JP2004230368A - Unit and method for removing carbon monoxide, air cleaner and carbon monoxide removing catalyst composition - Google Patents

Unit and method for removing carbon monoxide, air cleaner and carbon monoxide removing catalyst composition Download PDF

Info

Publication number
JP2004230368A
JP2004230368A JP2003088841A JP2003088841A JP2004230368A JP 2004230368 A JP2004230368 A JP 2004230368A JP 2003088841 A JP2003088841 A JP 2003088841A JP 2003088841 A JP2003088841 A JP 2003088841A JP 2004230368 A JP2004230368 A JP 2004230368A
Authority
JP
Japan
Prior art keywords
carbon monoxide
dehumidifying
catalyst composition
transition metal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088841A
Other languages
Japanese (ja)
Other versions
JP4309162B2 (en
Inventor
Takahiro Nakajima
隆弘 中島
Hidenao Hirasawa
秀直 平沢
Takaaki Nakasone
孝昭 中曽根
Yasushi Tai
泰 田井
Yoshimasa Katsumi
佳正 勝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Ecology Systems Co Ltd filed Critical Matsushita Ecology Systems Co Ltd
Priority to JP2003088841A priority Critical patent/JP4309162B2/en
Publication of JP2004230368A publication Critical patent/JP2004230368A/en
Application granted granted Critical
Publication of JP4309162B2 publication Critical patent/JP4309162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon monoxide removing unit for removing carbon monoxide from a gas containing carbon monoxide with small energy consumption, a carbon monoxide removing method, and an air cleaner, and to obtain a carbon monoxide removing catalyst composition. <P>SOLUTION: The carbon monoxide removing unit is constituted so as to arrange a carbon monoxide removing means in the post stage of a dehumidifying means and to remove carbon monoxide after dehumidifying the gas containing carbon monoxide. The carbon monoxide removing method is performed by introducing the gas containing carbon monoxide into the dehumidifying means to dehumidify, and after that, introducing into the carbon monoxide removing means to remove carbon monoxide. The air cleaner is provided with the carbon monoxide removing unit. The catalyst composition is composed of a composite oxide of mainly a transition metal having carbon monoxide oxidation ability, at least one of transition metals selected from chromium, iron, cobalt and copper, and manganese. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、少ないエネルギー消費量で一酸化炭素を含む気体からこれを除去するための一酸化炭素除去ユニット、一酸化炭素除去方法、空気清浄装置および一酸化炭素除去触媒組成物に関するものである。
【0002】
【従来の技術】
一酸化炭素は、人体に有害であることは周知の通りであり、自動車の排気ガスなどに含まれる一酸化炭素を効率的に除去するための種々の方法が研究されている。また、燃料電池で使用する水素を製造する際に発生する一酸化炭素は、燃料電池の発電を阻害することから、燃料電池に関する技術分野においても一酸化炭素をいかに効率的に除去するかは重要な技術課題である。
現在、一酸化炭素を除去する方法として盛んに研究が行われているものは、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を用い、触媒反応によって一酸化炭素を酸化して二酸化炭素に変換する方法である(例えば下記の特許文献1参照)。
【0003】
【特許文献1】
特許第3251009号公報
【0004】
【発明が解決しようとする課題】
しかしながら、触媒反応によって一酸化炭素を酸化して二酸化炭素に変換するためには、通常、反応温度を200℃以上にまで高める必要があるので、省エネルギー化の観点からは更なる検討を要する。
そこで本発明は、少ないエネルギー消費量で一酸化炭素を含む気体からこれを除去するための一酸化炭素除去ユニット、一酸化炭素除去方法、空気清浄装置および一酸化炭素除去触媒組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の点に鑑みてなされた本発明の一酸化炭素除去ユニットは、請求項1記載の通り、除湿手段の後段に一酸化炭素除去手段を配してなり、一酸化炭素を含む気体を除湿した後に一酸化炭素を除去するようにしたことを特徴とする。
また、請求項2記載の一酸化炭素除去ユニットは、請求項1記載の一酸化炭素除去ユニットにおいて、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配してなり、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにしたことを特徴とする。
また、請求項3記載の一酸化炭素除去ユニットは、請求項2記載の一酸化炭素除去ユニットにおいて、一酸化炭素除去手段に導かれることで一酸化炭素が除去された気体を吸湿した除湿手段に導き、除湿手段から水分を当該気体に放出させることで除湿手段を再生するようにしたことを特徴とする。
また、請求項4記載の一酸化炭素除去ユニットは、請求項1乃至3のいずれかに記載の一酸化炭素除去ユニットにおいて、デシカントにより除湿手段を構成することを特徴とする。
また、請求項5記載の一酸化炭素除去ユニットは、請求項1乃至4のいずれかに記載の一酸化炭素除去ユニットにおいて、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成することを特徴とする。
また、請求項6記載の一酸化炭素除去ユニットは、請求項5記載の一酸化炭素除去ユニットにおいて、一酸化炭素酸化能を有する遷移金属がルテニウム、ロジウム、パラジウム、白金から選ばれる少なくとも一つであることを特徴とする。
また、請求項7記載の一酸化炭素除去ユニットは、請求項5記載の一酸化炭素除去ユニットにおいて、触媒組成物が、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなることを特徴とする。
また、請求項8記載の一酸化炭素除去ユニットは、請求項5記載の一酸化炭素除去ユニットにおいて、担持体が高熱伝導性材料からなることを特徴とする。
また、本発明の一酸化炭素除去方法は、請求項9記載の通り、一酸化炭素を含む気体を除湿手段に導いて除湿した後に一酸化炭素除去手段に導くことで一酸化炭素を除去することを特徴とする。
また、請求項10記載の一酸化炭素除去方法は、請求項9記載の一酸化炭素除去方法において、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成することを特徴とする。
また、請求項11記載の一酸化炭素除去方法は、請求項10記載の一酸化炭素除去方法において、一酸化炭素除去手段を所定時間おきに加熱することで触媒組成物の一酸化炭素酸化能の再生を行うことを特徴とする。
また、請求項12記載の一酸化炭素除去方法は、請求項11記載の一酸化炭素除去方法において、熱風を一酸化炭素除去手段に導くことでこれを加熱することを特徴とする。
また、本発明の空気清浄装置は、請求項13記載の通り、除湿手段の後段に一酸化炭素除去手段を配してなり、一酸化炭素を含む気体を除湿した後に一酸化炭素を除去するようにした一酸化炭素除去ユニットを備えてなることを特徴とする。
また、本発明の触媒組成物は、請求項14記載の通り、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなることを特徴とする。
【0006】
【発明の実施の形態】
本発明は、要すれば、一酸化炭素を含む気体を除湿手段に導いて除湿した後に一酸化炭素除去手段に導くことで一酸化炭素を除去するというものである。従来、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を用い、触媒反応によって一酸化炭素を二酸化炭素に酸化することでこれを除去するためには、反応温度を200℃以上にまで高める必要があったが、本発明によれば、一酸化炭素を含む気体を予め除湿しておくことにより、より低温において触媒反応を促進させることで効率的に一酸化炭素を除去することができることから省エネルギー化を図ることができる。
【0007】
本発明における除湿手段は、例えば、デシカント(シリカゲル、活性炭、ゼオライトなどの除湿剤)により構成される。
【0008】
本発明における一酸化炭素除去手段は、例えば、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により構成される。ここで、一酸化炭素酸化能を有する遷移金属としては、ルテニウム、ロジウム、パラジウム、白金などが好適に用いられる。触媒組成物は、一酸化炭素酸化能を有する遷移金属を含むものであればどのような組成のものであってもよいが、中でも、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなるものが、従来から知られている、一酸化炭素酸化能を有する遷移金属と酸化鉄やアルミナとからなるものよりも、より低温で効率的に一酸化炭素を除去することができるとともに、アセトアルデヒドやアンモニアなどの有害ガスも効率的に除去することができるものとして好適に用いられる。
【0009】
一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなる触媒組成物は、例えば、まず、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属の塩(硝酸塩や硫酸塩など)とマンガンの塩(硝酸塩や硫酸塩など)を溶解させた水溶液にアンモニア水などのpH調整剤を添加してこれらの水酸化物を生成させ、水溶液中に沈殿したこの水酸化物を空気中にて200℃〜300℃で焼成して不純物を脱離させることでこれらの複合酸化物を得、次に、一酸化炭素酸化能を有する遷移金属の塩(硝酸塩や硫酸塩など)を溶解させた水溶液をこの複合酸化物に分散させた後、空気中にて200℃〜300℃で焼成して不純物を脱離させることで調製することができる。このようにして調製された触媒組成物を、例えば、シリカゾルなどのバインダとともに水に分散させて均一に混合することでスラリ状物とし、これをセラミックス製のハニカム状フィルターなどの担持体に塗布した後、空気中にて200℃〜300℃で焼成することで一酸化炭素除去手段とする。セラミックス製の担持体は、スラリ状物の担持接着性に優れているのでバインダが少量でも多量の触媒組成物を担持させることができること、有害ガス成分による腐食の心配が少ないこと、価格が安いことなどの点において都合がよい。
また、一酸化炭素酸化能を有する遷移金属の塩を溶解させた水溶液を上記の複合酸化物に分散させたものを、例えば、シリカゾルなどのバインダと均一に混合することでスラリ状物とし、これをセラミックス製のハニカム状フィルターなどの担持体に塗布した後、空気中にて200℃〜300℃で焼成することで不純物を脱離させて一酸化炭素除去手段としてもよい。
【0010】
