ratio of about 10 dB. A part of the light emitted from the single mode fiber 3201 is made incident on the polarization monitor 3210 using the path shown in FIG. Further, the two photonic crystal polarization separation elements 3208 and 3209 can be integrated by forming different patterns on the same substrate (the feature of the photonic crystal produced by the self-cloning method). Specifically, after forming grooves oriented in directions different by 90 degrees on a SiO2 substrate, a multilayer film of SiO2 and Si is formed under the same conditions. The photonic crystal polarization splitting element 3209 may be changed to a mirror, but there is no practical advantage because another substrate is required.
[0199]
(Example 23)
[0200]
A twenty-third embodiment of the present invention will be described with reference to FIGS. In the future, with the spread of optical networks for access networks, it is necessary to compensate for the polarization mode dispersion for each channel. However, since there may be completely different polarization mode dispersion for each channel, polarization mode dispersion compensation is It involves technical and price difficulties. This embodiment can easily realize the compensation of the polarization mode dispersion for each channel.
[0201]
FIG. 33 shows a model of the polarization mode dispersion compensator for each channel. According to FIG. 33, the processes of demultiplexing, polarization mode dispersion compensation and multiplexing are required for each channel, and a wavelength separation mechanism 3301, a polarization controller 3302 for each wavelength band, a variable DGD 3303, a coupler 3304, and a monitor A device 3305, a control device 3306, and a wavelength combining mechanism 3307 are required.
[0202]
FIG. 34 shows the basic configuration of this embodiment. The basic components of this embodiment are an optical circulator 3402, an optical fiber 3403, a collimating lens 3404, a wavelength selection filter group 3405, a mirror 3409, a polarization controller 3410 to 3412 using a liquid crystal rotating wavelength plate, and a photonic crystal polarization separation element. 3413 to 3418, a collimator lens 3419, polarization monitors 3420, 3421, 3422, and a polarization maintaining fiber 3423.
[0203]
If the wavelength selection filter group 3405 and the mirror 3409 are not provided, a combination of an optical fiber 3403, a collimator lens 3404, a polarization controller 3410 composed of a liquid crystal rotating wave plate group, photonic crystal polarization separation elements 3413, 3414, and a polarization monitor 3420 is used. Is equivalent to the polarization mode dispersion device shown in FIG. On the other hand, the wavelength selection filter group 3405 and the mirror 3409 are well-known optical multiplexing / demultiplexing circuits.
[0204]
A beam including the wavelengths A, B, C, and D emitted from the optical fiber 3403 is converted into a parallel beam by a collimator lens 3404. After that, the wavelength A is transmitted by the filter 3406 in the wavelength selection filter group 3405, and the wavelengths B, C, and D are reflected. Since the wavelength A can be regarded as equivalent to the case where the filter 3406 is not provided, most of the wavelength A is returned to the optical fiber 3403 through the same operation as in FIG. Used for measurement and control of polarization mode dispersion.
[0205]
The beam composed of the wavelengths B, C, and D is reflected by the mirror 3409, enters the filter 3407 in the wavelength selection filter group 3405, transmits the wavelength B, and reflects the wavelengths C and D. The wavelength B is subjected to polarization dispersion compensation in the same manner as the wavelength A. Most of the incident light returns to the optical fiber 3403 via the reverse path, and a part of the light enters the polarization monitor 3421 and is controlled by the polarization controller. It is used for measurement and control of polarization mode dispersion.
[0206]
The beam having the wavelength C and the wavelength D is reflected by the mirror 3409 and is incident on the filter 3408 in the wavelength selection filter group 3405. The wavelength C is transmitted and the wavelength D is reflected. The wavelength C is subjected to polarization dispersion compensation in the same manner as the wavelength A, and most of the incident light returns to the optical fiber 3403 via the reverse path, and a part of the light enters the polarization monitor 3422 and is controlled by the polarization controller. It is used for measurement and control of polarization mode dispersion.
[0207]
The beam having the wavelength C is reflected by a mirror, coupled to the polarization maintaining fiber 3423, and then subjected to arbitrary signal processing.
[0208]
As described above, it was shown that polarization mode dispersion can be compensated for each channel. In this embodiment, the case of four channels has been exemplified, but it is obvious that the configuration of this embodiment can be expanded to more channels.
[0209]
In FIG. 34, all the photonic crystal polarization splitters 3413 to 3418 are arranged so that the beams are incident perpendicularly, but the juxtaposed photonic crystal polarization splitters used for the same wavelength as shown in FIG. By tilting, the focus position of the return light is shifted and if an optical fiber different from the incident optical fiber is installed at that position, the optical circulator becomes unnecessary. However, it is not practical because the coupling efficiency is low.
[0210]
Hereinafter, each component used in this embodiment will be described. As the wavelength selection filter group 3405, a photonic crystal filter manufactured by the self-cloning method described in Non-Patent Document 17 is used. The photonic crystal filter is low-cost because a filter for multiple channels can be manufactured simultaneously only by simultaneously forming a film on a substrate having a different groove period for each channel, and using a photonic band gap. Therefore, it is easy to design with PDL suppressed at the time of oblique incidence, and it is most suitable for application to this embodiment. It is easy to use a photonic crystal mirror for the mirror 3409, but if the PDL due to oblique incidence is sufficiently small, a normally used dielectric multilayer mirror may be used. The photonic crystal polarization splitting elements 3413, 3415, and 3417 in FIG. 34 are made into one piece by taking advantage of the fact that the photonic crystal polarization splitting element described in Patent Document 12 is manufactured by self-cloning and is easy to increase in area. It is also possible to integrate. In the present embodiment, the collimator lens 3404 needs to make the beam fly far. In some cases, instead of a single aspherical lens, a group of collimator lenses combining a plurality of lenses is used. However, in that case, the cost increases.
