JP2004227701A - 垂直磁気記録媒体 - Google Patents

垂直磁気記録媒体 Download PDF

Info

Publication number
JP2004227701A
JP2004227701A JP2003015526A JP2003015526A JP2004227701A JP 2004227701 A JP2004227701 A JP 2004227701A JP 2003015526 A JP2003015526 A JP 2003015526A JP 2003015526 A JP2003015526 A JP 2003015526A JP 2004227701 A JP2004227701 A JP 2004227701A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
film
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015526A
Other languages
English (en)
Inventor
Hiroaki Nemoto
広明 根本
Ikuko Takezumi
育子 武隅
Yuzuru Hosoe
譲 細江
Hiroyuki Nakagawa
宏之 中川
Kazusukatsu Igarashi
万壽和 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003015526A priority Critical patent/JP2004227701A/ja
Priority to US10/616,377 priority patent/US20040146747A1/en
Publication of JP2004227701A publication Critical patent/JP2004227701A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】磁気記録装置において広い温度領域において優れた記録再生特性を得るためのCo/Pd人工格子膜あるいはCo/Pt人工格子膜を提供する。
【解決手段】基板と、該基板上に形成された磁性層とを備え、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜とし、前記強磁性金属層は、さらに非磁性元素を含有し、前記非磁性金属層の厚さは0.8nm以下とする。また、トルク計によって前記垂直磁気記録媒体のトルク曲線を測定したとき、トルク曲線の4回対象成分の極性は、トルク曲線の2回対象成分の極性と逆符号であることが望ましい。これにより、高い記録再生信号品質を達成しつつ、人工格子膜の磁気特性の温度依存性を抑制し、高性能な垂直磁気記録媒体が達成される。
【選択図】 図9

Description

【0001】
【発明の属する技術分野】
本発明は垂直磁気記録媒体及びその製造方法に関する。
【0002】
【従来の技術】
1990年代より磁気ディスク装置(HDD)の面記録密度は年率60 ̄100%のスピードで急激に増加している。この間、媒体の低ノイズ化を実現するために、媒体結晶粒径の微細化および結晶粒間の磁気的結合を小さくする検討が進められている。磁性粒子が小さくなると、粒子内磁化方向は熱エネルギーによって不安定となる。そのため記録ビットを形成する磁性粒子は記録直後の磁化方向を維持することが出来ず、結果として再生出力の低下を招く。この現象は熱減磁と呼ばれており、50Gb/inch以上の記録密度においては無視することができない。
【0003】
この問題を解決すべく、現在の面内磁気記録方式に変わる垂直磁気記録方式の研究開発が進められている。垂直磁気記録方式は、高密度記録を行った場合に隣接ビットからの漏洩磁束が磁化を安定化させる方向に働くため、面内磁気記録方式と比較して高密度化に有利であると言われている。
ところが、従来から検討されてきた垂直磁気記録膜であるCoCr系合金でも上述の高密度記録を実現しようとすると熱減磁現象の問題を回避することが困難であることが判明してきた。この問題は本質的にCoCr合金系垂直媒体の垂直磁気異方性エネルギー(K)の大きさが環境温度における熱的擾乱に対して不十分であることに起因する。
【0004】
このような事態を打開するため、人工格子(Superlattice)膜による垂直磁気記録媒体の開発が進められている。人工格子膜では人工的に原子層オーダーの薄膜を積み重ねることにより、天然に存在する材料では得られない物性を得ることが可能である。CarciaらはAppl. Phys. Lett. 47 (1985) 178においてCo原子層とPdあるいはPt原子層を積層して得られるCo/Pd(Pt)人工格子膜において大きな垂直磁気異方性エネルギーが得られることを報告した。人工格子膜では垂直磁気異方性の起源がCo/Pd(Pt)層界面にあると言われており、また、CoCr合金系磁気記録膜と比べて大きなKを示す。Kの大きな磁性膜を磁気記録膜として用いることが出来れば、熱擾乱に強く、熱減磁現象の小さい媒体を得ることが可能となる。
【0005】
しかし、Co/Pd(Pt)人工格子膜を磁気ディスク用の磁気記録膜として利用するためには、磁気ヘッドによる高精度な書き込み、すなわち低ノイズ記録が可能でなければならない。この条件を満たすためには人工格子膜からなる磁性膜が均質な膜ではなく、粒界構造をもち、この粒界によって分け隔てられた微小な磁気粒子の集団によって形成されていることが必要である。この粒界に囲まれた磁性微粒子は磁化の反転単位となる。この反転単位をもとに記録ビット(磁化反転領域)が形成されるため、磁性微粒子の面積が小さければ小さいほど、目的の形状に近い高精度な記録ビットの形成、すなわち低ノイズ記録が可能である。
【0006】
このような粒界構造が形成されると磁性膜中の磁化反転過程は一斉回転型(Stoner−Wohlfarth型)となって大きな保磁力が得られる。垂直方向に磁化容易軸を持つ人工格子膜の場合は保磁力付近における磁化反転部分の傾きαが小さくなる傾向を示す。ここでαは磁化反転パラメータ等とも呼ばれ、下記数1の(1)式によって定義される。
【0007】
【数1】
Figure 2004227701
【0008】
完全な粒界構造が得られ、微小磁気粒子間の交換相互作用が静磁気的相互作用に比べて無視できるほど小さくなった場合、αはほぼ1となることが知られている。
【0009】
上述のような背景から、Co/Pd(Pt)人工格子膜中に粒界構造を形成し、低ノイズ記録を可能とするための様々な検討がなされている。以下、文献を引用しつつ、従来報告されてきた検討内容について述べる。
【0010】
特開2002−25032公報ではスパッタリング法によって人工格子媒体を作製する場合に、CoおよびPdターゲットにBを添加元素として加え、かつ酸素雰囲気中で製膜することによって磁気記録媒体に適した特性を得る方法を開示している。
【0011】
また、人工格子膜の直下に形成する下地層の材料および製膜方法は人工格子膜の粒界構造を決定する重要な因子であることが知られている。特定の条件を満たす粒状下地を形成すると続いて製膜する人工格子膜の微細構造は概ねこの下地構造をなぞって形成され粒界構造を持つようになるものと考えられる。
【0012】
特開2001−155329公報ではPt、Au、Pdなどの面心立方構造を持つ金属に酸化物を添加した下地層を用いる方法が報告されている。J. Appl. Phys., Vol. 91, No. 10, 8073、および、日本学術振興会第144委員会第154回研究委員会資料 No. 4においては、Pd層中に窒化シリコンを混入させた膜3 nmを下地膜として使用することにより良好な粒界構造をもった人工格子媒体が得られることが示されている。
【0013】
酸化物膜と金属膜を順次製膜することで下地層を形成する方法も試みられている。ITO(インジウム酸化物+錫酸化物)膜上にPd膜を製膜した下地層上にCo/Pd人工格子膜を製膜すると粒界構造が得られたとの報告が、J. Appl. Phys.、 Vol. 87、 No. 9、 p. 6358、およびIEEE Trans. Magn., Vol. 37, No. 4, p. 1577等に見られる。この報告で得られた磁性膜の磁気特性(磁化曲線など)は計算機シミュレーションとの比較も行われており、J. Appl. Phys., Vol. 87, No. 9, p. 6361において、粒界構造の発現に伴ってαが減少していくことが確かめられている。