本発明の一酸化炭素除去ユニットにおいては、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成した場合、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配し、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにすることが望ましい。このような態様を採ることにより、高温の一酸化炭素を含む気体を触媒組成物と接触させれば、効果的に一酸化炭素を二酸化炭素に酸化することができるので、一酸化炭素の除去効率をより一層高めることができる。また、一酸化炭素除去手段から排出された一酸化炭素が除去された気体は高温かつ除湿された状態にあるので、この気体を吸湿した除湿手段に導くようにすれば、除湿手段から水分が当該気体に放出されるので除湿手段を再生することができるといった利点もある。
【0011】
一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成した場合、長時間の使用により触媒組成物の表面に水分が付着し、付着した水分が触媒毒となって触媒組成物の一酸化炭素酸化能を低下させることがある。このような現象を極力回避するため、本発明の一酸化炭素除去ユニットにおいては、望ましくは、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配し、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにしている。しかしながら、それでもなお、このような現象が起こる可能性を完全に否定することは必ずしも容易なことではない。そこで、一酸化炭素除去手段を所定時間おきに加熱することで、触媒組成物の表面に付着した水分を蒸発させて除去し、触媒組成物の一酸化炭素酸化能の再生を行うことが望ましい。一酸化炭素除去手段を加熱する方法としては、例えば、一酸化炭素除去手段の前段に配した加熱手段にて熱風を発生させ、発生させた熱風を一酸化炭素除去手段に導く方法が挙げられる。例えば、1日に1回、一酸化炭素除去手段を200℃以上(望ましくは250℃程度)にまで加熱することで、触媒組成物の一酸化炭素酸化能の再生を効果的に行うことができる。この際、触媒組成物を担持させる担持体を、アルミニウムやステンレスなどの高熱伝導性材料からなるものとすれば、一酸化炭素除去手段が速やかに昇温するので、触媒組成物の一酸化炭素酸化能の再生を少ないエネルギー消費量で素早く行うことができる。
【0012】
なお、除湿手段の前段に空気清浄手段を配することで、一酸化炭素を含む気体を浄化してから除湿手段に導くようにしてもよい。また、除湿手段の前段に冷却手段を配することで、一酸化炭素を含む気体の相対湿度をいったん上昇させてから除湿手段に導くようにしてもよい。
【0013】
本発明の一酸化炭素除去ユニットの用途は特段限定されるものではなく、例えば、空気清浄装置(分煙カウンターなど)に組み込んで使用することができる他、燃料電池製造装置などに組み込んで使用することもできる。
【0014】
【実施例】
以下、本発明を実施例にて詳細に説明するが、本発明は、以下の記載に何ら限定して解釈されるものではない。
【0015】
実施例1:一酸化炭素除去手段の作成その1
硝酸コバルトと硝酸マンガンを溶解させた水溶液(コバルトとマンガンが原子比1:1で含まれるように調整)にアンモニア水を滴下し、コバルトとマンガンの水酸化物を沈殿させ、ろ過してこれを回収した。回収した沈殿物を空気中にて250℃で焼成することで不純物を脱離させ、コバルトとマンガンの複合酸化物を得た。次に、硝酸白金を溶解させた水溶液をこの複合酸化物に分散させた後、これをシリカゾルと均一に混合することでスラリ状物とした。このスラリ状物中に直径20mm×長さ40mmのセラミックス製のハニカム状フィルターを浸漬した後、引き上げてから空気中にて250℃で焼成することで不純物を脱離させ、白金含量が1重量%の触媒組成物1.1gが担持された一酸化炭素除去手段を作成した。
この一酸化炭素除去手段(Pt−CoMn)の基本特性を図1に示す。基本特性は、外側からヒータで加熱できるようにした内径20mmの石英製の反応管内にサンプル(一酸化炭素除去手段)を挿入し、そこに一酸化炭素を20ppmの濃度で含む相対湿度70%の空気を送り込んでこれを触媒組成物と接触させて一酸化炭素除去率を調べる実験を各種の温度条件で行うことで評価した。図1から明らかなように、この一酸化炭素除去手段は、従来から知られている触媒組成物を用いて同様にして作成された一酸化炭素除去手段(Au−Fe,Pt−Al)よりも低温でも優れた一酸化炭素除去率を有していることがわかった。
【0016】
実施例2:一酸化炭素除去手段の作成その2
実施例1における硝酸白金の代わりに硝酸パラジウムを用い、実施例1と同様にしてパラジウム含量が1重量%の触媒組成物が担持された一酸化炭素除去手段を作成した。
この一酸化炭素除去手段の基本特性を図2に示す。図2から明らかなように、この一酸化炭素除去手段は、低温でも優れた一酸化炭素除去率を有していることがわかった。また、この一酸化炭素除去手段の空間速度(SV)54000h−1における一酸化炭素除去率と相対湿度との関係を図3〜図5に示す。図3〜図5から明らかなように、この一酸化炭素除去手段は、相対湿度が低くなるにつれて優れた一酸化炭素除去率を示し、相対湿度15%では反応温度が50℃であっても、60%以上の一酸化炭素除去率を有していることがわかった(図5)。
【0017】
実施例3:一酸化炭素除去手段の作成その3
実施例1におけるセラミックス製のハニカム状フィルターの代わりにアルミニウム製のハニカム状フィルターを用い、実施例1と同様にして担持体が高熱伝導性材料からなる一酸化炭素除去手段を作成した。
【0018】
実施例4:一酸化炭素除去ユニット
図6にその概略斜視断面図を示す一酸化炭素除去ユニットAは、除湿手段Bと加熱手段Cと、例えば、実施例1で作成した一酸化炭素除去手段Dを基本構成としてなる。
除湿手段Bの概略斜視図を図7に示す。この除湿手段Bは、デシカントロータであり、セラミック繊維やガラス繊維などの無機繊維や、これらの無機繊維とパルプとを混合して抄造した平面紙111とコルゲート加工を施した波型紙112とを積層して形成、または、巻き上げて円盤状に形成し、その表面にシリカゲル、活性炭、ゼオライトなどの除湿剤を担持させて構成される。
除湿手段Bは、図中の矢印の方向に多数の小透孔113を有していて通風が可能であり、一酸化炭素を含む気体がこれよりも相対的に湿度が高い場合には小透孔を気体が通過する際に気体に含まれる水分を除湿剤が吸湿することで、除湿された気体が加熱手段Cに導かれるように構成されている。加熱手段Cはヒータであり、一酸化炭素を含む気体は、除湿手段Bと加熱手段Cにより除湿された後に更に加熱され、実施例1で作成した一酸化炭素除去手段Dに導かれて効率的に一酸化炭素が除去される。
なお、この一酸化炭素除去ユニットAにおいては、一酸化炭素除去手段Dから排出された一酸化炭素が除去された気体は高温かつ除湿された状態にあるので、吸湿した除湿手段Bよりも湿度が相対的に低いことから、この気体を吸湿した除湿手段Bに導くようにすれば、小透孔を気体が通過する際に気体に水分が放湿されることで、除湿手段Bの再生を図ることができる。
【0019】
実施例5:空気清浄装置(分煙カウンターその1)
図8にその概略斜視図を示し、図9にその概略断面図を示す。この分煙カウンターは、外枠1に囲まれた本体2と、前記本体2の上部に設けたテーブル3と、このテーブル3のほぼ中央に設けた吸込口4と、この吸込口4の周囲にグリル枠13を設け、このグリル枠13の上に載せたパンチングメタル状の穴を有した吸込みグリル14と、この吸込みグリル14から突出させて設け、人を検知する人感センサー28と、前記吸込口4の下流側には吸込みグリル14を通過した埃を取るプリフィルター15と微細な埃を集塵する集塵フィルター16(例えばHEPAフィルター)で構成した集塵部17と、臭いを除去する脱臭フィルター18を設け、さらに下流側には本体2内を仕切った底板5と、この底板5の上に設けたモーター台7と、このモーター台7の上にはモーター8と両軸に設けられケーシング6で覆われた羽根9とで構成された送風機10が載せられ、前記ケーシング6の吹出し側の端部は底板5に固定されており、吸込口4から下流側方向に空気の流れをつくる構成となっている。
また、本体の底部には手軽に移動できるキャスター12を有した本体脚11と、ケーシング6の吹出し側の端部と連通した排気口29を有した実施例4の一酸化炭素除去ユニット19を設けている。
さらに本体2内部には、電源を供給する電源コード20と接続された制御回路部21を設けるとともに、本体2の側面には運転を切り換える操作部27を設けている。
上記構成により、喫煙者がタバコを吸うために近寄ると、人感センサー28がこれを検知し、制御回路部21によりモーター8に通電され送風機10が動作し本体2内が負圧となる。喫煙者がタバコに火を着けて吸うことによって発生した煙成分や空気中に含まれた埃は、吸込口4に設けられた吸込みグリル14のパンチングメタル状の穴から本体2内に吸込まれ、比較的大きい埃はプリフィルター15によって除去され、プリフィルター15を通過した比較的小さい埃は集塵フィルター16によって微細な埃まで除去される。
空気中の臭いは、脱臭フィルター18によって吸着され、除塵・脱臭された空気は送風機10のケーシング6と羽根9の中を通過し、一酸化炭素除去ユニット19内で一酸化炭素を除去し、排気口29から周囲に排出される。また、喫煙者がタバコを吸い終わりその場を立ち去ると、これを人感センサー28が検知したのち約5分間(置きタバコをしても燃え尽きる時間)残置運転を行ない停止する。
この場合、人を人感センサー28が検知して動作したが、操作部分の運転スイッチをONにして動作させても同じである。
なお、一酸化炭素除去ユニット19は、一酸化炭素に加えてアセトアルデヒドやアンモニアなどの有害ガスも除去するので室内空気のよりいっそうの清浄化に寄与する。
また、この分煙カウンターにおいては、一酸化炭素除去ユニット19を送風機10の下流側に設けているが、送風機10の上流側(例えば集塵フィルター16と送風機10の間)に設けても、その効果は変らない。
【0020】
実施例6:空気清浄装置(分煙カウンターその2)
図10にその概略断面図を示す。この分煙カウンターは、ケーシング6の吹出し側の端部に排気の空気の一部(例えば1m/min)を取り込む排気取り込み口30を設け、更にこの下流側には排気される空気に含まれる一酸化炭素を除去する実施例4の一酸化炭素除去ユニット19を本体底部に設けている。空気中の臭いは、脱臭フィルター18によって吸着され、浄化された空気は送風機10のケーシング6と羽根9の中を通過し、排気口29より外部へ排気されるが、排気の一部(例えば1m/min)は排気取り込み口30から一酸化炭素除去ユニット19内に取り込まれ、一酸化炭素を除去し、排気口29から周囲に排出される。これにより、換気のない密閉された喫煙室においても、一酸化炭素除去ユニット19で浄化された1m/minの空気が循環することで、タバコに含まれた一酸化炭素をある一定レベル濃度(ビル管理法の基準値10ppm)以下に抑えることができるとともに、アセトアルデヒドやアンモニアなどの有害ガスも除去され、室内空気のよりいっそうの清浄化が図られる。その他の構成は実施例5に示した分煙カウンターと同様である。
【0021】
【発明の効果】
本発明によれば、少ないエネルギー消費量で一酸化炭素を含む気体からこれを除去するための一酸化炭素除去ユニット、一酸化炭素除去方法、空気清浄装置および一酸化炭素除去触媒組成物が提供される。
【図面の簡単な説明】
【図1】実施例1の一酸化炭素除去手段の基本特性を示すグラフ。
【図2】実施例2の一酸化炭素除去手段の基本特性を示すグラフ。
【図3】実施例2の一酸化炭素除去手段の一酸化炭素除去率と相対湿度との関係を示すグラフ(その1)。
【図4】同(その2)。
【図5】同(その3)。
【図6】実施例4の一酸化炭素除去ユニットの概略斜視断面図。
【図7】実施例4の一酸化炭素除去ユニットに用いられる除湿手段の概略斜視図。
【図8】実施例5の分煙フィルターの概略斜視図。
【図9】同、概略断面図。
【図10】実施例6の分煙フィルターの概略断面図。
【符号の説明】
A 一酸化炭素除去ユニット
B 除湿手段
C 加熱手段
D 一酸化炭素除去手段
111 平面紙
112 波型紙
113 小透孔
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a carbon monoxide removing unit, a method for removing carbon monoxide, an air purifier, and a catalyst composition for removing carbon monoxide for removing gas from a gas containing carbon monoxide with low energy consumption.
[0002]
[Prior art]
It is well known that carbon monoxide is harmful to the human body, and various methods have been studied for efficiently removing carbon monoxide contained in automobile exhaust gas and the like. In addition, since carbon monoxide generated during the production of hydrogen used in fuel cells hinders fuel cell power generation, it is important in the technical field related to fuel cells how to efficiently remove carbon monoxide. Technical issues.
