JP2004233224A - Liquid level sensor - Google Patents

Liquid level sensor Download PDF

Info

Publication number
JP2004233224A
JP2004233224A JP2003022818A JP2003022818A JP2004233224A JP 2004233224 A JP2004233224 A JP 2004233224A JP 2003022818 A JP2003022818 A JP 2003022818A JP 2003022818 A JP2003022818 A JP 2003022818A JP 2004233224 A JP2004233224 A JP 2004233224A
Authority
JP
Japan
Prior art keywords
liquid level
level sensor
resistance
sensor according
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003022818A
Other languages
Japanese (ja)
Inventor
Ayako Miyawaki
綾子 宮脇
Naoki Ota
直樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2003022818A priority Critical patent/JP2004233224A/en
Publication of JP2004233224A publication Critical patent/JP2004233224A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid level sensor of a simple and compact structure capable of continuously and highly accurately detecting the location of the liquid level and superior in resistance to corrosion. <P>SOLUTION: Electrodes (1c) and (1d) of the liquid level sensor (S) are formed by coating the external circumference of a resistance wire (1a) with a conductive member (1b) to acquire two resistance wires (1), arranging the two resistance wires (1) at an interval in their longitudinal direction, and coating tip parts of the two resistance wires (1) with a conductive member (1e). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性を有する液体の液面レベルを検出するための液面センサに関し、特に水や薬液等の液体の液面レベルを連続的に検出するのに適した液面センサに関するものである。
【0002】
【従来の技術】
従来、導電性を有する液体の液面レベルを検出する電極式液面センサ(以下、単に“センサ”と称することがある)として、単芯または2芯以上の多芯ケーブルを利用したものが知られている(たとえば、特許文献1〜2参照。)。
ところが、これらの液面センサでは検出部が1点のため、検出する液面位置が異なる場合あるいは液面位置を変更する場合等の仕様変更が生じたとき、それぞれの液面位置に対応した位置に取付位置を変更する必要があり、検出時の自由度に欠けるという問題がある。
また、検出する液面位置が複数箇所の場合には、液面位置の数と同じ数の液面センサを取り付けるという非連続的検出手法も知られているが、この場合はスペース上の問題がある。 付随して、センサを準備する時間と費用が掛かるため生産性が悪いという問題もある(例えば、特許文献3参照。)。
これに対して、液面位置を連続的に検出する方式として、抵抗線とフロートとを組み合わせたものが知られている(例えば、特許文献4参照。)。
しかし、この方式は可動部が有ることと接触抵抗等の問題があり、検出精度及び耐久性等信頼性上の問題がある。さらに、抵抗線が露出しているため、被検出液体が薬液等の場合には、抵抗線が腐食してしまうという耐食性の問題がある。さらに、フロートを要し小型化が難しいという問題もある。
【0003】
【特許文献1】特開平7−325056号公報
【特許文献2】特開平11−304565号公報
【特許文献3】特開2001−99693号公報
【特許文献4】特表平3−501522号公報
【0004】
【発明が解決しようとする課題】