[0211]
Further, in this embodiment, the polarization mode dispersion that can be compensated is changed by moving the photonic crystal polarization splitting element. However, as in FIG. , 3416, and 3418 can be fixed. In that case, the photonic crystal polarization separation elements 3414, 3416, and 3418 can be integrated into one.
[0212]
(Example 24)
[0213]
A twenty-fourth embodiment of the present invention will be described with reference to FIG. FIG. 35 (a) is a top view showing the configuration of the polarization mode dispersion compensator in this embodiment, and FIG. 35 (b) is a side view showing the configuration of the polarization mode dispersion compensator in this embodiment, which is juxtaposed. Optical fibers 3501, 3502, collimating lens 3503, wavelength selection filter group 3504, mirror 3508, polarization controllers 3509, 3510, 3511 using liquid crystal rotating wave plates, photonic crystal polarization separation element 3512, prism 3513, 45-degree Faraday rotator 3514, a polarization separation element group 3515, 3516, 3517 in which two photonic crystal polarization separation elements each having a transmission polarization direction different by 90 degrees are integrated, a collimator lens 3518, polarization monitors 3519, 3520, 3521, and an optical fiber 3522. Consists of
[0214]
From FIG. 35B, it can be seen that if there is no wavelength selection filter group 3504 and mirror 3508, it is equivalent to the polarization dispersion element shown in FIG. On the other hand, the wavelength selection filter group 3504 and the mirror 3508 are well-known optical multiplexing / demultiplexing circuits. The separation and synthesis for each channel is the same as in the twenty-third embodiment. Here, the 45-degree Faraday rotator 3514 is common to all the channels to be PMD-compensated. However, if the Faraday rotator described in Patent Document 28 is used, there is no difference in the Faraday rotation angle between the channels.
[0215]
(Example 25)
[0216]
A twenty-fifth embodiment of the present invention will be described with reference to FIG. If the variable DGD in FIG. 33 can compensate including the wavelength dependence of the PMD in the channel, higher-speed communication can be performed as compared with the twenty-third embodiment.
[0219]
FIG. 36A shows an example of a polarization mode dispersion compensator, in which a TEC dispersion shift fiber 3603, a collimator lens 3604, a wavelength selection filter group 3605, a mirror 3609, polarization controllers 3610, 3611, 3612, and a branching prism 3613. , 3614, 3615, polarization monitoring devices 3616, 3617, photonic crystal polarization splitting elements 3619, 3620, 3621, collimating lens 3622, chirped fiber Bragg gratings 3623, 3634, 3625, and optical fiber 3626. . FIG. 36B is a side view of the same.
[0218]
It is already known, for example, from Patent Document 29 that the amount of chromatic dispersion imparted by applying heat or stress to the chirped fiber Bragg gratings 3623, 3624, 3625 can be varied.
[0219]
The beam including the wavelength A, the wavelength B, the wavelength C, and the wavelength D emitted from the optical fiber 3603 is converted into a parallel beam by the collimating lens 3604. After that, the wavelength A is transmitted by the filter 3606 in the wavelength selection filter group 3605, and the wavelengths B, C, and D are reflected. The beam having the wavelength A is converted by the polarization controller 3610 into orthogonal linear polarization components having a delay, a part of the beam is reflected by the branching prism 3613, and the reflected light is incident on the polarization monitor 3616. Used for control. The light transmitted through the splitting prism enters the photonic crystal polarization splitting element 3619, is polarized and separated, and the TE polarization component to the photonic crystal polarization splitting element 3619 is reflected and input to the dispersion shift fiber 3603. However, a part of the beam is reflected by the splitting prism 3613, and the reflected light enters the monitor device 3617 and is used for measuring the polarization mode dispersion.
[0220]
The TM polarization component to the photonic crystal polarization splitting element 3619 is transmitted, reflected by the chirped fiber Bragg grating 3623, and made incident on the dispersion shift fiber 3603. However, a part of the beam is reflected by the splitting prism 3613, and the reflected light enters the polarization monitor 3617 and is used for measuring the polarization mode dispersion.
[0221]
The beam composed of the wavelengths B, C and D is reflected again by the mirror 3609 and enters the filter 3607. The wavelength B is transmitted, and the wavelengths C and D are reflected. The wavelength B is subjected to polarization mode dispersion compensation in the same manner as the wavelength A, and most of the incident light returns to the optical fiber 3403 via the reverse path.
[0222]
The beam having the wavelength C and the wavelength D is reflected again by the mirror 3609 and is incident on the filter 3608. The wavelength C is transmitted and the wavelength D is reflected. The wavelength C is subjected to polarization mode dispersion compensation in the same manner as the wavelength A, and most of the incident light returns to the optical fiber 3603 via the reverse path.
[0223]
The beam having the wavelength D is reflected again by the mirror 3609, is coupled to the optical fiber 3626, and is subjected to arbitrary signal processing thereafter.
[0224]
In this embodiment, a chirped fiber Bragg grating is used. However, if a reflection type dispersion compensation device is used, the same operation as in this embodiment can be realized. For example, LOTADE described in Non-Patent Document 18 and the like can be mentioned.
[0225]
(Example 26)
[0226]
A twenty-sixth embodiment of the present invention will be described with reference to FIGS. If the variable DGD 3303 in FIG. 33 can compensate including the wavelength dependence of the PMD in the channel, higher precision PMD compensation can be performed as compared with the twenty-third embodiment, but the compensation including the wavelength dependence of the PMD cannot be performed. It is also possible to combine the chromatic dispersion compensator 3702 and the variable DGD 3704 in FIG.
[0227]
As the chromatic dispersion compensator, there is known an example using the above-mentioned VIPA type or a chirped fiber Bragg grating to which a thermal gradient or stress is applied (see Patent Document 29), but these are premised on a combination with an optical circulator. For example, it is not suitable for combination with the polarization dispersion providing device shown in FIG.