At present, a method of removing carbon monoxide that has been actively studied is a catalyst composition containing a transition metal having the ability to oxidize carbon monoxide, and oxidizes carbon monoxide by a catalytic reaction to produce carbon dioxide. (See, for example, Patent Document 1 below).
[0003]
[Patent Document 1]
Japanese Patent No. 3251009
[Problems to be solved by the invention]
However, in order to oxidize carbon monoxide to convert it into carbon dioxide by a catalytic reaction, it is usually necessary to raise the reaction temperature to 200 ° C. or higher, so that further study is required from the viewpoint of energy saving.
Accordingly, the present invention provides a carbon monoxide removal unit, a method for removing carbon monoxide, an air cleaning device, and a catalyst composition for removing carbon monoxide for removing carbon monoxide from a gas containing less energy. With the goal.
[0005]
[Means for Solving the Problems]
In the carbon monoxide removing unit of the present invention made in view of the above point, as described in claim 1, a carbon monoxide removing means is provided at a stage subsequent to the dehumidifying means, and the gas containing carbon monoxide is dehumidified. It is characterized in that carbon monoxide is removed later.
Further, the carbon monoxide removing unit according to claim 2 is the carbon monoxide removing unit according to claim 1, further comprising a heating unit disposed between the dehumidifying unit and the carbon monoxide removing unit. It is characterized in that carbon monoxide is removed after further heating after dehumidifying the contained gas.
Further, the carbon monoxide removing unit according to claim 3 is the same as the carbon monoxide removing unit according to claim 2, wherein the carbon monoxide removing unit is guided to the carbon monoxide removing unit to absorb the gas from which carbon monoxide has been removed. The dehumidifying means is regenerated by releasing the moisture into the gas from the dehumidifying means.
A carbon monoxide removing unit according to a fourth aspect is characterized in that, in the carbon monoxide removing unit according to any one of the first to third aspects, the dehumidifying means is constituted by desiccant.
According to a fifth aspect of the present invention, there is provided the carbon monoxide removing unit according to any one of the first to fourth aspects, wherein a catalyst composition containing a transition metal having a carbon monoxide oxidizing ability is supported. The carbon monoxide removing means is constituted by the carrier.
The carbon monoxide removing unit according to claim 6 is the carbon monoxide removing unit according to claim 5, wherein the transition metal having carbon monoxide oxidizing ability is at least one selected from ruthenium, rhodium, palladium, and platinum. There is a feature.
Further, the carbon monoxide removing unit according to claim 7 is the carbon monoxide removing unit according to claim 5, wherein the catalyst composition comprises a transition metal having a carbon monoxide oxidizing ability and chromium, iron, cobalt, and copper. It is characterized by comprising at least one selected transition metal and a composite oxide mainly composed of manganese.
The carbon monoxide removing unit according to an eighth aspect is characterized in that, in the carbon monoxide removing unit according to the fifth aspect, the carrier is made of a material having high thermal conductivity.
According to the carbon monoxide removing method of the present invention, the gas containing carbon monoxide is guided to a dehumidifying unit to dehumidify the gas and then guided to the carbon monoxide removing unit to remove the carbon monoxide. It is characterized by.
According to a tenth aspect of the present invention, there is provided the carbon monoxide removal method according to the ninth aspect, wherein the carbon monoxide is supported by a carrier carrying a catalyst composition containing a transition metal having a carbon monoxide oxidizing ability. It is characterized by constituting a removing means.
In the carbon monoxide removing method according to the eleventh aspect, in the carbon monoxide removing method according to the tenth aspect, the carbon monoxide oxidizing ability of the catalyst composition is increased by heating the carbon monoxide removing means at predetermined time intervals. Reproduction is performed.
A carbon monoxide removing method according to a twelfth aspect is characterized in that, in the carbon monoxide removing method according to the eleventh aspect, hot air is guided to a carbon monoxide removing means to heat it.
Further, the air purifying apparatus of the present invention, as described in claim 13, is provided with a carbon monoxide removing means after the dehumidifying means, and removes the carbon monoxide after dehumidifying the gas containing carbon monoxide. A carbon monoxide removing unit.
Further, the catalyst composition of the present invention is, as described in claim 14, a composite mainly composed of manganese and a transition metal having a carbon monoxide oxidizing ability, and at least one transition metal selected from chromium, iron, cobalt, and copper. It is characterized by comprising an oxide.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is to remove carbon monoxide by guiding a gas containing carbon monoxide to a dehumidifying means and then dehumidifying the gas to a carbon monoxide removing means, if necessary. Conventionally, in order to remove a carbon monoxide by oxidizing carbon monoxide to carbon dioxide by a catalytic reaction using a catalyst composition containing a transition metal having carbon monoxide oxidizing ability, the reaction temperature is increased to 200 ° C. or more. Although it was necessary, according to the present invention, by preliminarily dehumidifying the gas containing carbon monoxide, it is possible to efficiently remove the carbon monoxide by promoting the catalytic reaction at a lower temperature. Energy saving can be achieved.
[0007]
The dehumidifying means in the present invention is composed of, for example, a desiccant (a dehumidifying agent such as silica gel, activated carbon and zeolite).
