JP2004226123A - Inspection device for fluid conveying pipe - Google Patents

Inspection device for fluid conveying pipe Download PDF

Info

Publication number
JP2004226123A
JP2004226123A JP2003011515A JP2003011515A JP2004226123A JP 2004226123 A JP2004226123 A JP 2004226123A JP 2003011515 A JP2003011515 A JP 2003011515A JP 2003011515 A JP2003011515 A JP 2003011515A JP 2004226123 A JP2004226123 A JP 2004226123A
Authority
JP
Japan
Prior art keywords
pipe
lining
reflected
timing
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003011515A
Other languages
Japanese (ja)
Other versions
JP3714934B2 (en
Inventor
Masao Okada
優生 岡田
Satoru Izawa
悟 伊沢
Takeaki Nishida
健陽 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YONDEN ENGINEERING CO Ltd
Shikoku Electric Power Co Inc
Pony Industry Co Ltd
Original Assignee
YONDEN ENGINEERING CO Ltd
Shikoku Electric Power Co Inc
Pony Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YONDEN ENGINEERING CO Ltd, Shikoku Electric Power Co Inc, Pony Industry Co Ltd filed Critical YONDEN ENGINEERING CO Ltd
Priority to JP2003011515A priority Critical patent/JP3714934B2/en
Publication of JP2004226123A publication Critical patent/JP2004226123A/en
Application granted granted Critical
Publication of JP3714934B2 publication Critical patent/JP3714934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect from the outside of the pipe wall thickness reduction or pinhole defects of an inside lining of a fluid conveying pipe. <P>SOLUTION: As to this inspection device 1 for an inside coated pipe, an ultrasonic pulse is transmitted from a transmission part 12 at a prescribed position P on the periphery 9 of a fluid conveying pipe 2 filled with a fluid W along the radial direction R of the pipe 2 into the pipe 2, and a reflection echo reflected along the radial direction of the pipe 2 is received by a reception part 13 at the prescribed position P on the periphery 9 of the pipe 2. It can be determined that the larger the wall thickness reduction X of the lining 5 is on the opposite side to the incident side, the longer the time TE is delayed for the pulse to return to the reception part 13. Further, it is detected whether an incident ultrasonic pulse is reflected from an inside surface 7 of the lining 5 on the opposite side to the incident side and returns to the prescribed position P. When the return is detected, it is determined that a pinhole defect 8 exists in the opposite side lining 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、海水や化学薬品等を通す流体搬送パイプを検査するための検査装置に関する。
【0002】
【従来の技術】
化学プラントや発電所等で利用されるパイプには、海水や化学薬品を通すことがあり、このような流体によるパイプの腐食を防止するために、パイプの内面にライニングを施しているものがある。しかし、仮に、ライニングに減肉やピンホール欠陥が発生すると、腐食が生じる虞がある。
【0003】
そこで、パイプ内部の減肉の検査を行う検査装置として、パイプの内部に探触子を入れ、この探触子から超音波を発信させて検査に用いるものがある(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−226707号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1に示された検査装置では、その探触子は小口径パイプには入らないので、小口径パイプを検査することはできない。
【0006】
そこで、本発明の目的は、上述の技術的課題を解決し、パイプの外側からライニングに生じる減肉またはピンホール欠陥を検出できる流体搬送パイプの検査装置を提供することである。
【0007】
【課題を解決するための手段および発明の効果】
ところで、本願発明者は、上記目的を達成するために、本願発明に到達する過程で、パイプの外側から超音波を入射させて、入射位置の直近のパイプからの複数の反射エコーを得て、この中から、入射位置の直近の内側にあるライニングの内面からの反射エコーを検出することを検討した。
【0008】
しかし、ライニングの内面からの反射エコーを検出できないことがあるという課題に遭遇した。すなわち、超音波をパイプに入射させると、入射位置の直近のパイプからは複数の反射エコーが得られる。このとき得られる複数の反射エコーには、上述のライニング内面からの反射エコーと、パイプ本体の内面と外面との間で繰り返し反射される複数の反射エコーとが含まれる。前者の反射エコーと後者の反射エコーとが殆ど同時に受信され、両反射エコーを区別して検出できなくなるからである。
【0009】
そこで、このような課題をも解決すべく、本願発明では、入射位置の反対側のパイプ内から径方向に反射する反射エコーを検出する。この反射エコーは、入射位置の直近のパイプからの反射エコーよりも後に検出されるので、反射エコー同士を区別できる。また、入射位置の反対側からの反射エコーには、ライニングの内面からの反射エコーと、ライニングとパイプ本体との境界面からの反射エコーとが含まれるが、前者の反射エコーは、残りの反射エコーよりも先に受信されるので、前者の反射エコーだけを区別して検出でき、以下のように減肉量を検出することができる。
【0010】
請求項1に記載の発明は、パイプ本体とパイプ本体の内面に被覆されたライニングとにより構成される流体搬送パイプを検査するための装置において、パイプの外周の所定位置からパイプの径方向に沿ってパイプ内に超音波パルスを発信する発信部と、パイプ内からパイプの径方向に沿って反射する反射エコーを上記パイプの外周の所定位置にて受信する受信部と、入射したパルスが入射側とは反対側のパイプの内面から反射されて上記所定位置に戻ってくるタイミングに基づいて、上記入射側とは反対側のライニングの減肉量を検出する検出部とを備えることを特徴とする。
