JP2004228135A - Embedding method of metal into pore - Google Patents

Embedding method of metal into pore Download PDF

Info

Publication number
JP2004228135A
JP2004228135A JP2003011048A JP2003011048A JP2004228135A JP 2004228135 A JP2004228135 A JP 2004228135A JP 2003011048 A JP2003011048 A JP 2003011048A JP 2003011048 A JP2003011048 A JP 2003011048A JP 2004228135 A JP2004228135 A JP 2004228135A
Authority
JP
Japan
Prior art keywords
metal
substrate
embedding
fine
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011048A
Other languages
Japanese (ja)
Inventor
Naoki Yuya
直毅 油谷
Hiroshi Fukumoto
宏 福本
Munehisa Takeda
宗久 武田
Tatsuya Fukami
達也 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003011048A priority Critical patent/JP2004228135A/en
Publication of JP2004228135A publication Critical patent/JP2004228135A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an embedding method of metal into a pore formed in a substrate with a simple installation and the reduced number of processes. <P>SOLUTION: A circular pore 2 is formed to the middle of the substrate 1 with etching, and then a solder bump 3 is disposed on an upper portion of the substrate 1 using a bump forming device. At this time, a gap 4 is provided between the solder bump 3 and the pore 2 while shifting the center of the solder bump 3 from the central axis of the pore 2 to prevent the solder bump 3 from sealing the pore 2. Then, when a vacuum chamber is evacuated and the substrate 1 is heated to a temperature beyond the melting point of the solder, the solder bump 3 is melted to fill the gap 4. Thereafter, when inert gas such as nitrogen inactive to the solder is introduced into the vacuum chamber and is pressurized, the melted solder bump 3 is sucked into the pore 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に形成された微細孔への金属埋め込み方法に関する。
【0002】
【従来の技術】
従来の、基板上に形成された微細孔への金属埋め込み方法においては、例えば特許文献1に示されるように、微細孔を形成させたSi等からなる基板を真空チャンバー内で溶融金属中に挿入して、基板が溶融金属と同じ温度に達した後に真空チャンバーを大気圧以上に加圧することにより溶融金属を微細孔に充填していた。また特許文献2には、基板上の所望の位置に溶融金属粒を配置させることができるバンプ形成装置が記載されている。
【0003】
【特許文献1】
特開2002−158191号公報
【特許文献2】
特開2000−294591号公報
【0004】
【発明が解決しようとする課題】
しかし、従来の微細孔への金属埋め込み方法においては、真空チャンバー内に溶融金属槽を設けたり、さらには基板を操作したりする必要があるため、装置が複雑で大掛かりになり、作業時間も長くなってしまうなどの問題点があった。また、基板全体が溶融金属に曝されるため、不必要な部分に金属が付着しないように基板の表面構造を工夫する必要があり、そのため表面構造の設計自由度が小さくなってしまうという問題点もあった。あるいは、基板に付着した金属を除去する工程を追加するため、工程数が多くなってしまうという問題点があった。
【0005】
本発明は以上の問題点を解決するためになされたものであり、簡易な設備と少ない工程数で、基板上に形成された微細孔へ金属を埋め込むことができる、微細孔への金属埋め込み方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明に係る微細孔への金属埋め込み方法は、基板上に微細孔を形成する微細孔形成工程と、金属粒を、前記微細孔の開口部に、当該開口部と前記金属粒との間に隙間を確保しつつ配置する金属粒配置工程と、前記金属粒が配置された前記基板を真空状態のチャンバー内に配置し、前記隙間から前記微細孔内の気体を排気する工程と、真空状態の前記チャンバー内に配置された前記基板を加熱することにより前記金属粒を溶融させその溶融金属で前記隙間を塞ぐ工程と、前記チャンバー内を加圧することにより、加熱された前記基板の前記微細孔に前記溶融金属を押し込み前記微細孔を充填する工程と、前記微細孔に充填された溶融金属を冷却し固化させる固化工程とを備える。
【0007】
【発明の実施の形態】
<実施の形態1>
図1は、本発明の実施の形態1に係る微細孔への金属埋め込み方法を示す図である。
【0008】
まず、図1(a)に示すように、Si等からなる例えば厚さ0.2mmの基板1に、例えば直径0.03mmで深さ0.16mmの円形状の微細孔2を形成する。ICP−RIE(Inductively Coupled PlasmaReactive Ion Etching)装置等を用いることにより、直径に対して深さが大きい即ち高アスペクト比の微細孔2を形成することができる。このとき、図1(a)に示すように、基板1を貫通させることなく、微細孔2を基板1の途中まで形成する。
【0009】
次に、熱酸化法により微細孔2の内壁を酸化させ、酸化珪素からなる絶縁膜(図示しない)を形成する。この絶縁膜は、熱酸化法に限らず、微細孔2の内壁に絶縁膜が形成できるのであればどのような方法で形成してもよい。例えばプラズマCVD(Chemical Vapor Deposition)を用いて微細孔2の内壁に窒化珪素膜からなる絶縁膜を形成してもよい。
【0010】
次に、図1(b)に示すように、半田粒3を、微細孔2の開口部に対応させて、基板1の上部に配置する。このとき、半田粒3の中心を微細孔2の中心軸上からずらし半田粒3と微細孔2との間に隙間4を空けて、半田粒3が微細孔2を密閉してしまうことがないようにする。半田粒3は、例えば直径0.06mmで、基板1の耐熱温度以下の温度で溶融可能である。この半田粒3は、基板1の耐熱温度以下の温度で溶融可能であれば、半田に限らず、例えば、錫、金錫、インジウム等からなる金属粒であっても良い。基板1の上部の所定の位置への半田粒3の配置は、例えば特許文献2に示されるようなバンプ形成装置を用いることにより行うことができる。このバンプ形成装置の動作は以下のとおりである。