[0228]
FIG. 38 shows a transmission type chromatic dispersion compensator, which comprises an opposing fiber collimator and two equal-length dispersion prisms. As an example of giving wavelength dispersion by two equal-length dispersing prisms, an example as in Patent Document 30 is known. By changing the incident angle to the two equal-length dispersion prisms 3803 and 3804, the dispersion slope to be provided can be changed. As a material used for the equilateral dispersion prisms 3803 and 3804, a material having a large wavelength dependence of chromatic dispersion is suitable. Therefore, it is also effective to use a material having an absorption edge at a wavelength close to the used wavelength. In this embodiment, an equal-length dispersion prism is used, but it is also effective to use a dispersion compensation optical circuit described in Patent Document 31.
[0229]
The variable DGD 3704 shown in FIG. 37 is suitably the variable DGD shown in FIG. 29, and the wavelength separating mechanism 3701 and the wavelength combining mechanism 3708 in FIG.
[0230]
(Example 27)
[0231]
A twenty-seventh embodiment of the present invention will be described with reference to FIG. Variable DGD also has other uses of polarization dispersion compensation. For example, it is also used in a bit rate variable wavelength converter using a polarization separation interference type optical switch disclosed in Non-Patent Document 19. In this use example, the same amount of delay is given to two paths by one variable DGD, but the same is possible and easier in the present invention.
[0232]
FIG. 39 shows a variable DGD comprising a polarization maintaining fiber 3901, a collimating lens 3902, a photonic crystal polarization separating element 3903, a mirror 3904, a photonic crystal polarization separating element 3905, a collimating lens 3906, and a polarization maintaining fiber 3907.
[0233]
The combination of the polarization maintaining fiber 3901, the collimating lens 3902, the photonic crystal polarization separating element 3903, and the mirror 3904 functions as one variable DGD, and the mirror 3904, the photonic crystal polarization separating element 3905, the collimating lens 3906, and the polarization The holding fiber 3907 also operates as one variable DGD. Also, by appropriately moving the photonic crystal polarization splitting element 3903 and the photonic crystal polarization splitting element 3905 back and forth, the amount of delay given to the light entering and exiting the polarization maintaining fiber 3901 and the light entering and exiting the polarization maintaining fiber 3907 is reduced. The size can be easily made equal.
[0234]
Also, a variable DGD that gives the same amount of delay to two paths with one variable DGD can be realized based on the variable DGD shown in FIGS. More specifically, when the variable DGD shown in FIG. 3 is used, as in FIG. 39, a lens, a polarization separation element capable of performing a polarization separation operation at normal incidence or an incidence angle close to normal incidence, Place the output fiber.
[0235]
(Example 28)
[0236]
A twenty-eighth embodiment of the present invention will be described with reference to FIGS. The feature of this embodiment is that the input port and the output port are separated so that the optical circulator required in the embodiment 27 becomes unnecessary, and for this purpose, the polarization splitting element and the mirror are inclined as in FIG. As a result, the loss and wavelength dependence of the optical circulator can be eliminated, and the cost reduction effect is great.
[0237]
FIG. 40A includes a polarization maintaining fiber 4001, a polarization maintaining fiber 4002, a polarization maintaining fiber 4003, a polarization maintaining fiber 4004, a collimating lens 4005, a collimating lens 4006, a photonic crystal polarization separating element 4007, and a mirror 4008. It is a top view of a variable DGD. Here, it is assumed that the polarization maintaining fiber 4002 is hidden by the polarization maintaining fiber 4001 and the polarization maintaining fiber 4004 is hidden by the polarization maintaining fiber 4003 and cannot be seen.
[0238]
FIG. 40 (b) is a side view of the variable DGD shown in FIG. 40 (a).
[0239]
The combination of the polarization maintaining fiber 4001, the polarization maintaining fiber 4002, the collimating lens 4005, the photonic crystal polarization splitting element 4007, and the mirror 4008 is the same as in FIG. 16, and operates as a variable DGD. Also, although the combination of the polarization maintaining fiber 4003, the polarization maintaining fiber 4004, the collimating lens 4006, the photonic crystal polarization separation element 4007, and the mirror 4008 is not described, it operates as a variable DGD as in FIG.
[0240]
In the present embodiment, the amount of delay given to two variable DGDs by sharing the photonic crystal polarization separation element 4007 and the mirror 4008 can be easily made the same. As a result, only one movable mirror is required and control becomes easy. In the present embodiment, two variable DGDs are integrated, but it can be easily expanded to three or more.
[0241]
Similarly, based on the variable DGD shown in FIG. 23 to FIG. 31, in the embodiment 27 which is a feature of the present embodiment, the input port and the output port can be made separate so that the optical circulator which is required becomes unnecessary. You can easily guess what is possible.
[0242]
FIG. 41 is a configuration diagram of a bit rate variable wavelength converter that combines the variable DGD shown in FIG. 40 with the bit rate variable wavelength converter using the polarization separation interference type optical switch disclosed in Non-Patent Document 19.
[0243]
The variable DGD shown in FIG. 40 is affected by the degree of polarization degree degradation of the reflected light, but it can be said that the variable DGD is most suitable for applications that are not used for signal light as in the present embodiment because of its simple structure. Further, a variable DGD obtained by paralleling two units based on the variable DGD shown in FIGS. 23 to 31 may be used.
[0244]
【The invention's effect】
As described above, according to the first to thirteenth aspects of the present invention, a device for providing a delay difference for a polarization component having a simple and small configuration or a high performance or a low cost, a simple and small configuration using the device, or A high performance or low cost polarization mode dispersion compensator can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a device (variable DGD) for providing a delay difference between polarization components.
FIG. 2 is a diagram showing an entire optical fiber line in a polarization mode dispersion compensator described in a second embodiment.
FIG. 3 is a detailed view of a variable DGD 204 shown in FIG. 2;
FIG. 4 is a configuration diagram of a variable DGD showing a third embodiment.
FIG. 5 is an enlarged view of FIG. 4;
FIG. 6 is a diagram showing an example of bonding in FIG. 4;
FIG. 7 shows a configuration in which the same function as in FIG. 4 is realized by a mirror instead of the photonic crystal polarization splitting element.
