JP2004231981A - Method for preventing corrosion of piping for steam reforming gas - Google Patents

Method for preventing corrosion of piping for steam reforming gas Download PDF

Info

Publication number
JP2004231981A
JP2004231981A JP2003018433A JP2003018433A JP2004231981A JP 2004231981 A JP2004231981 A JP 2004231981A JP 2003018433 A JP2003018433 A JP 2003018433A JP 2003018433 A JP2003018433 A JP 2003018433A JP 2004231981 A JP2004231981 A JP 2004231981A
Authority
JP
Japan
Prior art keywords
temperature
gas
steam reforming
piping
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018433A
Other languages
Japanese (ja)
Inventor
Takahisa Hoshika
貴久 星加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003018433A priority Critical patent/JP2004231981A/en
Publication of JP2004231981A publication Critical patent/JP2004231981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing the corrosion of a piping constituted in such a way that high-temperature steam-reforming gas is passed through it and its external part is brought into contact with the cooled low-temperature steam-reforming gas. <P>SOLUTION: As a material for the piping in which the high-temperature gas resultant from the steam reforming of hydrocarbon using a catalyst containing alkali metal elements is passed inside and the external part is brought into contact with the cooled low-temperature gas, a metallic material having a composition satisfying inequality 2Cr-Ni>22.5 in which respective contents of Cr and Ni elements are represented by weight percentage. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スチームリフォーミングガス用配管の防食方法に関する。詳しくは高温のスチームリフォーミングガスが内部を通り、外部が冷却されたスチームリフォーミングガスと接触する配管の防食方法に関する。
【0002】
【従来の技術】
石油化学工業における高温のスチームリフォーミングガスを扱う熱交換器、配管等の材料として、高温雰囲気において強度と耐浸炭性が良いので、インコロイTM800が良いとされ(例えば、非特許文献1、非特許文献2参照。)、高温のスチームリフォーミングガスを扱う配管としてインコロイTM800からなる配管が使用されている。なお、インコロイTM800は高価であるため、熱交換器の入口、出口チャンバー、混合器等はキャスターで形成されている。
【0003】
【非特許文献1】
鉄鋼材料便覧 第2版第6刷 丸善株式会社発行 平成2年5月30日発行第637頁
【0004】
【非特許文献2】
大同スペシャルメタル株式会社 合金一覧(2)耐熱合金 [平成14年12月24日検索]、インターネット<URL: http://www.dsml.co.jp/japan /heat.htm>
【0005】
【発明が解決しようとする課題】
しかしながら、高温のスチームリフォーミングガスが内部を通るインコロイTM800からなる配管の、外部が冷却された低温の該ガスと接触している外表面が、触媒に由来する微量のアルカリ金属塩が析出し、このアルカリ金属塩の影響によって腐食される。
【0006】
例えば、後工程の制御のし易さのために、熱交換器で冷却されたスチームリフォーミングガスと高温のスチームリフォーミングガスとを混合して所定温度のスチームリフォーミングガスとする場合に、混合器内に挿入された高温のスチームリフォーミングガスを供給するインコロイTM800からなる配管の外表面が、冷却された比較的低温のスチームリフォーミングガスと接触している。この外表面にはガス中に含まれる触媒に由来する微量のアルカリ金属塩が次第に析出し、この部分が腐食される。
したがって本発明の目的は、高温のスチームリフォーミングガスが内部を通り、外部が冷却されたスチームリフォーミングガスと接触する配管の防食方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、かかる課題を解決するために高温のスチームリフォーミングガスが内部を通り、外部が冷却された低温の該ガスと接触する配管の防食方法について鋭意検討した結果、この配管材料として、CrおよびNi元素の含有量が式(1)を満足する金属材料を使用することによって、この配管の腐食を大幅に抑制できることを見出し、本発明に至った。
すなわち本発明は、アルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスが内部を通り、外部が冷却された低温の該ガスと接触する配管の材料として、CrおよびNi元素の含有量を重量%で表して下記式(1)を満足する金属材料を使用することを特徴とするスチームリフォーミングガス用配管の防食方法である。
【式2】
2Cr−Ni>22.5 (1)
【0008】
【発明の実施の形態】
図1は、本発明が対象とする、内部がアルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスと、外部が冷却された低温の該ガスと接触する配管の例を示す図である。なお、本発明はこの例に限定されるものではない。
アルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスが、入口配管(2)を通り熱交換器(1)で冷却水配管(7)を経由して給排水されるボイラー水によって冷却される。冷却されたガスは、混合器(5)でインコロイTM800からなる配管(4)を経由して供給される高温のガスと混合されて所定の温度に調整され、混合されたガスは出口配管(3)を通って後工程に送られる。高温のガスを供給する配管(4)は混合を良くするために混合器中に挿入されている。混合を良くするために更に邪魔板(図示せず)を設ける場合もある。混合器に供給される高温のガスは弁(6)等によって混合ガスが所定の温度になるように制御される。
【0009】
アルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスは、温度が約700〜1000℃で圧力が約1.4〜2.2MPaであり、温度が約200〜300℃のボイラー水で冷却される。冷却されたガスは混合器で混合されて温度が約250〜350℃の範囲で所定の温度に調整される。
【0010】
配管(4)の混合器(5)に挿入されている部分(楕円で囲った部分)は、アルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスが内部を通り、外部が冷却された該ガスと接触しており、この部分がインコロイTM800で形成されていると腐食される。
【0011】
本発明においては、この部分の配管材料として、CrおよびNi元素の含有量を重量%で表して下記式(1)を満足する金属材料で、好ましくは下記式(2)を満足する金属材料で形成される。
【式3】
2Cr−Ni>22.5 (1)
【式4】
2Cr−Ni>30.0 (2)
【0012】
このような金属材料として具体的には、三菱マテリアル株式会社製のMCアロイ(Cr:45重量%、Ni:54重量%、(2Cr−Ni):36重量%)、MA20(Cr:29重量%、Ni:20重量%、(2Cr−Ni):38重量%)、K89(Cr:31重量%、Ni:22重量%、(2Cr−Ni):40重量%)、K63(Cr:30重量%、Ni:26重量%、(2Cr−Ni):34重量%)、SUS304(Cr:18重量%、Ni:8重量%、(2Cr−Ni):28重量%)、SUS310S(Cr:25重量%、Ni:20重量%、(2Cr−Ni):30重量%)、SUS309(Cr:25重量%、Ni:12重量%、(2Cr−Ni):38重量%)、等が挙げられる。
【0013】
この金属材料を用いることによって、高温のスチームリフォーミングガスが内部を通り、外部が冷却された低温の該ガスと接触する配管の腐食を大幅に抑制することができる。
【0014】
【実施例】
以下、実施例で本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0015】
実施例1
カリウム元素を含有する触媒を用いてナフサをスチームリフォーミングして得られた約800〜900℃のガスが内部を通り、外部が冷却したガスと高温のガスが混合した約290〜310℃のガスと接触する配管(図1の混合器内に挿入された配管;楕円で囲った部分)の外表面に腐食評価用テストピース(長さ25mm×幅20mm×厚さ1または2mm)を設置し、1年間腐食試験を行った。
使用したテストピースおよび腐食試験結果を表1に示す。
【0016】
【表1】