【0011】
バンプ形成装置は、溶融した半田粒をインクジェット方式で半導体素子の入出力パッド上に飛ばして半田バンプを形成する装置で、プログラムされた所定の位置に半田粒を飛ばすことができる。この装置の半田吐出部においては、その上部と下部とにダイヤフラムとノズル開口部とをそれぞれ有するキャビティが設置されており、キャビティ内に溶融半田を内蔵している。ここで、ダイヤフラム上部に設置された圧電素子に電圧パルスを印加してダイヤフラムを変位させることにより、半田粒がノズルより吐出される。
【0012】
従来、バンプを形成する場合には、半導体素子基板を、半田の融点をやや下回る温度に加熱した状態で出力パッド上に半田粒を置き半球形状のバンプを形成している。一方、本実施の形態においては、基板1の温度は半田の融点より十分低く、例えば室温程度とする。この場合、溶融した半田粒3は基板1のプログラムされた位置上に球状に付着して固化する。
【0013】
基板1上に半田粒3を配置させた後に、基板1を真空チャンバー(図示しない)に入れて真空チャンバーを真空に排気する。この時に、隙間4から微細孔2内の空気が排気される。真空に排気した後に基板1を加熱し、温度を半田の融点以上にすると、図1(c)に示すように半田粒3が溶融し隙間4が塞がる。基板1の加熱は、例えばホットプレートのような簡単な仕組みの装置を真空チャンバー内に設置することにより、実施することができる。この状態で、半田に対し不活性な窒素等のガスを、真空チャンバー内に導入し加圧すると、図1(d)に示すように、微細孔2の内部と外部との圧力差により、溶融した半田粒3は微細孔2の中に吸い込まれる。この時、大気圧以上に加圧することにより、溶融した半田粒3をより確実に微細孔2の中に入れることができる。その後、基板1の温度を半田の融点より下げて埋め込んだ半田を固化させることにより、埋め込み配線5が形成される。
【0014】
その後、図1(e)に示すように、基板1の裏面を研磨等によって削ることにより、埋め込み配線5を裏面に露出させて基板貫通配線とすることができる。
【0015】
このように、本実施の形態に係る微細孔への金属埋め込み方法は、基板1を加熱する簡単な仕組みの装置を真空チャンバー内に設置することにより、実施することができる。また、半田粒3は微細孔2周辺でのみ基板1に接するので、微細孔2周辺以外の基板1上の領域に半田との接着性が高い部分があったとしても、その部分に半田が付着することがない。従って、基板1に付着した半田を除去する工程を追加する必要がないため、その分の工程数を少なくすることができる。
【0016】
また、微細孔2周辺以外の基板1上の領域に半田との反応性が高い部分があったとしても、その部分に半田が付着しないように基板1の表面構造を工夫する必要がない。従って、基板の表面構造の設計における自由度を大きくすることができる。
【0017】
また、上記の基板貫通配線の形成方法を、表面に半導体回路を形成させたチップに用いれば、例えば表面配線と基板貫通配線とを接続しチップ裏面から出力を取り出すことが可能となる。また複数個のチップの入出力部を、貫通配線により互いに電気的に接続し積層化することも可能となる。
【0018】
<実施の形態2>
実施の形態1に係る微細孔への金属埋め込み方法においては、直径0.03mmで深さ0.16mmの円形状の微細孔2に対して、直径0.06mmの半田粒3を充填する。従って、微細孔2の容積と半田粒3の体積がほぼ等しいため、微細孔2を半田でちょうど埋め込むことができる。
【0019】
図2は、本発明の実施の形態2に係る微細孔への金属埋め込み方法を示す図である。図2は、図1における半田粒3の直径を0.06mmから例えば0.07mmにして微細孔2を充填したものである。図2において、図1と同様の要素については同一の符号を付してしてあるので、それらのここでの詳細な説明は省略する。実施の形態1に比べて半田粒3の体積は約1.6倍になるので、半田は微細孔2から溢れ出し、図2に示すように盛り上がる。即ち、バンプ6と埋め込み配線5とを同時に形成することができる。このバンプ6は、他の基板との電気的接続に使用される。上述のバンプ形成装置においては、圧電素子の駆動条件を変えることにより、吐出される半田粒の体積を容易に変えることができるので、所望の大きさのバンプを形成することができる。
【0020】
また、このバンプ形成装置においては、吐出される半田粒の体積が非常に大きい場合には、ノズルを、開口部の大きなものに取り替えることにより対応させる。しかし、図3に示すように、2つ以上の半田粒3を多段に積み上げることにより、ノズルの取り替えなしに、必要な体積の半田を確保することができる。
【0021】
このように、本実施の形態に係る微細孔への金属埋め込み方法においては、バンプ形成装置の駆動条件や、吐出させる半田粒の個数を変えることによって、基板上に配置させる半田粒の体積を、ノズルの取り替えなしに調整することができる。従って、埋め込み配線上に所望の大きさのバンプを形成することができる。また、同一基板上に異なる体積の微細孔がある場合にも、再現性よく半田を埋め込むことができる。
【0022】
<実施の形態3>
実施の形態1および2に係る微細孔への金属埋め込み方法においては、半田粒3を基板1の上部に配置する際に、半田粒3の中心を微細孔2の中心軸上からずらして半田粒3と微細孔2との間に隙間4を空ける。しかし、微細孔2の直径に対して半田粒3の直径が大きい場合には、隙間4が塞がってしまう確率が高くなってしまう。一方、これを避けるために半田粒3の中心を微細孔2の中心軸上から大きくずらすと、図1(c)の工程で半田粒3を溶融させたときに微細孔2の開口部を塞ぐことができなくなってしまう場合がある。
【0023】
図4は、本発明の実施の形態3に係る微細孔への金属埋め込み方法を示す図である。図4において、図1と同様の要素については同一の符号を付してしてあるので、それらのここでの詳細な説明は省略する。図4(a)には基板1の上面図、図4(b)には基板1のA−A断面図がそれぞれ示されている。図4(a)においては、微細孔2の開口部に、半田粒3との隙間を確保し空気を抜くための排気孔としての長方形状のノッチ7が形成されている。ノッチ7の深さは、図1(b)に示される工程において半田粒3を基板1上に配置するときに隙間4が塞がってしまわない程度の深さであればよく、図4(b)に示されるように微細孔2の半分程度の深さであっても、あるいは微細孔2と同じくらいの深さであってもよい。従って、ノッチ7の形成は、微細孔2の形成と同じ工程内で行うことができるので、新たに工程を追加する必要はない。またノッチ7の形状は長方形状に限らず、個数も何個であっても構わない。図5(a)に、開口部の周囲の四方向に長方形状のノッチ7を形成した例を示す。
【0024】
また半田粒3は球状であるので、ノッチ付き開口部に限らず、開口部が円以外の形状すなわち非円形でさえあれば、微細孔2と半田粒3との間に隙間4を空けることができる。図5(b),(c)に、開口部が楕円形状や長方形状である例をそれぞれ示す。このような形状の場合には、開口部の長手方向に隙間4が形成される。また図5(d)に示すように、開口部が正方形状である場合には、開口部の四隅に隙間4が形成される。図5(a)〜(d)に示すもの以外にも、微細孔2の開口部の形状としては、例えば図5(e)に示すように正方形状の開口部の四隅にノッチを形成したものや、図5(f)に示すように十字形状のもの等、いろいろな形状が考えられる。
【0025】