【0014】
上記報告によれば人工格子膜中の粒界は密度の低いアモルファス構造をしているか、単なる空隙であるかのいずれかであることが予想される。
【0015】
【発明が解決しようとする課題】
発明者らが上述の公知例を参考としてCo/Pd人工格子膜の作製を行ったところ、保磁力Hは400 [kA/m]、角型比1を示す磁性膜が得られた。また、反転パラメータαはほぼ1を示し、磁性膜の磁化反転過程は一斉回転型である。透過型電子顕微鏡(TEM)により膜の微細構造を観察したところ、磁性膜全面にわたって図1に示すような粒界構造が形成されており、粒界に囲まれた磁性微粒子の直径は約10ナノメートルであった。この人工格子膜ではこの磁性微粒子を単位とした磁化反転が起こっていると考えられる。この人工格子膜を用いて垂直磁気記録媒体を作製し、室温において記録再生実験を行ったところ、従来のCoCr合金系垂直磁気記録媒体と同等以上の優れた記録再生特性を示した。
【0016】
ところが、70℃の温浴中で前記Co/Pd人工格子膜からなる垂直磁気記録媒体の記録再生実験を行ったところ、S/N値が室温と比較して大きく劣化することや、熱減磁による信号強度の低下が大きくなる現象が見られた。また、前記Co/Pd人工格子膜の保磁力Hの温度依存性を詳細に検討したところ、前記Co/Pd人工格子膜のHは温度による変動がかなり大きいことを見出した。従来のCoCr合金系磁気記録媒体においても、一般的にこのような現象は見られるものの人工格子膜を用いた磁気記録媒体ではこの傾向が極めて強かった。
【0017】
したがって、Co/Pd人工格子膜をもちいた垂直記録媒体において記録再生性能の温度依存性が極めて大きいという問題は、人工格子膜そのものの磁気特性が温度によって変化することに起因するものである。
【0018】
磁気ディスクはその用途の広がりと共に様々な環境下で利用されるようになっている。現在の主な用途であるコンピュータシステム用途においては、HDDは室温もしくはそれよりも高い環境において正常な動作を保証するように求められている。通常、これらのシステム内にはHDD本体を含めて様々な熱発生源が存在し、室温前後の温度環境よりかなり高い温度領域までHDD本体の動作温度が上がる可能性がある。現行のHDDではこの事を考慮して、例えば25℃から70℃までの動作温度について所定の性能を満足すべく、設計されている。また、車載用の記録装置として用いるHDDでは−30℃から100℃にまで達する使用環境を想定せざるを得ない場合がある。家庭用電気製品向けの記録装置として用いるHDDでも高密度実装が必要とされる環境や冷却器内などでの使用が想定され、幅広い動作温度領域に対応していることが望ましい。したがって設計者が記録再生装置全体の設計を行う場合には、温度による記録再生特性の変動を所定の設計マージン内に押え込む必要がある。
【0019】
しかるに、媒体磁気特性の温度変化が大きい場合、高温領域で熱擾乱によりデータの安定性に問題が出やすい。低温領域では保磁力の増大によって大きな記録磁界が必要となるために、記録ヘッドの設計が厳しい。記録ビット形状が記録時の温度によって変動する。などの問題が顕著になり、実際に装置設計を行う際に極めて深刻な問題を生じる。
【0020】
なお、発明者らは検討の結果、保磁力Hの温度依存性が極めて大きくなる現象は、人工格子膜を磁化反転パラメータαの値が0.5以上、2.0以下である時、すなわち、磁化反転パラメータαが1に近く、磁化反転過程が一斉回転型である場合にのみ起こることを突き止めた。前述のように、低ノイズ記録を実現するためにはαが1に近いことが必須であるため、従来の人工格子膜による垂直磁気記録媒体では媒体ノイズを低減しつつ、Hの温度変化を抑制することが困難である。
【0021】
【課題を解決するための手段】
本発明は上述の問題点を解決し、高い記録再生信号品質を達成しつつ、人工格子膜の磁気特性の温度依存性を抑制し、高性能な磁気記録媒体として利用するための特性を得るために提案されたものである。
【0022】
すなわち、本発明にかかる垂直磁気記録媒体は、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜であり、前記強磁性金属層は、さらに非磁性元素を含有し、前記非磁性金属層の厚さは0.8nm以下であることを主な特徴とする。
【0023】
または、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜であり、前記磁性層の保磁力の減少率(H(25℃)−H(70℃))/H(25℃)は、0.15より小さいことを特徴とする。
【0024】
または、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜であり、トルク計によって前記垂直磁気記録媒体のトルク曲線を測定したとき、トルク曲線の4回対象成分の極性は、トルク曲線の2回対象成分の極性と逆符号であることを特徴とする。
【0025】
以上のように構成される本発明の媒体は、大きなKを有することにより熱擾乱に対する耐性を持ち、人工格子膜中には強磁性を持たない粒界構造を有し、前記人工格子膜が前記粒界によって膜面方向に分断された磁性微粒子からなることにより、高い信号対ノイズ比を示し、かつHDDの環境温度内、例えば25℃から70℃の間で保磁力Hの変動が小さい。
【0026】
【発明の実施の形態】
以下、具体的な実施例にもとづき図面を参照しながら本発明について説明する。
【0027】
本発明を適用した垂直磁気記録媒体は、基板と、該基板上に形成された磁性層とを備え、磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜である。そして、強磁性金属層はさらに非磁性元素を含有し、非磁性金属層の厚さは0.8nm以下である。また、磁性層は、相対的に密度の高い磁性微粒子と磁性微粒子を囲む相対的に密度の低い磁性粒界とからなる。
【0028】
さらに、本発明を適用した垂直磁気記録媒体は、磁性層の保磁力の減少率(H(25℃)−H(70℃))/H(25℃)は、0.15より小さいことを特徴とし、磁性層の磁化曲線の反転部の傾きαは、0.5以上、2.0以下であることが望ましい。
【0029】
さらにまた、本発明を適用した垂直磁気記録媒体は、トルク計によって前記垂直磁気記録媒体のトルク曲線を測定したとき、トルク曲線の4回対象成分の極性は、トルク曲線の2回対象成分の極性と逆符号であることを特徴とする。
【0030】
人工格子膜では、磁気特性の温度依存性がある。発明者らがHの温度変化が大きくなる理由について調べたところ、Hの温度変化が大きい時には垂直磁気異方性エネルギーKの温度変化も大きいことが分かった。磁化反転パラメータαの値が0.5以上、2.0以下であるような磁性膜では、磁化反転過程はほぼ一斉回転型の特性を示すので、Stoner−Wohlfarthの理論から分かるようにHはKと比例関係で結ばれている。磁化反転パラメータαが1に近い場合に、Hの温度変化が大きいのは、Kの影響がHに反映されやすいためである。よって、αの値が0.5以上、2.0以下であるような磁性膜においても、Kの温度変化を抑制すれば、Hの温度変化を抑制出来る。
【0031】
人工格子膜におけるKの温度依存性について、詳細に検討を行った結果、Kの温度変化率は人工格子膜中の貴金属層の厚さに強く依存した。貴金属層厚さを0.8 nm以下とした場合にKの温度変化率が小さくなった。このためHの温度変化率が減少し、従来の磁気記録媒体と比べても温度変化率が小さいものが得られた。
の温度変化を抑制するためには、人工格子膜中の貴金属層厚さを制限することが効果的であり、具体的には人工格子膜中の全ての貴金属層厚さを全て0.8 nm以下とすることが望ましい。
【0032】
また、発明者らは人工格子膜を製膜するときの、スパッタチャンバー内の導入Arガス圧PArと基板とターゲット間の距離DTSの積、PAr・DTSを増やすことによっても、Kの温度変化を抑制する事が可能であることを発見した。Kの温度変化を有効に抑制するためには前記PAr・DTS値を20 [Pa・cm]以上、より好ましくは50 [Pa・cm]以上とすることが望ましい。この場合にもHの温度変化率は大きく減少した。
【0033】
上記の手法、すなわち、貴金属層厚みを制限する事、およびPAr・DTS値を大きくする事により、Kの温度依存性が小さくなった理由は、人工格子膜においてKが発現するメカニズムと関係がある。
PdやPt等の貴金属は単独では通常強磁性を示さない。しかし、人工格子膜中の貴金属層には隣接する強磁性金属(例えばCo)の影響により磁気モーメントが現れる。発明者らの検討によれば、この貴金属層中に現れた磁気モーメント量が大きいほど、その人工格子膜のKも増加する。したがって、大きなKを示す人工格子膜を作製するためには、貴金属層中、すなわちPdやPt中に出来るだけ多くの磁気モーメントが誘起されるようにしなければならない。貴金属層が1.0 nm以下の場合は、貴金属層を厚くするほど貴金属層中に現れる総磁気モーメント量が増加し、よってKも増加する。
【0034】
しかしながら、強磁性金属層と貴金属層の界面から離れた位置にある貴金属中の磁気モーメントは状態が不安定であり、環境温度によって磁気特性が変化しやすい性格を持つ。発明者らによれば貴金属層厚さが0.8 nm以上である場合には、このような不安定な磁気モーメントが発生する。これがKの温度依存性が大きい原因である。すなわち、温度上昇に際しても貴金属層中の磁気モーメント状態を安定に保ち、Kを一定に保つためには、貴金属層の厚さを0.8 nm以下に設定すればよい。
【0035】
スパッタリング時の導入ガス圧PArと基板とターゲット間の距離DTSの積、PAr・DTSを大きくした場合にKの温度依存性が抑制されるのも貴金属中の磁気モーメントが安定化されることによるものである。PAr・DTS値が大きい場合、ターゲットから飛び出したスパッタ粒子は、チャンバー内でガスとの衝突を繰り返した後に基板面に到達するため、運動エネルギーが小さい状態となる。発明者らは、このようなソフトな製膜方法で形成された人工格子膜は貴金属原子が所定の結晶構造に正確に配置されるため、貴金属原子に誘起された磁気モーメントは強磁性金属層と貴金属層の界面から離れたところにおいても安定になった。
【0036】
一般的にはHとKとは必ずしも比例関係があるわけではない。したがって、α値が2.0以上となって磁性微粒子間の交換相互作用が十分に低減されていない時は、保磁力HはKの変動に左右されず、温度による変化は小さい。しかし、この場合には媒体ノイズが大きくなってしまうので垂直磁気記録媒体としては不適当である。一方、α値が0.5以下となるような場合は垂直磁化配向が著しく低いと考えられるため、垂直磁気記録媒体としては使えない。
【0037】
以上のような条件を満たすように作製された人工格子膜は、Co/Pd(Pt)人工格子膜全体の平均飽和磁化Mが大きくなる傾向にある。貴金属層厚さを制限すると人工格子膜中のCoの組成比が上昇するため、平均のMが増える。また、PAr・DTS値の大きな条件で製膜した人工格子膜はその構造が同じであっても貴金属層中に誘起される磁気モーメントが安定になるのと同時に、磁気モーメントの密度も大きくなる。すなわち貴金属層の飽和磁化が大きくなる。
【0038】
飽和磁化が大きすぎると、磁性膜にかかる反磁界エネルギーが急激の増加し、磁気記録媒体としては適さない。Pd層の磁気モーメントの安定性を損なわずに媒体の平均飽和磁化を減少させるために、Co層へ金属添加物の導入を積極的に行ってCo層内の飽和磁化を減少させることが望ましい。ただし、貴金属層には金属添加物の導入を行わず、Pd、Pt、もしくはこれらの合金によって構成すべきである。貴金属層にPdもしくはPt以外の金属を添加した場合には、添加金属原子の影響から貴金属層内に誘起された磁気モーメントが急激に不安定になるためである。
この場合には、Hの温度依存性が大きくなり、また、K値そのものが急激に減少するので、垂直磁気記録媒体として必要な特性を得ることが出来なくなる。
【0039】
Co層へ導入する金属添加元素としてはCo/Pd(Pt)人工格子膜の結晶構造を乱さない構造、すなわち六方最密充填構造もしくは面心立方構造をとり、かつCo合金の示す磁化を500 ̄1000 kA/m程度まで減少させることが出来るものであることが望ましく、そういった特性を示す元素としては、Pt、Pd、Au、Ag、Rh、Ru、Cuが挙げられる。また、BやCなどの軽元素は20原子%以下の添加であればCo合金層への影響はほとんどなく、かつ、酸素雰囲気中で製膜した場合に粒界構造を形成する助けになることが知られている(特開2002−25032公報)ので、これらの添加金属に加えて導入してよい。
【0040】
通常のスパッタリング製膜でCoやPd、Ptを製膜すると、稠密結晶面が膜面に平行になるように結晶配向をとる。すなわちCoでは六方最密充填構造のc軸、PdやPtは面心立方構造の(111)軸が膜面垂直に配向する。したがって、Co/Pd(Pt)人工格子膜の結晶構造はこれらの薄膜に準じたものとなり、Co層のc軸もしくはPd(Pt)の(111)軸に相当する結晶軸が膜面垂直に配向する。これはX線回折による結晶構造解析などによって調べることが出来る。
【0041】
しかし、前述の公知例などに示されている方法により、粒界構造を導入したCo/Pd(Pt)人工格子膜ではその結晶配向は失われ、粒界で囲まれた磁性粒子内において結晶構造がランダム配向する。発明者らは、このように粒界構造を持った人工格子膜において、結晶配向が大きく乱れた場合にも保磁力Hの温度依存性が大きくなることを発見した。これは磁化反転パラメータαの値が0.5以上、2.0以下であるような(粒界構造をもつ)人工格子磁性膜においてHの温度依存性が大きくなることの原因の一つであると思われる。
【0042】
粒界構造を有するCo/Pd(Pt)人工格子膜の配向を揃えるためには、一定の配向を誘導しやすい下地層を形成し、この下地層の配向に合わせて前記人工格子膜を形成すればよい。下地層表面において所定の配向した結晶面が出ている場合は、粒界構造を有する人工格子膜も同様な配向を示す傾向がある。
Co/Pd(Pt)人工格子膜においてはPdもしくはPtの面心立方構造の(111)軸が膜面垂直方向に配向しやすいため、下地層の材料としては六方最密充填もしくは面心立方構造を持ち、かつ格子定数が人工格子膜の材料であるPd、Ptと大きく違わないものが適している。また、格子間隔は大きいほど、大きなHを比較的容易に得られることが分かった。以上の目的に合致する下地層材料はPd、Pt、Au、Ag、およびRu、もしくはこれらの合金である。ただし、PdとPd、およびPdPt合金のみを用いると、人工格子膜との親和性が高すぎる為か、粒界構造が出来にくく、αを2.0以下とすることが不可能であった。
【0043】
これらの下地層はより(111)配向を出しやすくするためのPd層、Pt層、またはPdPt合金層などの上に製膜するとより効果が高まる。また、引用文献などにおいて開示されている酸化物層などと組み合わせて用いるとさらに効果が高まる。
【0044】
以上のような手法によって結晶配向を揃えた媒体と、そうでない媒体は、磁気トルク計を用いて見分けることが出来る。発明者らが検討を行ったところ、粒界構造を持つ人工格子膜において、結晶配向がそろっていない場合には、磁気トルク計の測定において得られるトルク曲線をフーリエ変換した場合の4回対称成分の値が負の値を示し、上記の手法によって磁性粒子内の配向を揃えた媒体では、トルク曲線の4回対称成分が正の値を示すことが分かった。これを保磁力の温度依存性を抑制することが出来るかどうかの指標として用いることが可能である。
【0045】
【実施例1】
本実施例はCo合金膜とPdが交互に積層されてなるCo/Pd人工格子膜からなる磁気記録媒体の例である。垂直磁気異方性エネルギーを担っているPd層中の磁気モーメントの安定性はスパッタ製膜時の導入ガス圧、そしてPd層厚さによって強い影響を受ける。本実施例ではこの点について明らかにし、保磁力Hの温度依存性を小さくするための対策方法の一つを明らかにする。
【0046】