[0008]
The carbon monoxide removing means in the present invention is constituted by, for example, a carrier carrying a catalyst composition containing a transition metal having carbon monoxide oxidizing ability. Here, ruthenium, rhodium, palladium, platinum and the like are preferably used as the transition metal having carbon monoxide oxidizing ability. The catalyst composition may be of any composition as long as it contains a transition metal having a carbon monoxide oxidizing ability, but among them, a transition metal having a carbon monoxide oxidizing ability, chromium, iron, Cobalt, at least one transition metal selected from copper and a composite oxide mainly composed of manganese, conventionally known, a transition metal having carbon monoxide oxidizing ability and iron oxide or alumina It is preferably used as a material capable of efficiently removing carbon monoxide at a lower temperature and capable of efficiently removing harmful gases such as acetaldehyde and ammonia.
[0009]
A transition metal having the ability to oxidize carbon monoxide, chromium, iron, cobalt, a catalyst composition comprising a composite oxide mainly composed of manganese and at least one transition metal selected from copper, for example, first, chromium, iron A pH adjuster such as aqueous ammonia is added to an aqueous solution in which a salt of at least one transition metal selected from cobalt, copper (nitrate or sulfate) and a manganese salt (nitrate or sulfate) are dissolved. The composite oxide is obtained by calcining the hydroxide precipitated in the aqueous solution at 200 ° C. to 300 ° C. in air to remove impurities. An aqueous solution in which a salt of a transition metal having a carbon oxide oxidizing ability (a nitrate, a sulfate or the like) is dissolved is dispersed in the composite oxide, and the mixture is calcined at 200 to 300 ° C. in air to remove impurities. To make It can be prepared. The catalyst composition thus prepared, for example, was dispersed in water with a binder such as silica sol and uniformly mixed to form a slurry, which was applied to a carrier such as a ceramic honeycomb filter. Thereafter, the carbon monoxide is removed by firing at 200 ° C. to 300 ° C. in the air. The ceramic carrier is excellent in the adhesiveness of the slurry-like material, so it can carry a large amount of catalyst composition even with a small amount of binder, there is little fear of corrosion by harmful gas components, and the price is low. It is convenient in such points.
In addition, an aqueous solution in which a transition metal salt having carbon monoxide oxidizing ability is dissolved is dispersed in the above-described composite oxide, for example, by uniformly mixing with a binder such as silica sol to form a slurry, May be applied to a carrier such as a honeycomb filter made of ceramics, and then calcined in air at 200 ° C. to 300 ° C. to desorb impurities to provide carbon monoxide removing means.
[0010]
In the carbon monoxide removing unit of the present invention, when the carbon monoxide removing means is constituted by a carrier carrying a catalyst composition containing a transition metal having carbon monoxide oxidizing ability, the dehumidifying means and the carbon monoxide removing means It is preferable that a heating means is further provided between the two to dehumidify the gas containing carbon monoxide and then further heat and then remove the carbon monoxide. By adopting such an embodiment, if a gas containing high-temperature carbon monoxide is brought into contact with the catalyst composition, carbon monoxide can be effectively oxidized to carbon dioxide, so that the carbon monoxide removal efficiency can be improved. Can be further increased. Further, since the gas from which the carbon monoxide has been removed from the carbon monoxide removing means has a high temperature and is in a dehumidified state, if the gas is led to the dehumidifying means which has absorbed the moisture, the moisture is removed from the dehumidifying means. There is also an advantage that the dehumidifying means can be regenerated because it is released into gas.
[0011]
When the carbon monoxide removing means is constituted by a carrier carrying a catalyst composition containing a transition metal having a carbon monoxide oxidizing ability, moisture adheres to the surface of the catalyst composition over a long period of use, and May act as a catalyst poison and reduce the ability of the catalyst composition to oxidize carbon monoxide. In order to avoid such a phenomenon as much as possible, in the carbon monoxide removing unit of the present invention, it is preferable to further provide a heating means between the dehumidifying means and the carbon monoxide removing means to dehumidify the gas containing carbon monoxide. After heating, carbon monoxide is removed. Nevertheless, it is not always easy to completely deny the possibility of such a phenomenon. Therefore, it is preferable to regenerate the carbon monoxide oxidizing ability of the catalyst composition by heating the carbon monoxide removing means at predetermined intervals to evaporate and remove the moisture adhering to the surface of the catalyst composition. As a method for heating the carbon monoxide removing means, for example, a method in which hot air is generated by a heating means disposed in front of the carbon monoxide removing means, and the generated hot air is guided to the carbon monoxide removing means. For example, by heating the carbon monoxide removing means to 200 ° C. or more (preferably about 250 ° C.) once a day, the catalyst composition can be effectively regenerated with the ability to oxidize carbon monoxide. . At this time, if the support for supporting the catalyst composition is made of a high heat conductive material such as aluminum or stainless steel, the temperature of the carbon monoxide removing means rises quickly, so that the catalyst composition can be oxidized with carbon monoxide. Noh regeneration can be performed quickly with low energy consumption.
[0012]