また図5においては、基板1の表面における微細孔2の開口部の形状を、平面的に円形状からずらすことによって隙間4を形成する例を示したが、開口部の形状を立体的に球形状からずらすことによって隙間4を形成してもよい。図6においては、微細孔2の開口部を例えばSiの異方性エッチングにより拡げた形状になっている。面方位(100)のSiからなる基板1を例えばKOH等のアルカリでエッチングすると、(111)面のエッチング速度が遅いため、図6に示されるように台形状の(111)面の斜面が四方向に現れた開口部8が形成される。開口部8を形成する工程としては、異方性エッチングにより開口部8を形成した後にその底面に微細孔2を形成してもよく、あるいは、先に微細孔2を形成し、その後に異方性エッチングにより開口部8を形成してもよい。
【0026】
このように、本実施の形態に係る微細孔への金属埋め込み方法においては、開口部が円以外の形状である微細孔2を形成することにより、その開口部周辺に排気孔が形成される。従って、バンプ形成装置から吐出される半田粒の直径が大きい場合にも、隙間4を塞ぐことなく基板上に配置することができる。
【0027】
<実施の形態4>
実施の形態3に係る微細孔への金属埋め込み方法においては、真空チャンバー内を加圧して溶融した半田粒3を微細孔2に入れるときに、ノッチ7等の排気孔を完全に塞ぐことができない場合があり得る。また、実施の形態1,2においても、溶融した半田粒3が微細孔2の開口部を完全に塞ぐことができない場合があり得る。
【0028】
図7は、本発明の実施の形態4に係る微細孔への金属埋め込み方法を示す図である。図7において、図1と同様の要素については同一の符号を付してしてあるので、それらのここでの詳細な説明は省略する。図7(a)には基板1の上面図、図7(b)には図7(a)のB−B断面図がそれぞれ示されている。基板1上には、ノッチ7を含む微細孔2の開口部を囲むように、例えばAu等の、半田との接着性(なじみ)が高い金属によってランド9を形成させている。また基板1上のランド9の外側の領域は、半田との接着性(なじみ)が低い酸化物等からなる絶縁膜10で覆われている。図7(b)に示すように、基板1上にランド9を配置した場合には、微細孔2上の半田粒3が、溶融されたときにランド9上に凝集するので、ノッチ7を確実に塞ぐことが可能となる。また、微細孔2の中心軸上からずらして隙間4を形成した場合でも、半田粒3はランド9上に凝集するので、微細孔2を確実に塞ぐことが可能になる。
【0029】
また、ランド9の形状としては、図7(a)に示される四角形状に限らず、ノッチ7を含む微細孔2の開口部を覆っていればどのような形状であってもよく、例えば図7(c)に示すような円形状であってもよい。
【0030】
このように、本実施の形態に係る微細孔への金属埋め込み方法においては、ランド9を形成することによりノッチ7等の排気孔を確実に塞ぐことができるので、微細孔へ金属を埋め込む際の歩留まりを向上させることができる。
【0031】
<実施の形態5>
実施の形態1に係る微細孔への金属埋め込み方法においては、基板1を貫通させずに、微細孔2を基板1の途中まで形成する。しかし、この場合には、微細孔2に半田を埋め込んで埋め込み配線5を形成させた後に、裏面側から基板1を研磨により削って埋め込み配線5を露出させる必要があるため、工程数が増えてしまう。
【0032】
図8は、本発明の実施の形態5に係る微細孔への金属埋め込み方法を示す図である。図8において、図1と同様の要素については同一の符号を付してしてあるので、それらのここでの詳細な説明は省略する。図8(a)において、微細孔2は基板1の裏面側に達している。基板1の裏面側の膜11は、例えば酸化珪素や窒化珪素により、微細孔2の形成前に形成される。微細孔2を形成するエッチング加工では、Siを選択的にエッチングし、微細孔2が基板1を貫通し膜11が露出したところで止めている。この膜11によって微細孔2の裏面側は塞がれている。
【0033】
この状態で、実施の形態1と同様に、微細孔2との間に隙間4を空けて半田粒3を基板1上に配置し、真空中で加熱して溶融させ大気圧以上に加圧する。これにより、半田粒3は微細孔2の中に吸い込まれて固化し、埋め込み配線5が形成される。その後、膜11をエッチングにより除去すると、埋め込み配線5を基板1の裏面に露出させて基板貫通配線とすることができる。
【0034】
上記の説明では、基板1の裏面側に膜11を形成した後に微細孔2を形成し、基板1を貫通して膜11が露出したところでエッチング加工を止める例について説明したが、基板1を微細孔2で貫通させた後に、基板1の裏面にシート状の膜を貼り付けることにより、膜11を形成することもできる。例えば、基板1が貫通するまでエッチングを行い微細孔2を形成させ、半田粒3を配置する前に、基板1の裏面側に、接着剤を塗布されたポリイミドシート等を貼り付けてもよい。このシート状の膜11は、半田の融点程度の温度に耐えうる耐熱性があって、基板1の裏面側からの微細孔2への気体の進入を防ぐことのできるものであれば、どのようなものであってもよい。基板1を室温程度にまで冷却した後にシート状の膜11を剥がすことにより、図8(b)に示すように、埋め込み配線5を裏面に露出させて基板貫通配線とすることができる。
【0035】
このように、本実施の形態に係る微細孔への金属埋め込み方法においては、微細孔2が基板1のSiを貫通することにより、基板1の裏面側を研磨により削って埋め込み配線5を露出させる工程が不要となり、その分だけ工程数を少なくすることができる。
【0036】
【発明の効果】
以上、説明したように、請求項1に記載の発明に係る微細孔への金属埋め込み方法は、基板上に微細孔を形成する微細孔形成工程と、金属粒を、前記微細孔の開口部に、当該開口部と前記金属粒との間に隙間を確保しつつ配置する金属粒配置工程と、前記金属粒が配置された前記基板を真空状態のチャンバー内に配置し、前記隙間から前記微細孔内の気体を排気する工程と、真空状態の前記チャンバー内に配置された前記基板を加熱することにより前記金属粒を溶融させその溶融金属で前記隙間を塞ぐ工程と、前記チャンバー内を加圧することにより、加熱された前記基板の前記微細孔に前記溶融金属を押し込み前記微細孔を充填する工程と、前記微細孔に充填された溶融金属を冷却し固化させる固化工程とを備えるので、簡易な設備で、基板上に形成された微細孔へ金属を埋め込むことができる。
【0037】
また、前記金属粒は前記微細孔の開口部周辺でのみ前記基板に接するので、前記基板上の前記開口部周辺以外の領域に前記金属との接着性が高い部分があったとしても、その部分に前記金属が付着することがないため、基板に付着した金属を除去する工程が不要な分、工程数を少なくすることができる。
【0038】
また、前記基板上の前記開口部周辺以外の領域に前記金属との反応性が高い部分があったとしても、その部分に前記金属が付着しないように基板の表面構造を工夫する必要がない。従って、前記基板の表面構造の設計における自由度を大きくすることができる。
【図面の簡単な説明】
【図1】実施の形態1に係る微細孔への金属埋め込み方法を示す図である。
【図2】実施の形態2に係る微細孔への金属埋め込み方法を示す図である。
【図3】実施の形態2に係る微細孔への金属埋め込み方法を示す図である。
【図4】実施の形態3に係る微細孔への金属埋め込み方法を示す図である。
【図5】実施の形態3に係る微細孔への金属埋め込み方法を示す図である。
【図6】実施の形態3に係る微細孔への金属埋め込み方法を示す図である。
【図7】実施の形態4に係る微細孔への金属埋め込み方法を示す図である。
【図8】実施の形態5に係る微細孔への金属埋め込み方法を示す図である。
【符号の説明】
1 基板、2 微細孔、3 半田粒、4 隙間、5 埋め込み配線、6 バンプ、7 ノッチ、8 開口部、9 ランド、10 絶縁膜、11 膜。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for embedding a metal in a fine hole formed on a substrate.
[0002]
[Prior art]
In a conventional method of embedding a metal in a fine hole formed on a substrate, for example, as shown in Patent Document 1, a substrate made of Si or the like having a fine hole is inserted into a molten metal in a vacuum chamber. Then, after the substrate reaches the same temperature as the molten metal, the vacuum chamber is pressurized to above atmospheric pressure to fill the fine holes with the molten metal. Patent Document 2 discloses a bump forming apparatus capable of disposing molten metal particles at a desired position on a substrate.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-158191 [Patent Document 2]
JP 2000-294591 A
[Problems to be solved by the invention]
However, in the conventional method of embedding metal in micropores, it is necessary to provide a molten metal tank in a vacuum chamber or further operate a substrate, which makes the apparatus complicated and large, and requires a long working time. There was a problem such as becoming. In addition, since the entire substrate is exposed to the molten metal, it is necessary to devise the surface structure of the substrate so that the metal does not adhere to unnecessary portions, and thus the degree of freedom in designing the surface structure is reduced. There was also. Alternatively, there is a problem that the number of steps increases because a step of removing the metal adhered to the substrate is added.
[0005]
The present invention has been made in order to solve the above problems, and a method for embedding metal in micropores, which can embed metal into micropores formed on a substrate with simple equipment and a small number of steps. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The method of embedding a metal in a fine hole according to the invention according to claim 1 is a method for forming a fine hole on a substrate, the method comprising: forming a metal particle in an opening of the fine hole; A metal particle arranging step of arranging the metal particles while securing a gap between the metal particles and a step of arranging the substrate on which the metal particles are arranged in a vacuum chamber and exhausting the gas in the fine holes from the gap. And heating the substrate disposed in the chamber in a vacuum state to melt the metal particles and close the gap with the molten metal, and pressurizing the chamber to heat the substrate. And filling the fine holes with the molten metal, and cooling and solidifying the molten metal filled in the fine holes.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
<Embodiment 1>
FIG. 1 is a diagram showing a method for embedding a metal into a fine hole according to Embodiment 1 of the present invention.
[0008]
First, as shown in FIG. 1A, a circular micro hole 2 having a diameter of, for example, 0.03 mm and a depth of 0.16 mm is formed in a substrate 1 made of Si or the like having a thickness of, for example, 0.2 mm. By using an ICP-RIE (Inductively Coupled Plasma Reactive Ion Etching) device or the like, it is possible to form the fine holes 2 having a large depth with respect to the diameter, that is, a high aspect ratio. At this time, as shown in FIG. 1A, the fine holes 2 are formed partway through the substrate 1 without penetrating the substrate 1.
[0009]
Next, the inner wall of the fine hole 2 is oxidized by a thermal oxidation method to form an insulating film (not shown) made of silicon oxide. This insulating film is not limited to the thermal oxidation method, and may be formed by any method as long as the insulating film can be formed on the inner wall of the fine hole 2. For example, an insulating film made of a silicon nitride film may be formed on the inner wall of the fine hole 2 by using plasma CVD (Chemical Vapor Deposition).
[0010]
Next, as shown in FIG. 1B, the solder particles 3 are arranged on the upper portion of the substrate 1 so as to correspond to the openings of the fine holes 2. At this time, the center of the solder particle 3 is shifted from the center axis of the fine hole 2 to leave a gap 4 between the solder particle 3 and the fine hole 2, so that the solder particle 3 does not seal the fine hole 2. To do. The solder particles 3 have a diameter of, for example, 0.06 mm and can be melted at a temperature equal to or lower than the heat resistant temperature of the substrate 1. The solder particles 3 are not limited to solder as long as they can be melted at a temperature equal to or lower than the heat-resistant temperature of the substrate 1, and may be metal particles made of, for example, tin, gold tin, indium, or the like. Arrangement of the solder particles 3 at a predetermined position on the upper portion of the substrate 1 can be performed by using a bump forming apparatus as disclosed in Patent Document 2, for example. The operation of this bump forming apparatus is as follows.
[0011]
The bump forming apparatus is an apparatus that forms a solder bump by blowing molten solder particles onto an input / output pad of a semiconductor device by an ink jet method, and can fly the solder particles to a predetermined position programmed. In the solder discharge section of this apparatus, cavities each having a diaphragm and a nozzle opening are provided at the upper and lower portions, respectively, and the molten solder is built in the cavities. Here, by applying a voltage pulse to the piezoelectric element provided above the diaphragm to displace the diaphragm, solder particles are discharged from the nozzle.
[0012]
Conventionally, when bumps are formed, hemispherical bumps are formed by placing solder particles on output pads while the semiconductor element substrate is heated to a temperature slightly below the melting point of solder. On the other hand, in the present embodiment, the temperature of the substrate 1 is sufficiently lower than the melting point of the solder, for example, about room temperature. In this case, the melted solder particles 3 adhere spherically on the programmed position of the substrate 1 and solidify.
[0013]
After disposing the solder particles 3 on the substrate 1, the substrate 1 is placed in a vacuum chamber (not shown), and the vacuum chamber is evacuated to a vacuum. At this time, the air in the minute hole 2 is exhausted from the gap 4. When the substrate 1 is heated after evacuation and the temperature is set to be equal to or higher than the melting point of the solder, the solder particles 3 melt and the gaps 4 are closed as shown in FIG. The substrate 1 can be heated by installing a device having a simple mechanism such as a hot plate in a vacuum chamber. In this state, when a gas such as nitrogen, which is inert to the solder, is introduced into the vacuum chamber and pressurized, the gas is melted due to a pressure difference between the inside and the outside of the fine hole 2 as shown in FIG. Solder particles 3 are sucked into fine holes 2. At this time, by applying the pressure above the atmospheric pressure, the molten solder particles 3 can be more reliably put into the fine holes 2. Thereafter, the embedded wiring 5 is formed by solidifying the embedded solder by lowering the temperature of the substrate 1 below the melting point of the solder.
[0014]
Thereafter, as shown in FIG. 1E, the back surface of the substrate 1 is ground by polishing or the like, so that the embedded wiring 5 is exposed on the back surface to form a through-substrate wiring.
[0015]
As described above, the method of embedding the metal into the fine holes according to the present embodiment can be performed by installing an apparatus having a simple mechanism for heating the substrate 1 in the vacuum chamber. Further, since the solder particles 3 are in contact with the substrate 1 only around the micro holes 2, even if there is a portion having high adhesiveness to the solder in a region on the substrate 1 other than around the micro holes 2, the solder adheres to the portion. I can't. Therefore, there is no need to add a step of removing the solder attached to the substrate 1, and the number of steps can be reduced accordingly.
[0016]
Further, even if there is a portion having high reactivity with solder in a region on the substrate 1 other than around the micro holes 2, it is not necessary to devise the surface structure of the substrate 1 so that the solder does not adhere to that portion. Therefore, the degree of freedom in designing the surface structure of the substrate can be increased.
[0017]
In addition, if the above-described method of forming a through-substrate wiring is used for a chip having a semiconductor circuit formed on the surface, for example, it is possible to connect the front-side wiring and the through-substrate wiring and take out output from the back surface of the chip. Also, the input / output units of a plurality of chips can be electrically connected to each other by through wirings and stacked.
[0018]
<Embodiment 2>
In the method of embedding metal in the fine holes according to the first embodiment, the 0.03 mm diameter solder particles 3 are filled in the circular fine holes 2 having a diameter of 0.03 mm and a depth of 0.16 mm. Therefore, since the volume of the micropores 2 is substantially equal to the volume of the solder grains 3, the micropores 2 can be filled with solder.
[0019]
FIG. 2 is a diagram showing a method for embedding a metal into a fine hole according to the second embodiment of the present invention. FIG. 2 shows a state where the diameter of the solder particles 3 in FIG. 1 is changed from 0.06 mm to, for example, 0.07 mm, and the fine holes 2 are filled. In FIG. 2, the same elements as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Since the volume of the solder particles 3 is about 1.6 times that of the first embodiment, the solder overflows from the fine holes 2 and rises as shown in FIG. That is, the bump 6 and the embedded wiring 5 can be formed simultaneously. This bump 6 is used for electrical connection with another substrate. In the above-described bump forming apparatus, the volume of the ejected solder particles can be easily changed by changing the driving condition of the piezoelectric element, so that a bump having a desired size can be formed.
[0020]
Further, in this bump forming apparatus, when the volume of the discharged solder particles is very large, the nozzle is replaced by one having a large opening. However, as shown in FIG. 3, by stacking two or more solder grains 3 in multiple stages, it is possible to secure a necessary volume of solder without replacing the nozzle.
[0021]
As described above, in the method of embedding the metal into the fine holes according to the present embodiment, by changing the driving conditions of the bump forming apparatus and the number of the solder particles to be discharged, the volume of the solder particles to be arranged on the substrate is reduced. It can be adjusted without replacing the nozzle. Therefore, a bump of a desired size can be formed on the embedded wiring. Further, even when there are fine holes having different volumes on the same substrate, the solder can be embedded with high reproducibility.
[0022]
<Embodiment 3>
In the method of embedding metal in the fine holes according to the first and second embodiments, when arranging solder particles 3 on the upper part of substrate 1, the center of solder particles 3 is shifted from the center axis of fine holes 2, A gap 4 is provided between the micropores 3 and the fine holes 2. However, if the diameter of the solder particles 3 is larger than the diameter of the fine holes 2, the probability that the gaps 4 will be closed increases. On the other hand, if the center of the solder particle 3 is largely shifted from the center axis of the fine hole 2 to avoid this, the opening of the fine hole 2 is closed when the solder particle 3 is melted in the process of FIG. May not be able to do so.
[0023]
FIG. 4 is a diagram showing a method for embedding a metal into a fine hole according to the third embodiment of the present invention. In FIG. 4, the same elements as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG. 4A is a top view of the substrate 1, and FIG. 4B is a cross-sectional view of the substrate 1 taken along line AA. In FIG. 4A, a rectangular notch 7 is formed in the opening of the fine hole 2 as an exhaust hole for securing a gap with the solder particles 3 and extracting air. The depth of the notch 7 may be such that the gap 4 is not closed when the solder particles 3 are arranged on the substrate 1 in the step shown in FIG. 1B. The depth may be about half the depth of the micropores 2 as shown in FIG. Therefore, the formation of the notch 7 can be performed in the same step as the formation of the fine hole 2, so that it is not necessary to add a new step. The shape of the notch 7 is not limited to a rectangular shape, and may be any number. FIG. 5A shows an example in which rectangular notches 7 are formed in four directions around the opening.
[0024]
In addition, since the solder particles 3 are spherical, the gap 4 is not limited to the notched opening, and if the opening has a shape other than a circle, that is, a non-circular shape, a gap 4 can be formed between the fine hole 2 and the solder particle 3. it can. FIGS. 5B and 5C show examples in which the opening is elliptical or rectangular, respectively. In the case of such a shape, the gap 4 is formed in the longitudinal direction of the opening. In addition, as shown in FIG. 5D, when the opening has a square shape, gaps 4 are formed at four corners of the opening. In addition to the shapes shown in FIGS. 5A to 5D, the shape of the opening of the fine hole 2 is, for example, a shape in which notches are formed at four corners of a square opening as shown in FIG. And various shapes such as a cross shape as shown in FIG. 5 (f).
[0025]
FIG. 5 shows an example in which the gap 4 is formed by shifting the shape of the opening of the fine hole 2 on the surface of the substrate 1 from a circular shape in a plane, but the shape of the opening is three-dimensionally spherical. The gap 4 may be formed by shifting from the shape. In FIG. 6, the opening of the fine hole 2 has a shape expanded by, for example, anisotropic etching of Si. When the substrate 1 made of Si having a plane orientation of (100) is etched with an alkali such as KOH, for example, the etching rate of the (111) plane is low, so that the trapezoidal (111) plane has four slopes as shown in FIG. An opening 8 that appears in the direction is formed. As the step of forming the opening 8, the fine hole 2 may be formed on the bottom surface after the opening 8 is formed by anisotropic etching, or the fine hole 2 may be formed first, and then formed anisotropically. The opening 8 may be formed by reactive etching.
[0026]
As described above, in the method of embedding metal into the fine holes according to the present embodiment, the exhaust holes are formed around the openings by forming the fine holes 2 having an opening other than a circle. Therefore, even when the diameter of the solder particles discharged from the bump forming apparatus is large, it can be arranged on the substrate without closing the gap 4.
[0027]
<Embodiment 4>
In the method of embedding metal in the fine holes according to the third embodiment, when the solder particles 3 melted by pressing the inside of the vacuum chamber into the fine holes 2, the exhaust holes such as the notches 7 cannot be completely closed. There may be cases. Also in the first and second embodiments, the molten solder particles 3 may not be able to completely close the opening of the fine hole 2 in some cases.
[0028]
FIG. 7 is a diagram showing a method for embedding a metal into fine holes according to Embodiment 4 of the present invention. 7, the same elements as those in FIG. 1 are denoted by the same reference numerals, and the detailed description thereof will be omitted. 7A shows a top view of the substrate 1, and FIG. 7B shows a cross-sectional view taken along the line BB of FIG. 7A. The land 9 is formed on the substrate 1 with a metal such as Au, which has a high adhesiveness (similarity) to solder, so as to surround the opening of the fine hole 2 including the notch 7. Further, a region outside the land 9 on the substrate 1 is covered with an insulating film 10 made of an oxide or the like having low adhesiveness (conformity) with solder. As shown in FIG. 7B, when the lands 9 are arranged on the substrate 1, the solder particles 3 on the fine holes 2 are aggregated on the lands 9 when melted, so that the notches 7 are securely formed. It becomes possible to close. Further, even when the gap 4 is formed shifted from the center axis of the fine hole 2, the solder particles 3 aggregate on the land 9, so that the fine hole 2 can be reliably closed.
[0029]
Further, the shape of the land 9 is not limited to the square shape shown in FIG. 7A, but may be any shape as long as it covers the opening of the fine hole 2 including the notch 7. A circular shape as shown in FIG.
[0030]
As described above, in the method of embedding the metal into the fine holes according to the present embodiment, since the lands 9 are formed, the exhaust holes such as the notches 7 can be reliably closed. The yield can be improved.
[0031]
<Embodiment 5>
In the method of embedding metal into micro holes according to the first embodiment, micro holes 2 are formed halfway through substrate 1 without penetrating substrate 1. However, in this case, it is necessary to bury the solder in the fine holes 2 to form the embedded wiring 5 and then to grind the substrate 1 from the back side to expose the embedded wiring 5, so that the number of steps is increased. I will.
[0032]
FIG. 8 is a diagram showing a method for embedding a metal into fine holes according to the fifth embodiment of the present invention. In FIG. 8, the same elements as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 8A, the fine holes 2 reach the back side of the substrate 1. The film 11 on the back surface side of the substrate 1 is formed of, for example, silicon oxide or silicon nitride before the formation of the fine holes 2. In the etching process for forming the fine holes 2, Si is selectively etched and stopped when the fine holes 2 penetrate the substrate 1 and the film 11 is exposed. The back surface side of the fine hole 2 is closed by the film 11.
[0033]
In this state, similarly to the first embodiment, the solder particles 3 are arranged on the substrate 1 with a gap 4 between the fine holes 2 and are heated and melted in a vacuum to pressurize them to the atmospheric pressure or higher. As a result, the solder particles 3 are sucked into the fine holes 2 and solidified, and the embedded wiring 5 is formed. Thereafter, when the film 11 is removed by etching, the embedded wiring 5 is exposed on the back surface of the substrate 1 to form a through-substrate wiring.
[0034]
In the above description, an example has been described in which the fine hole 2 is formed after the film 11 is formed on the back surface side of the substrate 1 and the etching process is stopped when the film 11 is exposed through the substrate 1. The film 11 can be formed by attaching a sheet-like film to the back surface of the substrate 1 after the holes 11 have been penetrated. For example, etching may be performed until the substrate 1 penetrates to form the fine holes 2, and a polyimide sheet coated with an adhesive may be attached to the back surface of the substrate 1 before the solder particles 3 are arranged. The sheet-like film 11 may have any heat resistance that can withstand a temperature of about the melting point of solder and can prevent gas from entering the fine holes 2 from the back side of the substrate 1. It may be something. After the substrate 1 is cooled to about room temperature, the sheet-like film 11 is peeled off, so that the embedded wiring 5 is exposed on the back surface as shown in FIG.
[0035]
As described above, in the method of embedding the metal into the fine holes according to the present embodiment, since the fine holes 2 penetrate through the Si of the substrate 1, the back surface side of the substrate 1 is ground by polishing to expose the embedded wiring 5. Steps are not required, and the number of steps can be reduced accordingly.
[0036]
【The invention's effect】
As described above, according to the method for embedding a metal in a fine hole according to the first aspect of the present invention, a fine hole forming step of forming a fine hole on a substrate and a metal particle are formed in an opening of the fine hole. Disposing a metal particle while securing a gap between the opening and the metal particle; disposing the substrate on which the metal particle is disposed in a vacuum chamber; Evacuation of the gas in the chamber, heating the substrate disposed in the chamber in a vacuum state, melting the metal particles and closing the gap with the molten metal, and pressurizing the chamber. Therefore, the method includes a step of injecting the molten metal into the fine holes of the heated substrate and filling the fine holes, and a solidifying step of cooling and solidifying the molten metal filled in the fine holes, so that simple equipment is provided. In the base Metal can be embedded onto the formed fine pores.
[0037]
Further, since the metal particles are in contact with the substrate only around the opening of the fine hole, even if there is a portion having high adhesiveness to the metal in a region other than around the opening on the substrate, the portion is not removed. Since the metal does not adhere to the substrate, the number of steps can be reduced because the step of removing the metal adhered to the substrate is unnecessary.
[0038]
Further, even if there is a portion having high reactivity with the metal in a region other than around the opening on the substrate, it is not necessary to devise a surface structure of the substrate so that the metal does not adhere to the portion. Therefore, the degree of freedom in designing the surface structure of the substrate can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for embedding a metal into a fine hole according to a first embodiment.
FIG. 2 is a diagram showing a method for embedding a metal into a fine hole according to a second embodiment.
FIG. 3 is a diagram showing a method for embedding a metal into a fine hole according to a second embodiment.
FIG. 4 is a diagram showing a method for embedding a metal into a fine hole according to a third embodiment.
FIG. 5 is a diagram showing a method for embedding a metal into a fine hole according to a third embodiment.
FIG. 6 is a diagram showing a method for embedding a metal into a fine hole according to a third embodiment.
FIG. 7 is a view showing a method for embedding a metal into a fine hole according to a fourth embodiment.
FIG. 8 is a diagram showing a method for embedding a metal in a fine hole according to a fifth embodiment.
[Explanation of symbols]
1 substrate, 2 micro holes, 3 solder grains, 4 gaps, 5 buried wiring, 6 bumps, 7 notches, 8 openings, 9 lands, 10 insulating films, 11 films.

Claims (5)

基板上に微細孔を形成する微細孔形成工程と、
金属粒を、前記微細孔の開口部に、当該開口部と前記金属粒との間に隙間を確保しつつ配置する金属粒配置工程と、
前記金属粒が配置された前記基板を真空状態のチャンバー内に配置し、前記隙間から前記微細孔内の気体を排気する工程と、
真空状態の前記チャンバー内に配置された前記基板を加熱することにより前記金属粒を溶融させその溶融金属で前記隙間を塞ぐ工程と、
前記チャンバー内を加圧することにより、加熱された前記基板の前記微細孔に前記溶融金属を押し込み前記微細孔を充填する工程と、
前記微細孔に充填された溶融金属を冷却し固化させる固化工程と
を備える微細孔への金属埋め込み方法。
A micropore forming step of forming micropores on the substrate,
A metal particle arranging step of arranging the metal particles in the opening of the fine hole while securing a gap between the opening and the metal particle,
Disposing the substrate in which the metal particles are disposed in a chamber in a vacuum state, and exhausting gas in the fine holes from the gap;
Heating the substrate placed in the chamber in a vacuum state to melt the metal particles and close the gap with the molten metal;
By pressurizing the inside of the chamber, pushing the molten metal into the fine holes of the heated substrate and filling the fine holes,
A method of embedding metal in the fine holes, comprising: a solidifying step of cooling and solidifying the molten metal filled in the fine holes.
請求項1に記載の微細孔への金属埋め込み方法であって、
前記金属粒配置工程が、
少なくとも2つの金属粒を多段重ねで配置する工程
を備える微細孔への金属埋め込み方法。
A method for embedding a metal in a micropore according to claim 1,
The metal grain arrangement step,
A method of embedding a metal in a fine hole, comprising a step of arranging at least two metal grains in a multi-stage stack.
請求項1に記載の微細孔への金属埋め込み方法であって、
前記微細孔形成工程が、
前記微細孔の前記開口部を非円形に形成する工程
を備える微細孔への金属埋め込み方法。
A method for embedding a metal in a micropore according to claim 1,
The micropore forming step,
A method of embedding a metal in a fine hole, comprising a step of forming the opening of the fine hole in a non-circular shape.
請求項1乃至請求項3のいずれかに記載の微細孔への金属埋め込み方法であって、
前記基板上の前記開口部周辺にランドを形成する工程
をさらに備える微細孔への金属埋め込み方法。
A method for embedding a metal in a fine hole according to any one of claims 1 to 3,
A method of embedding a metal into a fine hole, further comprising forming a land around the opening on the substrate.
請求項1乃至請求項4のいずれかに記載の微細孔への金属埋め込み方法であって、
前記微細孔形成工程が、
前記基板の裏面に設けられた膜に達する前記微細孔を形成する工程
を備え、
前記固化工程後に前記膜を除去する工程
をさらに備える微細孔への金属埋め込み方法。
A method for embedding a metal in a fine hole according to any one of claims 1 to 4,
The micropore forming step,
A step of forming the fine holes reaching a film provided on the back surface of the substrate,
A method of embedding a metal in a fine hole, further comprising a step of removing the film after the solidification step.
JP2003011048A 2003-01-20 2003-01-20 Embedding method of metal into pore Pending JP2004228135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011048A JP2004228135A (en) 2003-01-20 2003-01-20 Embedding method of metal into pore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011048A JP2004228135A (en) 2003-01-20 2003-01-20 Embedding method of metal into pore

Publications (1)

Publication Number Publication Date
JP2004228135A true JP2004228135A (en) 2004-08-12

Family

ID=32900068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011048A Pending JP2004228135A (en) 2003-01-20 2003-01-20 Embedding method of metal into pore

Country Status (1)

Country Link
JP (1) JP2004228135A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179782A (en) * 2004-12-24 2006-07-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor substrate
US7681779B2 (en) * 2007-03-21 2010-03-23 Advanced Semiconductor Engineering, Inc. Method for manufacturing electric connections in wafer
WO2010114216A1 (en) * 2009-04-03 2010-10-07 한국생산기술연구원 Apparatus for peeling metal in a via hole penetrating through a semiconductor wafer, and peeling method using same
JP2010232641A (en) * 2009-03-05 2010-10-14 Tdk Corp Method of forming through electrode and semiconductor substrate
JP2011086773A (en) * 2009-10-15 2011-04-28 Seiko Epson Corp Semiconductor device, circuit board, and electronic apparatus
CN102683309A (en) * 2011-03-15 2012-09-19 中国科学院微电子研究所 Adapter plate for filling through holes by wafer-level re-balling printing and manufacturing method thereof
KR101215813B1 (en) 2010-03-08 2012-12-26 가부시키가이샤 덴소 Method of manufacturing multi-layer circuit board having through via hole filled with conductive material, apparatus for filling through via hole with conductive material, and method of using the same
JP2013502738A (en) * 2009-08-24 2013-01-24 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド Method for manufacturing a through interconnect on a semiconductor substrate
US8446000B2 (en) 2009-11-24 2013-05-21 Chi-Chih Shen Package structure and package process
US8541883B2 (en) 2011-11-29 2013-09-24 Advanced Semiconductor Engineering, Inc. Semiconductor device having shielded conductive vias
US8643167B2 (en) 2011-01-06 2014-02-04 Advanced Semiconductor Engineering, Inc. Semiconductor package with through silicon vias and method for making the same
US8692362B2 (en) 2010-08-30 2014-04-08 Advanced Semiconductor Engineering, Inc. Semiconductor structure having conductive vias and method for manufacturing the same
US8786098B2 (en) 2010-10-11 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor element having conductive vias and semiconductor package having a semiconductor element with conductive vias and method for making the same
US8786060B2 (en) 2012-05-04 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US8841751B2 (en) 2013-01-23 2014-09-23 Advanced Semiconductor Engineering, Inc. Through silicon vias for semiconductor devices and manufacturing method thereof
US8853819B2 (en) 2011-01-07 2014-10-07 Advanced Semiconductor Engineering, Inc. Semiconductor structure with passive element network and manufacturing method thereof
US8865520B2 (en) 2010-08-27 2014-10-21 Advanced Semiconductor Engineering, Inc. Carrier bonding and detaching processes for a semiconductor wafer
US8937387B2 (en) 2012-11-07 2015-01-20 Advanced Semiconductor Engineering, Inc. Semiconductor device with conductive vias
US8952542B2 (en) 2012-11-14 2015-02-10 Advanced Semiconductor Engineering, Inc. Method for dicing a semiconductor wafer having through silicon vias and resultant structures
US8963316B2 (en) 2012-02-15 2015-02-24 Advanced Semiconductor Engineering, Inc. Semiconductor device and method for manufacturing the same
US8975157B2 (en) 2012-02-08 2015-03-10 Advanced Semiconductor Engineering, Inc. Carrier bonding and detaching processes for a semiconductor wafer
US8987734B2 (en) 2013-03-15 2015-03-24 Advanced Semiconductor Engineering, Inc. Semiconductor wafer, semiconductor process and semiconductor package
US9007273B2 (en) 2010-09-09 2015-04-14 Advances Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US9024445B2 (en) 2010-11-19 2015-05-05 Advanced Semiconductor Engineering, Inc. Semiconductor device having conductive vias and semiconductor package having semiconductor device
US9089268B2 (en) 2013-03-13 2015-07-28 Advanced Semiconductor Engineering, Inc. Neural sensing device and method for making the same
US9153542B2 (en) 2012-08-01 2015-10-06 Advanced Semiconductor Engineering, Inc. Semiconductor package having an antenna and manufacturing method thereof
US9173583B2 (en) 2013-03-15 2015-11-03 Advanced Semiconductor Engineering, Inc. Neural sensing device and method for making the same
US9305866B2 (en) 2014-02-25 2016-04-05 International Business Machines Corporation Intermetallic compound filled vias
US9406552B2 (en) 2012-12-20 2016-08-02 Advanced Semiconductor Engineering, Inc. Semiconductor device having conductive via and manufacturing process
US9978688B2 (en) 2013-02-28 2018-05-22 Advanced Semiconductor Engineering, Inc. Semiconductor package having a waveguide antenna and manufacturing method thereof
WO2019150879A1 (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and semiconductor device manufacturing method
WO2023109327A1 (en) * 2021-12-17 2023-06-22 腾讯科技(深圳)有限公司 Silicon wafer and method for filling silicon hole therein

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508859B2 (en) * 2004-12-24 2010-07-21 新光電気工業株式会社 Manufacturing method of semiconductor substrate
JP2006179782A (en) * 2004-12-24 2006-07-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor substrate
US7681779B2 (en) * 2007-03-21 2010-03-23 Advanced Semiconductor Engineering, Inc. Method for manufacturing electric connections in wafer