したがって、本発明の課題は、従来の欠点を解消し、高精度で液面位置を連続的に検出でき、しかも構造が簡単にしてコンパクトな、耐腐食性に優れた液面センサを提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、抵抗素線の外周を導電性部材で被覆して得られた少なくとも2本の抵抗線を利用した電極部を採用することにより、従来の問題を容易に解消するに至った。
【0006】
かくして、本発明によれば、抵抗素線の外周を導電性部材で被覆して得られた抵抗線の少なくとも2本が、それらの長手方向に間隔をおいて配設された形状の電極部を備えていることを特徴とする液面センサが提供される。
【0007】
【発明の実施の形態】
以下、本発明を、2本の抵抗線を平行に配設した液面センサの例について、添付図面を参照しながら説明する。
図1は、本発明に係る液面センサの検出部の一例を示す縦断面図である。
図2は、図1のA−Aに沿った横断面図である。
図3は、図1〜2に示した液面センサの斜視図である。
図4および図5は、本発明に係る液面センサの別の態様を示す斜視図である。
図6は、本発明の液面センサの動作説明図である。
図7は、本発明の液面センサにおいて、抵抗線の入力端子P1、P2間で測定した抵抗値(R)が、液面位置(B)の変位に対応して連続的に変化することを示すグラフである。
図1〜図3において、(S)は液面センサ、(1)は抵抗線であって、抵抗素線(1a)の外周に導電性部材(1b)を被覆して得られたものである。この抵抗線(1)は、少なくとも2本がそれらの長手方向に間隔をおいて、即ち、絶縁状態で配設される。図では、これらの抵抗線(1)は同一長さであり且つそれらの端面が互いに揃えられた状態で線状の絶縁部材(2)を介して平行に配設されることにより、一対の電極部(1c、1d)を形成している。そして、(1e)は、電極部(1c)および電極部(1d)の先端部の抵抗線(1)の端面を被覆している先端被覆部材であり、さらに、(3)は2本の抵抗線(1)と線状の絶縁部材(2)とを固定するための固定部材でである。
本発明で特徴的なことは、検出部電極に、抵抗素線(1a)の外周に導電性部材(1b)が被覆された抵抗線(1)の2本以上を互いに絶縁状態で配設して、多点電極を形成した点に在る。その際、2本の抵抗線の長手方向と直交する面(液面に相当)で、これら抵抗線(1)の端面は互いに揃えられている態様は、引用文献1(特開平7−325056号公報)の非連続検出タイプのセンサとは本質的に異なる。即ち、引用文献1のセンサでは、構造上どうしても、内部電極(内部導体)を飛び出す構成とせざるを得ず、従って“同一長さ”を採用するのは不可能である。
上述の構成を採る本発明の液面センサは当初の取付位置を保ったままで、液面変位を連続的に検出することができる。
このことについて、図6および図7を参照しながら説明する。
図6において、水槽内に導電性液体が投入されていない状態では、電極部(1c)および電極部(1d)がオープン(開放)になるため、2本の抵抗線(1)のそれぞれの入力端子P1、P2間の抵抗値(R)は無限大となる。これに対して、水槽内に導電性液体が投入された場合には、各電極部(1c)、(1d)の内、導電性液体に浸っている部分は導電性液体の導電率に応じて一定の抵抗値r1(Ω)を示すようになる。
以上のことから、該入力端子P1−P2間で測定される抵抗値(R)は、導電性液体の抵抗値(r1)と、抵抗線(1)の開始部(A)から導電性液体の液面(B)までの長さ(L)の非浸漬部分の抵抗線(1)の抵抗値(r2とする)の2倍との和、即ち、R=r1(Ω)+2*r2(Ω)となる。その際、該非浸漬部分の長さ(L)は液面の変位に応じて連続的に変化することになるので、これに伴い該抵抗値Rも、図7の抵抗値変化のグラフに示されるように、連続的に変化することになる。
そこで、これら入力端子P1、P2間の電気抵抗値(R)を周知の抵抗検知回路等の電子回路にて計測すれば、液面の変位が連続的に検出可能となる。この場合、導電性液体の種類により個々に導電率および抵抗値変化のパターンは異なるので、これに対応するには、抵抗検知回路の設定値を予め調整しておけばよい。
本発明において、抵抗線(1)としては、その外径が1mm〜3mmの範囲にあるのが好ましく採用される。この抵抗線(1)を得るに当たっては、ニクロム線や銅合金線等の抵抗素線(1a)を、単線または撚り線あるいは横巻の形で用いる。それらの抵抗値は検知回路の感度にもよるが、一般には5Ω/m〜100KΩ/mの範囲にあるのが好ましい。また、外径は強度・寸法との関係で1mm〜3mmの範囲にあるのが好ましい。
これらの抵抗素線(1a)の外周には導電性部材(1b)が被覆される。導電性部材(1b)の被覆方法としては、押出し被覆、塗付、ディッピング、およびモールド等各種の方法があるが、生産性、品質の点から、押出し被覆が望ましい。この被覆に関連して、2本の電極部(1c)および電極部(1d)の各先端部の抵抗線(1)を被覆している端末被覆部材(1e)については、この導電性部材(1b)と同じ部材を熱融着モールドで被覆すればよい。
ここで、導電性部材(1b)自体の導電性は体積抵抗率で10−3Ω/□〜10Ω/□の範囲にあるのが好ましく、また、その被覆厚みは、センサの耐食性・感度等の仕様・補強強度を考慮して、0.3mm〜1mmの範囲にあるのが好ましい。