In addition, by providing an air purifying unit in front of the dehumidifying unit, a gas containing carbon monoxide may be purified before being guided to the dehumidifying unit. Further, by arranging a cooling means in front of the dehumidifying means, the relative humidity of the gas containing carbon monoxide may be once increased and then guided to the dehumidifying means.
[0013]
The use of the carbon monoxide removal unit of the present invention is not particularly limited. For example, the unit can be used by incorporating it into an air purifying device (such as a smoke separation counter), or by incorporating it into a fuel cell manufacturing device. You can also.
[0014]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention should not be construed as being limited to the following description.
[0015]
Example 1: Preparation of carbon monoxide removing means 1
Aqueous ammonia is added dropwise to an aqueous solution in which cobalt nitrate and manganese nitrate are dissolved (adjusted so that cobalt and manganese are contained at an atomic ratio of 1: 1) to precipitate hydroxides of cobalt and manganese, which are filtered and filtered. Collected. The collected precipitate was calcined at 250 ° C. in the air to remove impurities, thereby obtaining a composite oxide of cobalt and manganese. Next, an aqueous solution in which platinum nitrate was dissolved was dispersed in this composite oxide, and this was uniformly mixed with silica sol to form a slurry. A ceramic honeycomb filter having a diameter of 20 mm and a length of 40 mm is immersed in the slurry, pulled up, and then baked at 250 ° C. in the air to remove impurities, so that the platinum content is 1% by weight. A carbon monoxide removing means carrying 1.1 g of the catalyst composition was prepared.
FIG. 1 shows the basic characteristics of the carbon monoxide removing means (Pt—CoMn). The basic characteristic is that a sample (carbon monoxide removing means) is inserted into a quartz reaction tube having an inner diameter of 20 mm which can be heated by a heater from the outside, and contains carbon monoxide at a concentration of 20 ppm and a relative humidity of 70%. An experiment was conducted in which air was supplied and brought into contact with the catalyst composition to examine the carbon monoxide removal rate under various temperature conditions. As is clear from FIG. 1, the carbon monoxide removing means is a carbon monoxide removing means (Au—Fe 2 O 3 , Pt—Al) similarly prepared using a conventionally known catalyst composition. It was found that it had an excellent carbon monoxide removal rate even at lower temperatures than 2 O 3 ).
[0016]
Example 2: Preparation of carbon monoxide removing means Part 2
Palladium nitrate was used in place of platinum nitrate in Example 1, and a carbon monoxide removing means carrying a catalyst composition having a palladium content of 1% by weight was prepared in the same manner as in Example 1.
FIG. 2 shows the basic characteristics of the carbon monoxide removing means. As is clear from FIG. 2, the carbon monoxide removing means has an excellent carbon monoxide removing rate even at a low temperature. FIGS. 3 to 5 show the relationship between the carbon monoxide removal rate and the relative humidity at a space velocity (SV) of 54000 h -1 of the carbon monoxide removal means. As is clear from FIGS. 3 to 5, the carbon monoxide removing means shows an excellent carbon monoxide removal rate as the relative humidity decreases, and even if the reaction temperature is 50 ° C. at a relative humidity of 15%, It was found to have a carbon monoxide removal rate of 60% or more (FIG. 5).
[0017]
Example 3: Preparation of carbon monoxide removing means Part 3
Using a honeycomb filter made of aluminum instead of the honeycomb filter made of ceramics in Example 1, a carbon monoxide removing means in which the carrier was made of a high heat conductive material was prepared in the same manner as in Example 1.
[0018]
Embodiment 4: Carbon monoxide removal unit A carbon monoxide removal unit A whose schematic perspective sectional view is shown in FIG. 6 includes a dehumidifying means B and a heating means C, for example, the carbon monoxide removing means D prepared in Example 1. Is a basic configuration.
FIG. 7 shows a schematic perspective view of the dehumidifying means B. The dehumidifying means B is a desiccant rotor, and laminates inorganic fibers such as ceramic fibers and glass fibers, and flat paper 111 formed by mixing these inorganic fibers and pulp and corrugated corrugated paper 112. Or rolled up to form a disc, and the surface thereof is supported with a dehumidifying agent such as silica gel, activated carbon, or zeolite.
The dehumidifying means B has a large number of small holes 113 in the direction of the arrow in the drawing to allow ventilation, and when the gas containing carbon monoxide has a relatively higher humidity than this, the small amount The dehumidifier absorbs moisture contained in the gas when the gas passes through the holes, so that the dehumidified gas is guided to the heating means C. The heating means C is a heater, and the gas containing carbon monoxide is further heated after being dehumidified by the dehumidifying means B and the heating means C, and is guided to the carbon monoxide removing means D prepared in Example 1 for efficient operation. Carbon monoxide is removed.
In the carbon monoxide removing unit A, the gas from which the carbon monoxide has been removed from the carbon monoxide removing means D is in a high temperature and dehumidified state. Since the gas is guided to the dehumidifying means B which has absorbed moisture, since the gas is relatively low, moisture is released into the gas when the gas passes through the small through-holes, thereby regenerating the dehumidifying means B. be able to.
[0019]
Example 5: Air purification device (smoke separation counter 1)