まず、本実施例の磁気記録媒体の概略的な構成を図2に示す。この磁気記録媒体は人工格子膜の磁気特性を検討するために用意したものであり、垂直磁気記録方式で必要とされる軟磁性裏打ち層が存在しない。ガラス面上に密着性を高めるためのNiTa合金を配し、その上に下地層としてPd80Ag20合金(厚さ15 nm )を、記録層としてCo/Pd人工格子膜を、最後にカーボン保護層(5 nm)を順次製膜した。製膜方法としてはDCマグネトロンスパッタリングを用いた。人工格子膜の周期構造を得るためには、Co合金材料と貴金属材料を数十層に渡って交互に基板面に付着させる必要がある。
【0047】
図3に本実施例において人工格子膜を作製する際に用いた回転型三元カソード(以下、回転カソードと称する)の概略図を示す。本回転カソードシステムは回転テーブルに3つの独立したスパッタリングカソードを配置してなるものである。CoターゲットおよびPdターゲットを回転カソードに取付け、この回転カソードを100rpmで回転させ、前記ターゲットを同時に放電させる。基板を例えば回転テーブルの中心軸上に配置すると、基板の各位置にはCoとPdスパッタ粒子が交互に付着する。
【0048】
本方法を用いることによって人工格子膜を量産に適用できる程度に高速に製膜することが可能になる。CoターゲットおよびPdターゲットのスパッタ電力を調整することで所定の層厚さの人工格子膜を得た。人工格子膜全体の厚さは層厚さ×周期数が20 nmとなるように時間によって制御した。
【0049】
人工格子膜の特性を検討するため、積層構造を変化させたサンプル群を作製した。Co合金層の厚さは0.3 nmに固定とし、Pd層厚さを0 nm(なし)から1.6 nmまで変化させた。Co/Pd人工格子膜を作製する時のArガス圧は5 Paとした。また、使用したスパッタチャンバー内でのターゲット基板間距離は5 cmであった。
【0050】
また、人工格子膜に粒界構造を導入し、磁化反転パラメータαを低減する目的で、人工格子膜の製膜時に微量の酸素ガスをアルゴンガスに加えて導入した。導入した酸素ガスの分圧は20〜60 mPaとした。図4に様々な酸素分圧PO2で作製した人工格子膜の磁化ヒステリシス曲線を示す。製膜時の酸素分圧PO2が40mPa以上の場合にαは2以下となった。本実施例では以下、製膜時の導入酸素分圧を50mPaとして検討を行った。導入酸素分圧を50mPaとして作製した人工格子膜のTEM観察を行ったところ、密度の低い領域が網の目状に存在する完全な粒界構造が形成されていた。粒界に囲まれた磁性微粒子は磁気的に孤立した状態であると考えられる。
【0051】
Pd層厚さと人工格子膜の飽和磁化Msの関係を図5に、1周期あたりの垂直磁気異方性エネルギーλK(λは人工格子膜の積層周期)との関係を図6に示す。Co層の磁化を880 emu/cm3(Pd層厚を0 nmとした時の磁化の値)とした時、Pd層内に適当な磁化分布を仮定すると、Co/Pd人工格子膜の飽和磁化のPd層厚依存性(図5)を説明できる。この分布を図7に示す。J. Magn. Magn. Mater., 99, p. 71−88などに示されているように、Pd磁化はCo合金層との界面で磁化される傾向を持つが、界面から離れるにしたがってその磁化の値は減少していくと考えられている。図7の結果はこの引用文献を実験的に証明する結果である。図7においてPd層の磁化はCo/Pd界面からの距離が0.4 nmの場所においてほぼ半分となり、以後急激に減少した。これに対して、図6においてλKの値が飽和するPd層厚は約0.8 nmと2倍の値を示している。
【0052】
この結果は人工格子膜の垂直磁気異方性の起源がPdの誘起された磁気モーメントであることを示唆している。Pd層厚が0.8 nm以下の場合はCo/Pd人工格子膜のλK値はPd層厚に比例して増加していく、ところが0.8 nm以上になるとそれ以上Pd層中に磁気モーメントが増えることはなく、λK値は増加しなくなる。図8にPd層の飽和磁化分布と垂直磁気異方性エネルギー分布の関係について模式的に表す。
【0053】
CoとPdの界面から離れた位置にある磁気モーメントは不安定であり、温度が上がると領域にある磁気モーメントは消失しやすい。Pd層を0.8 nm以下として図8の不安定磁化領域をなくす事で、保磁力の減少を抑えることが可能である。図9にPd層厚の異なるCo/Pd人工格子膜の25℃および70℃における保磁力Hを比較した。また図10に、図9から得られた25℃から70℃にかけての保磁力Hの減少率と、別途測定したKの減少率を比較した。Hの温度変化はKの温度変化率の動きとよく一致しており、Kの減少が直接Hの現象につながっている。また、確かにPd層の厚さが0.8 nm以下で急激にHの減少率が小さくなった。
【0054】
図10から分かるように、Pd層厚さ0.8 nmを境に保磁力Hの減少率(25℃→70℃)が15%以下の領域と15%以上の領域とに分かれた。したがって、保磁力Hの減少率が15%以下であれば、図8中のPd磁化が不安定な領域が消滅したと考えてよい。このように本発明の人工格子膜は、25℃および70℃で測定したHについて数2に示す(2)式を満たす。
【0055】
【数2】
Figure 2004227701
【0056】
25℃から70℃の範囲内ではHの減少率はほぼ一定であるから、式(2)によってHの温度変化率を代表させて論じるのは妥当な方法である。
【0057】
が温度上昇と共に減少するのは、もちろん人工格子膜に限ったことではなく、磁気記録媒体のHは温度が上昇すると一般に減少する。現行の磁気ディスク装置に用いられているCoCr合金系面内磁気記録媒体について同様の測定を行った結果、25℃から70℃への温度が上昇した場合に、Hは300 kA/mから245 kA/mまで減少した。これは数3に示す式(3)のように約18%の減少率である。
【0058】
【数3】
Figure 2004227701
【0059】
図10から分かるように、式(3)の値と比較して従来のCo/Pd人工格子膜では温度の上昇によるHの低下率がかなり大きくなることがあったが、Pd層の厚さを適当に設定すれば式(2)を満たすことが可能であり、Hの温度変化の問題は従来の面内磁気記録媒体と同等以上に軽減される。
【0060】
保磁力の温度変化を抑制した効果を確認するため、人工格子記録膜とその基板側に配置した軟磁性裏打ち層とを組み合わせた垂直磁気記録媒体を作製し、記録再生特性の評価を行った。表1に評価を行った2つのサンプルを示す。サンプルBは本実施例の垂直磁気記録媒体であり、サンプルAは比較例である。下地層としては前述のPd80Ag20合金を15 nm製膜し、その上に人工格子膜を全体で約20 nmとなるように製膜した。サンプルA、Bにおける人工格子膜中のPd層の厚さはそれぞれ1.0 nm、0.7 nmとした。いずれのサンプルも下地層の基板側にFeTa37軟磁性層を200 nm、記録層の表面側にカーボン保護層を5 nm製膜した。25℃における保磁力はいずれも550kA/m前後であったが、70℃における保磁力は大きく異なった。サンプルAでは保磁力は34%減少して365kA/mとなるのに対して、サンプルBでは保磁力は9%減少して485kA/mとなった。サンプルBではPd層が薄くなったことに対応して保磁力の温度減少率が小さくなった。
【0061】
【表1】
Figure 2004227701
【0062】
温浴中に設置した記録再生評価装置にこれらのサンプルを取付け、ヘッドの線速度を8 m/sに固定して記録再生特性の評価を行った。単磁極ヘッドを用いて1トラックに一定の磁化反転密度で記録を行った後、GMRヘッドを用いて同一トラックの再生を行った。信号強度は再生信号振幅より求め、ノイズ強度は記録時のディスクノイズ成分を100MHzまで積分することにより求めた。
【0063】
図18に、25℃で磁気情報の記録および再生試験を行い、その後70℃で再生試験を行った結果を示す。記録線密度は400kFCIとした。図18に示すように、記録直後における信号対ノイズ強度比(SNR)は双方ともほぼ同じであった。しかし、サンプルAでは70℃に温度を上げた時にSNRが大きく減少し、さらに時間と共にSNRが減少した。これに対してサンプルBは70℃に昇温した段階でSNRがやや減少するものの、SNRの劣化はほとんど見られなかった。これは70℃においてサンプルAの保磁力が小さくなった結果、熱減磁によって再生信号振幅が減少していることを示しているものと思われる。保磁力の減少を抑制したサンプルBでは、熱減磁を防ぐことが出来た。