Figure 2004231981
【0017】
腐食試験結果を図2に示す。図中の数値は上記の最大腐食深さを表す。直線は2Cr−Ni=22.5の直線を表す。これらの直線から上部の組成範囲の金属材料が、耐食性を有している。
【0018】
【発明の効果】
本発明の方法によって、アルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスが内部を通り、外部が冷却された低温の該ガスと接触する配管の腐食を大幅に抑制することができる。
【図面の簡単な説明】
【図1】高温のスチームリフォーミングガスが内部を通り、外部が冷却された低温の該ガスと接触する配管の例を示す図である。
【図2】テストピースの腐食試験の結果を示す図である。
【符号の説明】
1:熱交換器
2:入口配管
3:出口配管
4:高温のガスを供給する配管
5:混合器
6:弁
7:ボイラー水配管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for preventing corrosion of piping for steam reforming gas. More specifically, the present invention relates to a method for preventing corrosion of piping in which a high-temperature steam reforming gas passes through the inside and contacts the steam reforming gas whose outside is cooled.
[0002]
[Prior art]
As a material for heat exchangers and pipes handling high-temperature steam reforming gas in the petrochemical industry, Incoloy TM 800 is considered to be good because of its high strength and carburization resistance in a high-temperature atmosphere (for example, Non-Patent Document 1, Non-Patent Document 1). Patent Literature 2), a pipe made of Incoloy TM 800 is used as a pipe for handling a high-temperature steam reforming gas. Since Incoloy 800 is expensive, the inlet, outlet chamber, mixer, etc. of the heat exchanger are formed of casters.
[0003]
[Non-patent document 1]
Handbook for Steel Materials, Second Edition, 6th Edition Published by Maruzen Co., Ltd. Published on May 30, 1990, p. 637 [0004]
[Non-patent document 2]
Daido Special Metal Co., Ltd. Alloy list (2) Heat resistant alloy [Searched on December 24, 2002], Internet <URL: http: // www. dsml. co. jp / japan / heat. htm>
[0005]
[Problems to be solved by the invention]
However, the outer surface of the pipe made of Incoloy TM 800, through which a high-temperature steam reforming gas passes, which is in contact with the low-temperature, cooled gas, has a small amount of alkali metal salt derived from the catalyst precipitated. , Are corroded by the influence of this alkali metal salt.
[0006]
For example, when the steam reforming gas cooled by the heat exchanger and the high-temperature steam reforming gas are mixed to form a steam reforming gas at a predetermined temperature for easy control of the post-process, the mixing is performed. The outer surface of a pipe made of Incoloy 800 for supplying a high-temperature steam reforming gas inserted into the vessel is in contact with the cooled relatively low-temperature steam reforming gas. A small amount of alkali metal salt derived from the catalyst contained in the gas gradually precipitates on the outer surface, and this portion is corroded.
Therefore, an object of the present invention is to provide a method for preventing corrosion of piping in which a high-temperature steam reforming gas passes through the inside and contacts the steam-reforming gas whose outside is cooled.
[0007]
[Means for Solving the Problems]
The present inventor has studied the corrosion prevention method of piping in which a high-temperature steam reforming gas passes through the inside to solve such a problem and contacts the low-temperature gas cooled outside, and as a result of this piping material, The present inventors have found that the corrosion of this pipe can be significantly suppressed by using a metal material whose content of Cr and Ni elements satisfies the expression (1), and reached the present invention.
That is, the present invention, as a material for piping that a high-temperature gas obtained by steam reforming a hydrocarbon using a catalyst containing an alkali metal element passes through the inside and contacts the low-temperature gas cooled outside. A method for preventing corrosion of piping for steam reforming gas, characterized by using a metal material that satisfies the following expression (1) by expressing the contents of Cr and Ni elements in% by weight.
[Equation 2]
2Cr-Ni> 22.5 (1)
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a high temperature gas obtained by subjecting a hydrocarbon to steam reforming using a catalyst containing an alkali metal element, which is an object of the present invention, and a low temperature gas which is cooled outside. It is a figure showing an example of piping. Note that the present invention is not limited to this example.