FIG. 8 is a schematic perspective view, and FIG. 9 is a schematic sectional view. The smoke counter comprises a main body 2 surrounded by an outer frame 1, a table 3 provided on the upper part of the main body 2, a suction port 4 provided substantially at the center of the table 3, and a grill around the suction port 4. A suction grille 14 having a punched metal hole mounted on the grille frame 13; a human sensor 28 protruding from the suction grille 14 for detecting a person; On the downstream side of 4, a dust collecting section 17 composed of a pre-filter 15 for collecting dust passing through the suction grill 14 and a dust collecting filter 16 (for example, HEPA filter) for collecting fine dust, and a deodorizing filter for removing odors Further, on the downstream side, a bottom plate 5 partitioning the inside of the main body 2, a motor stand 7 provided on the bottom plate 5, and a motor 8 and a casing provided on both shafts on the motor stand 7 A blower 10 composed of a blade 9 covered with 6 is mounted, and an end of the casing 6 on the blow-out side is fixed to a bottom plate 5 to create a flow of air in a downstream direction from the suction port 4. It has become.
Further, at the bottom of the main body, there are provided a main body leg 11 having a caster 12 which can be easily moved, and a carbon monoxide removing unit 19 having an exhaust port 29 communicating with an end of the casing 6 on the blowing side. ing.
Further, a control circuit unit 21 connected to a power cord 20 for supplying power is provided inside the main body 2, and an operation unit 27 for switching operation is provided on a side surface of the main body 2.
With the above configuration, when the smoker approaches to smoke a cigarette, the human sensor 28 detects this, and the motor 8 is energized by the control circuit unit 21 to operate the blower 10, so that the inside of the main body 2 has a negative pressure. Smoke components generated by the smoker igniting the cigarette and dust contained in the air are sucked into the main body 2 through a perforated metal-shaped hole of a suction grill 14 provided in the suction port 4, The relatively large dust is removed by the pre-filter 15, and the relatively small dust that has passed through the pre-filter 15 is removed by the dust collecting filter 16 to fine dust.
The odor in the air is adsorbed by the deodorizing filter 18, and the dedusted and deodorized air passes through the casing 6 and the blade 9 of the blower 10, removes carbon monoxide in the carbon monoxide removing unit 19, and exhausts the air. It is discharged from the mouth 29 to the surroundings. Further, when the smoker finishes smoking and leaves the place, the human sensor 28 detects this and stops the remaining operation for about 5 minutes (the time when the cigarette burns out even if the cigarette is put out).
In this case, the human sensor 28 detects a person and operates, but the same is true even when the operation switch of the operation part is turned on to operate.
The carbon monoxide removal unit 19 also removes harmful gases such as acetaldehyde and ammonia in addition to carbon monoxide, and thus contributes to further purification of indoor air.
Further, in this smoke separation counter, the carbon monoxide removing unit 19 is provided on the downstream side of the blower 10. However, even if it is provided on the upstream side of the blower 10 (for example, between the dust collecting filter 16 and the blower 10), the effect can be improved. Does not change.
[0020]
Example 6: Air purification device (smoke separation counter part 2)
FIG. 10 shows a schematic sectional view thereof. This smoke separation counter is provided with an exhaust intake port 30 for taking in a part of the exhaust air (for example, 1 m 3 / min) at the end of the casing 6 on the blow-out side, and further downstream of the exhaust air intake port. Embodiment 4 A carbon monoxide removing unit 19 for removing carbon oxide according to the fourth embodiment is provided at the bottom of the main body. The odor in the air is adsorbed by the deodorizing filter 18, and the purified air passes through the casing 6 and the blades 9 of the blower 10 and is exhausted to the outside through an exhaust port 29. 3 / min) is taken into the carbon monoxide removal unit 19 through the exhaust gas inlet 30 to remove carbon monoxide, and is discharged from the exhaust gas outlet 29 to the surroundings. As a result, even in a closed smoking room without ventilation, the air of 1 m 3 / min purified by the carbon monoxide removing unit 19 circulates, and thus the carbon monoxide contained in the tobacco is at a certain concentration ( It can be suppressed to below the building management law reference value of 10 ppm), and at the same time, harmful gases such as acetaldehyde and ammonia are also removed, thereby further purifying the indoor air. Other configurations are the same as those of the smoke counter shown in the fifth embodiment.
[0021]
【The invention's effect】
According to the present invention, there is provided a carbon monoxide removing unit, a carbon monoxide removing method, an air purifying apparatus, and a carbon monoxide removing catalyst composition for removing carbon monoxide from a gas containing carbon monoxide with low energy consumption. You.
[Brief description of the drawings]
FIG. 1 is a graph showing basic characteristics of a carbon monoxide removing unit according to a first embodiment.
FIG. 2 is a graph showing basic characteristics of carbon monoxide removing means in Example 2.
FIG. 3 is a graph showing the relationship between the carbon monoxide removal rate and the relative humidity in the carbon monoxide removal means of Example 2 (part 1).
FIG. 4 (No. 2).
FIG. 5 (No. 3).
FIG. 6 is a schematic perspective sectional view of a carbon monoxide removing unit according to a fourth embodiment.
FIG. 7 is a schematic perspective view of a dehumidifying unit used in a carbon monoxide removing unit according to a fourth embodiment.
FIG. 8 is a schematic perspective view of a smoke separating filter according to a fifth embodiment.
FIG. 9 is a schematic sectional view of the same.
FIG. 10 is a schematic sectional view of a smoke separating filter according to a sixth embodiment.
[Explanation of symbols]
A Carbon monoxide removal unit B Dehumidification means C Heating means D Carbon monoxide removal means 111 Flat paper 112 Corrugated paper 113 Small through-hole