【0064】
図19に70℃の環境下で記録を行い、25℃において再生特性を評価した結果を示す。線記録密度を20kFCI、400kFCI、600kFCIと変化させてその再生信号強度の変化を調べた。再生信号強度としては20kFCIの時の値で規格化を行った値を示した。図19によればサンプルAは線記録密度が高い場合、特に600kFCI、において信号強度が小さかった。これは高い環境温度において記録を行った場合にサンプルAはサンプルBよりも記録分解能が劣っていることを示している。サンプルAは70℃において保磁力が小さくなるために、磁化遷移領域幅が増大し、高密度での記録性能が劣化したと考えられる。
【0065】
図20に−20℃、−10℃、0℃、10℃、20℃の環境下で記録を行い、25℃において再生特性を評価した結果を示す。サンプルAでは記録時の環境温度が低くなるにしたがってSNRが大きく減少していった。サンプルBもわずかにSNRが減少したが、サンプルAと比べると小さい。サンプルAは保磁力の温度依存性が大きいので、低温では保磁力が急激に増加する。したがって、サンプルAでは、室温付近で良好な記録特性が得られたにも拘わらず、低温では記録磁界が不足しSNRが劣化したものと考えられる。
【0066】
本実施例の人工格子膜を用いた垂直磁気記録媒体であるサンプルBは広い環境温度範囲で25℃の場合と遜色ない記録再生特性を示す一方で、比較例であるサンプルAは環境温度が変わると記録再生特性が劣化することが分かった。このようにHの温度依存性を抑えることで、磁気ディスク装置の温度による特性変化をなくすことが可能となり、垂直磁気記録方式によって高密度化を図るという目的を達成することが容易になる。
【0067】
【実施例2】
本実施例では、実施例1と同様の原理により、作製方法を変えることでHの温度依存性を抑制した結果を示す。使用したスパッタ装置は実施例1と同じである。作製した媒体はCo合金層厚さが0.3 nm、Pd層厚さが0.8 nmであり、人工格子膜は20 nm(約20周期)である。導入酸素分圧は実施例1と同じ50 mPaとし、下地層としてはRu(20 nm)を用いた。人工格子膜の磁気特性を検討するために軟磁性裏打ち層は積層しなかった。このように作製した人工格子膜の磁化反転パラメータαは0.8であり、粒界構造により磁性微粒子間の交換相互作用はほぼなくなった。図11に作製時のArガス圧力と保磁力Hの温度依存性の関係を示した。図11において斜線で影が付けられている領域は粒界が正常に形成されない領域であり、磁化反転のメカニズムが異なるため考察の対象から除外する。
【0068】
図11によれば、Pd層の厚さを0.8 nmとしたにも拘わらず、酸素ガス圧が4 Pa以下になるとHの温度変化率が大きくなってしまう。図12に1周期あたりの垂直磁気異方性エネルギーλKを、Co/Pd人工格子膜をスパッタ製膜する時の導入Arガス圧が2 Paの場合と5 Paの場合(図4)とで比較した。Pd層が薄い領域では、いずれも同じようにPd層厚さにほぼ比例してλKが増加する傾向を示した。2 Paで製膜した場合、Pd層厚が0.5〜0.6 nmあたりでλKの増加傾向が見られなくなった。ところが5 Paで製膜した場合には、この増加傾向が1.0 nmまで続いている。
【0069】
実施例1において示したように、このようなλKの振る舞いはどれくらのPd層厚さまでPd層中の磁気モーメントの安定性が保たれているかを表している。すなわち、2 Paと5 Paとでは作製された人工格子膜の特性が異なり、2 PaのArガス圧で製膜を行った場合にはPd層中の磁気モーメントが0.5 nm以上で不安定になるのに対して、5 Paの場合は1.0 nmまで不安定領域が存在しない。よって、2Paで製膜した膜と5Paで製膜した膜とでは、Pd層厚さが0.5 nm以上の場合にHの温度依存性に顕著な差が生じる。図11を見ると、スパッタガス圧についても4 Paを境に保磁力の高温での減少率が小さい領域(図11では4 Pa以上)と大きい領域(図11では4 Pa以下)にはっきり分かれる傾向があり、Hの温度減少率(25℃→70℃時)の境目はやはり約15%である。この結果から、上述のようにPd層中の磁気モーメントが安定でさえあれば、やはり式(2)を満たすことが分かる。
【0070】
このようにスパッタガス圧を増加させることによってPd層中の磁気モーメントを安定化させることが出来る理由について、発明者らは次のように考えている。
Arガス圧が高くなることによってスパッタ粒子はチャンバー内のAr原子と衝突しやすくなり、スパッタ粒子の平均運動エネルギーは減少する。Arガス圧が高い場合には低いエネルギーのスパッタ粒子が人工格子膜へ付着するようになり、人工格子膜の微細構造が破壊されにくいので、Pd層中の磁気モーメントがより安定になる。ただし、実際に人工格子膜の微細構造にどのような違いが生まれているのかについては分かっていない。
【0071】
以上のように保磁力Hの温度依存性を抑制するには高ガス圧下のスパッタリングによって製膜することが効果的である。ただし、必要となるスパッタリング製膜時のArガス圧力は使用するチャンバーの形態にもよることを考慮しなければならない。本実施例ではターゲット基板間距離は5 cmであるが、これが2倍になればArガス圧を半分にしてもスパッタ粒子とAr原子の衝突確率は同じである。また、Ar原子の替わりに別の希ガス原子であるXeやKrを使用しても状況は異なってくる。これらの原子はAr原子よりも原子量が大きく、スパッタ粒子のエネルギーを効率よく奪うことが出来るからである。
【0072】
【実施例3】
本実施例ではCo合金層およびPd合金層に金属不純物を添加して作製した人工格子膜について比較検討した結果について述べる。
【0073】
本実施例においては人工格子膜の共通な構造としてCo合金層を0.3 nm、Pd合金層を0.8 nm、人工格子膜の総膜厚を20 nmとした。製膜方法は実施例1および2と同じである。下地層は実施例2と同様にRu(20 nm)を用い、人工格子膜の磁気特性を検討するために軟磁性裏打ち層は積層しなかった。Cu、Ag、Ptの3種類の金属について、Co合金ターゲットのみに添加した場合、Pd合金ターゲットのみに添加した場合、および両方のターゲットに添加した場合の3つの場合をそれぞれ検討した。ターゲットへの不純物添加量は全て10原子%とした。
【0074】
図13にこれらの人工格子膜の示したH減少率を示す。添加物がCuおよびAgである場合、Co層のみへの添加では無添加の場合と比べて大きな変化がないのに対して、Pd層にこれらが入ると減少率は大きく増加する。垂直磁気異方性エネルギーKを荷っているPd層中の磁気モーメントの状態は主としてPd層中の不純物によって不安定になるためである。図14にAg元素の添加量および添加する場所とKの関係について調べた結果を示す。Co層のみにAgが添加された場合には大きな変化が見られない一方、Pd層にAgが入った場合にはKが大きく減少した。これは前述の予想を裏付ける結果である。
【0075】
ただし、不純物がPtである場合は特別で、Pd層中にPtが入ってもCuやAgのようにHの減少率が増加することは無い。つまり、Pd層中へPt元素を添加しても、磁気モーメントの状態を不安定にする効果は小さい。これはCo/Pt人工格子膜にPd元素を添加した場合にも同様である。
【0076】
このようにPd層への不純物添加が媒体の熱に対する安定性を大きく損なわせるのに対して、Co層へは不純物添加をすることが可能である。特開2002−25032公報などに開示されているように、添加物によって粒界形成が容易になり、磁気記録媒体としての性能が向上するので、αを小さくしつつHの温度変化を抑制する方法としてCo層のみへの不純物の添加することが望ましい。なお、添加物としてSiOのような酸化物を導入する場合には、添加する場所による顕著な違いはなかった。添加物が金属元素でない場合にはPd層中の電子状態に大きな影響を与えないためだと思われる。
【0077】
【実施例4】