A high-temperature gas obtained by steam-reforming a hydrocarbon using a catalyst containing an alkali metal element passes through an inlet pipe (2) and is supplied and drained through a cooling water pipe (7) in a heat exchanger (1). Cooled by boiler water. The cooled gas is mixed with a high-temperature gas supplied via a pipe (4) made of Incoloy 800 in a mixer (5) and adjusted to a predetermined temperature, and the mixed gas is supplied to an outlet pipe ( It is sent to the post process through 3). A pipe (4) for supplying hot gas is inserted into the mixer to improve the mixing. In some cases, further baffles (not shown) are provided to improve mixing. The high-temperature gas supplied to the mixer is controlled by a valve (6) or the like so that the mixed gas has a predetermined temperature.
[0009]
A high-temperature gas obtained by steam reforming a hydrocarbon using a catalyst containing an alkali metal element has a temperature of about 700 to 1000 ° C., a pressure of about 1.4 to 2.2 MPa, and a temperature of about 200 to 200 MPa. Cooled with boiler water at ~ 300 ° C. The cooled gas is mixed by a mixer and the temperature is adjusted to a predetermined temperature in a range of about 250 to 350 ° C.
[0010]
The portion of the pipe (4) inserted into the mixer (5) (the portion enclosed by an ellipse) contains a high-temperature gas obtained by steam reforming a hydrocarbon using a catalyst containing an alkali metal element. And the outside is in contact with the cooled gas, and if this part is formed of Incoloy 800, it is corroded.
[0011]
In the present invention, the pipe material of this portion is a metal material that satisfies the following formula (1) by expressing the contents of Cr and Ni elements by weight%, and preferably a metal material that satisfies the following formula (2). It is formed.
[Equation 3]
2Cr-Ni> 22.5 (1)
(Equation 4)
2Cr-Ni> 30.0 (2)
[0012]
Specific examples of such metal materials include MC alloy manufactured by Mitsubishi Materials Corporation (Cr: 45% by weight, Ni: 54% by weight, (2Cr-Ni): 36% by weight), and MA20 (Cr: 29% by weight). , Ni: 20% by weight, (2Cr-Ni): 38% by weight), K89 (Cr: 31% by weight, Ni: 22% by weight, (2Cr-Ni): 40% by weight), K63 (Cr: 30% by weight) , Ni: 26% by weight, (2Cr-Ni): 34% by weight), SUS304 (Cr: 18% by weight, Ni: 8% by weight, (2Cr-Ni): 28% by weight), SUS310S (Cr: 25% by weight) , Ni: 20% by weight, (2Cr-Ni): 30% by weight), SUS309 (Cr: 25% by weight, Ni: 12% by weight, (2Cr-Ni): 38% by weight), and the like.
[0013]
By using this metal material, the corrosion of the piping in which the high-temperature steam reforming gas passes through the inside and which contacts the low-temperature gas cooled outside can be significantly suppressed.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0015]
Example 1
A gas of about 290 to 310 ° C., in which a gas of about 800 to 900 ° C. obtained by steam reforming naphtha using a catalyst containing potassium element passes through the inside, and a mixture of a gas cooled outside and a high-temperature gas. A test piece (length 25 mm × width 20 mm × thickness 1 or 2 mm) is installed on the outer surface of the pipe (the pipe inserted into the mixer in FIG. 1; the part enclosed by an ellipse) that comes into contact with A corrosion test was performed for one year.
Table 1 shows the test pieces used and the results of the corrosion test.
[0016]
[Table 1]
Figure 2004231981
[0017]
FIG. 2 shows the results of the corrosion test. The numerical values in the figure represent the above maximum corrosion depth. The straight line represents a line of 2Cr-Ni = 22.5. The metal material in the composition range above these straight lines has corrosion resistance.
[0018]
【The invention's effect】
According to the method of the present invention, a high-temperature gas obtained by steam-reforming a hydrocarbon using a catalyst containing an alkali metal element passes through the inside, and the corrosion of a pipe in contact with the low-temperature gas cooled outside is prevented. It can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a pipe in which a high-temperature steam reforming gas passes through the inside and contacts the low-temperature gas whose outside is cooled.
FIG. 2 is a diagram showing the results of a corrosion test of a test piece.
[Explanation of symbols]
1: Heat exchanger 2: Inlet pipe 3: Outlet pipe 4: High-temperature gas supply pipe 5: Mixer 6: Valve 7: Boiler water pipe

Claims (4)

アルカリ金属元素を含有する触媒を用いて炭化水素をスチームリフォーミングして得られる高温のガスが内部を通り、外部が冷却された低温の該ガスと接触する配管の材料として、CrおよびNi元素の含有量を重量%で表して下記式(1)を満足する金属材料を使用することを特徴とするスチームリフォーミングガス用配管の防食方法。
【式1】
Figure 2004231981
A high-temperature gas obtained by steam reforming a hydrocarbon using a catalyst containing an alkali metal element passes through the inside, and as a material of a pipe that contacts the low-temperature gas cooled outside, a Cr and Ni element A method for preventing corrosion of steam reforming gas piping, wherein a metal material whose content is represented by weight% and satisfies the following formula (1) is used.
(Equation 1)
Figure 2004231981
アルカリ金属元素がカリウムである請求項1記載の防食方法。2. The anticorrosion method according to claim 1, wherein the alkali metal element is potassium. 炭化水素がナフサまたはブタンである請求項1記載の防食方法。The method according to claim 1, wherein the hydrocarbon is naphtha or butane. スチームリフォーミングして得られる高温のガスの温度が700〜1000℃で、冷却された低温の該ガスの温度が250〜350℃である請求項1記載の防食方法。The anticorrosion method according to claim 1, wherein the temperature of the high-temperature gas obtained by the steam reforming is 700 to 1000C, and the temperature of the cooled low-temperature gas is 250 to 350C.
JP2003018433A 2003-01-28 2003-01-28 Method for preventing corrosion of piping for steam reforming gas Pending JP2004231981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018433A JP2004231981A (en) 2003-01-28 2003-01-28 Method for preventing corrosion of piping for steam reforming gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018433A JP2004231981A (en) 2003-01-28 2003-01-28 Method for preventing corrosion of piping for steam reforming gas

Publications (1)

Publication Number Publication Date
JP2004231981A true JP2004231981A (en) 2004-08-19

Family

ID=32948565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018433A Pending JP2004231981A (en) 2003-01-28 2003-01-28 Method for preventing corrosion of piping for steam reforming gas

Country Status (1)

Country Link
JP (1) JP2004231981A (en)

Similar Documents

Publication Publication Date Title
Ding et al. Failure analysis on abnormal corrosion of economizer tubes in a waste heat boiler
Mitton et al. Corrosion behavior of nickel-based alloys in supercritical water oxidation systems
JP4436675B2 (en) Method for lowering temperature of hydrogen and carbon monoxide-containing gas, and heat exchanger used in the method
Toba et al. Corrosion of carbon steel and alloys in concentrated ammonium chloride solutions
Bahrami et al. Failure of AISI 304H stainless steel elbows in a heat exchanger
Zhang et al. Effect of sulfide on corrosion behavior of stainless steel 316SS and Hastelloy C276 in sub/supercritical water
Kim et al. Stress corrosion cracking of alloy 625 in pH 2 aqueous solution at high temperature and pressure
JP5792905B2 (en) Method and apparatus for treating hydrocarbon streams
JP2004231981A (en) Method for preventing corrosion of piping for steam reforming gas
Zhang et al. Influence of temperature on the oxidation behavior of an austenitic steel in deaerated supercritical water
WO1984000122A1 (en) Build-up welding method
Jones et al. Metal dusting-an overview of current literature
KR101377777B1 (en) Hydrogen chloride oxidation reaction apparatus and hydrogen chloride oxidation reaction method
JP2006028566A (en) Member for hydrocarbon reforming device
Hermse et al. Metal dusting: relationship between alloy composition and degradation rate
JP2004232877A (en) Heat exchanger for steam reformed gas
US20060075976A1 (en) Heat-recovery boiler
Chen et al. Hot corrosion of Ni, Cr, and 80Ni20Cr in the presence of NaCl and water vapor at 750° C
Naumann et al. Corroded Pipes from Gas Generating Plant
Hermse et al. Applicability of coatings to control metal dusting
Spiegel et al. Power Austenite-A Novel σ-Phase Hardened High Temperature Alloy for 700° C (1292° F) Fired Boilers
Toba et al. Corrosion of carbon steel and alloys in ammonium chloride salt
Mahajanam et al. Cracking of Duplex Stainless Steel in Refining Operations
Fulmer Research Institute Ltd. Ruptured Stainless Steel Heater Tube
Jian-qun et al. Leakage of 316Ti SS Pipeline Transporting 98% H2SO4 due to CUI and Changed Microstructure From Welding