FIG. 8 is a diagram in which a polarization degree degradation component removing mechanism is added to Conventional Example 2.
FIG. 9 is a configuration diagram of a variable DGD showing a fourth embodiment.
FIG. 10 is a configuration diagram of a variable DGD showing a fifth embodiment.
FIG. 11 is a schematic diagram of a device configuration of a PMD compensator including the wavelength dependence of PMD.
FIG. 12 shows the configuration of a VIPA-type dispersion compensator.
FIG. 13 is a configuration diagram of a variable DGD according to a sixth embodiment.
14 is a schematic diagram of an optical fiber path of a polarization mode dispersion compensator using the variable DGD shown in FIG.
FIG. 15 illustrates a polarization mode dispersion compensator according to a seventh embodiment.
FIG. 16 is a configuration diagram of a variable DGD according to an eighth embodiment.
FIG. 17 is a schematic view of a polarization mode dispersion compensator according to a ninth embodiment.
FIG. 18 is a schematic view of a polarization mode dispersion compensator according to a tenth embodiment.
FIG. 19 is a schematic view of a polarization mode dispersion compensator according to an eleventh embodiment.
FIG. 20 is a model diagram of the time variation of the PMD amount.
FIG. 21 is a configuration diagram of an anti-fixed DGD
FIG. 22 is a schematic view of a polarization mode dispersion compensator according to a twelfth embodiment.
FIG. 23 is a configuration diagram of a variable DGD showing a thirteenth embodiment.
FIG. 24 is a configuration diagram of a variable DGD showing a fourteenth embodiment.
FIG. 25 is a configuration diagram of a variable DGD showing a fifteenth embodiment.
FIG. 26 is a configuration diagram of a variable DGD showing a sixteenth embodiment.
FIG. 27 is a configuration diagram of a variable DGD showing a seventeenth embodiment.
FIG. 28 is a configuration diagram of a variable DGD showing an eighteenth embodiment.
FIG. 29 is a configuration diagram of a variable DGD showing a nineteenth embodiment;
FIG. 30 is a configuration diagram of a variable DGD showing a twentieth embodiment;
FIG. 31 is a configuration diagram of a variable DGD showing a twenty-first embodiment.
FIG. 32 is a configuration diagram of a variable DGD showing a twenty-second embodiment.
FIG. 33 is a model diagram of a polarization mode dispersion compensator for each channel.
FIG. 34 is a configuration diagram of a polarization mode dispersion compensator according to a twenty-third embodiment.
FIG. 35 is a configuration diagram of a polarization mode dispersion compensator according to a twenty-fourth embodiment.
FIG. 36 is a configuration diagram of a polarization mode dispersion compensator according to a twenty-fifth embodiment.
FIG. 37 is a model diagram of a polarization mode dispersion compensator for compensating the wavelength dependence of PMD in a channel.
FIG. 38: Transmission type chromatic dispersion compensator
FIG. 39 is a configuration diagram of a variable DGD showing a twenty-seventh embodiment.
FIG. 40 is a configuration diagram of a variable DGD showing a twenty-eighth embodiment.
FIG. 41 is a configuration diagram of a variable bit rate wavelength converter.
FIG. 42 is a diagram showing a configuration example of a basic polarization mode dispersion compensator;
FIG. 43 is a basic configuration diagram of a polarization controller.
FIG. 44 is a diagram in which an optical coupling system is added to the configuration of the polarization dispersion compensation circuit of the second conventional example.
[Explanation of symbols]
101 Polarization maintaining fiber
102 Reflection type polarization splitter
103 lens
104 mirror
201 Optical fiber
202 Optical circulator
203 Polarization controller
204 Variable DGD
205 coupler
206 Monitor device
301 Polarization maintaining fiber
302 Photonic Crystal Polarization Separation Element
303 lens
304 mirror
401 polarization maintaining fiber
402 graded index rod lens
403 Virtual Fiber
404 rutile parallel plate walk-off polarizer
405 Photonic crystal polarization splitter
406 ordinary light component
407 Extraordinary light component
501 ordinary light component
502 Abnormal light component of reflected light (polarization degradation component)
503 Extraordinary light component
504 Reflected light ordinary light component (polarization degradation component)
601 rutile parallel plate walk-off polarizer
602 adhesive
603 Photonic crystal polarization splitter
701 Virtual Fiber
702 rutile parallel plate walk-off polarizer
703 mirror
704 lens
705 mirror
801 Optical fiber
802 Collimating lens
803 rutile parallel plate walk-off polarizer
804 Incident side PBS
805 Mechanical movable mirror
806 Output side PBS
807 rutile parallel plate walk-off polarizer
808 Collimating lens
809 Optical fiber
810 Polarization degree degradation component
811 Degree of polarization degradation component
901 Polarization maintaining fiber
902 LPS
903 Photonic crystal polarization splitter
904 collimating lens
905 mirror
906 ordinary light component
907 Extraordinary light component
1001 polarization maintaining fiber
1002 Photonic crystal polarization splitter
1003 Collimating lens
1004 Photonic crystal polarization splitter
1005 Polarization monitor
1101 Polarization controller
1102 Polarization separation mechanism
1103 Polarization synthesis mechanism
1104 Tunable wavelength dispersion providing mechanism
1105 Variable delay device
1106 Coupler
1107 Monitor device
1201 Optical fiber
1202 lens
1203 lens
1204 lens
1205 VIPA board
1206 lens
1207 mirror
1301 Polarization maintaining fiber
1302 Photonic crystal polarization splitter
1401 Optical fiber
1402 Optical circulator
1403 Polarization controller
1404 Variable DGD shown in FIG.
1405 coupler
1406 Monitor device
1501 Optical fiber
1502 Optical circulator
1503 Optical fiber
1504 Collimating lens
1505 Liquid crystal rotating quarter wave plate
1506 Liquid crystal rotating half-wave plate
1507 Photonic crystal polarization splitter
1508 Photonic crystal polarization splitter
1509 Polarization monitor
1510 Optical fiber
1601 polarization maintaining fiber
1602 polarization maintaining fiber
1603 Collimating lens
1604 Photonic crystal polarization splitter
1605 mirror
1701 Polarization controller
1702 Variable DGD
1703 Variable DGD
1704 Coupler
1705 Monitor device
1706 Controller
1801 Polarization controller
1802 Variable DGD
1803 Variable DGD
1804 coupler
1805 Monitor device
1806 Control unit
1901 Polarization controller
1902 Semi-fixed DGD
1903 Variable DGD
1904 coupler
1905 Monitor device
1906 Control unit
2101 Polarization separation device
2102 Polarization maintaining fiber
2103 Polarization synthesizer
2104 Polarization maintaining fiber
2201 Polarization controller
2202 Variable DGD
2203 Polarization controller
2204 Variable DGD
2205 coupler
2206 Monitor device
2207 Controller
2301 polarization maintaining fiber
2302 polarization maintaining fiber
2303 Collimating lens
2304 Photonic crystal polarization splitter
2305 Prism
2306 Mirror block
2401 polarization maintaining fiber
2402 polarization maintaining fiber
2403 Graded-index rod lens
2404 Photonic crystal polarization splitter
2405 Prism
2406 Mirror block
2501 polarization maintaining fiber
2502 polarization maintaining fiber
2503 graded index rod lens
2504 Photonic crystal polarization splitter
2505 Refractive index distribution type rod lens
2506 Refractive index distribution type rod lens
2507 graded index rod lens
2508 Mirror block
2509 End face of gradient index rod lens 2505
2601 polarization maintaining fiber
2602 Polarization maintaining fiber
2603 rutile parallel plate polarization splitter
2604 Rutile parallel-plate polarizing element
2605 Collimating lens
2606 Photonic crystal polarization splitter
2607 Prism
2608 Mirror block
2609 Extraordinary light component
2610 ordinary light component
2701 rutile parallel plate polarized light separation / combination element
2702 45 degree Faraday rotator
2703 Ordinary light component of rutile parallel plate polarization separation / combination element 2701 out of light emitted from polarization maintaining fiber 2601
2704 Abnormal light component of rutile parallel plate polarization splitting / combining element 2701 out of polarization maintaining fiber 2601 outgoing light
2801 rutile parallel plate
2901 polarization maintaining fiber
2902 polarization maintaining fiber
2903 Collimating lens
2904 Photonic crystal polarization splitter
2905 prism
2906 quarter wave plate
2907 mirror
3001 Polarization maintaining fiber
3002 polarization maintaining fiber
3003 graded index rod lens
3004 Photonic crystal polarization splitter
3005 graded index rod lens
3006 graded index rod lens
3007 graded index rod lens
3008 45 degree Faraday rotator
3009 Thermo-optic crystal
3010 mirror
3101 Polarization maintaining fiber
3102 Polarization maintaining fiber
3103 Collimating lens
3104 Photonic crystal polarization splitter
3105 Prism
3106 45 degree Faraday rotator
3107 Mirror block
3201 Single mode fiber
3202 single mode fiber
3203 Collimating lens
3204 Polarization controller
3205 Photonic crystal polarization splitter
3206 Prism
3207 45 degree Faraday rotator
3208 Photonic crystal polarization splitter
3209 Photonic crystal polarization splitter
3210 Polarization monitor
3301 Wavelength separation mechanism
3302 polarization controller
3303 Variable DGD
3304 coupler
3305 Monitor device
3306 Controller
3307 Wavelength synthesis mechanism
3401 Optical fiber
3402 Optical Circulator
3403 Optical fiber
3404 Collimating lens
3405 wavelength selection filter group
3406 Filter
3407 Filter
3408 Filter
3409 mirror
3410 Polarization controller
3411 Polarization controller
3412 Polarization controller
3413 Photonic crystal polarization splitter
3414 Photonic crystal polarization splitter
3415 Photonic crystal polarization splitter
3416 Photonic crystal polarization splitter
3417 Photonic crystal polarization splitter
3418 Photonic crystal polarization splitter
3419 Collimating lens
3420 Polarization monitor
3421 Polarization monitor
3422 Polarization monitor
3423 Polarization maintaining fiber
3501 Optical fiber
3502 Optical fiber
3503 Collimating lens
3504 Wavelength selection filters
3505 Filter
3506 Filter
3507 Filter
3508 mirror
3509 Polarization controller
3510 Polarization controller
3511 Polarization controller
3512 Photonic crystal polarization splitter
3513 Prism
3514 45 degree Faraday rotator
3515 Polarization separation element group
3516 Polarization separation element group
3517 Polarization separation element group
3518 lens
3519 Polarization monitor
3520 Polarization monitor
3521 Polarization monitor
3522 Optical fiber
3601 optical fiber
3602 optical circulator
3603 TEC dispersion compensating fiber
3604 Collimating lens
3605 Wavelength selection filter group
3606 Filter
3607 Filter
3608 Filter
3609 mirror
3610 Polarization controller
3611 Polarization controller
3612 Polarization controller
3613 Branch prism
3614 Branch prism
3615 branch prism
3616 Polarization monitor
3617 Polarization monitor
3619 Photonic crystal polarization splitter
3620 Photonic crystal polarization splitter
3621 Photonic crystal polarization splitter
3622 Collimating lens
3623 Chirped fiber Bragg grating
3624 Chirped fiber Bragg grating
3625 Chirped fiber Bragg grating
3626 Optical fiber
3701 wavelength separation mechanism
3702 chromatic dispersion compensator
3703 Polarization controller
3704 Variable DGD
3705 coupler
3706 Monitor device
3707 control unit
3708 Wavelength synthesis mechanism
3801 Optical fiber
3802 Collimating lens
3803 Equal length dispersion prism
3804 Equal length dispersion prism
3805 Collimating lens
3806 optical fiber
3901 polarization maintaining fiber
3902 Collimating lens
3903 Photonic crystal polarization splitter
3904 mirror
3905 Photonic crystal polarization splitter
3906 Collimating lens
3907 Polarization maintaining fiber
4001 polarization maintaining fiber
4002 polarization maintaining fiber
4003 Polarization maintaining fiber
4004 Polarization maintaining fiber
4005 Collimating lens
4006 Collimating lens
4007 Photonic crystal polarization splitter
4008 mirror
4101 WDM coupler
4102 SOA
4103 WDM coupler
4104 LD for pump
4105 Filter
4106 Variable DGD shown in FIG. 40
4107 Babinet Soleil Compensator
4108 Polarizer
4201 Polarization controller
4202 Apparatus for providing group delay difference between polarization components
4203 coupler
4204 Monitor device
4205 Controller
4301 quarter wave plate
4302 1/2 wavelength plate
4303 branching device
4304 Monitor device
4305 Controller
4401 Polarization controller
4402 Polarization-maintaining fiber
4403 Collimating lens
4404 PBS
4405 PBS
4406 Mechanical movable mirror
4407 Collimating lens
4408 output optical fiber

Claims (13)

偏光分離素子と反射手段を備えてなる偏光成分間に遅延差を付与する装置あって,前記偏光分離素子が垂直入射または10度以下の入射角度で偏光分離の作用を有する偏光分離素子であり,かつ前記偏光分離素子と反射手段間の光路長が可変あるいは半固定あるいは固定であり,前記偏光分離素子に入射する光が,遅延を有する直交する直線偏光成分からなり,かつ前記直線偏光成分の一方の偏光方向と前記偏光分離素子の透過偏光方向が同一であることを特徴とする偏光成分間に遅延差を付与する装置.What is claimed is: 1. An apparatus for providing a delay difference between polarized light components comprising a polarized light separating element and a reflecting means, wherein said polarized light separating element has a function of separating polarized light at normal incidence or an incident angle of 10 degrees or less, The optical path length between the polarization splitting element and the reflecting means is variable, semi-fixed or fixed, and the light incident on the polarization splitting element is composed of orthogonal linear polarization components having a delay, and one of the linear polarization components. Wherein the polarization direction of the polarized light is the same as the transmitted polarization direction of the polarization separation element. 光導波路,反射型偏光分離素子,コリメートレンズ,反射手段を含み,かつ前記の順または光導波路,レンズ,反射型偏光分離素子,反射手段の順に配置し,かつ前記反射手段に対してビームが垂直入射し,かつ一方の直線偏波成分が前記光導波路と前記反射型偏光分離素子の間で往復の光結合がなされ,直交するもう一方の直線偏波成分が前記光導波路と前記反射手段の間で往復の光結合がなされ,かつ前記光導波路が射出と受光を兼ね,かつ前記光導波路が光サーキュレータまたは方向性結合器と接続されることを特徴とする偏光成分間に遅延差を付与する装置It includes an optical waveguide, a reflection type polarization splitting element, a collimating lens, and a reflection means, and is arranged in the above order or in the order of the optical waveguide, lens, reflection type polarization separation element, and the reflection means, and a beam is perpendicular to the reflection means. The incident linear polarization component is reciprocally coupled between the optical waveguide and the reflection type polarization splitter, and the other orthogonal linear polarization component is transmitted between the optical waveguide and the reflection means. Wherein a reciprocal optical coupling is performed by the optical waveguide, and the optical waveguide serves both emission and light reception, and the optical waveguide is connected to an optical circulator or a directional coupler. 平行に並んだ2本の光導波路,レンズ,反射型偏光分離素子,1台の反射手段を含み,かつ前記の順に配置し,かつ一方の光導波路から出射したビームがもう一方の光導波路に結合し,かつ前記反射型偏光分離素子と前記反射手段に対する入射角がほぼ同一であることを特徴とする請求項1記載の偏光成分間に遅延差を付与する装置It includes two optical waveguides arranged in parallel, a lens, a reflection type polarization splitting element, and one reflecting means, and is arranged in the above order, and a beam emitted from one optical waveguide is coupled to another optical waveguide. 2. An apparatus for providing a delay difference between polarized light components according to claim 1, wherein the angle of incidence on the reflection type polarization splitting element and the reflection means is substantially the same. 平行に並んだ2本の光導波路,レンズ,反射型偏光分離素子,一体化された2台の反射手段を含み,かつ前記の順に配置し,かつ一方の光導波路から出射したビームがもう一方の光導波路に結合し,かつ前記一体化された2枚の反射手段に対する入射角が45度であることを特徴とする請求項1記載の偏光成分間に遅延差を付与する装置It includes two optical waveguides arranged in parallel, a lens, a reflection type polarization splitting element, and two integrated reflecting means, and is arranged in the above order, and a beam emitted from one of the optical waveguides emits the other. 2. The apparatus for providing a delay difference between polarized light components according to claim 1, wherein the incident angle with respect to the two reflecting means is coupled to the optical waveguide and incident on the two reflecting means. 請求項1から請求項4のいずれかに記載の偏光成分間に遅延差を付与する装置が光導波路とレンズからなるコリメータを含み,かつ前記反射手段または前記反射型偏光分離素子の一方もしくは前記反射手段と前記反射型偏光分離素子の双方が移動しうることを特徴とする偏光成分間に可変の遅延差を付与する装置.5. An apparatus for providing a delay difference between polarization components according to claim 1, wherein the apparatus includes a collimator comprising an optical waveguide and a lens, and one of the reflection unit or the reflection type polarization splitting element or the reflection. Means for imparting a variable delay difference between polarized light components, wherein both the means and the reflection type polarization splitting element are movable. 請求項1から請求項5のいずれかに記載の偏光成分間に遅延差を付与する装置において,前記反射手段が誘電多層膜ミラー,垂直入射で偏光分離素子として動作しうる反射型偏光分離素子,波長選択フィルタ,偏光ビームスプリッタのいずれかであることを特徴とする偏光成分間に遅延差を付与する装置6. An apparatus for providing a delay difference between polarized light components according to any one of claims 1 to 5, wherein the reflecting means is a dielectric multilayer mirror, a reflection type polarized light separating element operable as a polarized light separating element at normal incidence, Apparatus for providing a delay difference between polarization components, which is one of a wavelength selection filter and a polarization beam splitter 請求項1から請求項6のいずれかに記載の偏光成分間に遅延差を付与する装置において,反射手段が反射型偏光分離素子であり,かつ前記反射型偏光分離素子の後方に受光装置を有することを特徴とする偏光成分間に遅延差を付与する装置7. An apparatus for providing a delay difference between polarized light components according to claim 1, wherein the reflection means is a reflection type polarization separation element, and a light receiving device is provided behind the reflection type polarization separation element. Apparatus for providing a delay difference between polarized light components 請求項1から請求項7のいずれかに記載の偏光成分間に遅延差を付与する装置において,前記反射手段が波長分散を与えうることを特徴とする偏光成分間に遅延差を付与する装置8. An apparatus according to claim 1, wherein said reflecting means is capable of imparting chromatic dispersion. 9. The apparatus according to claim 1, wherein said reflecting means is capable of imparting chromatic dispersion. 請求項1から請求項9のいずれかに記載の偏光成分間に遅延差を付与する装置において,前記反射型偏光分離素子が2次元または3次元フォトニック結晶偏光分離素子である事を特徴とする偏光成分間に遅延差を付与する装置10. The apparatus for providing a delay difference between polarized light components according to any one of claims 1 to 9, wherein the reflection-type polarization separation element is a two-dimensional or three-dimensional photonic crystal polarization separation element. Apparatus for providing delay difference between polarization components 請求項9記載の偏光成分間に遅延差を付与する装置において,2次元または3次元フォトニック結晶偏光分離素子が,3次元の直交座標 x,y,z において,透明で高屈折率の媒質からなる高屈折率媒質層と透明低屈折率の媒質からなる低屈折率媒質層が交互に積層された交互層をz軸方向の周期的な繰り返し構造の単位として,前記各媒質層をz軸方向に前記周期的な繰り返し構造を有するように積層したz軸方向の多層構造体であって,前記各媒質層の形状が,x軸方向には使用される光波長以下の周期的な凹凸構造を有し,y軸方向には一様な構造あるいはx軸方向より大きい長さの周期的または非周期的な凹凸構造を有し,xy平面に垂直または斜めに入射する光に対して,電界がy軸方向に直交する偏波あるいはx軸方向に直交する偏波のどちから―方が光波のバンドギャップに入るように.x軸方向の周期的凹凸構造の周期およびz軸方向の周期的な繰り返し構造の周期がそれぞれ選択された偏光分離素子であることを特徴とする偏光成分間に遅延差を付与する装置.10. The apparatus for providing a delay difference between polarized light components according to claim 9, wherein the two-dimensional or three-dimensional photonic crystal polarization splitting element is a transparent and high-refractive-index medium at three-dimensional orthogonal coordinates x, y, z. An alternate layer in which a high-refractive-index medium layer and a low-refractive-index medium layer made of a transparent low-refractive-index medium are alternately stacked is a unit of a periodic repeating structure in the z-axis direction. A multilayer structure in the z-axis direction laminated so as to have the periodic repetition structure, wherein the shape of each of the medium layers has a periodic concavo-convex structure in the x-axis direction that is equal to or less than the light wavelength used. It has a uniform structure in the y-axis direction or a periodic or aperiodic uneven structure with a length greater than the x-axis direction, and an electric field is generated for light incident perpendicularly or obliquely on the xy plane. Polarization orthogonal to y-axis or orthogonal to x-axis The polarization of the light wave into the band gap of the light wave. An apparatus for providing a delay difference between polarization components, wherein the polarization separation element has a period of the periodic uneven structure in the x-axis direction and a period of the periodic repetition structure in the z-axis direction. 請求項1から請求項10のいずれかに記載の偏光成分間に遅延差を付与する装置において,前記光導波路が偏波保持光導波路であることを特徴とする偏光成分間に遅延差を付与する装置11. The apparatus according to claim 1, wherein the optical waveguide is a polarization-maintaining optical waveguide, wherein the optical waveguide is a polarization maintaining optical waveguide. apparatus 請求項1から請求項11のいずれかに記載の偏光成分間に遅延差を付与する装置における 光導波路と偏光分離素子の間に1/2波長板と1/4波長板からなる偏波コントローラを具備することを特徴とする偏光成分間に遅延差を付与する装置A polarization controller comprising a half-wave plate and a quarter-wave plate between an optical waveguide and a polarization splitting element in the device for providing a delay difference between polarization components according to any one of claims 1 to 11. An apparatus for providing a delay difference between polarized light components, comprising: 請求項1から請求項12のいずれかに記載の偏光成分間に遅延差を付与する装置と波長分離装置および波長合成装置を含み,前記波長分離装置により分離された光成分の各々に対し偏光成分に遅延差を付与する装置と偏波コントローラ,モニタ装置,制御装置を備えることを特徴とする偏波モード分散補償器13. A device for providing a delay difference between polarized light components according to claim 1, a wavelength separating device and a wavelength synthesizing device, wherein each of the light components separated by the wavelength separating device is a polarized light component. Polarization mode dispersion compensator characterized by comprising a device for giving a delay difference to a signal, a polarization controller, a monitor device, and a control device
JP2003019817A 2003-01-29 2003-01-29 Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator Pending JP2004233485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019817A JP2004233485A (en) 2003-01-29 2003-01-29 Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019817A JP2004233485A (en) 2003-01-29 2003-01-29 Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator

Publications (1)

Publication Number Publication Date
JP2004233485A true JP2004233485A (en) 2004-08-19

Family

ID=32949600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019817A Pending JP2004233485A (en) 2003-01-29 2003-01-29 Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator

Country Status (1)

Country Link
JP (1) JP2004233485A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033914A (en) * 2009-08-04 2011-02-17 Ntt Electornics Corp Optical polarization diversity module and optical device
WO2012009476A3 (en) * 2010-07-13 2012-04-05 Reald Inc. Field-of-view compensated polarization switch for short-throw 3d projection
JP2012088249A (en) * 2010-10-21 2012-05-10 Canon Inc Optical interference tomographic imaging device, optical interference tomographic imaging method, and program
JP2013068670A (en) * 2011-09-20 2013-04-18 Nippon Telegr & Teleph Corp <Ntt> Polarization mode dispersion generator
JP2013117670A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Pdl compensator, optical device, and pdl compensation method
CN108919436A (en) * 2018-08-10 2018-11-30 无锡恒纳信息技术有限公司 A kind of integrated form semiconductor optical amplification system
CN110471178A (en) * 2019-09-19 2019-11-19 中国科学院武汉物理与数学研究所 Polarised light polarization-maintaining transmitting device based on rotatable halfwave plate
CN113466994A (en) * 2021-07-13 2021-10-01 中北大学 Novel optical fiber coupler
CN113848605A (en) * 2021-11-16 2021-12-28 电子科技大学 Narrow-band light polarization converter based on dielectric super-surface
US20220045753A1 (en) * 2020-08-04 2022-02-10 SA Photonics, Inc. Free Space Optical Communication Terminal with Dispersive Optical Component

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033914A (en) * 2009-08-04 2011-02-17 Ntt Electornics Corp Optical polarization diversity module and optical device
WO2012009476A3 (en) * 2010-07-13 2012-04-05 Reald Inc. Field-of-view compensated polarization switch for short-throw 3d projection
US8638400B2 (en) 2010-07-13 2014-01-28 Reald Inc. Field-of-view compensated polarization switch for short-throw 3D projection
US9167236B2 (en) 2010-07-13 2015-10-20 Reald Inc. Field-of-view compensated polarization switch for short-throw 3D projection
JP2012088249A (en) * 2010-10-21 2012-05-10 Canon Inc Optical interference tomographic imaging device, optical interference tomographic imaging method, and program
JP2013068670A (en) * 2011-09-20 2013-04-18 Nippon Telegr & Teleph Corp <Ntt> Polarization mode dispersion generator
JP2013117670A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Pdl compensator, optical device, and pdl compensation method
CN108919436B (en) * 2018-08-10 2024-04-26 无锡恒纳信息技术有限公司 Integrated semiconductor optical amplification system
CN108919436A (en) * 2018-08-10 2018-11-30 无锡恒纳信息技术有限公司 A kind of integrated form semiconductor optical amplification system
CN110471178A (en) * 2019-09-19 2019-11-19 中国科学院武汉物理与数学研究所 Polarised light polarization-maintaining transmitting device based on rotatable halfwave plate
CN110471178B (en) * 2019-09-19 2024-01-30 中国科学院武汉物理与数学研究所 Polarized light polarization-preserving transmission device based on rotary half wave plate
US20220045753A1 (en) * 2020-08-04 2022-02-10 SA Photonics, Inc. Free Space Optical Communication Terminal with Dispersive Optical Component
US11394461B2 (en) 2020-08-04 2022-07-19 SA Photonics, Inc. Free space optical communication terminal with actuator system and optical relay system
US11515941B2 (en) * 2020-08-04 2022-11-29 SA Photonics, Inc. Free space optical communication terminal with dispersive optical component
CN113466994B (en) * 2021-07-13 2022-07-05 中北大学 Novel optical fiber coupler
CN113466994A (en) * 2021-07-13 2021-10-01 中北大学 Novel optical fiber coupler
CN113848605A (en) * 2021-11-16 2021-12-28 电子科技大学 Narrow-band light polarization converter based on dielectric super-surface

Similar Documents

Publication Publication Date Title
Eldada Advances in telecom and datacom optical components
US20030223670A1 (en) Optical polarization beam combiner/splitter
JPS6173919A (en) Double refraction type optical wavelength multiplexer and demultiplexer
Takahashi Planar lightwave circuit devices for optical communication: present and future
JP2004233485A (en) Apparatus for imparting delay difference among polarized light components and polarization mode dispersion compensator
EP0848278B1 (en) Optical circulator
CA2344021C (en) Polarization beam splitter or combiner
US6621614B1 (en) Etalons with variable reflectivity
US20050174919A1 (en) Optical polarization controller
WO2014013640A1 (en) Polarization separator, polarization separation structure, optical mixer, and method for manufacturing polarization separator
US8818193B2 (en) Multichannel tunable optical dispersion compensator
Li et al. Interleaver technology review
US6546165B2 (en) Optical multiplexing/demultiplexing module
EP1360530B1 (en) Optical polarization beam splitter/combiner with isolation in the backward optical path
Jung et al. Polarization-independent wavelength-tunable first-order fiber comb filter
US7050671B1 (en) Tunable compensation of chromatic dispersion using etalons with tunable optical path length and non-tunable reflectivity
JP2004145136A (en) Optical demultiplexer and otdr device
JP2004334169A (en) Beam multiplexing element, beam multiplexing method, beam separating element, beam separating method, and exciting light output device
Lee Polarization-independent multiwavelength-switchable filter based on polarization beam splitter and fiber coupler
JP2003255411A (en) Optical switch
WO1993020475A1 (en) Improvements to optical phase shifting
US20030099019A1 (en) Compensation of chromatic dispersion using cascaded etalons of variable reflectivity
Eldada Telecom optical componentry: past, present, future
JP2004226599A (en) Polarized light separating and composing device
JP2005242073A (en) Nonreciprocal optical device