実施例1に示したように、Hの温度上昇に伴う減少を抑制するためには貴金属層を薄くすることが有効である。しかし、貴金属層が薄くなると相対的に強磁性層の体積比率が増加するため、人工格子膜の平均飽和磁化は増加する。その結果、反磁界の影響が増して熱安定性が劣化することになる。そこで実施例3に示したように、積極的にCo層への不純物添加を行って、Co合金層の飽和磁化を減少させると良い。本実施例ではCo/Pd人工格子膜について、Co層へ10原子%の Agを添加した物、10原子%の Crを添加した物、添加物なし物を比較し、Co/Pd人工格子膜のCo合金層へ添加する材料と磁気特性との関係について考察する。
【0078】
試料の作製に使用したスパッタ装置は実施例1と同じである。ただし、実施例1のように酸素ガスを導入しながら製膜するのではなく、図3に示した回転テーブル上のカソードのうち一つにSiOターゲットを取付け、Co合金ターゲット、Pdターゲットと同時に放電させて製膜した。この場合にSiOは、強磁性金属元素や貴金属元素と分離して凝集し、人工格子膜中に粒界構造を形成した。そのため、実施例1で用いた酸素ガス中製膜法を用いなくとも、ほぼα〜1である媒体が得られた。それぞれのCo合金/Pd人工格子膜中のPd層厚さを0.6 nmに固定し、Co合金層厚さを0.2〜0.8 nmの範囲で変化させた。人工格子膜の総膜厚は約20 nmとなるように周期数を調節した。下地層としてはPt80Ag20合金(20 nm)を用いた。これらの試料は人工格子膜の磁気特性を検討するためのものであるから、軟磁性裏打ち層は製膜しなかった。
【0079】
図15(a)に、Co(合金)層が0.3 nm、Pd層が0.6 nm場合の磁化ヒステリシス曲線を比較した。図15(b)にこれらのヒステリシス曲線から反転開始磁界Hを求める方法を図示した。Hは磁化状態の安定性を示すパラメータの一つであり、一般にこの値が負であれば磁界が無い状態において安定である。Hが正の値をとるようであれば、一旦磁化を飽和させた後で放置すると、磁化は減少する。図15(a)から、添加物が無い膜では飽和磁化が500kA/mと大きいため、Hは−35kA/mとわずかに負の値をとる。AgまたはCrをCo層へ添加した膜では、飽和磁化はそれぞれ310 kA/m、280 kA/mへと減少した。その効果によりAg添加の膜ではHが−200 kA/mとなっている。ところがCr添加の膜では飽和磁化と同時にHも減少しているため、Hは+20kA/mと正の値をとった。
【0080】
図16にHのCo合金層厚さ依存性を示した。図16によれば、添加物なし、およびAg添加の場合には0.3〜0.4 nmでHが最大になる。Agを添加した場合には最大のHをとるCo合金層厚さに変化は無い。これに対してCr添加の場合にはHが増大するのは0.5〜0.7 nmと厚くなった。
【0081】
以上のようにAgをCo合金層に添加すると、人工格子膜の平均飽和磁化は減少する一方でHの減少は小さいので、Hの絶対値を大きくし、人工格子膜の熱安定性を向上させることが可能である。Agのような金属は面心立方構造をもっているため、PdやPt等の貴金属層材料と相性がよく、Co層へ添加してもKやHが減少しない。Agと同様な特性を示す添加物材料には他にPt, Pd, Au, Rh, Ru, Cuがあった。
【0082】
Crのような場合、CoCr合金層が0.3 nmでは十分なKが得られなくなり、HやHが減少してしまった。Cr元素の添加により、人工格子膜の結晶性が低下したためであると予想される。ただし、CoCr10合金はある程度厚くなるとhcp結晶構造となることが知られている。このために0.5〜0.7 nm付近ではPd層との親和性が高まり、Hが増大した。しかし、Co合金層を厚くしてしまうとCr元素添加によってCo合金層の飽和磁化を小さくした効果が相殺されるため、人工格子膜全体の平均飽和磁化を小さくすることが出来ない。
【0083】
【実施例5】
実施例1から4においては主に人工格子膜そのものについての実施例を示してきたが、本実施例については人工格子膜の下地膜を変化させて、保磁力Hの温度変化を抑制する方法について示す。
本実施例では実施例4において開示したCoCu2010/Pd人工格子膜(Co合金層の厚さは0.4 nmとする)を記録磁性層とし、その下地膜を換えて検討を行った結果を示す。表2に検討した下地層の構造と25℃から70℃まで昇温したときのHの減少率を示す。また、これらの下地層上のCoCu2010/Pd人工格子膜のトルク曲線を測定し、その2回対称成分L、および4回対称成分Lを抽出した結果を並べて示した。
【0084】
【表2】
Figure 2004227701
【0085】
表2においてトルク曲線は単位体積あたりの値でサンプルの磁化方向と磁界印加方向のなす角度θの関数として定義した。通常、磁気トルク計ではサンプルの垂直方向と磁界印加方向のなす角度φの関数としてトルク曲線を測定するが、φとθは下記数3に示す(4)式によって変換することが出来る。
【0086】
【数4】
Figure 2004227701
【0087】
ここでL(θ)は磁気トルク、Mは飽和磁化、Hextは印加磁界である。トルク計によって測定したトルク曲線を補正することで、数5に示す(5)式のL(θ)が得られる。
【0088】
【数5】
Figure 2004227701
【0089】
このL(θ)をフーリエ展開することで2回および4回対称成分が得られる。人工格子膜は一軸異方性を示すので磁気トルク曲線の奇数回対称成分はほとんどゼロになる。また、垂直方向に磁化容易軸を持つ本実施例の人工格子膜のLは負である。
【0090】
表2から保磁力の減少率と磁気トルク曲線には明瞭な関係がある。保磁力が大きく減少するサンプル3番および5番では磁気トルク曲線の4回対称成分Lが2回対称成分Lと同極性(負)であるのに対して、減少率の小さい1,2,4番ではLと逆極性(正)となっている。したがって、Ku2が正になる条件、すなわちトルク曲線のLの極性がLと逆極性(正)になるような人工格子膜を作製することで、本発明の目的である保磁力Hの温度依存性が小さい磁気記録媒体を実現できる。
の極性は磁性微粒子内の磁化容易軸方向の分散と関係があった。透過型電子顕微鏡を用いてサンプル3と5の人工格子膜の断面を観察すると、図17の磁性粒子Aのように低密度の原子からなる粒界部分で囲まれた一つの磁性微粒子は結晶方位の異なる複数の微結晶からなっていた。このような場合、各結晶片が異なる磁化容易軸を持ち、磁化容易軸が分散している。
【0091】
一方、サンプル1,2,4はそれぞれ下地層の構造が異なるものの、透過型電子顕微鏡観察によれば図17の磁性粒子Bのように結晶配向の乱れが小さくなっていた。六方最密充填構造を有するRu下地層や面心立方構造をもつPd、Agなどの合金下地層が使われている。人工格子膜はもともと面心立方構造をとり易いので、これに適合した下地層によって磁性粒子内の配向が良くなる。しかし、単純に配向を揃えようとすると粒界の形成が困難になり、サンプル1のRu下地層のように比較的膜厚を増やさなければならない。サンプル4では初めのPd(1 nm)で配向を揃え、次にMgOと金属の組み合わせにより粒界の元を作り出すことによって、比較的薄い下地層を実現出来た。これらのサンプルでは磁化容易軸分散は小さい。
【0092】
磁気トルク曲線の4回対称成分には磁化容易軸の分散の多寡が現れているものと思われる。LがLと同極性を示す場合には磁化容易軸の分散が大きく、逆極性を示す場合には磁化容易軸の分散は小さい。すなわち、磁化容易軸の分散が小さくすることが、貴金属層中の磁気モーメントを安定化させ、保磁力Hの温度依存性を抑制することにつながる。
【0093】
本実施例に示したように、適切な下地層を選ぶことで磁化容易軸の分散を抑制することが出来る。そのためには人工格子膜の直下にAu, Ag又はRuもしくはこれらの合金からなる層を配することが望ましい。これらの合金層にはサンプル2のようなPdもしくはPtを含有してよい。また、サンプル4のようにPd膜のような非常に良い結晶配向を示す膜との複合膜としても良い。
【0094】
【発明の効果】
以上のように、Co/PdまたはCo/Pt人工格子膜が低密度の粒界によって磁性粒子が分離され、かつ該磁性粒子内のPd層中の磁化が安定化されてなる磁気記録媒体は、高い記録再生特性を示し、かつその温度変化が小さい。この磁気記録媒体を用いることによって幅広い環境温度において良好な性能を発揮する磁気ディスク装置を得ることが可能となる。
【図面の簡単な説明】
【図1】人工格子膜からなる記録磁性層に形成された粒界構造。
【図2】実施例1における磁気記録媒体の概略的な構成。
【図3】実施例1における磁気記録媒体を作製するのに用いた回転型三元カソードの概略図。
【図4】実施例1に記載の方法で作製した磁気記録媒体の磁気ヒステリシス曲線。
【図5】実施例1における磁気記録媒体のPd層厚と飽和磁化の関係。
【図6】実施例1における磁気記録媒体のPd層厚と1周期あたりの垂直磁気異方性エネルギーの関係。
【図7】図3の結果から予想されるPd層中の飽和磁化分布。
【図8】Pd層中に誘起された磁気モーメントと垂直磁気異方性エネルギーの関係。
【図9】実施例1における磁気記録媒体のPd層厚と保磁力の関係、およびその温度依存性。
【図10】実施例1における磁気記録媒体の保磁力および垂直磁気異方性エネルギーの減少率。
【図11】実施例2における人工格子膜媒体の作製時スパッタリングガス圧と保磁力の減少率の関係。
【図12】製膜時Arガス圧が2 Paおよび5 Paの場合におけるPd層厚と1周期あたりの垂直磁気異方性エネルギーの関係。
【図13】実施例3におけるCo/Pd人工格子膜への不純物材料および添加方法と保磁力の減少率の関係。
【図14】Co/Pd人工格子膜へのBの添加量と垂直磁気異方性エネルギーの関係。
【図15】実施例4に記載の方法で作製した磁気記録媒体の磁気ヒステリシス曲線。
【図16】実施例4における磁気記録媒体のCoCu20B10合金層厚さと反転開始磁界との関係。
【図17】実施例5における結晶配向分散のある媒体とない媒体の比較。
【図18】表1の垂直磁気記録媒体における再生信号強度の経時変化:実施例1。
【図19】表1の垂直磁気記録媒体における記録分解能:実施例1。
【図20】表1の垂直磁気記録媒体における記録時媒体温度とSNRの関係:実施例1。
【符号の説明】
11…下地層、12…磁性層、13…人工格子構造をもつ磁性微粒子、14…粒界、21…密着層、22…下地層、23…人工格子膜からなる磁性層、24…保護層、25…ガラス基板、26…Co層、27…Pd層、31…ターンテーブル、32…ターゲット・カソード、33…ガラス基板、34…仕切り板、35…カソード公転経路、36…カソード回転方向、41…酸素分圧を20mPaとした時の磁化曲線、42…酸素分圧を30mPaとした時の磁化曲線、43…酸素分圧を40mPaとした時の磁化曲線、44…酸素分圧を50mPaとした時の磁化曲線、45…酸素分圧を60mPaとした時の磁化曲線、51…Pd層中に磁化が存在しないと仮定して計算した人工格子膜の平均磁化、52…Pd層が80kA/mの磁化を持っていると仮定して計算した人工格子膜の平均磁化、53…Pd層が160kA/mの磁化を持っていると仮定して計算した人工格子膜の平均磁化、54…Pd層が図7に示す磁化分布を持っていると仮定して計算した人工格子膜の平均磁化、55…VSMによって測定した人工格子膜の平均磁化、81…CoB層、82…Pd層、83…Pd磁化の不安定な領域、84…Pd磁化に比例した垂直磁気異方性エネルギー、91…25℃における保磁力のPd厚さ依存性、92…70℃における保磁力のPd厚さ依存性、121…2.0PaのArガス中で製膜した人工格子膜の一周期あたり垂直磁気異方性エネルギー、122…5.0PaのArガス中で製膜した人工格子膜の一周期あたり垂直磁気異方性エネルギー、141…Co層のみに添加した場合の垂直磁気異方性エネルギー、142…Pd層のみに添加した場合の垂直磁気異方性エネルギー、143…Co層およびPd層に添加した場合の垂直磁気異方性エネルギー、151…Co層に不純物を添加しなかった場合の磁化曲線、152…Co層にAgを添加した場合の磁化曲線、153…Co層にCrを添加した場合の磁化曲線、161…Co層に不純物を添加しなかった場合の反転開始磁界、162…Co層にAgを添加した場合の反転開始磁界、163…Co層にCrを添加した場合の反転開始磁界、171…下地膜、172…粒界構造を持つ人工格子膜、173…結晶配向分散のある磁性粒子A、174…結晶配向分散の小さい磁性粒子B、175…磁化容易軸。

Claims (11)

  1. 基板と、該基板上に形成された磁性層とを備える垂直磁気記録媒体において、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜であり、
    前記強磁性金属層は、さらに非磁性元素を含有し、
    前記非磁性金属層の厚さは0.8nm以下であることを特徴とする垂直磁気記録媒体。
  2. 基板と、該基板上に形成された磁性層とを備える垂直磁気記録媒体において、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜であり、
    前記磁性層の保磁力の減少率(H(25℃)−H(70℃))/H(25℃)は、0.15より小さいことを特徴とする垂直磁気記録媒体。
  3. 基板と、該基板上に形成された磁性層とを備える垂直磁気記録媒体において、前記磁性層は、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜であり、
    トルク計によって前記垂直磁気記録媒体のトルク曲線を測定したとき、トルク曲線の4回対象成分の極性は、トルク曲線の2回対象成分の極性と逆符号であることを特徴とする垂直磁気記録媒体。
  4. 前記磁性層は、相対的に密度の高い磁性微粒子と磁性微粒子を囲む相対的に密度の低い磁性粒界とからなることを特徴とする請求項1、2又は3に記載の垂直磁気記録媒体。
  5. 前記磁性層の磁化曲線の反転部の傾きαは、0.5以上、2.0以下であることを特徴とする請求項1、2又は3に記載の垂直磁気記録媒体。
  6. 前記強磁性金属層は、さらに非磁性元素を含有し、
    前記非磁性金属層の厚さは0.8nm以下であることを特徴とする請求項2又は3に記載の垂直磁気記録媒体。
  7. 前記強磁性金属層が含有する非磁性元素は、Pt, Pd, Au, Ag, Ru又はCuからなる群のうち少なくとも1種であることを特徴とする請求項1、2又は3に記載の垂直磁気記録媒体。
  8. 更に、前記基板と磁性層との間に下地膜を有し、
    前記下地膜は、面心立方格子又は六方最密充填構造を有する金属層と酸化物層との複合膜であることを特徴する請求項1、2又は3に記載の垂直磁気記録媒体。
  9. 前記下地膜は、Au, Ag又はRuからなる群のうち少なくとも1種を含む金属層又は合金層であることを特徴とする請求項1、2又は3に記載の垂直磁気記録媒体。
  10. 基板と、該基板上に形成された磁性層とを備える垂直磁気記録媒体の製造方法において、
    該基板上に、Coを含有する強磁性金属層とPd及び/又はPtからなる非磁性金属層との積層体である人工格子膜を磁性膜としてスパッタ製膜するに際し、
    スパッタガスのガス圧Pとターゲット基板間距離DTSとの積(P・DTS)を20(Pa・cm)以上とすることを特徴とする垂直磁気記録媒体の製造方法。
  11. スパッタ成膜の際、スパッタガスに酸素を導入することとを特徴とする請求項10記載の垂直磁気記録媒体の製造方法。
JP2003015526A 2003-01-24 2003-01-24 垂直磁気記録媒体 Pending JP2004227701A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003015526A JP2004227701A (ja) 2003-01-24 2003-01-24 垂直磁気記録媒体
US10/616,377 US20040146747A1 (en) 2003-01-24 2003-07-10 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015526A JP2004227701A (ja) 2003-01-24 2003-01-24 垂直磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2004227701A true JP2004227701A (ja) 2004-08-12

Family

ID=32732808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015526A Pending JP2004227701A (ja) 2003-01-24 2003-01-24 垂直磁気記録媒体

Country Status (2)

Country Link
US (1) US20040146747A1 (ja)
JP (1) JP2004227701A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081981A (ja) * 2012-10-17 2014-05-08 Hitachi Ltd 垂直磁気記録媒体及び磁気記憶装置
US8877360B2 (en) 2011-04-15 2014-11-04 Kabushiki Kaisha Toshiba Magnetic recording medium with a plurality of pinning portions in the magnetic layer
JP2015130220A (ja) * 2013-12-06 2015-07-16 株式会社東芝 垂直磁気記録媒体および垂直磁気記録媒体の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007909A1 (en) * 2004-07-22 2006-01-26 Universität Konstanz Information storage media
US7736766B2 (en) * 2006-02-24 2010-06-15 Seagate Technology Llc Magnetic storage media with Ag, Au-containing magnetic layers
US20080268292A1 (en) * 2007-04-26 2008-10-30 Heraeus, Inc. Hexagonal close-packed ceramic seedlayers for perpendicular magnetic recording media
US7755861B1 (en) * 2007-12-06 2010-07-13 Western Digital (Fremont), Llc Method and system for providing a magnetic recording media
CN104700850A (zh) * 2013-12-06 2015-06-10 株式会社东芝 垂直磁记录介质和垂直磁记录介质的制造方法
US10057983B1 (en) * 2014-06-13 2018-08-21 Verily Life Sciences Llc Fabrication methods for bio-compatible devices using an etch stop and/or a coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020098381A1 (en) * 1999-06-04 2002-07-25 Kevin Robert Coffey Thin film magnetic recording medium having high coercivity
US6743503B1 (en) * 1999-10-05 2004-06-01 Seagate Technology Llc Ultra-thin seed layer for multilayer superlattice magnetic recording media
US6753072B1 (en) * 2000-09-05 2004-06-22 Seagate Technology Llc Multilayer-based magnetic media with hard ferromagnetic, anti-ferromagnetic, and soft ferromagnetic layers
US6656613B2 (en) * 2000-09-27 2003-12-02 Seagate Technology Llc Multilayer magnetic recording media with columnar microstructure for improved exchange decoupling
WO2004001725A1 (en) * 2002-06-21 2003-12-31 Seagate Technology Llc Multilayer magnetic recording media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877360B2 (en) 2011-04-15 2014-11-04 Kabushiki Kaisha Toshiba Magnetic recording medium with a plurality of pinning portions in the magnetic layer
JP2014081981A (ja) * 2012-10-17 2014-05-08 Hitachi Ltd 垂直磁気記録媒体及び磁気記憶装置
JP2015130220A (ja) * 2013-12-06 2015-07-16 株式会社東芝 垂直磁気記録媒体および垂直磁気記録媒体の製造方法

Also Published As

Publication number Publication date
US20040146747A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4292226B1 (ja) 垂直磁気記録媒体、及びこれを用いた磁気記録再生装置
JP4380577B2 (ja) 垂直磁気記録媒体
JP5103097B2 (ja) 垂直磁気記録媒体及びそれを用いた磁気記録再生装置
KR20060054100A (ko) 수직 자기 기록 매체
JPWO2006003922A1 (ja) 垂直磁気記録ディスク及びその製造方法
JP2008176858A (ja) 垂直磁気記録媒体、及びそれを用いたハードディスクドライブ
JP2007179598A (ja) 磁気記録媒体、その製造方法および、磁気記録再生装置
KR20070067600A (ko) 내식성을 개선하기 위한 초박형 핵형성 막을 가진 수직자기 기록 디스크 및 이 디스크의 제조 방법
JP2003248914A (ja) 垂直磁気記録媒体及びその製造方法
SG171461A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording/reproducing device
JP2008226416A (ja) 垂直磁気記録媒体とその製造方法
JP2008276833A (ja) 垂直磁気記録媒体およびその製造方法
JP4534711B2 (ja) 垂直磁気記録媒体
JP2005190538A (ja) 磁気記録媒体、およびその製造方法と装置
JP4101836B2 (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP4611847B2 (ja) 磁気記録媒体及び磁気記録再生装置
JP2004227701A (ja) 垂直磁気記録媒体
JP2012238360A (ja) 垂直磁気記録媒体
US20030219627A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2005302109A (ja) 多層膜垂直磁気記録媒体の製造方法
JP2009187608A (ja) 垂直磁気記録パターンド媒体および磁気記録再生装置
JP2007102833A (ja) 垂直磁気記録媒体
JP5177407B2 (ja) 磁気異方性垂直磁化膜及びその形成方法並びに磁気記録媒体及びその製造方法
JP2016225002A (ja) 垂直磁気記録媒体及び磁気記録再生装置
JP2001189006A (ja) 磁気記録媒体およびその製造方法ならびに磁気記録再生装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224