Claims (14)

除湿手段の後段に一酸化炭素除去手段を配してなり、一酸化炭素を含む気体を除湿した後に一酸化炭素を除去するようにしたことを特徴とする一酸化炭素除去ユニット。A carbon monoxide removing unit comprising a carbon monoxide removing means disposed downstream of the dehumidifying means so as to remove carbon monoxide after dehumidifying a gas containing carbon monoxide. 除湿手段と一酸化炭素除去手段の間に更に加熱手段を配してなり、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにしたことを特徴とする請求項1記載の一酸化炭素除去ユニット。A heating means is further provided between the dehumidifying means and the carbon monoxide removing means, and the carbon monoxide is removed after dehumidifying the gas containing carbon monoxide and then further heating. Item 1. A carbon monoxide removal unit according to Item 1. 一酸化炭素除去手段に導かれることで一酸化炭素が除去された気体を吸湿した除湿手段に導き、除湿手段から水分を当該気体に放出させることで除湿手段を再生するようにしたことを特徴とする請求項2記載の一酸化炭素除去ユニット。The gas from which carbon monoxide has been removed is led to the dehumidifying means that has absorbed moisture by being guided to the carbon monoxide removing means, and the dehumidifying means is regenerated by releasing moisture from the dehumidifying means to the gas. The carbon monoxide removal unit according to claim 2. デシカントにより除湿手段を構成することを特徴とする請求項1乃至3のいずれかに記載の一酸化炭素除去ユニット。The carbon monoxide removal unit according to any one of claims 1 to 3, wherein the desiccant constitutes a dehumidifying unit. 一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成することを特徴とする請求項1乃至4のいずれかに記載の一酸化炭素除去ユニット。The carbon monoxide removing unit according to any one of claims 1 to 4, wherein the carbon monoxide removing means is constituted by a carrier carrying a catalyst composition containing a transition metal having carbon monoxide oxidizing ability. . 一酸化炭素酸化能を有する遷移金属がルテニウム、ロジウム、パラジウム、白金から選ばれる少なくとも一つであることを特徴とする請求項5記載の一酸化炭素除去ユニット。The carbon monoxide removal unit according to claim 5, wherein the transition metal having carbon monoxide oxidizing ability is at least one selected from ruthenium, rhodium, palladium, and platinum. 触媒組成物が、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなることを特徴とする請求項5記載の一酸化炭素除去ユニット。The catalyst composition comprises a transition metal having a carbon monoxide oxidizing ability, and a composite oxide mainly composed of manganese and at least one transition metal selected from chromium, iron, cobalt, and copper. 5. A unit for removing carbon monoxide according to 5. 担持体が高熱伝導性材料からなることを特徴とする請求項5記載の一酸化炭素除去ユニット。The carbon monoxide removal unit according to claim 5, wherein the carrier is made of a material having high thermal conductivity. 一酸化炭素を含む気体を除湿手段に導いて除湿した後に一酸化炭素除去手段に導くことで一酸化炭素を除去することを特徴とする一酸化炭素除去方法。A method for removing carbon monoxide, comprising: introducing a gas containing carbon monoxide to a dehumidifying unit, dehumidifying the gas, and then guiding the gas to a carbon monoxide removing unit to remove the carbon monoxide. 一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成することを特徴とする請求項9記載の一酸化炭素除去方法。10. The method for removing carbon monoxide as claimed in claim 9, wherein the carrier carrying the catalyst composition containing a transition metal having carbon monoxide oxidizing ability constitutes a means for removing carbon monoxide. 一酸化炭素除去手段を所定時間おきに加熱することで触媒組成物の一酸化炭素酸化能の再生を行うことを特徴とする請求項10記載の一酸化炭素除去方法。The carbon monoxide removing method according to claim 10, wherein the carbon monoxide oxidizing ability of the catalyst composition is regenerated by heating the carbon monoxide removing means at predetermined time intervals. 熱風を一酸化炭素除去手段に導くことでこれを加熱することを特徴とする請求項11記載の一酸化炭素除去方法。12. The method for removing carbon monoxide according to claim 11, wherein the hot air is guided to a carbon monoxide removing means to heat it. 除湿手段の後段に一酸化炭素除去手段を配してなり、一酸化炭素を含む気体を除湿した後に一酸化炭素を除去するようにした一酸化炭素除去ユニットを備えてなることを特徴とする空気清浄装置。Air characterized by comprising a carbon monoxide removing unit disposed downstream of the dehumidifying unit, and a carbon monoxide removing unit configured to remove carbon monoxide after dehumidifying a gas containing carbon monoxide. Purifier. 一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなることを特徴とする触媒組成物。A catalyst composition comprising a transition metal having an ability to oxidize carbon monoxide, and a composite oxide mainly composed of manganese and at least one transition metal selected from chromium, iron, cobalt, and copper.
JP2003088841A 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition Expired - Fee Related JP4309162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088841A JP4309162B2 (en) 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002353067 2002-12-04
JP2003088841A JP4309162B2 (en) 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition

Publications (2)

Publication Number Publication Date
JP2004230368A true JP2004230368A (en) 2004-08-19
JP4309162B2 JP4309162B2 (en) 2009-08-05

Family

ID=32964413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088841A Expired - Fee Related JP4309162B2 (en) 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition

Country Status (1)

Country Link
JP (1) JP4309162B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222863A (en) * 2005-03-31 2007-09-06 Daikin Ind Ltd Material, apparatus and member for removing carbon monoxide, and method of manufacturing member for removing carbon monoxide
US7850937B2 (en) 2005-01-25 2010-12-14 Samsung Sdi Co., Ltd. Catalytic system for removing carbon monoxide, and processor and fuel cell system using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100535A (en) 2020-12-24 2022-07-06 大陽日酸株式会社 Stable isotope concentration apparatus and stable isotope concentration method

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986272A (en) * 1972-12-25 1974-08-19
JPS526276B2 (en) * 1973-11-22 1977-02-21
JPS526277B2 (en) * 1973-11-22 1977-02-21
JPS543820B1 (en) * 1971-04-01 1979-02-27
JPS5528745A (en) * 1978-08-22 1980-02-29 Shimizu Constr Co Ltd Air purification apparatus
JPS61227842A (en) * 1985-03-30 1986-10-09 Japan Tobacco Inc Removing agent for carbon monoxide
JPH0368419A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Deodorizing device and air cleaner using it
JPH0523542A (en) * 1991-07-22 1993-02-02 Daikin Ind Ltd Harmful gas removing apparatus
JPH05253483A (en) * 1992-03-12 1993-10-05 Matsushita Electric Ind Co Ltd Catalyst composition
JPH05317651A (en) * 1992-05-18 1993-12-03 Daikin Ind Ltd Catalytic device
JPH09173781A (en) * 1995-12-22 1997-07-08 Aqueous Res:Kk Catalytic filter for removing carbon monoxide
JPH10290923A (en) * 1997-04-21 1998-11-04 Matsushita Electric Ind Co Ltd Air cleaner
JPH11165022A (en) * 1997-12-02 1999-06-22 Matsushita Electric Ind Co Ltd Air purifier
JPH11267457A (en) * 1998-03-25 1999-10-05 Matsushita Electric Ind Co Ltd Air cleaner
JP2000516525A (en) * 1996-08-07 2000-12-12 ゴール ライン エンビロンメンタル テクノロジーズ Removal of contaminants from air in confined spaces
JP2002011087A (en) * 2000-06-28 2002-01-15 Daikin Ind Ltd Air purifying device
JP2002079046A (en) * 2000-09-04 2002-03-19 Matsushita Electric Ind Co Ltd Gas cleaner

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543820B1 (en) * 1971-04-01 1979-02-27
JPS4986272A (en) * 1972-12-25 1974-08-19
JPS526276B2 (en) * 1973-11-22 1977-02-21
JPS526277B2 (en) * 1973-11-22 1977-02-21
JPS5528745A (en) * 1978-08-22 1980-02-29 Shimizu Constr Co Ltd Air purification apparatus
JPS61227842A (en) * 1985-03-30 1986-10-09 Japan Tobacco Inc Removing agent for carbon monoxide
JPH0368419A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Deodorizing device and air cleaner using it
JPH0523542A (en) * 1991-07-22 1993-02-02 Daikin Ind Ltd Harmful gas removing apparatus
JPH05253483A (en) * 1992-03-12 1993-10-05 Matsushita Electric Ind Co Ltd Catalyst composition
JPH05317651A (en) * 1992-05-18 1993-12-03 Daikin Ind Ltd Catalytic device
JPH09173781A (en) * 1995-12-22 1997-07-08 Aqueous Res:Kk Catalytic filter for removing carbon monoxide
JP2000516525A (en) * 1996-08-07 2000-12-12 ゴール ライン エンビロンメンタル テクノロジーズ Removal of contaminants from air in confined spaces
JPH10290923A (en) * 1997-04-21 1998-11-04 Matsushita Electric Ind Co Ltd Air cleaner
JPH11165022A (en) * 1997-12-02 1999-06-22 Matsushita Electric Ind Co Ltd Air purifier
JPH11267457A (en) * 1998-03-25 1999-10-05 Matsushita Electric Ind Co Ltd Air cleaner
JP2002011087A (en) * 2000-06-28 2002-01-15 Daikin Ind Ltd Air purifying device
JP2002079046A (en) * 2000-09-04 2002-03-19 Matsushita Electric Ind Co Ltd Gas cleaner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850937B2 (en) 2005-01-25 2010-12-14 Samsung Sdi Co., Ltd. Catalytic system for removing carbon monoxide, and processor and fuel cell system using the same
JP2007222863A (en) * 2005-03-31 2007-09-06 Daikin Ind Ltd Material, apparatus and member for removing carbon monoxide, and method of manufacturing member for removing carbon monoxide

Also Published As

Publication number Publication date
JP4309162B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
KR101419481B1 (en) Deodorizing catalyst filter and air sterilizer having reproduction unit of it
JPH11221442A (en) Composite deodorizing and dust collecting filter
JP4309162B2 (en) Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition
JP2005224703A (en) Auto-regenerating filter for removing harmful gas, its manufacturing method, air purifier and air conditioning system
JP4145691B2 (en) Carbon monoxide removal unit, carbon monoxide removal method, and air cleaning device
JPH11197456A (en) Catalyst heater and dehumidifier using same
JPH0368419A (en) Deodorizing device and air cleaner using it
JP2000217897A (en) Air purifying material and air purifying device using same
JP4834911B2 (en) Air purification device
JPH02251226A (en) Air cleaning apparatus
JPH09173781A (en) Catalytic filter for removing carbon monoxide
JP2006017425A (en) Air conditioner
KR0138712B1 (en) Deodorizing filter
JPH10290923A (en) Air cleaner
JP2000146236A (en) Air cleaner and air conditioner
JP2002165869A (en) Filtration equipment and air conditioner
JPH11155937A (en) Air cleaning device
JP2002011087A (en) Air purifying device
JP2001227031A (en) Toilet deodorizing machine
JP2000121162A (en) Fan heater with air cleaning function and deodorizing method
JPH11267457A (en) Air cleaner
JP2004209433A (en) Deodorization filter and blowing device
JPH10202046A (en) Dust collecting and deodorizing filter for air conditioner and regenerating method thereof
JPH10314542A (en) Air cleaner
JPH11156138A (en) Air cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees