JP2004228940A - Inverse f antenna for radio equipment - Google Patents

Inverse f antenna for radio equipment Download PDF

Info

Publication number
JP2004228940A
JP2004228940A JP2003014563A JP2003014563A JP2004228940A JP 2004228940 A JP2004228940 A JP 2004228940A JP 2003014563 A JP2003014563 A JP 2003014563A JP 2003014563 A JP2003014563 A JP 2003014563A JP 2004228940 A JP2004228940 A JP 2004228940A
Authority
JP
Japan
Prior art keywords
antenna
conductor
inverted
rectangular radiation
ground conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014563A
Other languages
Japanese (ja)
Inventor
Masatoshi Otsuka
正敏 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003014563A priority Critical patent/JP2004228940A/en
Publication of JP2004228940A publication Critical patent/JP2004228940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize and thin an inverse F antenna for radio equipment used in the radio equipment or the like. <P>SOLUTION: The inverse F antenna for the radio equipment is provided with a rectangular radiation conductor 1 made of a conductive metal such as a sheet metal, a ground conductor 2 facing the rectangular radiation conductor 1 with an interval, a short-circuiting means 3 for connecting the rectangular radiation conductor 1 and the ground conductor 2, a power feeder means 4 for feeding power to the rectangular radiation conductor 1, and a dielectric substrate 5 holding the main part of the inverse F antenna for the radio equipment and formed with a circuit for processing signals. The ground conductor 2 is formed on the opposite surface of the dielectric substrate 5 from a rectangular radiation conductor side and no other ground conductor is present between the ground conductor 2 and the rectangular radiation conductor 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無線機本体に内蔵することが可能な無線機用逆Fアンテナに関する。
【0002】
【従来の技術】
近年、小型無線機用アンテナには、モノポールアンテナ、ループアンテナまたは板状逆Fアンテナ(以下逆Fアンテナと呼称する)などがよく用いられているが、中でも逆Fアンテナは小型、薄型であり、比較的に高利得なため、携帯電話機やコードレス電話機などの内蔵アンテナとして多く用いられている(たとえば特許文献1参照)。
【0003】
ここで、一般に広く用いられている逆Fアンテナの概略図を図4に示す。図4において、21は使用周波数の波長の1/2波長以内の板金等の導電性金属で形成された矩形放射導体、22はアース導体、23は矩形放射導体21のエッジの一部とアース導体22を接続する短絡手段、24は矩形放射導体21とアース導体22との空隙間に給電している給電手段である。
【0004】
【特許文献1】
特開昭58−104504号公報(第15−19図、第2図)
【0005】
【発明が解決しようとする課題】
しかしながら、逆Fアンテナは矩形放射導体21とアース導体22の間が空気(比誘電率:ε=1)で構成されるため、共振周波数および帯域幅が決まると電流経路長(λ/2またはλ/4)およびアンテナ幅はほぼ一義的に導き出されるため、逆Fアンテナ自体の形状を小型・薄型化することが難しいといった問題点があった。
【0006】
本発明は上記従来の問題点に留意し、小型・薄型な無線機用逆Fアンテナを提供することを目的とする。
【0007】
【課題を解決するための手段】
この目的を達成するために本発明は、矩形放射導体と、前記矩形放射導体に対向したアース導体と、前記矩形放射導体と前記アース導体とを接続する短絡手段と、前記放射導体に給電する給電手段と、無線機用逆Fアンテナ主要部の保持ならびに信号処理を行う回路が形成された誘電体基板を有する無線機用逆Fアンテナであって、前記アース導体は前記誘電体基板の前記矩形放射導体側と反対側の面に形成され、前記アース導体と前記矩形放射導体の間には他のアース導体が存在しない構成とする。
【0008】
本発明によれば、アース導体が誘電体基板の矩形放射導体と反対側の面に形成され、アース導体と矩形放射導体の間には他のアース導体が存在しないことから、簡単な構成で小型・薄型化に対応した無線機用逆Fアンテナを実現する。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、板金等の導電性金属で形成された矩形放射導体と、矩形放射導体と間隔を隔てて対向したアース導体と、矩形放射導体とアース導体とを接続する短絡手段と、矩形放射導体に給電する給電手段と、無線機用逆Fアンテナ主要部の保持ならびに信号処理を行う回路が形成された誘電体基板を有し、アース導体は誘電体基板における矩形放射導体側と反対側の面に形成され、アース導体と矩形放射導体の間には他のアース導体が存在しない構成にした無線機用逆Fアンテナであり、簡単な構成で小型・薄型化に対応した無線機用逆Fアンテナが得られるという作用を有する。
【0010】
本発明の請求項2に記載の発明は、請求項1に記載の無線機用逆Fアンテナにおいて、誘電体基板は、多層基板として形成され、かつ、一部の層の比誘電率を他の層よりも高くした構成としたものであり、簡単な構成で小型・薄型化に対応した無線機用逆Fアンテナが得られるという作用を有する。
【0011】
以下、本発明の実施の形態について、図面を参照して説明する。
【0012】
(実施の形態1)
図1は、本発明の実施の形態1における無線機用逆Fアンテナの外観斜視図、図2は、同無線機用逆Fアンテナの断面図である。
【0013】
図1および図2において、1は板金等の導電性金属で形成された矩形放射導体、2は矩形放射導体1と間隔を隔てて対向したアース導体、3は矩形放射導体1とアース導体2とを接続する短絡手段、4は矩形放射導体1に給電する給電手段、5は前記矩形放射導体1から給電手段4により構成される無線機用逆Fアンテナ主要部の保持ならびに信号処理を行う回路が形成された誘電体基板である。
【0014】
本実施の形態1の特徴は、図2に示すようにアース導体2は誘電体基板5における矩形放射導体1側と反対側の面に形成され、かつ、矩形放射導体1に対して、空気層(比誘電率:ε1=1)と誘電体基板5(誘電率(誘電体基板として選定した材料により異なる):ε2)により間隔(空気層部(d1)+誘電体基板部(d2))を隔てて対向させ、矩形放射導体1とアース導体2の間には他のアース導体は存在しない構成としたことにある。
【0015】
このように矩形放射導体1とアース導体2の間が空気層だけでなく、異なる誘電率を持つ物質が存在する場合の誘電率(εr)は、下記式を用いて算出される。
【0016】
εr=(ε1×ε2×(d1+d2))/(ε1×d2+ε2×d1)
ここでε1=1(空気層)、ε2=4.7(一般的に用いられるガラスエポキシ基板の誘電率)、d1=3mm、d2=1mmとすると、
εr=(1×4.7×(3+1))/(1×1+4.7×3)=1.245となり、アース導体2を、無線機用逆Fアンテナを保持する誘電体基板5の矩形放射導体1の反対側に形成することにより、無線機用逆Fアンテナの総合的な誘電率を上げる効果がある。すなわち、誘電率が上がることにより波長は短縮されるので、共振周波数2.45GHzにおける上記εr(=1.245)と空気中(εair=1)での波長を計算比較すると、
λεr=114.27(mm)
λεair=122.45(mm)
となり、波長として8.18(mm)短縮されることが分る。
【0017】
実際の無線機用逆Fアンテナ設計においては、波長の1/4(λ/4)で設計されるのが一般的であるので、それにならって上記内容にて検討してみると、2.045(mm)の波長短縮が図られたことになる。すなわち、この無線機用逆Fアンテナ構成にすることにより、無線機用逆Fアンテナ全長を2.045(mm)短縮(無線機用逆Fアンテナ小型化の実現)することができたわけである。
【0018】
また、この無線機用逆Fアンテナ構成では、無線機用逆Fアンテナ単体と誘電体基板の機能を別々に持たせて設計した場合に比べ、無線機用逆Fアンテナと誘電体基板の機能を共有化させたことにより、誘電体基板の基板厚み分だけ設計自由度が高められ、無線機用逆Fアンテナの薄型化を図れることができる。
【0019】
なお、ここでは共振周波数を2.45GHzとして示したが、使用目的に合わせた周波数にしても実現できることは言うまでもない。また、誘電体基板5の誘電率はガラスエポキシ基板の値(ε2=4.7)を用いたが、使用目的に合わせて最適な誘電率の基板材料を用いても実現できることは言うまでもない。
【0020】
上述のように本実施の形態1においては、無線機用逆Fアンテナの波長の短縮化ならびに無線機用逆Fアンテナと誘電体基板の機能の共有化により、小型・薄型化に対応した無線機用逆Fアンテナを簡単に構成することができる。
【0021】
(実施の形態2)
図3は、本発明の実施の形態2における無線機用逆Fアンテナの断面図である。
【0022】
図3において、11は板金等の導電性金属で形成された矩形放射導体、12は矩形放射導体11と間隔を隔てて対向したアース導体、13は矩形放射導体11とアース導体12とを接続する短絡手段、14は矩形放射導体11を給電する給電手段、15は無線機用逆Fアンテナ主要部の保持ならびに信号処理を行う回路が形成された誘電体基板であり、これらによって無線機用逆Fアンテナが構成されている。
【0023】
ここで本実施の形態2の特徴は、誘電体基板15が、第一の誘電率ε12よりなる誘電体部15aと、第二の誘電率ε13よりなる誘電部15bよりなり、かつ、3層で、一部の層の誘電率を他の層よりも高くしている。
【0024】
そして、矩形放射導体11と誘電体基板15に形成されたアース導体12は、空気層(比誘電率:ε11=1)と誘電体基板15により間隔(空気層部(d11)+誘電体基板部(d12+d13))を隔てて対向し、矩形放射導体11とアース導体12の間には他のアース導体は存在しない構成としたことにある。
【0025】
このように誘電体基板15が多層のときの誘電率は、以下式で与えられる。
【0026】
εb=(ε12×ε13×(d12+d13))/(ε12×d13+ε13×d12)
また、この無線機用逆Fアンテナの誘電率(εr2)は、以下のようになる。
【0027】
εr2=(ε11×εb×(d11+d12+d13))/(ε11×(d12+d13)+εb×d11)
ここで、ε11=1(空気層)、ε12=4.7、ε13=10、d1=3mm、d12=0.5mm、d13=0.5mmとすると、
εb=(4.7×10×(0.5+0.5))/(4.7×0.5+11×0.5)=5.987
εr2=(1×5.987×(3+0.5+0.5)/(1×(0.5+0.5)+5.987×3)=1.263
となる。
【0028】
ここで、共振周波数2.45GHzにおける上記εr2(=1.263)と空気中(εair)での波長を計算比較すると、
λεr2=113.74(mm)
λεair=122.45(mm)
となり、波長として8.71(mm)短縮されることが分る。
【0029】
また、実際の無線機用逆Fアンテナ設計においては、波長の1/4(λ/4)で設計されるのが一般的であるので、それにならって上記内容にて検討してみると、2.1775(mm)の波長短縮が図られたことになる。すなわち、本実施の形態2の無線機用逆Fアンテナ構成にすることにより、無線機用逆Fアンテナ全長を2.1775mm短縮(無線機用逆Fアンテナ小型化の実現)することができたわけである。
【0030】
また、本実施の形態2の無線機用逆Fアンテナ構成では、無線機用逆Fアンテナ単体と誘電体基板の機能を別々に持たせて設計した場合に比べ、無線機用逆Fアンテナと誘電体基板の機能を共有化させたことにより、誘電体基板の基板厚み分だけ設計自由度が高められ、無線機用逆Fアンテナの薄型化を図れることができる。
【0031】
なお、ここでは共振周波数を2.45GHzとして示したが、使用目的に合わせた周波数にしても実現できることは言うまでもない。また、誘電体基板15は、3層基板として誘電率が異なる2種類(4.7と10)の誘電体を用いた多層基板を示したが、使用目的に合わせてさらに多くの層構成とするとともに、例示した誘電率と異なる材料の誘電体の組み合わせを用いた多層誘電体基板でも実現できることは言うまでもない。
【0032】
上述のように本実施の形態2においては、無線機用逆Fアンテナの波長の短縮化ならびに無線機用逆Fアンテナと誘電体基板の機能の共有化により、小型・薄型化に対応した無線機用逆Fアンテナを簡単に構成することができる。
【0033】
【発明の効果】
以上の説明より明らかなように、本発明によればアース導体と矩形放射導体の間には他のアース導体が存在しないことにより、簡単な構成で小型・薄型化に対応できる無線機用逆Fアンテナとすることができる。
【0034】
また、誘電体基板を多層基板とし、かつ一部の層の比誘電率を他の層よりも高くすることにより、簡単な構成で小型・薄型化に対応できるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における無線機用逆Fアンテナの外観斜視図
【図2】同無線機用逆Fアンテナの断面図
【図3】本発明の実施の形態2における無線機用逆Fアンテナの断面図
【図4】従来の無線機用逆Fアンテナの外観斜視図
【符号の説明】
1 矩形放射導体
2 アース導体
3 短絡手段
4 給電手段
5 誘電体基板
11 矩形放射導体
12 アース導体
13 短絡手段
14 給電手段
15 誘電体基板
15a 第一の誘電率ε12よりなる誘電部
15b 第二の誘電率ε13よりなる誘電部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inverted F antenna for a wireless device that can be built in a wireless device body.
[0002]
[Prior art]
In recent years, a monopole antenna, a loop antenna, a plate-shaped inverted-F antenna (hereinafter referred to as an inverted-F antenna), and the like are often used as small-sized radio antennas. Among them, the inverted-F antenna is small and thin. Because of their relatively high gain, they are often used as built-in antennas in mobile phones and cordless phones (see, for example, Patent Document 1).
[0003]
Here, FIG. 4 shows a schematic diagram of an inverted-F antenna generally used widely. In FIG. 4, reference numeral 21 denotes a rectangular radiation conductor formed of a conductive metal such as a sheet metal within a half wavelength of a used frequency, 22 denotes a ground conductor, and 23 denotes a part of the edge of the rectangular radiation conductor 21 and a ground conductor. Short-circuit means 24 for connecting 22 and power supply means 24 for supplying power to the gap between the rectangular radiation conductor 21 and the ground conductor 22.
[0004]
[Patent Document 1]
JP-A-58-104504 (FIGS. 15-19, FIG. 2)
[0005]
[Problems to be solved by the invention]
However, since the inverted-F antenna is formed of air (relative permittivity: ε = 1) between the rectangular radiation conductor 21 and the ground conductor 22, when the resonance frequency and the bandwidth are determined, the current path length (λ / 2 or λ) is determined. / 4) and the antenna width are almost uniquely derived, and there is a problem that it is difficult to reduce the size and thickness of the inverted F antenna itself.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a small and thin inverted F antenna for a wireless device, while keeping in mind the above conventional problems.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides a rectangular radiation conductor, a ground conductor facing the rectangular radiation conductor, a short-circuit means for connecting the rectangular radiation conductor and the ground conductor, and a power supply for supplying power to the radiation conductor. Means and a dielectric substrate on which a circuit for holding a main part of the inverted F antenna for the radio and performing signal processing is formed, wherein the ground conductor is the rectangular radiation of the dielectric substrate. It is formed on a surface opposite to the conductor side, and no other ground conductor exists between the ground conductor and the rectangular radiation conductor.
[0008]
According to the present invention, the ground conductor is formed on the surface of the dielectric substrate opposite to the rectangular radiation conductor, and no other ground conductor exists between the ground conductor and the rectangular radiation conductor.・ Realize an inverted F antenna for wireless devices that can be made thinner.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, a rectangular radiation conductor formed of a conductive metal such as a sheet metal, an earth conductor facing the rectangular radiation conductor at an interval, and a rectangular radiation conductor and an earth conductor are connected. Short-circuit means, a feeding means for feeding a rectangular radiation conductor, and a dielectric substrate on which a circuit for holding and performing signal processing of a main part of the inverted F antenna for a wireless device is formed. An inverted F antenna for radio equipment that is formed on the surface opposite to the radiation conductor side and has no other ground conductor between the ground conductor and the rectangular radiation conductor. This has an effect that a corresponding inverted F antenna for a wireless device can be obtained.
[0010]
According to a second aspect of the present invention, in the inverted F antenna for a wireless device according to the first aspect, the dielectric substrate is formed as a multi-layer substrate, and the relative permittivity of some of the layers is changed to another. This structure has a higher height than the layer, and has an effect that an inverted-F antenna for a wireless device which can be reduced in size and thickness with a simple structure can be obtained.
[0011]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
(Embodiment 1)
FIG. 1 is an external perspective view of an inverted-F antenna for a wireless device according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view of the inverted-F antenna for the wireless device.
[0013]
1 and 2, reference numeral 1 denotes a rectangular radiating conductor formed of a conductive metal such as a sheet metal, 2 denotes an earth conductor opposed to the rectangular radiating conductor 1 at an interval, and 3 denotes a rectangular radiating conductor 1 and an earth conductor 2. And 4, a feeding means for feeding power to the rectangular radiating conductor 1; and 5, a circuit for holding a main part of the inverted F antenna for a radio and comprising signal processing from the rectangular radiating conductor 1 to the feeding means 4. It is a formed dielectric substrate.
[0014]
The feature of the first embodiment is that, as shown in FIG. 2, the ground conductor 2 is formed on the surface of the dielectric substrate 5 opposite to the rectangular radiation conductor 1 side, and the air conductor is (Relative permittivity: ε1 = 1) and the dielectric substrate 5 (dielectric constant (different depending on the material selected as the dielectric substrate): ε2) to set the interval (air layer portion (d1) + dielectric substrate portion (d2)). The configuration is such that no other grounding conductor exists between the rectangular radiation conductor 1 and the grounding conductor 2.
[0015]
As described above, the dielectric constant (εr) when not only the air layer between the rectangular radiation conductor 1 and the ground conductor 2 but also a substance having a different dielectric constant is calculated using the following equation.
[0016]
εr = (ε1 × ε2 × (d1 + d2)) / (ε1 × d2 + ε2 × d1)
Here, assuming that ε1 = 1 (air layer), ε2 = 4.7 (dielectric constant of a commonly used glass epoxy substrate), d1 = 3 mm, and d2 = 1 mm,
εr = (1 × 4.7 × (3 + 1)) / (1 × 1 + 4.7 × 3) = 1.245, and the ground conductor 2 is radiated by the rectangular radiation of the dielectric substrate 5 holding the inverted F antenna for radio equipment. Forming it on the opposite side of the conductor 1 has the effect of increasing the overall dielectric constant of the inverted F antenna for radio equipment. That is, since the wavelength is shortened by increasing the dielectric constant, the above-mentioned εr (= 1.245) at the resonance frequency of 2.45 GHz and the wavelength in the air (εair = 1) are calculated and compared.
λεr = 114.27 (mm)
λεair = 122.45 (mm)
It can be seen that the wavelength is reduced by 8.18 (mm).
[0017]
In an actual design of an inverted F antenna for a wireless device, it is general that the antenna is designed at 1 / (λ / 4) of the wavelength. This means that the wavelength (mm) has been shortened. In other words, by adopting the configuration of the inverted F antenna for the wireless device, the entire length of the inverted F antenna for the wireless device can be reduced by 2.045 (mm) (the size of the inverted F antenna for the wireless device can be reduced).
[0018]
In addition, in the configuration of the inverted F antenna for the radio, the functions of the inverted F antenna for the radio and the dielectric substrate are compared with the case where the function of the inverted F antenna for the radio and the function of the dielectric substrate are separately provided. By sharing, the design flexibility is increased by the thickness of the dielectric substrate, and the inverted F antenna for wireless devices can be made thinner.
[0019]
Here, the resonance frequency is shown as 2.45 GHz, but it is needless to say that the resonance frequency can be realized at a frequency according to the purpose of use. Although the dielectric constant of the dielectric substrate 5 is the value of a glass epoxy substrate (ε2 = 4.7), it is needless to say that the dielectric substrate 5 can be realized by using a substrate material having an optimal dielectric constant according to the purpose of use.
[0020]
As described above, in the first embodiment, a radio device compatible with miniaturization and thickness reduction is realized by shortening the wavelength of the inverted F antenna for a radio device and sharing the functions of the dielectric substrate and the inverted F antenna for the radio device. Inverted F antenna can be easily configured.
[0021]
(Embodiment 2)
FIG. 3 is a cross-sectional view of the inverted F antenna for a wireless device according to Embodiment 2 of the present invention.
[0022]
In FIG. 3, reference numeral 11 denotes a rectangular radiating conductor formed of a conductive metal such as a sheet metal, 12 denotes a ground conductor facing the rectangular radiating conductor 11 at an interval, and 13 denotes a connection between the rectangular radiating conductor 11 and the ground conductor 12. Short-circuiting means, 14 are feeding means for feeding the rectangular radiating conductor 11, and 15 is a dielectric substrate on which a circuit for holding a main part of the inverted F antenna for radio equipment and performing signal processing is formed. An antenna is configured.
[0023]
Here, the feature of the second embodiment is that the dielectric substrate 15 is composed of a dielectric portion 15a having a first dielectric constant ε12 and a dielectric portion 15b having a second dielectric constant ε13, and has three layers. Some layers have higher dielectric constants than other layers.
[0024]
The rectangular radiation conductor 11 and the ground conductor 12 formed on the dielectric substrate 15 are separated by an air layer (relative dielectric constant: ε11 = 1) and the dielectric substrate 15 (air layer portion (d11) + dielectric substrate portion). (D12 + d13)), and there is no other ground conductor between the rectangular radiation conductor 11 and the ground conductor 12.
[0025]
As described above, the dielectric constant when the dielectric substrate 15 has a multilayer structure is given by the following equation.
[0026]
εb = (ε12 × ε13 × (d12 + d13)) / (ε12 × d13 + ε13 × d12)
The dielectric constant (εr2) of the inverted F antenna for a wireless device is as follows.
[0027]
εr2 = (ε11 × εb × (d11 + d12 + d13)) / (ε11 × (d12 + d13) + εb × d11)
Here, assuming that ε11 = 1 (air layer), ε12 = 4.7, ε13 = 10, d1 = 3 mm, d12 = 0.5 mm, and d13 = 0.5 mm,
εb = (4.7 × 10 × (0.5 + 0.5)) / (4.7 × 0.5 + 11 × 0.5) = 5.987
εr2 = (1 × 5.987 × (3 + 0.5 + 0.5) / (1 × (0.5 + 0.5) + 5.987 × 3) = 1.263
It becomes.
[0028]
Here, when the above-mentioned εr2 (= 1.263) at a resonance frequency of 2.45 GHz is calculated and compared with the wavelength in the air (εair),
λεr2 = 113.74 (mm)
λεair = 122.45 (mm)
It can be seen that the wavelength is reduced by 8.71 (mm).
[0029]
Further, in an actual design of an inverted F antenna for a wireless device, it is common to design the antenna at の (λ / 4) of the wavelength. This means that the wavelength has been shortened by .1775 (mm). In other words, by adopting the configuration of the inverted F antenna for a wireless device according to the second embodiment, the total length of the inverted F antenna for a wireless device can be reduced by 2.1775 mm (realization of the downsized inverted F antenna for a wireless device). is there.
[0030]
Further, in the configuration of the inverted F antenna for a wireless device according to the second embodiment, the inverted F antenna for a wireless device and the dielectric By sharing the function of the body substrate, the degree of design freedom is increased by the thickness of the dielectric substrate, and the thickness of the inverted F antenna for a wireless device can be reduced.
[0031]
Here, the resonance frequency is shown as 2.45 GHz, but it is needless to say that the resonance frequency can be realized at a frequency according to the purpose of use. In addition, the dielectric substrate 15 is a multilayer substrate using two types of dielectric materials (4.7 and 10) having different dielectric constants as a three-layer substrate, but the number of layers is increased according to the purpose of use. In addition, it is needless to say that a multi-layer dielectric substrate using a combination of dielectrics different from the exemplified dielectric constant can be realized.
[0032]
As described above, in the second embodiment, a radio device compatible with miniaturization and reduction in thickness is achieved by shortening the wavelength of the inverted F antenna for a radio device and sharing the functions of the dielectric substrate and the inverted F antenna for a radio device. Inverted F antenna can be easily configured.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, since there is no other ground conductor between the ground conductor and the rectangular radiating conductor, the inverted F for radio equipment which can be reduced in size and thickness with a simple configuration. It can be an antenna.
[0034]
In addition, by using a dielectric substrate as a multilayer substrate and making the relative permittivity of some layers higher than those of other layers, an advantageous effect that a simple configuration can be applied to miniaturization and thinning can be obtained.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an inverted F antenna for a wireless device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the inverted F antenna for the wireless device. FIG. 3 is a wireless device according to a second embodiment of the present invention. FIG. 4 is a cross-sectional view of a conventional inverted F antenna for a radio device.
REFERENCE SIGNS LIST 1 rectangular radiation conductor 2 ground conductor 3 short-circuit means 4 power supply means 5 dielectric substrate 11 rectangular radiation conductor 12 ground conductor 13 short-circuit means 14 power supply means 15 dielectric substrate 15a dielectric portion 15b having first dielectric constant ε12 second dielectric Dielectric part with ratio ε13

Claims (2)

板金等の導電性金属で形成された矩形放射導体と、前記矩形放射導体と間隔を隔てて対向したアース導体と、前記矩形放射導体と前記アース導体とを接続する短絡手段と、前記矩形放射導体に給電する給電手段と、無線機用逆Fアンテナ主要部の保持ならびに信号処理を行う回路が形成された誘電体基板を有し、前記アース導体は誘電体基板における矩形放射導体側と反対側の面に形成され、前記アース導体と前記矩形放射導体の間には他のアース導体が存在しない構成にしたことを特徴とする無線機用逆Fアンテナ。A rectangular radiation conductor formed of a conductive metal such as a sheet metal, a ground conductor facing the rectangular radiation conductor at a distance, a short-circuit means for connecting the rectangular radiation conductor to the ground conductor, and the rectangular radiation conductor And a dielectric substrate on which a circuit for holding the main part of the inverted F antenna for the radio and performing signal processing is formed, and the ground conductor is provided on the dielectric substrate on the side opposite to the rectangular radiation conductor side. An inverted-F antenna for a wireless device, wherein the inverted-F antenna is formed on a surface, and no other ground conductor exists between the ground conductor and the rectangular radiation conductor. 誘電体基板は、多層基板として形成され、かつ、一部の層の比誘電率を他の層よりも高くしたことを特徴とする請求項1に記載の無線機用逆Fアンテナ。The inverted F antenna for a wireless device according to claim 1, wherein the dielectric substrate is formed as a multilayer substrate, and a relative permittivity of some layers is higher than that of other layers.
JP2003014563A 2003-01-23 2003-01-23 Inverse f antenna for radio equipment Pending JP2004228940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014563A JP2004228940A (en) 2003-01-23 2003-01-23 Inverse f antenna for radio equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014563A JP2004228940A (en) 2003-01-23 2003-01-23 Inverse f antenna for radio equipment

Publications (1)

Publication Number Publication Date
JP2004228940A true JP2004228940A (en) 2004-08-12

Family

ID=32902577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014563A Pending JP2004228940A (en) 2003-01-23 2003-01-23 Inverse f antenna for radio equipment

Country Status (1)

Country Link
JP (1) JP2004228940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026639A (en) * 2016-08-08 2018-02-15 株式会社フェニックスソリューション Antenna for RF tag and RF tag
WO2019106772A1 (en) * 2017-11-29 2019-06-06 株式会社フェニックスソリューション Antenna for rf tag, and rf tag
WO2022152022A1 (en) * 2021-01-15 2022-07-21 华为技术有限公司 Antenna apparatus and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026639A (en) * 2016-08-08 2018-02-15 株式会社フェニックスソリューション Antenna for RF tag and RF tag
WO2019106772A1 (en) * 2017-11-29 2019-06-06 株式会社フェニックスソリューション Antenna for rf tag, and rf tag
US11030507B2 (en) 2017-11-29 2021-06-08 Phoenix Solution Co., Ltd. Antenna for RF tag, and RF tag
WO2022152022A1 (en) * 2021-01-15 2022-07-21 华为技术有限公司 Antenna apparatus and electronic device

Similar Documents

Publication Publication Date Title
US7564413B2 (en) Multi-band antenna and mobile communication terminal having the same
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US6424300B1 (en) Notch antennas and wireless communicators incorporating same
JP3630622B2 (en) Pattern antenna and wireless communication apparatus including the same
US10218227B2 (en) Compact PIFA antenna
US8203489B2 (en) Dual-band antenna
CN1825697B (en) Antenna module and electronic arrangement using same
US7079077B2 (en) Methods and apparatus for implementation of an antenna for a wireless communication device
US20070152894A1 (en) Multi-band monopole antenna for a mobile communications device
KR101318559B1 (en) Multi-band antenna
US7969371B2 (en) Small monopole antenna having loop element included feeder
JP2004088218A (en) Planar antenna
JP2007281990A (en) Antenna device and wireless communication instrument using the same
JPH09260934A (en) Microstrip antenna
US7626555B2 (en) Antenna arrangement and method for making the same
US20040017329A1 (en) Folded dual-band antenna apparatus
CN101378144B (en) Radio apparatus and antenna thereof
JP2004363848A (en) Antenna-mounted substrate and pc card equipped with same
JP2013530623A (en) Antenna with planar conductive element
US7408510B2 (en) Patch antenna
JP2005229161A (en) Antenna and radio communication equipment therewith
JP4069271B2 (en) Patch antenna for terminal device for clothing and antenna device for terminal device for clothing using the same
US9431710B2 (en) Printed wide band monopole antenna module
JP2004228940A (en) Inverse f antenna for radio equipment
JPH11214914A (en) Antenna