JP2010232641A (en) * 2009-03-05 2010-10-14 Tdk Corp Method of forming through electrode and semiconductor substrate
WO2010114216A1 (en) * 2009-04-03 2010-10-07 한국생산기술연구원 Apparatus for peeling metal in a via hole penetrating through a semiconductor wafer, and peeling method using same
KR101071180B1 (en) 2009-04-03 2011-10-10 한국생산기술연구원 Through Via hole filling apparatus and method
US8486827B2 (en) 2009-04-03 2013-07-16 Korea Institute Of Industrial Technology Device of filling metal in through-via-hole of semiconductor wafer and method using the same
JP2013502738A (en) * 2009-08-24 2013-01-24 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド Method for manufacturing a through interconnect on a semiconductor substrate
JP2011086773A (en) * 2009-10-15 2011-04-28 Seiko Epson Corp Semiconductor device, circuit board, and electronic apparatus
US8446000B2 (en) 2009-11-24 2013-05-21 Chi-Chih Shen Package structure and package process
KR101215813B1 (en) 2010-03-08 2012-12-26 가부시키가이샤 덴소 Method of manufacturing multi-layer circuit board having through via hole filled with conductive material, apparatus for filling through via hole with conductive material, and method of using the same
US8865520B2 (en) 2010-08-27 2014-10-21 Advanced Semiconductor Engineering, Inc. Carrier bonding and detaching processes for a semiconductor wafer
US8692362B2 (en) 2010-08-30 2014-04-08 Advanced Semiconductor Engineering, Inc. Semiconductor structure having conductive vias and method for manufacturing the same
US9007273B2 (en) 2010-09-09 2015-04-14 Advances Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US8786098B2 (en) 2010-10-11 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor element having conductive vias and semiconductor package having a semiconductor element with conductive vias and method for making the same
US9024445B2 (en) 2010-11-19 2015-05-05 Advanced Semiconductor Engineering, Inc. Semiconductor device having conductive vias and semiconductor package having semiconductor device
US8643167B2 (en) 2011-01-06 2014-02-04 Advanced Semiconductor Engineering, Inc. Semiconductor package with through silicon vias and method for making the same
US8853819B2 (en) 2011-01-07 2014-10-07 Advanced Semiconductor Engineering, Inc. Semiconductor structure with passive element network and manufacturing method thereof
CN102683309A (en) * 2011-03-15 2012-09-19 中国科学院微电子研究所 Adapter plate for filling through holes by wafer-level re-balling printing and manufacturing method thereof
US8541883B2 (en) 2011-11-29 2013-09-24 Advanced Semiconductor Engineering, Inc. Semiconductor device having shielded conductive vias
US8975157B2 (en) 2012-02-08 2015-03-10 Advanced Semiconductor Engineering, Inc. Carrier bonding and detaching processes for a semiconductor wafer
US8963316B2 (en) 2012-02-15 2015-02-24 Advanced Semiconductor Engineering, Inc. Semiconductor device and method for manufacturing the same
US8786060B2 (en) 2012-05-04 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US9153542B2 (en) 2012-08-01 2015-10-06 Advanced Semiconductor Engineering, Inc. Semiconductor package having an antenna and manufacturing method thereof
US8937387B2 (en) 2012-11-07 2015-01-20 Advanced Semiconductor Engineering, Inc. Semiconductor device with conductive vias
US8952542B2 (en) 2012-11-14 2015-02-10 Advanced Semiconductor Engineering, Inc. Method for dicing a semiconductor wafer having through silicon vias and resultant structures
US9406552B2 (en) 2012-12-20 2016-08-02 Advanced Semiconductor Engineering, Inc. Semiconductor device having conductive via and manufacturing process
US9960121B2 (en) 2012-12-20 2018-05-01 Advanced Semiconductor Engineering, Inc. Semiconductor device having conductive via and manufacturing process for same
US8841751B2 (en) 2013-01-23 2014-09-23 Advanced Semiconductor Engineering, Inc. Through silicon vias for semiconductor devices and manufacturing method thereof
US9728451B2 (en) 2013-01-23 2017-08-08 Advanced Semiconductor Engineering, Inc. Through silicon vias for semiconductor devices and manufacturing method thereof
US9978688B2 (en) 2013-02-28 2018-05-22 Advanced Semiconductor Engineering, Inc. Semiconductor package having a waveguide antenna and manufacturing method thereof
US9089268B2 (en) 2013-03-13 2015-07-28 Advanced Semiconductor Engineering, Inc. Neural sensing device and method for making the same
US8987734B2 (en) 2013-03-15 2015-03-24 Advanced Semiconductor Engineering, Inc. Semiconductor wafer, semiconductor process and semiconductor package
US9173583B2 (en) 2013-03-15 2015-11-03 Advanced Semiconductor Engineering, Inc. Neural sensing device and method for making the same
US9305866B2 (en) 2014-02-25 2016-04-05 International Business Machines Corporation Intermetallic compound filled vias
WO2019150879A1 (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and semiconductor device manufacturing method
WO2023109327A1 (en) * 2021-12-17 2023-06-22 腾讯科技(深圳)有限公司 Silicon wafer and method for filling silicon hole therein

Similar Documents

Publication Publication Date Title
JP2004228135A (en) Embedding method of metal into pore
US6710461B2 (en) Wafer level packaging of micro electromechanical device
EP3607579B1 (en) Seal for microelectronic assembly
EP1167281B1 (en) Chip scale surface-mountable packaging method for electronic and MEMS devices
EP2277197B1 (en) Method for constructing an electronic module
US7713789B2 (en) Semiconductor device with a high thermal dissipation efficiency
US7351641B2 (en) Structure and method of forming capped chips
US20050121768A1 (en) Silicon chip carrier with conductive through-vias and method for fabricating same
US20120086135A1 (en) Interposers, electronic modules, and methods for forming the same
US7416961B2 (en) Method for structuring a flat substrate consisting of a glass-type material
EP1272422A2 (en) Vacuum package fabrication of microelectromechanical system devices with integrated circuit components
JP4539155B2 (en) Manufacturing method of sensor system
JP2013508254A (en) Method of embedding a substance in a glass substrate
US8080876B2 (en) Structure and method for creating reliable deep via connections in a silicon carrier
JP2006186357A (en) Sensor device and its manufacturing method
JP2006201158A (en) Sensor
JP5019824B2 (en) Method for forming member joining means and / or soldering means
TW202125720A (en) Semiconductor devices and methods of manufacturing semiconductor devices
TW457657B (en) Wafer-level packaging of micro electromechanical elements and fabrication method thereof
US7960200B2 (en) Orientation-dependent etching of deposited AlN for structural use and sacrificial layers in MEMS
JP2006126212A (en) Sensor device
JP6859634B2 (en) Hollow package manufacturing method
JP2006295187A (en) Chip lamination method for inhibiting separation between chips
JP2006133236A (en) Sensor system
JP2006202973A (en) Electronic device and manufacturing method thereof