該導電性部材(1b)としては、樹脂ないしゴムに導電剤を混入させたものが供される。この場合、樹脂としてはフッ素系樹脂、ポリエチレン、ポリアミドないしポリイミド、およびポリエステル、またゴムとしてはシリコーンゴム、フッ素ゴム、およびEPゴムが挙げられるが、耐熱性と耐薬品性の点からフッ素系樹脂が好ましく用いられる。 該フッ素樹脂の具体例としては、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)等が挙げられる。一方、該導電剤としてはカーボンブラック系、銀、銅、およびニッケルなどが挙げられる。
このようにして得られる抵抗線(1)の少なくとも2本は、それらの長手方向に沿って間隔をおいて配設される。ここで、“間隔”とは、2本の抵抗線(1)の間に線状絶縁体(2)が介在した状態または2本の抵抗線(1)の間の空気絶縁状態を指す。該線状絶縁部材(2)、さらには固定部材(3)としては、絶縁性に優れた部材であればよい。具体的には、フッ素系樹脂、ポリエチレン、ポリアミドないしポリイミド、ポリエステル、シリコーンゴム、フッ素ゴム、およびEPゴムが挙げられるが、耐熱性と耐薬品性の点から前出のフッ素樹脂が好ましく用いられる。形状については、ムク、チューブ状、いずれでもよいが、強度アップのために、鉄、銅等の芯材を入れたものでも良い。また、断面形状も円に限定されず、方形等各種形状が選択できる。
なお、絶縁部材(2)の外径ないし外寸は、液切れによる誤動作を防止するためにも、抵抗線(1)の外径ないし外寸よりも大きいことが望ましい。具体的には、液切れによる誤動作を防止(最小値)と検出感度・スペース削減(最大値)を考慮し、各電極部の間隔が1mm〜20mmの範囲となるよう、絶縁部材(2)の外径ないし外寸を選択することが望ましい。なお、上記の説明では、抵抗素線(1a)の外周全体に渡って導電性部材(1b)を被覆したが、部分的に液面を検出すれば良い場合には、センサの長手方向の一部分だけを導電性部材(1b)で被覆し、他の部分を非導電部材で被覆する複合被覆構成としても良い。さらに、抵抗素線(1a)の外周に導電性部材(1b)をストライプ状あるいはスパイラル状に被覆しても良いことは言うまでもない。
次に、本発明の別の態様について、図4に基づいて説明する。
この態様においては、2本の抵抗線(1)が絶縁性チューブ(4)の内周面に対峙状態、従って空気絶縁状態で配設されている。この場合の固定方法としては、絶縁性チューブ(4)の内周面に設けた溝に抵抗線(1)を部分的に埋め込むか、あるいは両者の接触界面を接着剤にて固定する方法があげられる。このほか、絶縁性チューブ(4)の外表面に設けた溝に抵抗線(1)を部分的に埋め込むか、あるいは両者の接触界面を接着剤にて固定する方法、さらには、絶縁性チューブ(4)の内周面に線あるいは筋状に固着した導電性樹脂中に、抵抗線(1)ないし抵抗素線(1a)を埋め込む等、各種の固定方法が採択される。
これらの固定方法では前述した図1の固定方法に比べて、より確実に抵抗線(1)を固定できるばかりでなく、得られるセンサにも曲がりやそりが発生しにくくなる。したがって、電極長が長くなった場合において特に有利な固定方法である。
さらに、本発明の液面センサのさらに別の態様について、図5に基づいて説明する。
この態様では、2本の抵抗線(1)が3本の線状絶縁部材(2)とともに撚ってある。このようなセンサは前述の固定方法に比べて、強度上、最も優れ、且つ生産性においても優れている。
以上、本発明の液面センサの検出部について説明したが、該センサには検出部に続いて非検出部があっても構わない。そして、この非検出部においては、抵抗素線(1a)は必ずしも導電性部材(1b)で被覆する必要はない。つまり、非検出部に特に耐熱性、耐食性の要求が無ければ、通常の安価な非導電性の樹脂あるいはゴム部材を使用しても差し支えない。また、ここでは、抵抗線(1)を2本採用した2極電極の例で説明したが、これら抵抗線(1)は3本以上に展開できることは言うまでもない。絶縁部材についても同様である。
【0008】
以下に、本発明の液面センサの具体例を図1の場合について示す。
長さ1m、線径が0.04mm、抵抗値13.8kΩ/mの単線のニクロム線からなる抵抗素線(1a)の周りに導電性部材(1b)として導電ETFE樹脂を0.72mmの厚さに押出し機にて押出し被覆して、外径が2.0mmの抵抗線(1)を2本作成した。
次いで、この抵抗線(1)の2本を、線状絶縁部材(2)としての長さ1m、外径2.2mm、肉厚0.7mmのETFE樹脂チューブ側面に沿って間隔をおいて配設した。この状態で、抵抗線(1)と絶縁部材(2)との固定するに当たっては、それらの長手方向に沿って3個所を幅3mm、厚さ0.5mmのETFE樹脂からなる固定部材(3)にて固定した。
次に、2本の抵抗線(1)のそれぞれの先端部(電極側の2個所)を端末被覆部材(1e)として導電ETFE樹脂を熱融着モールドして検知部を作成した。
最後に、検知回路と接続するためのリード線を抵抗線(1)の開始部(A)に接続して、本発明の液面センサ(S)を完成させた。
このようにして得られた液面センサを表1に示すように水道水、及び塩化水素水(HCL、5%希釈)が入った水槽に取付けるとともに、検知回路に接続してセンサの作動状況をチェックした。
【表1】

Figure 2004233224
この結果、上記、表1に示すように、水道水、及び塩化水素水(HCL、5%希釈)のいずれにおいても、液面に応じて抵抗値が変化するので連続的に液面を検知することができ、本発明の液面センサの有効性が確認された。
【0009】
【発明の効果】
本発明では、液面センサにおける電極部(1c、1d・・・・)を、抵抗素線(1a)の外周に導電性部材(1b)を被覆して得た抵抗線(1)の少なくとも2本を用いて2極以上の多点電極の形で構成するので、該センサの当初の取付状態は不変のままで、導電性液体の液面変位に追随して液面レベルを連続的に検出できる。しかも、このようなセンサは構造が簡単でコンパクト化につながると共に薬液に対する腐食の問題もなく、可動部分も無いので耐久性にも優れている。さらに、抵抗線(1)として、抵抗素線(1a)の外周に導電性部材(1b)を押出し被覆してなる長尺の電線を利用することにより、センサの生産性が上がり、これによりセンサの大幅なコスト低減も実現される。
【図面の簡単な説明】
【図1】図1は、本発明に係る液面センサの検出部の一例を示す縦断面図である。
【図2】図2は、図1のA−A断面図である。
【図3】図3は、図1〜2に示したセンサの斜視図である。
【図4】図4は、本発明に係る液面センサの別の態様を示す斜視図である。
【図5】図5は、本発明に係る液面センサのさらに別の態様を示す斜視図である。
【図6】図6は、本発明の液面センサの動作説明図である。
【図7】図7は、本発明の液面センサにおいて、抵抗線の入力端子P1、P2間で測定した抵抗値が、液面位置の変位に対応して連続的に変化することを示すグラフである。
【符号の説明】
S 液面センサ
1 抵抗線
1a 抵抗素線
1b 導電部材
1c、1d 電極部
1e 端末被覆部材
2 絶縁部材
3 固定部材
4 チューブ
5 水槽
A 抵抗線開始部
B 液面
L 抵抗線開始部(A)から液面(B)までの長さ
P1、P2 抵抗線の入力端子
R 抵抗線入力端間での抵抗値(測定値)
r1 導電性液体の固有抵抗値(導電率)(測定値)
r2 長さ(L)の部分の抵抗線の抵抗値[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid level sensor for detecting a liquid level of a liquid having conductivity, and more particularly to a liquid level sensor suitable for continuously detecting a liquid level of a liquid such as water or a chemical solution. is there.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an electrode type liquid level sensor (hereinafter, may be simply referred to as a “sensor”) for detecting a liquid level of a conductive liquid, a type using a single-core or multi-core cable having two or more cores is known. (For example, see Patent Documents 1 and 2).
However, since these liquid level sensors have only one detecting unit, when the liquid level position to be detected is different or when the specification level is changed, such as when the liquid level position is changed, the position corresponding to each liquid level position is changed. However, there is a problem that the mounting position needs to be changed, and the degree of freedom at the time of detection is lacking.
In addition, when there are a plurality of liquid level positions to be detected, a discontinuous detection method of mounting the same number of liquid level sensors as the number of liquid level positions is also known, but in this case, there is a problem in terms of space. is there. In addition, there is also a problem that productivity is poor due to the time and cost required to prepare the sensor (for example, see Patent Document 3).
On the other hand, as a method for continuously detecting the liquid level, a method in which a resistance wire and a float are combined is known (for example, see Patent Document 4).
However, this method has problems such as the presence of movable parts and contact resistance, and has problems in reliability such as detection accuracy and durability. Furthermore, since the resistance wire is exposed, when the liquid to be detected is a chemical solution or the like, there is a problem of corrosion resistance that the resistance wire is corroded. Further, there is a problem that a float is required and miniaturization is difficult.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 7-325556 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-304565 [Patent Document 3] Japanese Patent Application Laid-Open No. 2001-99693 [Patent Document 4] Japanese Patent Application Laid-Open No. 3-501522 [ [0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a liquid level sensor which solves the conventional drawbacks, can continuously detect the liquid level with high accuracy, has a simple structure, is compact, and has excellent corrosion resistance. It is in.
[0005]
[Means for Solving the Problems]
The present inventors have easily solved the conventional problems by employing an electrode portion using at least two resistance wires obtained by coating the outer periphery of a resistance wire with a conductive member. .
[0006]
Thus, according to the present invention, at least two of the resistance wires obtained by coating the outer periphery of the resistance wire with the conductive member are provided with an electrode portion having a shape arranged at an interval in their longitudinal direction. A liquid level sensor is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the accompanying drawings with respect to an example of a liquid level sensor in which two resistance wires are arranged in parallel.
FIG. 1 is a longitudinal sectional view showing an example of a detection unit of the liquid level sensor according to the present invention.
FIG. 2 is a cross-sectional view along AA of FIG.
FIG. 3 is a perspective view of the liquid level sensor shown in FIGS.
4 and 5 are perspective views showing another embodiment of the liquid level sensor according to the present invention.
FIG. 6 is an explanatory diagram of the operation of the liquid level sensor of the present invention.
FIG. 7 shows that, in the liquid level sensor of the present invention, the resistance value (R) measured between the input terminals P1 and P2 of the resistance wire continuously changes according to the displacement of the liquid level position (B). It is a graph shown.
1 to 3, (S) is a liquid level sensor, (1) is a resistance wire, which is obtained by coating the outer periphery of a resistance wire (1a) with a conductive member (1b). . At least two of these resistance wires (1) are arranged at intervals in their longitudinal direction, that is, in an insulated state. In the figure, these resistance wires (1) have the same length and are arranged in parallel via a linear insulating member (2) with their end faces aligned with each other, so that a pair of electrodes is formed. The parts (1c, 1d) are formed. (1e) is a tip covering member that covers the end surface of the resistance wire (1) at the tip of the electrode part (1c) and the electrode part (1d). It is a fixing member for fixing the wire (1) and the linear insulating member (2).
A feature of the present invention is that two or more resistance wires (1) in which a conductive member (1b) is coated on the outer periphery of a resistance wire (1a) are arranged in the detection section electrode in an insulated state from each other. The point where the multipoint electrode is formed. At this time, an aspect in which the end faces of these resistance wires (1) are aligned with each other on a surface (corresponding to a liquid surface) orthogonal to the longitudinal direction of the two resistance wires is described in Japanese Patent Application Laid-Open No. 7-325056. This is essentially different from the sensor of the non-continuous detection type described in Japanese Patent Application Laid-Open Publication No. H11-157,878. That is, in the sensor of the cited document 1, the internal electrode (internal conductor) must be protruded from the structural point of view, so that it is impossible to adopt the "same length".
The liquid level sensor of the present invention having the above configuration can continuously detect the liquid level displacement while maintaining the initial mounting position.
This will be described with reference to FIGS.
In FIG. 6, when the conductive liquid is not charged into the water tank, the electrode section (1c) and the electrode section (1d) are open (open), so that the input of each of the two resistance wires (1) is performed. The resistance value (R) between the terminals P1 and P2 becomes infinite. On the other hand, when the conductive liquid is poured into the water tank, the portion of each of the electrode portions (1c) and (1d) that is immersed in the conductive liquid depends on the conductivity of the conductive liquid. It shows a constant resistance value r1 (Ω).
From the above, the resistance value (R) measured between the input terminals P1 and P2 is the resistance value (r1) of the conductive liquid and the resistance value (r) of the conductive liquid from the start portion (A) of the resistance wire (1). The sum of the resistance value (r2) of the resistance line (1) of the non-immersed portion of the length (L) to the liquid surface (B) and twice the resistance value (r2), that is, R = r1 (Ω) + 2 * r2 (Ω) ). At this time, since the length (L) of the non-immersed portion changes continuously according to the displacement of the liquid surface, the resistance value R is also shown in the resistance value change graph of FIG. Thus, it will change continuously.
Therefore, if the electric resistance value (R) between the input terminals P1 and P2 is measured by an electronic circuit such as a well-known resistance detection circuit, the displacement of the liquid level can be continuously detected. In this case, since the pattern of the conductivity and the change of the resistance value differs depending on the type of the conductive liquid, the set value of the resistance detection circuit may be adjusted in advance in order to cope with this.
In the present invention, the resistance wire (1) preferably has an outer diameter in the range of 1 mm to 3 mm. In obtaining the resistance wire (1), a resistance wire (1a) such as a nichrome wire or a copper alloy wire is used in the form of a single wire, a stranded wire, or a horizontal winding. Although their resistance values depend on the sensitivity of the detection circuit, they are generally preferably in the range of 5Ω / m to 100KΩ / m. The outer diameter is preferably in the range of 1 mm to 3 mm in relation to the strength and dimensions.
The outer periphery of these resistance wires (1a) is covered with a conductive member (1b). As a method of coating the conductive member (1b), there are various methods such as extrusion coating, coating, dipping, and molding, but from the viewpoint of productivity and quality, extrusion coating is preferable. In connection with this coating, for the terminal covering member (1e) covering the resistance wire (1) at each tip of the two electrode portions (1c) and the electrode portion (1d), the conductive member (1e) What is necessary is just to cover the same member as 1b) with a heat fusion mold.
Here, the conductivity of the conductive member (1b) itself is preferably in the range of 10 −3 Ω / □ to 10 9 Ω / □ in volume resistivity, and the coating thickness is determined by the corrosion resistance and sensitivity of the sensor. In consideration of the specifications and the reinforcing strength such as the above, the thickness is preferably in the range of 0.3 mm to 1 mm.
As the conductive member (1b), a resin or rubber mixed with a conductive agent is provided. In this case, as the resin, fluorine resin, polyethylene, polyamide or polyimide, and polyester, and as the rubber, silicone rubber, fluorine rubber, and EP rubber may be mentioned, but from the viewpoint of heat resistance and chemical resistance, fluorine resin is used. It is preferably used. Specific examples of the fluororesin include tetrafluoroethylene-ethylene copolymer (ETFE), polytetrafluoroethylene resin (PTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA), tetrafluoroethylene / hexa. And fluoropropylene copolymer (FEP). On the other hand, examples of the conductive agent include carbon black, silver, copper, and nickel.
At least two of the resistance wires (1) thus obtained are arranged at intervals along their longitudinal direction. Here, the “spacing” indicates a state in which the linear insulator (2) is interposed between the two resistance wires (1) or an air insulation state between the two resistance wires (1). As the linear insulating member (2), and further, the fixing member (3), any member may be used as long as it has excellent insulating properties. Specific examples include a fluorine-based resin, polyethylene, polyamide or polyimide, polyester, silicone rubber, fluorine rubber, and EP rubber, and the above-mentioned fluorine resin is preferably used from the viewpoint of heat resistance and chemical resistance. The shape may be any of a muku and a tube, but may be a material containing a core material such as iron or copper for increasing the strength. Also, the cross-sectional shape is not limited to a circle, and various shapes such as a square can be selected.
Note that the outer diameter or outer dimension of the insulating member (2) is preferably larger than the outer diameter or outer dimension of the resistance wire (1) in order to prevent malfunction due to running out of liquid. Specifically, in consideration of prevention of malfunction due to running out of liquid (minimum value) and reduction of detection sensitivity and space (maximum value), the insulating member (2) is set so that the interval between the electrode portions is in the range of 1 mm to 20 mm. It is desirable to select the outer diameter or outer dimensions. In the above description, the conductive member (1b) is coated over the entire outer periphery of the resistance element wire (1a). However, if it is sufficient to partially detect the liquid level, a part in the longitudinal direction of the sensor is used. Only the conductive member (1b) may be covered, and other portions may be covered with a non-conductive member. Further, it goes without saying that the outer periphery of the resistance element wire (1a) may be covered with the conductive member (1b) in a stripe shape or a spiral shape.
Next, another embodiment of the present invention will be described with reference to FIG.
In this embodiment, the two resistance wires (1) are disposed in a state of facing the inner peripheral surface of the insulating tube (4), that is, in an air-insulated state. As a fixing method in this case, a method of partially embedding the resistance wire (1) in a groove provided on the inner peripheral surface of the insulating tube (4), or fixing the contact interface between the two with an adhesive is cited. Can be In addition, a method of partially embedding the resistance wire (1) in a groove provided on the outer surface of the insulating tube (4) or fixing the contact interface between them with an adhesive, Various fixing methods are adopted, such as embedding the resistance wire (1) or the resistance wire (1a) in a conductive resin fixed in a line or streak shape on the inner peripheral surface of 4).
In these fixing methods, not only the resistance wire (1) can be fixed more securely but also the resulting sensor is less likely to bend or warp than the fixing method of FIG. 1 described above. Therefore, this is a particularly advantageous fixing method when the electrode length is long.
Still another embodiment of the liquid level sensor of the present invention will be described with reference to FIG.
In this embodiment, two resistance wires (1) are twisted together with three linear insulating members (2). Such a sensor has the highest strength and the highest productivity as compared with the above-described fixing method.
The detection unit of the liquid level sensor according to the present invention has been described above. However, the sensor may include a non-detection unit following the detection unit. In the non-detection section, the resistance element wire (1a) does not necessarily need to be covered with the conductive member (1b). That is, if the non-detection section does not particularly require heat resistance and corrosion resistance, an ordinary inexpensive non-conductive resin or rubber member may be used. Further, here, the example of the bipolar electrode employing two resistance wires (1) has been described, but it goes without saying that these resistance wires (1) can be developed into three or more. The same applies to the insulating member.
[0008]
Hereinafter, a specific example of the liquid level sensor of the present invention will be described for the case of FIG.
A conductive ETFE resin having a thickness of 0.72 mm as a conductive member (1b) around a resistive wire (1a) made of a single nichrome wire having a length of 1 m, a wire diameter of 0.04 mm, and a resistance value of 13.8 kΩ / m. Extrusion coating was performed with an extruder to prepare two resistance wires (1) having an outer diameter of 2.0 mm.
Next, two of the resistance wires (1) are arranged at intervals along a side surface of an ETFE resin tube having a length of 1 m, an outer diameter of 2.2 mm, and a wall thickness of 0.7 mm as a linear insulating member (2). Established. In fixing the resistance wire (1) and the insulating member (2) in this state, a fixing member (3) made of ETFE resin having a width of 3 mm and a thickness of 0.5 mm at three places along their longitudinal direction. Fixed with.
Next, a detection portion was formed by heat-sealing and molding a conductive ETFE resin using the respective tip portions (two portions on the electrode side) of the two resistance wires (1) as terminal covering members (1e).
Finally, a lead wire for connecting to the detection circuit was connected to the starting portion (A) of the resistance wire (1), thereby completing the liquid level sensor (S) of the present invention.
The liquid level sensor thus obtained is mounted on a water tank containing tap water and hydrogen chloride water (HCL, 5% dilution) as shown in Table 1, and connected to a detection circuit to check the operation status of the sensor. Checked.
[Table 1]
Figure 2004233224
As a result, as shown in Table 1 above, in both tap water and hydrogen chloride water (HCL, 5% dilution), the resistance value changes according to the liquid level, so that the liquid level is continuously detected. Thus, the effectiveness of the liquid level sensor of the present invention was confirmed.
[0009]
【The invention's effect】
In the present invention, the electrode portions (1c, 1d,...) In the liquid level sensor are formed by covering at least two of the resistance wires (1) obtained by coating the outer periphery of the resistance wire (1a) with the conductive member (1b). Since the sensor is used to form a multi-point electrode with two or more poles, the sensor's initial mounting state remains unchanged and the liquid level is continuously detected following the liquid level displacement of the conductive liquid. it can. In addition, such a sensor has a simple structure, leads to compactness, has no problem of corrosion to a chemical solution, and has excellent durability because it has no movable parts. Further, by using a long electric wire formed by extruding and covering a conductive member (1b) on the outer periphery of the resistance element wire (1a) as the resistance wire (1), the productivity of the sensor is increased. A significant cost reduction is also realized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a detection unit of a liquid level sensor according to the present invention.
FIG. 2 is a sectional view taken along line AA of FIG. 1;
FIG. 3 is a perspective view of the sensor shown in FIGS.
FIG. 4 is a perspective view showing another embodiment of the liquid level sensor according to the present invention.
FIG. 5 is a perspective view showing still another embodiment of the liquid level sensor according to the present invention.
FIG. 6 is an explanatory diagram of the operation of the liquid level sensor of the present invention.
FIG. 7 is a graph showing that the resistance value measured between the input terminals P1 and P2 of the resistance line in the liquid level sensor of the present invention continuously changes in accordance with the displacement of the liquid level position. It is.
[Explanation of symbols]
S Liquid level sensor 1 Resistance wire 1a Resistance wire 1b Conductive member 1c, 1d Electrode 1e Terminal covering member 2 Insulating member 3 Fixed member 4 Tube 5 Water tank A Resistance wire start part B Liquid level L From resistance wire start part (A) Length P1 to liquid level (B), P2 Resistance wire input terminal R Resistance value between resistance wire input terminals (measured value)
r1 Specific resistance value (conductivity) of conductive liquid (measured value)
r2 Resistance value of resistance wire of length (L)

Claims (14)

抵抗素線の外周の少なくとも一部を導電性部材で被覆して得られた抵抗線の少なくとも2本が、それらの長手方向に間隔をおいて配設された形状の電極部を備えていることを特徴とする液面センサ。At least two of the resistance wires obtained by coating at least a part of the outer periphery of the resistance wire with a conductive member are provided with electrode portions in a shape arranged at intervals in their longitudinal direction. A liquid level sensor characterized by the above-mentioned. 該導電性部材が導電性樹脂ないしゴムである請求項1に記載の液面センサ。2. The liquid level sensor according to claim 1, wherein the conductive member is a conductive resin or rubber. 該導電性樹脂ないしゴムが導電性ふっ素樹脂ないし導電性シリコーンゴムである請求項2に記載の液面センサ。3. The liquid level sensor according to claim 2, wherein the conductive resin or rubber is a conductive fluororesin or a conductive silicone rubber. 該抵抗線が抵抗素線の外周に導電性部材を押出し被覆した電線である請求項1〜3のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 3, wherein the resistance wire is an electric wire in which a conductive member is extruded and coated on an outer periphery of the resistance wire. 該電極部における少なくとも2本の抵抗線が、絶縁部材を介して平行に配設されている請求項1〜4のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 4, wherein at least two resistance wires in the electrode portion are arranged in parallel via an insulating member. 該電極部と該線状絶縁部材とが撚り合わされている請求項1〜5に記載の液面センサ。The liquid level sensor according to claim 1, wherein the electrode portion and the linear insulating member are twisted. 該電極部が絶縁性チューブ状部材に配設されている請求項1〜6のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 6, wherein the electrode portion is provided on an insulating tubular member. 該抵抗素線の抵抗値が5Ω/m〜100KΩ/mである請求項1〜7のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 7, wherein the resistance value of the resistance element wire is 5Ω / m to 100KΩ / m. 該抵抗素線の外径が1mm〜3mmである請求項1〜8のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 8, wherein an outer diameter of the resistance wire is 1 mm to 3 mm. 該導電性部材の被覆厚さが0.3mm〜1mmの範囲にある請求項1〜9のいずれかに記載の液面センサ。The liquid level sensor according to claim 1, wherein a coating thickness of the conductive member is in a range of 0.3 mm to 1 mm. 該導電性部材の体積抵抗率が10−3Ω/□〜10Ω/□の範囲にある請求項1〜10のいずれかに記載の液面センサ。The liquid level sensor according to claim 1, wherein a volume resistivity of the conductive member is in a range of 10 −3 Ω / □ to 10 9 Ω / □. 該電極部の長さが100mm〜2000mmである請求項1〜11のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 11, wherein the length of the electrode portion is 100 mm to 2000 mm. 該電極部の間隔が1mm〜20mmである請求項1〜12のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 12, wherein an interval between the electrode portions is 1 mm to 20 mm. 該電極部を構成する少なくとも2本の抵抗線の長さが同一で且つそれらの端面が揃えられて配設されている請求項1〜13のいずれかに記載の液面センサ。The liquid level sensor according to any one of claims 1 to 13, wherein at least two resistance wires constituting the electrode portion have the same length and are arranged with their end faces aligned.
JP2003022818A 2003-01-30 2003-01-30 Liquid level sensor Abandoned JP2004233224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022818A JP2004233224A (en) 2003-01-30 2003-01-30 Liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022818A JP2004233224A (en) 2003-01-30 2003-01-30 Liquid level sensor

Publications (1)

Publication Number Publication Date
JP2004233224A true JP2004233224A (en) 2004-08-19

Family

ID=32951793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022818A Abandoned JP2004233224A (en) 2003-01-30 2003-01-30 Liquid level sensor

Country Status (1)

Country Link
JP (1) JP2004233224A (en)

Similar Documents

Publication Publication Date Title
US6777947B2 (en) Sensor cable
CA2211449C (en) Cord switch and pressure sensor
TWI403710B (en) Liquid leakage sensor
KR100312108B1 (en) Corrosion resistant cable
US8106741B2 (en) Method and apparatus for flexible temperature sensor having coiled element
US11768114B2 (en) Temperature sensor, power distribution component having the same, and motor having power distribution component
CA3059570A1 (en) Shrinkable cable joint and voltage sensor
WO2013082422A1 (en) Power line voltage measurement using distributed resistance conductor
CN107039832B (en) Electronic equipment and its manufacturing method
US20110147079A1 (en) Tension-Resistant Electrical Conductor
EP0144211B1 (en) Sensor cable
US6725554B1 (en) Electronic spirit level for measurement of inclination-execution of electric resistors and conductors
JP2004233224A (en) Liquid level sensor
JP2004301794A (en) Liquid level sensor for multipoint detection
JP4116409B2 (en) Capacitive sensor
JP2013038005A (en) Cord-like heating wire
JP3402758B2 (en) sensor
JPH11304565A (en) Sensor
JP2005241475A (en) Liquid level sensor
KR20130115173A (en) Connection structure and method for the extended cable of temperature measuring apparatus
JPH11153470A (en) Sensor
JP2002525566A (en) Electrical sensor line for leak detection
JPH089635Y2 (en) Leak detection sensor
JP5678114B2 (en) Pressure sensor
JP2013113688A (en) Pressure sensitive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A762 Written abandonment of application

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A762