【0011】
この発明によれば、例えば、流体を満たしたパイプ内へ、発信部から超音波を入射させる。発信部からの入射時点を基準として反対側のパイプ内面から反射した反射エコーが受信部に到達するタイミングを測る。減肉量が増すほどに、発信部および受信部からパイプ内面までの距離が長くなり、上述のように測られたタイミングは後にずれるので、このタイミングに基づいて、ライニングの減肉量を検出することができる。
【0012】
発信部および受信部をパイプの外周に配置できるので、小径のパイプにおけるライニングの減肉量を検出することができる。
【0013】
請求項2に記載の発明は、パイプ本体とパイプ本体の内面に被覆されたライニングとにより構成される流体搬送パイプを検査するための装置において、パイプの外周の所定位置からパイプの径方向に沿ってパイプ内に超音波パルスを発信する発信部と、パイプ内からパイプの径方向に沿って反射する反射エコーを上記パイプの外周の所定位置にて受信する受信部と、入射したパルスが入射側とは反対側のライニングの内面から反射されて上記所定位置に戻ってくるか否かに基づいて、上記入射側のライニングのピンホール欠陥の有無を検出する検出部とを備えることを特徴とする。
【0014】
この発明によれば、例えば、流体を満たしたパイプ内へ、発信部から超音波を入射させる。超音波は、ピンホール欠陥のないパイプでは、受信部に戻るまでに、流体よりも減衰度合いの大きいライニングを2度通るので、その減衰度合いが大きくなる結果、反射エコーがなくなるのに対して、発信部および受信部の直近にピンホール欠陥があるパイプでは、超音波はライニングを通らずに済むので、その減衰度合いが小さくなる結果、反射エコーが検出されるようにできる。従って、反射エコーがあれば、ピンホール欠陥があると判る。
【0015】
発信部および受信部をパイプの外周に配置できるので、小径のパイプにおけるライニングのピンホール欠陥を検出することができる。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態の内面被覆パイプの検査装置を図面を参照しつつ説明する。図1は、本発明の一実施形態の検査装置および内面被覆パイプの概略構成の模式的なブロック図である。
【0017】
本検査装置1の検査対象は、流体を搬送するための内面被覆パイプ2(流体搬送パイプ2ともいう。)である。この流体搬送パイプ2は、例えば鋼製で肉厚一定の円筒形状のパイプ本体3と、パイプ本体3の内面4に被覆されたライニング5とにより構成される。ライニング5は、例えば、ポリエチレン、エポキシ樹脂等の合成樹脂材料や、硬質ゴム等のゴム材料により形成される。健全な状態、例えば、製造直後の状態では、ライニング5は予め定める所定の肉厚とされ、パイプ本体3の内面4全体にわたり一定の肉厚で形成される。
【0018】
本検査装置1は、ライニング5の肉厚が減少した部分である減肉部6(図2B参照)を検出する検査装置として機能する第1の検出機能と、ライニング5の内面7からパイプ本体3の内面4に達する孔状のピンホール欠陥8(図3B参照)を検出する検査装置として機能する第2の検出機能とを有する。
【0019】
本検査装置1は、流体搬送パイプ2の外周9の所定位置Pから流体搬送パイプ2の径方向Rに沿って流体搬送パイプ2内に超音波パルスPAを発信する発信部12と、流体搬送パイプ2内から流体搬送パイプ2の概ね径方向Rに沿って反射する反射エコーREを流体搬送パイプ2の外周9の所定位置Pにて受信する受信部13とを有している。本実施形態では、発信部12および受信部13は一体化されて、探触子14の少なくとも一部を構成している。この探触子14は、超音波と電気信号とを変換する単一の振動子15と、この振動子15を内部に収容するケース16とを有する。振動子15は超音波の発信用および受信用に兼用され、電気信号を受けて超音波を発信でき、また超音波を受けて電気信号を発することができる。
【0020】
本検査装置1は、探触子14と信号線17を介して接続される検査装置本体18を有している。検査装置本体18は、振動子15を駆動し振動子15から所定の超音波を発信させる発信回路19と、振動子15からの信号を受けて増幅等の処理を行い検出信号を出力する受信回路20と、受信回路20および発信回路19を制御し検出信号に予め定める信号処理を行う制御部21とを有する。
【0021】
制御部21は、発信回路19および受信回路20と接続されている。制御部21は、マイクロコンピュータ、タイマ(図示せず)等を含み、予め記憶されたプログラムに基づいて所定の制御動作を行う。例えば、制御部21は、タイマによる信号に基づいて所望のタイミングで発信回路19を介して発信部12により超音波パルスPAを発信させ、反射エコーREによる受信回路20からの検出信号に基づいて反射エコーREの有無や強さや受信のタイミングを測ることができる。また、制御部21は、第1および第2の検出機能のために第1および第2の検出部22,23を有する。第1および第2の検出部22,23は、図示しない操作部からの信号に基づいて動作し、例えば、プログラムにより実現される。
【0022】
受信回路20は、所要の周波数の反射エコーを検出できるように構成され、例えば、第1の検出機能では第1の周波数、例えば5MHzの反射エコーを検出し、第2の検出機能では第2の周波数、例えば20MHzの反射エコーを検出し、検出された反射エコーの強さに応じた大きさの検出信号を出力する。
【0023】
発信回路19は、所要の周波数の反射エコーを発生可能に、第1および第2の周波数を含む超音波パルスを発信できるように構成されている。
【0024】
第1および第2の検出機能での検査の際には、流体搬送パイプ2内に、超音波を伝達する水等の流体Wが満たされ、流体搬送パイプ2の外周9に、探触子14が超音波を伝達できるように、例えば、密着状態で取り付けられる。
(1) 減肉量の検出
図2Bおよび図2Eを参照する。第1の検出部22は、流体Wが満たされた流体搬送パイプ2内へ、発信部12から超音波パルスPAを入射させ、入射した超音波パルスPAが入射側とは反対側の流体搬送パイプ2の内面30から反射されて反射エコーREとなって上記所定位置Pの受信部13に戻ってくるタイミングTEを測る。測られたタイミングTEに基づいて、上記入射側とは反対側のライニング5の減肉量Xを検出する。
【0025】
減肉量の検出の具体的な説明の前に、健全な流体搬送パイプで同様の検出を行った場合を図2Aおよび図2Dを参照して説明する。
【0026】
図2Aに示すような健全な流体搬送パイプ2では、減肉量Xがゼロであり、入射側とは反対側の流体搬送パイプ2の内面30は、正常な肉厚のライニング5の内面7の一部となる。この面で超音波パルスは反射される。図2Dは、受信部からの検出信号の強さとタイミングとの関係を示すグラフである。図2Aおよび図2Dを参照して、超音波は、タイミングTSで発信部12から入射され、入射側とは反対側の流体搬送パイプ2の内面30で反射され、タイミングTEがタイミングTE0のときに受信部13に到達し、検出信号にピークPEが現れる。タイミングTSからタイミングTE0までの間の超音波の伝播距離は、予め知ることができて、入射側と反対側のライニング5の内面7と所定位置Pとの間の距離L0の2倍の値となる。
【0027】
次に、図2Bに示すような減肉量Xが小さい流体搬送パイプ2では、減肉量Xが値X1となり、入射側とは反対側の流体搬送パイプ2の内面30は、減肉されたライニング5の内面7の一部となる。この面で超音波パルスは反射される。図2Bおよび図2Eを参照して、超音波は、タイミングTSで入射され、入射側とは反対側の流体搬送パイプ2の内面30で反射され、タイミングTEがタイミングTE1のときに受信部13に到達し、ピークPEが現れる。タイミングTE1は、タイミングTE0よりも後となる。タイミングTSからタイミングTE1までの間の超音波の伝播距離は、健全な流体搬送パイプ2の場合の伝播距離よりも減肉量Xの値X1の2倍の量で長くなる。
【0028】
さらに、図2Cに示すような減肉量が大きい流体搬送パイプ2では、減肉量Xが値X2となり、入射側とは反対側の流体搬送パイプ2の内面30は、大きく減肉されたライニング5の内面7の一部となる。図2Cおよび図2Fを参照して、超音波は、タイミングTSで入射され、入射側とは反対側の流体搬送パイプ2の内面30で反射され、タイミングTEがタイミングTE2のときに受信部13に到達し、ピークPEが現れる。タイミングTE2はタイミングTE1よりも後になる。また、タイミングTSからタイミングTE2までの間の超音波の伝播距離は、健全な流体搬送パイプ2の場合の伝播距離よりも減肉量Xの値X2の2倍の量で長くなる。
【0029】
このように、減肉量Xが増すほどに、発信部12および受信部13から反対側の流体搬送パイプ2の内面30は遠くなり、超音波の伝播距離が長くなる。その結果、測られた受信のタイミングTEは後にずれる。従って、測られたタイミングTE、流体W中での音速等に基づいて、ライニング5の減肉量Xを検出することができる。
【0030】
例えば、タイミングTEは、発信部12からの発信時点であるタイミングTSを基準として、反対側の流体搬送パイプ2の内面30から反射した反射エコーが受信部13に到達することにより検出信号のピークPEが立ち上がるタイミングTEまでの間の経過時間として測定される。そして、測定された受信のタイミングTEの測定値を、健全な流体搬送パイプ2の場合に予め計算または実測により求められるタイミングTEの具体値であるタイミングTE0(図2D参照)と比較し、その差となる遅れ量が大きい程に減肉量が大きいと判断する。
【0031】
なお、図2E,図2Fには、比較のために、図2Dに示したピークをも破線で図示してあるが、破線で示したピークは実際の測定時には現れない。
【0032】
また、タイミングTEは、入射位置Pの直近の流体搬送パイプ2内からの反射エコーの戻るタイミング、すなわち、タイミングTSからタイミングTS2(図2D参照)までの間よりも以後のタイミングとされる。これにより、入射位置と反対側の流体搬送パイプの内面30で反射された反射エコーを、入射位置の近傍からの反射エコーと容易に区別することができる。
【0033】
なお、図2Cに示すような大きな減肉部6の検出と同様にしてピンホール欠陥8(図3B参照)を検出することが考えられる。しかし、超音波パルスPAは通例、入射位置から立体的に広がりながら反対側の流体搬送パイプ2の内面30に到達する。この内面30にピンホール欠陥8があるとしても、通例、ピンホール欠陥8は減肉部に比べて小さいので、超音波はピンホール欠陥8の周囲のライニング5の内面7でも反射し、ライニング5の内面7からの反射エコーと、ピンホール欠陥8からの反射エコーとが混ざって検出され、ピンホール欠陥8の有無の検出が困難であった。
(2) ピンホール欠陥の検出
そこで、第2の検出部23は、図3B,図3Dを参照して、流体Wが満たされた流体搬送パイプ2内へ、発信部12から超音波パルスを入射させ、入射したパルスが入射側とは反対側の流体搬送パイプ2の内面30から反射されて上記所定位置Pの受信部13に戻ってくるか否かに基づいて、上記入射側のライニング5のピンホール欠陥8の有無を検出するようにした。なお、入射側とは反対側の流体搬送パイプ2の内面30は、通例、ライニング5の内面7となるが、減肉部6や剥離部でも、同様にピンホール欠陥8を検出できる。
【0034】
ピンホール欠陥8の検出の具体的な説明の前に、健全な流体搬送パイプで同様の手順の検査を行った場合を図3Aおよび図3Cを参照して説明する。
【0035】
図3Aに示すように、ピンホール欠陥8のない健全な流体搬送パイプ2では、超音波はライニング5を通る際に大きく減衰する。また、超音波は、反射エコーとなって受信部13に戻るまでに、流体よりも減衰度合いの大きいライニング5を2度通る必要がある。その結果、超音波の減衰度合いが大きくなるので、反射エコーが非常に小さくなり、反射エコーを検出できなくなってしまう。
【0036】
すなわち、図3Cに示すように、反射エコーが減衰しないで受信される場合の受信のタイミングTEおよびその近傍において、受信部13からの検出信号は小さくて、反射エコーを示すピークが現れない。
【0037】
一方、図3Bに示すように、ピンホール欠陥8が流体搬送パイプ2における発信部12および受信部13の直近の真下にある場合、超音波は、反射エコーとなって受信部13に達するまでに、ライニング5を通らずに済むので、超音波の減衰度合いが小さくなる結果、反射エコーREは大きく維持されて受信部13に到達する。図3Dに示すように、タイミングTEの検出信号に、反射エコーを示すピークPEが現れる。ピークPEは少なくとも一つあれば、反射エコーがあると判る。
【0038】
例えば、第2の検出部22では、受信部13からの検出信号が、図3Cに示すように予め定める所定値PPよりも小さくてノイズレベルに相当するレベルとなるときには、反射エコーがないと判断し、検出信号が、図3Dに示すように、予め定める所定値PPよりも高いピークPEを有するときには、反射エコーがあると判断する。そして、反射エコーREがないときは、ピンホール欠陥8はないと判断し、反射エコーREがあるときは、ピンホール欠陥8があると判断する。なお、図3C、図3Dのグラフでは、ノイズレベル程度となる所定値以下の検出信号を当該所定値を示す直線として簡略に図示した。
【0039】
また、ピンホール欠陥8が大きくなる程に、検出信号のピークPEが大きくなる傾向にある。従って、反射エコーREを示す検出信号のピークPEの大きさに基づき、ピンホール欠陥8の大きさを判断できる。例えば、ピークPEが小さくなる程に、ピンホール欠陥8が小さいと判断でき、例えば、直径約4mmの振動子15を用いる場合には、直径約2mm程度のピンホール欠陥8を検出でき、振動子15の大きさのほぼ半分程度の大きさのピンホール欠陥8を検出できる。
【0040】
また、反射エコーの有無を検出するための所定タイミングTEは、例えば、第1の検出部22でのタイミングTEおよびTE0と同様に設定される。
【0041】
また、発信部12から発信される超音波パルスPAの周波数および受信部13により受信される反射エコーREの周波数は、以下の周波数を含むように設定される。すなわち、パイプ本体3、ライニング5、流体W等の媒質内での超音波の減衰度合いは、超音波の周波数に依存すると考えられる。
【0042】
そこで、第1の検出機能では、超音波の周波数は、減肉部6のある場合およびない場合の何れの流体搬送パイプ2でも、超音波が入射位置と反対側の流体搬送パイプ2の内面30で反射されて反射エコーが検出できるような、減衰度合いとなるように設定される。例えば、超音波の周波数は5MHz〜10MHzの範囲内の値が好ましく、例えば、この値は5MHzとするのがより好ましい。ここで、周波数が10MHzを超えると、減衰度合いが大きくなり、反射エコーが検出できないことがあるからであり、周波数が5MHz未満になると、減肉量の検出精度が低下することがあるからである。
【0043】
第2の検出機能では、超音波の周波数は、ピンホール欠陥のある場合には超音波が入射位置と反対側の流体搬送パイプ2の内面30から戻り反射エコーが検出できるように、且つピンホール欠陥8のない場合には超音波がライニング5で減衰して入射位置と反対側の流体搬送パイプ2の内面30からの反射エコーが検出されないような、減衰度合いとなるように設定される。例えば、超音波の周波数は、標準的な超音波探傷に用いる標準的な周波数よりも高い周波数とされ、例えば、10MHz〜20MHzの範囲内の値が好ましく、例えば、この値は20MHzとするのがより好ましい。ここで、周波数が高くなるほどに、ライニング5による減衰の度合いが高くなり、ピンホール欠陥8のない場合に反射エコーREを検出しないように確実にできるが、周波数が20MHzを超えると、減衰度合いが大きくなり過ぎ、ピンホール欠陥8がある場合に、反射エコーが検出できないことがあるからである。周波数が10MHz未満になると、ピンホール欠陥8がない場合でも反射エコーが検出されることがあるからである。
【0044】
また、超音波の周波数の他、超音波の強さ、受信部13での受信周波数、感度等も、超音波の周波数と同様に適宜調節される。
【0045】
このように本発明の実施形態によれば、減肉量Xおよびピンホール欠陥8を検出するための発信部12および受信部13を流体搬送パイプ2の外周9に配置できるので、ライニング5の減肉量やピンホール欠陥8を、小径の流体搬送パイプ2において検出することができる。また、流体搬送パイプ2の外側から容易に検査でき、例えば、流体搬送パイプ2の使用開始後や、利用中の検査もできる。また、流体が腐食性の場合であっても、探触子14が傷む虞がない。
【0046】
なお、本実施形態では、探触子14は発信部12と受信部13とを一体化したものであったが、これには限定されず、例えば、発信部12と受信部13とを別々に設ける等、公知の構造のものを利用することも考えられる。また、受信部13と発信部12とで兼用され超音波を発信でき且つ反射エコーを受信できる振動子15を有する上述の一体型の探触子14が、受信部13と発信部12とに好ましく、この場合、減肉部6およびピンホール欠陥8を高精度に検出できる。
【0047】
また、上述の実施形態に示す検査装置1は、減肉部6を検出するための検査装置と、ピンホール欠陥8を検出するための検査装置とを一体化していたが、これには限定されず、何れか一方の検査装置の機能を省略することも考えられる。
【0048】
その他、本発明の特許請求の範囲で種々の変更を施すことが可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態の検査装置の概略構成の模式的なブロック図。
【図2】図1に示す検査装置による減肉量の検出機能を説明するための検査装置とパイプとの模式図を図2A,図2B,図2Cに示し、反射エコーの検出信号波形の所定値以上の強さを縦軸にとり時間を横軸にとるグラフを図2D,図2E,図2Fに示し、健全なパイプを検査対象とする場合を図2Aと図2Dとに、小さな減肉量のパイプを検査対象とする場合を図2Bと図2Eとに、大きな減肉量のパイプを検査対象とする場合を図2Cと図2Fとに示す。
【図3】図1に示す検査装置によるピンホール欠陥の検出機能を説明するための検査装置とパイプとの模式図を図3A,図3Bに示し、反射エコーの検出信号波形の所定値以上の強さを縦軸にとり時間を横軸にとるグラフを図3C,図3Dに示し、健全なパイプを検査対象とする場合を図3Aと図3Cとに、ピンホール欠陥の生じたパイプを検査対象とする場合を図3Bと図3Dとに示す。
【符号の説明】
1 検査装置
2 流体搬送パイプ
3 パイプ本体
4 パイプ本体の内面
5 ライニング
7 ライニングの内面
8 ピンホール欠陥
9 流体搬送パイプの外周
12 発信部
13 受信部
22 第1の検出部(減肉量を検出するための検出部)
23 第2の検出部(ピンホール欠陥を検出するための検出部)
30 入射側とは反対側の流体搬送パイプの内面
R 外周の所定位置を通る流体搬送パイプの径方向
P 所定位置
PA 超音波パルス
RE 反射エコー
TE 戻るタイミング
X ライニングの減肉量
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inspection device for inspecting, for example, a fluid transport pipe through which seawater or chemicals pass.
[0002]
[Prior art]
Some pipes used in chemical plants and power plants may pass seawater or chemicals, and some pipes have a lining on the inner surface to prevent corrosion of the pipe by such fluids. . However, if a thinning or a pinhole defect occurs in the lining, corrosion may occur.
[0003]
Therefore, as an inspection device for inspecting the thinning inside the pipe, there is an inspection device in which a probe is inserted into the inside of the pipe and ultrasonic waves are transmitted from the probe and used for the inspection (for example, see Patent Document 1). ).
[0004]
[Patent Document 1]
JP 2001-226707 A
[Problems to be solved by the invention]
However, in the inspection apparatus disclosed in Patent Document 1, the probe cannot enter the small-diameter pipe, so that the small-diameter pipe cannot be inspected.
[0006]
Therefore, an object of the present invention is to solve the above-mentioned technical problems and to provide an inspection apparatus for a fluid conveyance pipe capable of detecting a thinning or a pinhole defect occurring in the lining from outside the pipe.
[0007]
Means for Solving the Problems and Effects of the Invention
By the way, in order to achieve the above object, the present inventor, in the process of arriving at the present invention, makes ultrasonic waves incident from the outside of the pipe, and obtains a plurality of reflected echoes from the pipe nearest to the incident position, From among these, we examined the detection of reflected echoes from the inner surface of the lining immediately inside the incident position.
[0008]
However, they encountered a problem that sometimes the reflected echo from the inner surface of the lining could not be detected. That is, when an ultrasonic wave is made incident on a pipe, a plurality of reflected echoes are obtained from the pipe in the immediate vicinity of the incident position. The plurality of reflected echoes obtained at this time include the above-described reflected echoes from the inner surface of the lining and the plurality of reflected echoes repeatedly reflected between the inner surface and the outer surface of the pipe body. This is because the former reflected echo and the latter reflected echo are received almost at the same time, and both reflected echoes cannot be distinguished and detected.
[0009]
Therefore, in order to solve such a problem, the present invention detects a reflected echo reflected in the radial direction from inside the pipe opposite to the incident position. Since the reflected echo is detected after the reflected echo from the pipe nearest to the incident position, the reflected echoes can be distinguished from each other. Also, the reflected echo from the opposite side of the incident position includes a reflected echo from the inner surface of the lining and a reflected echo from the boundary surface between the lining and the pipe body. Since the received echo is received before the echo, only the former reflected echo can be distinguished and detected, and the wall thinning amount can be detected as described below.
[0010]
The invention according to claim 1 is an apparatus for inspecting a fluid transfer pipe constituted by a pipe main body and a lining coated on an inner surface of the pipe main body, wherein the inspection apparatus is arranged along a radial direction of the pipe from a predetermined position on an outer periphery of the pipe. A transmitting unit for transmitting ultrasonic pulses into the pipe, a receiving unit for receiving a reflected echo reflected from the pipe along the radial direction of the pipe at a predetermined position on the outer periphery of the pipe, And a detection unit for detecting a thinning amount of the lining on the side opposite to the incident side based on a timing of being reflected from the inner surface of the pipe on the opposite side and returning to the predetermined position. .
[0011]
According to the present invention, for example, ultrasonic waves are made to enter from a transmitting unit into a pipe filled with a fluid. The timing at which the reflected echo reflected from the inner surface of the pipe on the opposite side reaches the receiving unit with reference to the time of incidence from the transmitting unit is measured. As the amount of wall thinning increases, the distance from the transmitting unit and the receiving unit to the inner surface of the pipe becomes longer, and the timing measured as described above shifts later. Therefore, based on this timing, the amount of thinning of the lining is detected. be able to.
[0012]
Since the transmitting part and the receiving part can be arranged on the outer periphery of the pipe, the thinning amount of the lining in the small-diameter pipe can be detected.
[0013]
According to a second aspect of the present invention, there is provided an apparatus for inspecting a fluid transfer pipe composed of a pipe main body and a lining coated on an inner surface of the pipe main body. A transmitting unit for transmitting ultrasonic pulses into the pipe, a receiving unit for receiving a reflected echo reflected from the pipe along the radial direction of the pipe at a predetermined position on the outer periphery of the pipe, And a detecting unit for detecting the presence or absence of a pinhole defect in the lining on the incident side based on whether the light is reflected from the inner surface of the lining on the opposite side and returns to the predetermined position. .
[0014]
According to the present invention, for example, ultrasonic waves are made to enter from a transmitting unit into a pipe filled with a fluid. Ultrasound passes twice through the lining, which has a higher degree of attenuation than the fluid, before returning to the receiver in a pipe without pinhole defects. In a pipe having a pinhole defect in the immediate vicinity of the transmitting part and the receiving part, the ultrasonic wave does not have to pass through the lining, so that the degree of attenuation is reduced, so that the reflected echo can be detected. Therefore, if there is a reflected echo, it is determined that there is a pinhole defect.
[0015]
Since the transmitting part and the receiving part can be arranged on the outer periphery of the pipe, it is possible to detect a pinhole defect in the lining of a small-diameter pipe.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an inspection apparatus for an inner surface coated pipe according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram of a schematic configuration of an inspection device and an inner coating pipe according to an embodiment of the present invention.
[0017]
The inspection target of the present inspection apparatus 1 is an inner coating pipe 2 for transporting a fluid (also referred to as a fluid transport pipe 2). The fluid transport pipe 2 is composed of, for example, a cylindrical pipe body 3 made of steel and having a constant thickness, and a lining 5 coated on an inner surface 4 of the pipe body 3. The lining 5 is made of, for example, a synthetic resin material such as polyethylene or epoxy resin, or a rubber material such as hard rubber. In a healthy state, for example, immediately after the production, the lining 5 has a predetermined thickness and is formed with a constant thickness over the entire inner surface 4 of the pipe body 3.
[0018]
The inspection device 1 includes a first detection function that functions as an inspection device that detects a thinned portion 6 (see FIG. 2B), which is a portion where the thickness of the lining 5 is reduced, and a pipe main body 3 from the inner surface 7 of the lining 5. And a second detection function that functions as an inspection device that detects a pinhole defect 8 having a hole shape reaching the inner surface 4 (see FIG. 3B).
[0019]
The present inspection apparatus 1 includes a transmitting unit 12 that transmits an ultrasonic pulse PA from a predetermined position P on the outer periphery 9 of the fluid transport pipe 2 to the fluid transport pipe 2 along a radial direction R of the fluid transport pipe 2, and a fluid transport pipe. And a receiving unit 13 for receiving a reflected echo RE that reflects along the radial direction R of the fluid transport pipe 2 from the inside at a predetermined position P on the outer periphery 9 of the fluid transport pipe 2. In the present embodiment, the transmitting unit 12 and the receiving unit 13 are integrated and constitute at least a part of the probe 14. The probe 14 has a single vibrator 15 for converting ultrasonic waves and electric signals, and a case 16 for housing the vibrator 15 therein. The vibrator 15 is also used for transmitting and receiving ultrasonic waves, and can transmit an ultrasonic wave by receiving an electric signal, and can generate an electric signal by receiving the ultrasonic wave.
[0020]
The present inspection apparatus 1 has an inspection apparatus main body 18 connected to the probe 14 via a signal line 17. The inspection device main body 18 includes a transmitting circuit 19 that drives the vibrator 15 to transmit a predetermined ultrasonic wave from the vibrator 15 and a receiving circuit that receives a signal from the vibrator 15 and performs processing such as amplification and outputs a detection signal. And a control unit 21 that controls the reception circuit 20 and the transmission circuit 19 and performs predetermined signal processing on the detection signal.
[0021]
The control unit 21 is connected to the transmitting circuit 19 and the receiving circuit 20. The control unit 21 includes a microcomputer, a timer (not shown), and the like, and performs a predetermined control operation based on a program stored in advance. For example, the control unit 21 causes the transmitting unit 12 to transmit the ultrasonic pulse PA via the transmitting circuit 19 at a desired timing based on the signal from the timer, and reflects the ultrasonic pulse PA based on the detection signal from the receiving circuit 20 due to the reflected echo RE. The presence / absence, strength, and reception timing of the echo RE can be measured. Further, the control section 21 has first and second detection sections 22 and 23 for the first and second detection functions. The first and second detection units 22 and 23 operate based on a signal from an operation unit (not shown), and are realized by, for example, a program.
[0022]
The receiving circuit 20 is configured to detect a reflected echo of a required frequency. For example, the first detecting function detects a reflected echo of a first frequency, for example, 5 MHz, and the second detecting function detects a second reflected echo. A reflected echo having a frequency of, for example, 20 MHz is detected, and a detection signal having a magnitude corresponding to the strength of the detected reflected echo is output.
[0023]
The transmitting circuit 19 is configured to transmit an ultrasonic pulse including the first and second frequencies so as to generate a reflected echo of a required frequency.
[0024]
At the time of inspection by the first and second detection functions, the fluid W such as water for transmitting ultrasonic waves is filled in the fluid transport pipe 2, and the probe 14 is placed on the outer periphery 9 of the fluid transport pipe 2. For example, it is attached in a close contact state so that it can transmit ultrasonic waves.
(1) Detection of Wall Thickness Reference is made to FIGS. 2B and 2E. The first detection unit 22 causes the ultrasonic pulse PA to be incident from the transmitting unit 12 into the fluid transport pipe 2 filled with the fluid W, and the incident ultrasonic pulse PA is transmitted to the fluid transport pipe opposite to the incident side. The timing TE which is reflected from the inner surface 30 and returns to the receiving unit 13 at the predetermined position P as a reflected echo RE is measured. Based on the measured timing TE, the thinning amount X of the lining 5 opposite to the incident side is detected.
[0025]
Prior to the specific description of the detection of the thinning amount, a case where the same detection is performed with a sound fluid conveyance pipe will be described with reference to FIGS. 2A and 2D.
[0026]
In the sound fluid transfer pipe 2 as shown in FIG. 2A, the thickness X is zero, and the inner surface 30 of the fluid transfer pipe 2 on the opposite side to the incident side is the inner surface 7 of the lining 5 having a normal thickness. Become a part. The ultrasonic pulse is reflected on this surface. FIG. 2D is a graph showing the relationship between the strength of the detection signal from the receiving unit and the timing. Referring to FIG. 2A and FIG. 2D, the ultrasonic wave is incident from transmitting unit 12 at timing TS, reflected on inner surface 30 of fluid transport pipe 2 on the opposite side to the incident side, and when timing TE is timing TE0. The signal reaches the receiving unit 13 and a peak PE appears in the detection signal. The propagation distance of the ultrasonic wave from the timing TS to the timing TE0 can be known in advance, and is twice the value of the distance L0 between the inner surface 7 of the lining 5 opposite to the incident side and the predetermined position P. Become.
[0027]
Next, in the fluid transport pipe 2 having a small wall thickness X as shown in FIG. 2B, the wall thickness X has a value X1, and the inner surface 30 of the fluid transport pipe 2 on the side opposite to the incident side has been reduced in thickness. It becomes a part of the inner surface 7 of the lining 5. The ultrasonic pulse is reflected on this surface. Referring to FIG. 2B and FIG. 2E, the ultrasonic wave is incident at timing TS, is reflected by inner surface 30 of fluid transport pipe 2 on the opposite side to the incident side, and is transmitted to receiving unit 13 when timing TE is timing TE1. And a peak PE appears. The timing TE1 is after the timing TE0. The propagation distance of the ultrasonic wave from the timing TS to the timing TE1 is longer than the propagation distance in the case of the healthy fluid transport pipe 2 by twice the value X1 of the wall thinning amount X.
[0028]
Further, in the fluid transport pipe 2 having a large wall thickness as shown in FIG. 2C, the wall thickness X becomes a value X2, and the inner surface 30 of the fluid transport pipe 2 on the side opposite to the incident side has a greatly reduced lining. 5 is a part of the inner surface 7. Referring to FIG. 2C and FIG. 2F, the ultrasonic wave is incident at timing TS, is reflected on inner surface 30 of fluid transport pipe 2 on the opposite side to the incident side, and is transmitted to receiving unit 13 when timing TE is timing TE2. And a peak PE appears. The timing TE2 is after the timing TE1. Further, the propagation distance of the ultrasonic wave from the timing TS to the timing TE2 is longer than the propagation distance in the case of the healthy fluid transport pipe 2 by twice the value X2 of the wall thinning amount X.
[0029]
As described above, as the thinning amount X increases, the inner surface 30 of the fluid transport pipe 2 on the opposite side from the transmitting unit 12 and the receiving unit 13 becomes farther, and the propagation distance of the ultrasonic wave becomes longer. As a result, the measured reception timing TE is shifted later. Therefore, the thinning amount X of the lining 5 can be detected based on the measured timing TE, the sound speed in the fluid W, and the like.
[0030]
For example, the timing TE is based on the timing TS which is the transmission time from the transmission unit 12, and the peak PE of the detection signal is generated when the reflected echo reflected from the inner surface 30 of the opposite fluid transport pipe 2 reaches the reception unit 13. Is measured as the elapsed time until the timing TE rises. Then, the measured value of the measured reception timing TE is compared with the timing TE0 (see FIG. 2D) which is a specific value of the timing TE calculated or measured in advance in the case of a sound fluid transport pipe 2, and the difference is determined. It is determined that the greater the amount of delay, the greater the amount of wall thinning.
[0031]
2E and 2F, for comparison, the peaks shown in FIG. 2D are also shown by broken lines, but the peaks shown by broken lines do not appear during actual measurement.
[0032]
Further, the timing TE is a timing at which the reflected echo returns from the inside of the fluid transport pipe 2 immediately near the incident position P, that is, a timing after the timing TS to the timing TS2 (see FIG. 2D). Thereby, the reflected echo reflected on the inner surface 30 of the fluid transport pipe opposite to the incident position can be easily distinguished from the reflected echo from near the incident position.
[0033]
It is conceivable to detect the pinhole defect 8 (see FIG. 3B) in the same manner as the detection of the large thinned portion 6 as shown in FIG. 2C. However, the ultrasonic pulse PA usually reaches the inner surface 30 of the fluid transport pipe 2 on the opposite side while spreading three-dimensionally from the incident position. Even if there is a pinhole defect 8 on the inner surface 30, the pinhole defect 8 is usually smaller than the thinned portion, so that the ultrasonic wave is also reflected on the inner surface 7 of the lining 5 around the pinhole defect 8 and the lining 5 The reflection echo from the inner surface 7 and the reflection echo from the pinhole defect 8 were mixed and detected, and it was difficult to detect the presence or absence of the pinhole defect 8.
(2) Detection of Pinhole Defect Then, the second detection unit 23 enters an ultrasonic pulse from the transmission unit 12 into the fluid transport pipe 2 filled with the fluid W with reference to FIGS. 3B and 3D. Then, based on whether or not the incident pulse is reflected from the inner surface 30 of the fluid transport pipe 2 on the opposite side to the incident side and returns to the receiving section 13 at the predetermined position P, the incident side lining 5 is The presence or absence of the pinhole defect 8 is detected. The inner surface 30 of the fluid transfer pipe 2 on the opposite side to the incident side is usually the inner surface 7 of the lining 5, but the pinhole defect 8 can be similarly detected in the thinned portion 6 and the peeled portion.
[0034]
Prior to the specific description of the detection of the pinhole defect 8, a case in which the same procedure is performed on a sound fluid transfer pipe will be described with reference to FIGS. 3A and 3C.
[0035]
As shown in FIG. 3A, in the sound fluid transfer pipe 2 having no pinhole defect 8, the ultrasonic wave is greatly attenuated when passing through the lining 5. In addition, it is necessary for the ultrasonic wave to pass through the lining 5 having a larger attenuation than the fluid twice before returning to the receiving unit 13 as a reflected echo. As a result, the degree of attenuation of the ultrasonic wave increases, so that the reflected echo becomes very small, and the reflected echo cannot be detected.
[0036]
That is, as shown in FIG. 3C, at and around the reception timing TE when the reflected echo is received without attenuation, the detection signal from the receiving unit 13 is small, and no peak indicating the reflected echo appears.
[0037]
On the other hand, as shown in FIG. 3B, when the pinhole defect 8 is immediately below the transmitting unit 12 and the receiving unit 13 in the fluid transport pipe 2, the ultrasonic wave becomes a reflected echo and reaches the receiving unit 13. , 5 does not have to pass through, so that the degree of attenuation of the ultrasonic wave is reduced, so that the reflected echo RE is maintained large and reaches the receiving unit 13. As shown in FIG. 3D, a peak PE indicating a reflected echo appears in the detection signal at the timing TE. If there is at least one peak PE, it is determined that there is a reflected echo.
[0038]
For example, the second detection unit 22 determines that there is no reflected echo when the detection signal from the reception unit 13 is smaller than a predetermined value PP and is equivalent to a noise level as shown in FIG. 3C. When the detection signal has a peak PE higher than a predetermined value PP as shown in FIG. 3D, it is determined that there is a reflected echo. When there is no reflected echo RE, it is determined that there is no pinhole defect 8, and when there is a reflected echo RE, it is determined that there is the pinhole defect 8. Note that, in the graphs of FIGS. 3C and 3D, a detection signal of a predetermined value or less that is about the noise level is simply illustrated as a straight line indicating the predetermined value.
[0039]
Also, as the pinhole defect 8 increases, the peak PE of the detection signal tends to increase. Therefore, the size of the pinhole defect 8 can be determined based on the size of the peak PE of the detection signal indicating the reflected echo RE. For example, as the peak PE becomes smaller, it can be determined that the pinhole defect 8 is smaller. For example, when the vibrator 15 having a diameter of about 4 mm is used, the pinhole defect 8 having a diameter of about 2 mm can be detected. It is possible to detect the pinhole defect 8 having a size of about half of the size of the pinhole 15.
[0040]
The predetermined timing TE for detecting the presence or absence of a reflected echo is set, for example, in the same manner as the timings TE and TE0 in the first detection unit 22.
[0041]
The frequency of the ultrasonic pulse PA transmitted from the transmitting unit 12 and the frequency of the reflected echo RE received by the receiving unit 13 are set to include the following frequencies. That is, it is considered that the degree of attenuation of the ultrasonic waves in the medium such as the pipe body 3, the lining 5, and the fluid W depends on the frequency of the ultrasonic waves.
[0042]
Therefore, in the first detection function, the frequency of the ultrasonic wave is set to the inner surface 30 of the fluid transport pipe 2 on the opposite side of the incident position in the fluid transport pipe 2 with or without the thinned portion 6. Is set so that the degree of attenuation is such that the reflected echo can be detected by the reflected light. For example, the frequency of the ultrasonic wave is preferably in a range of 5 MHz to 10 MHz, and for example, it is more preferable that this value be 5 MHz. Here, if the frequency exceeds 10 MHz, the degree of attenuation increases, and the reflected echo may not be detected. If the frequency is less than 5 MHz, the detection accuracy of the thinning amount may decrease. .
[0043]
In the second detection function, the frequency of the ultrasonic wave is set such that when there is a pinhole defect, the ultrasonic wave returns from the inner surface 30 of the fluid transport pipe 2 on the side opposite to the incident position and the reflected echo can be detected. When there is no defect 8, the ultrasonic waves are attenuated by the lining 5 and are set to have such a degree of attenuation that the reflected echo from the inner surface 30 of the fluid transport pipe 2 opposite to the incident position is not detected. For example, the frequency of the ultrasonic wave is set to a higher frequency than the standard frequency used for the standard ultrasonic flaw detection, and for example, a value in a range of 10 MHz to 20 MHz is preferable. For example, the value is set to 20 MHz. More preferred. Here, as the frequency increases, the degree of attenuation by the lining 5 increases, and it can be ensured that the reflected echo RE is not detected when there is no pinhole defect 8. However, when the frequency exceeds 20 MHz, the degree of attenuation decreases. This is because if the size becomes too large and the pinhole defect 8 is present, a reflected echo may not be detected. If the frequency is less than 10 MHz, a reflected echo may be detected even when there is no pinhole defect 8.
[0044]
Further, in addition to the frequency of the ultrasonic wave, the intensity of the ultrasonic wave, the reception frequency at the receiving unit 13, the sensitivity, and the like are appropriately adjusted similarly to the frequency of the ultrasonic wave.
[0045]
As described above, according to the embodiment of the present invention, since the transmitting unit 12 and the receiving unit 13 for detecting the thinning amount X and the pinhole defect 8 can be arranged on the outer periphery 9 of the fluid transport pipe 2, the lining 5 can be reduced. The wall thickness and the pinhole defect 8 can be detected in the small-diameter fluid transport pipe 2. In addition, the inspection can be easily performed from the outside of the fluid transport pipe 2, for example, the inspection can be performed after the use of the fluid transport pipe 2 is started or during use. Further, even when the fluid is corrosive, the probe 14 is not likely to be damaged.
[0046]
In the present embodiment, the probe 14 has the transmitting unit 12 and the receiving unit 13 integrated, but is not limited thereto. For example, the transmitting unit 12 and the receiving unit 13 are separately provided. It is also conceivable to use a known structure such as providing. In addition, the above-described integrated probe 14 having the vibrator 15 that can be used as the receiving unit 13 and the transmitting unit 12 and can transmit an ultrasonic wave and can receive a reflected echo is preferable for the receiving unit 13 and the transmitting unit 12. In this case, the thinned portion 6 and the pinhole defect 8 can be detected with high accuracy.
[0047]
In addition, the inspection device 1 shown in the above-described embodiment integrates the inspection device for detecting the thinned portion 6 and the inspection device for detecting the pinhole defect 8, but is not limited thereto. Instead, the function of one of the inspection devices may be omitted.
[0048]
In addition, various changes can be made within the scope of the claims of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a schematic configuration of an inspection device according to an embodiment of the present invention.
2A, 2B, and 2C are schematic diagrams of an inspection device and a pipe for explaining a function of detecting a thinning amount by the inspection device shown in FIG. 1, and show a predetermined waveform of a detection signal waveform of a reflected echo. 2D, 2E, and 2F show graphs in which the strength not less than the value is plotted on the ordinate and the time is plotted on the abscissa. In FIG. 2A and FIG. 2B and FIG. 2E show the case where the pipe is inspected, and FIG. 2C and FIG. 2F show the case where the pipe having a large wall thickness is to be inspected.
3A and 3B are schematic views of an inspection apparatus and a pipe for explaining a pinhole defect detection function of the inspection apparatus shown in FIG. 1, and show a detection signal waveform of a reflected echo of a predetermined value or more. FIGS. 3C and 3D show graphs in which strength is taken on the vertical axis and time is taken on the horizontal axis. In the case where a healthy pipe is to be inspected, FIGS. 3A and 3C show pipes having pinhole defects. FIG. 3B and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inspection apparatus 2 Fluid conveying pipe 3 Pipe main body 4 Inner surface of pipe main body 5 Lining 7 Inner surface of lining 8 Pinhole defect 9 Outer perimeter 12 of fluid conveying pipe 12 Transmitting unit 13 Receiving unit 22 First detecting unit (detects thinning amount Detection unit for
23 Second Detector (Detector for Detecting Pinhole Defect)
30 Inner surface R of fluid transport pipe on the side opposite to the incident side Radial direction P of fluid transport pipe passing through a predetermined position on the outer circumference Predetermined position PA Ultrasonic pulse RE Reflection echo TE Return timing X Thinning of lining

Claims (2)

パイプ本体とパイプ本体の内面に被覆されたライニングとにより構成される流体搬送パイプを検査するための装置において、
パイプの外周の所定位置からパイプの径方向に沿ってパイプ内に超音波パルスを発信する発信部と、パイプ内からパイプの径方向に沿って反射する反射エコーを上記パイプの外周の所定位置にて受信する受信部と、入射したパルスが入射側とは反対側のパイプの内面から反射されて上記所定位置に戻ってくるタイミングに基づいて、上記入射側とは反対側のライニングの減肉量を検出する検出部とを備えることを特徴とする内面被覆パイプの検査装置。
In an apparatus for inspecting a fluid transfer pipe constituted by a pipe body and a lining coated on an inner surface of the pipe body,
A transmitting unit that transmits an ultrasonic pulse into the pipe along the radial direction of the pipe from a predetermined position on the outer circumference of the pipe, and a reflected echo reflected along the radial direction of the pipe from within the pipe at a predetermined position on the outer circumference of the pipe. And a receiving portion that receives the pulse, based on the timing at which the incident pulse is reflected from the inner surface of the pipe on the side opposite to the incident side and returns to the predetermined position, based on the thinning amount of the lining on the side opposite to the incident side. An inspection apparatus for an inner-coated pipe, comprising:
パイプ本体とパイプ本体の内面に被覆されたライニングとにより構成される流体搬送パイプを検査するための装置において、
パイプの外周の所定位置からパイプの径方向に沿ってパイプ内に超音波パルスを発信する発信部と、パイプ内からパイプの径方向に沿って反射する反射エコーを上記パイプの外周の所定位置にて受信する受信部と、入射したパルスが入射側とは反対側のライニングの内面から反射されて上記所定位置に戻ってくるか否かに基づいて、上記入射側のライニングのピンホール欠陥の有無を検出する検出部とを備えることを特徴とする内面被覆パイプの検査装置。
In an apparatus for inspecting a fluid transfer pipe constituted by a pipe body and a lining coated on an inner surface of the pipe body,
A transmitting unit that transmits an ultrasonic pulse into the pipe along the radial direction of the pipe from a predetermined position on the outer circumference of the pipe, and a reflected echo reflected along the radial direction of the pipe from within the pipe at a predetermined position on the outer circumference of the pipe. A receiving unit that receives the pulse signal based on whether the incident pulse is reflected from the inner surface of the lining opposite to the incident side and returns to the predetermined position, based on whether there is a pinhole defect in the lining on the incident side. An inspection apparatus for an inner-coated pipe, comprising:
JP2003011515A 2003-01-20 2003-01-20 Fluid conveying pipe inspection device Expired - Fee Related JP3714934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011515A JP3714934B2 (en) 2003-01-20 2003-01-20 Fluid conveying pipe inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011515A JP3714934B2 (en) 2003-01-20 2003-01-20 Fluid conveying pipe inspection device

Publications (2)

Publication Number Publication Date
JP2004226123A true JP2004226123A (en) 2004-08-12
JP3714934B2 JP3714934B2 (en) 2005-11-09

Family

ID=32900397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011515A Expired - Fee Related JP3714934B2 (en) 2003-01-20 2003-01-20 Fluid conveying pipe inspection device

Country Status (1)

Country Link
JP (1) JP3714934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194299A (en) * 2016-04-18 2017-10-26 日鉄住金防蝕株式会社 Coat soundness evaluation method
JP2023014700A (en) * 2021-07-19 2023-01-31 株式会社東芝 Signal processing method, signal processing device, signal processing system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258401A (en) * 1999-03-04 2000-09-22 Kubota Corp Detecting method for presence or absence of corrosion on inner surface of pipe
JP2000310522A (en) * 1999-04-28 2000-11-07 Tosoh Corp Method for measuring thickness of double-layered metallic body
JP2000329751A (en) * 1999-05-18 2000-11-30 Toshiba Corp Method and apparatus for inspection of piping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258401A (en) * 1999-03-04 2000-09-22 Kubota Corp Detecting method for presence or absence of corrosion on inner surface of pipe
JP2000310522A (en) * 1999-04-28 2000-11-07 Tosoh Corp Method for measuring thickness of double-layered metallic body
JP2000329751A (en) * 1999-05-18 2000-11-30 Toshiba Corp Method and apparatus for inspection of piping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194299A (en) * 2016-04-18 2017-10-26 日鉄住金防蝕株式会社 Coat soundness evaluation method
JP2023014700A (en) * 2021-07-19 2023-01-31 株式会社東芝 Signal processing method, signal processing device, signal processing system, and program

Also Published As

Publication number Publication date
JP3714934B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
US6363788B1 (en) Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves
RU2485388C2 (en) Device and group of sensors for pipeline monitoring using ultrasonic waves of two different types
US6367328B1 (en) Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled containers using leaky guided ultrasonic waves
US20170268950A1 (en) An apparatus and method for measuring the pressure inside a pipe or container
CN101413926A (en) A kind of sound, supersonic damage-free detection method
TW201738558A (en) Layered-body detachment-testing method and detachment-testing device
AU2016224101B2 (en) An apparatus and method for inspecting a pipeline
JP3940580B2 (en) Piping inspection method and piping inspection device
CN113874721B (en) Method and apparatus for non-destructive testing of sheet material
JP3714934B2 (en) Fluid conveying pipe inspection device
JP2009145229A (en) Method and device for testing interface
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
US11054399B2 (en) Inspection method
KR20040056821A (en) Ultrasonic evaluation system for internal deposit layer in a pipe
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
JP2001041939A (en) Method for detecting defect of piping
JP2003254942A (en) Pipe inspection device and pipe inspection method
JPH0533960Y2 (en)
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
Suzuki et al. Feasibility study of air-coupled ultrasonic vertical reflection method using a single probe
JP2003337121A (en) Method for inspecting multilayer member
JPH05332996A (en) Detection of surface defect of steel pipe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees