JP2004226079A - Surface or section processing observation method and its device - Google Patents

Surface or section processing observation method and its device Download PDF

Info

Publication number
JP2004226079A
JP2004226079A JP2003010648A JP2003010648A JP2004226079A JP 2004226079 A JP2004226079 A JP 2004226079A JP 2003010648 A JP2003010648 A JP 2003010648A JP 2003010648 A JP2003010648 A JP 2003010648A JP 2004226079 A JP2004226079 A JP 2004226079A
Authority
JP
Japan
Prior art keywords
cross
section
processing
sample
observation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003010648A
Other languages
Japanese (ja)
Inventor
Takashi Minafuji
孝 皆藤
Masatoshi Yasutake
正敏 安武
Toshiaki Fujii
利昭 藤井
Koji Iwasaki
浩二 岩崎
Shigeru Wakiyama
茂 脇山
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003010648A priority Critical patent/JP2004226079A/en
Priority to US10/759,354 priority patent/US20040154744A1/en
Publication of JP2004226079A publication Critical patent/JP2004226079A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2583Tubes for localised analysis using electron or ion beams characterised by their application using tunnel effects, e.g. STM, AFM

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein, when confirming a laminated structure of a device whose miniaturization and integration are advanced, resolution is insufficient in scanning electron microscope observation, and sample preparation for transmission electron microscope observation is required, and high throughput can not be realized, in the transmission electron microscope observation. <P>SOLUTION: This surface or section processing observation device comprises a means 1 for exposing the surface or the section by processing the sample 5 surface, and a scanning probe microscope means 6 for observing the exposed surface or section. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
近年、半導体デバイスや表示デバイスなどの各種デバイスは、機能向上を実現するため、その構造は微細に、そして複雑になっている。特に、各デバイスを形成する素子や配線が数原子層レベルの薄膜を重ねた積層構造になっており、その構造を観察する需要は高い。
【0002】
本発明は、試料表面の所望の箇所に一つ乃至複数の表面あるいは断面構造加工部を形成し、その表面あるいは断面を観察することにより、各種デバイスの研究開発、製造工程管理、不良解析など行なうことにより、各種デバイスの発展に寄与することを目的になされている。
【0003】
【従来の技術】
第一の技術として、集束イオンビームにて試料表面の所望箇所に断面構造露出を形成し、露出した表面あるいは断面を集束イオンビームによる走査イオン顕微鏡像や電子ビーム走査による走査電子顕微鏡像にて観察する方法が知られている(例えば、特許文献1参照)。
【0004】
第二の技術として、集束イオンビームにて試料表面の所望箇所をエッチング加工して小片試料を取り出し、取り出した小片試料を透過電子顕微鏡にて観察する方法が知られている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平2−123749号公報(第2−3頁、第2図)
【0006】
【特許文献2】
特開2002−148162号公報(第2頁、第3図)
【0007】
【発明が解決しようとする課題】
従来の第一の技術では、走査イオンビーム顕微鏡像や、走査電子顕微鏡像を用いて試料の表面あるいは断面構造を観察するが、その観察分解能が不足しているという課題があった。走査電子顕微鏡像の空間分解能は、1nmに匹敵するものが最高性能のものとして知られているが、試料を形成する最も薄い膜構造の厚さが1nm程度であることから、膜の厚さを管理するに不十分である。
【0008】
従来の第二の技術は、試料の断面構造観察に透過電子顕微鏡像を用いる。透過電子顕微鏡では、膜構造を形成する原子を観察できることから、空間分解能は十分である。しかしながら、透過電子顕微鏡で観察するための小片試料を集束イオンビーム装置で作製し、作製した小片試料を透過電子顕微鏡にて観察することから、工程全体のスループットを上げることができないという課題があった。
【0009】
また従来の一二の技術では、試料の形状情報が得られるのみで試料の電気特性、力学特性は得られなかった。
【0010】
【課題を解決するための手段】
本発明は上記の問題点を解決するための発明されたものである。
【0011】
試料表面の所望の箇所に、集束エネルギービームを走査照射してエッチング加工を行って、試料の所定の層の表面あるいは断面構造を露出して、露出した表面あるいは断面を走査プローブ顕微鏡にて観察する表面あるいは断面加工観察方法である。集束エネルギービームとしては、集束イオンビーム、不活性粒子ビーム、レーザビームなどが用いられる。
【0012】
また、試料表面の所望の箇所に穴あけ加工を行なう集束エネルギービーム照射手段と、集束エネルギービーム照射手段を用いてあけられた穴の側壁を観察する走査プローブ顕微鏡手段とを持つことを特徴とする表面あるいは断面加工観察装置である。穴あけ加工の手段としては、集束イオンビーム照射手段の他に、不活性粒子ビーム照射手段や、レーザビーム照射手段、あるいはダイアモンド針にて試料表面を削る切削手段がある。
【0013】
【発明の実施の形態】
図1に本発明の方法を説明する。
【0014】
図1aに示すように、試料の所定箇所に集束エネルギービーム11を照射し、サンプル12の13を被エッチング領域として穴あけ加工を行なう。行なう
続いて、図1bに示すように、露出した表面あるいは断面の表面に、エッチング加工を行なう。エッチング加工は、例えば、表面あるいは断面表面に対して極浅い角度でアルゴンイオンビーム14を照射して行なう。または、エッチングガスを吹き付けても良い。これにより、集束エネルギービーム照射によって行なうスパッタエッチング加工の際の、表面あるいは断面表面に残る損傷層を被エッチング領域15として除去する。また、鏡面加工後に、図1cに示すように材質によるエッチング速度の相違を利用して、積層構造物の材質の差に基づいた段差16を形成することもできる。あるいは材質の反応性ガスに対するエッチング速度の差を利用して、層状構造物の材質による凹凸を作成することも可能である。
【0015】
そして、図1dに示すように、表面あるいは断面を走査プローブ顕微鏡のプローブ17を走査させることによって観察する。
【0016】
図2に本発明による装置を説明する。
【0017】
イオンビームを集束して試料表面に走査照射する集束イオンビーム照射手段1と、電子ビームを集束して試料表面の集束イオンビーム照射領域と同じ箇所を走者照射する電子ビーム照射手段2が真空容器3に取り付けられている。真空容器3は、真空ポンプ4によって真空状態に保たれている。そして、真空容器3には、図示されていない試料を載置している試料台を有し、試料台はX、Y軸、Z軸と傾き調整する多軸試料ステージ5が設置されている。また、集束イオンビーム照射手段あるいは電子ビーム照射手段によるビーム照射領域の試料表面と、集束イオンビーム照射手段によって形成された試料の表面あるいは断面を観察可能な走査プローブ顕微鏡6が、真空容器3に取り付けられている。この走査プローブ顕微鏡のプローブと加工試料表面の間にはバイアス電源が接続されておりプローブと加工試料間に電圧を印加できる構成としている。また、プローブあるいは加工試料を通して流れ込む電流を検出する微小電流計が備わっている。そして、これらはコンピュータシステム7によって管理されている。
【0018】
真空容器3を大気状態にし、試料ステージ5に試料を設置する。試料表面の被加工領域が集束イオンビーム照射領域になるよう試料ステージ5を動作させる。そして、試料表面の被加工領域に集束イオンビーム照射手段1により集束イオンビームを走者照射し、試料表面にイオンビームが照射されることによって発生する二次荷電粒子を、図示されていない真空容器3に取り付けられている二次荷電粒子検出器によって検出し、試料表面の走査イオン顕微鏡像を観察する。走査イオン顕微鏡像から、表面あるいは断面形成箇所を決定し、表面あるいは断面形成領域に集束イオンビームを走査照射することにより、試料の積層構造が露出する表面あるいは断面形成加工を行なう。
【0019】
続いて、露出した表面あるいは断面部分に、図示されていないアルゴンイオンビーム照射手段によってアルゴンイオンビームを露出表面あるいは断面部分に対して浅い入射角度にて照射し、表面あるいは断面部分表面をエッチングする。これにより、集束イオンビーム照射によって表面あるいは断面部分に残っている損傷部分を除去する。
【0020】
そして、表面あるいは断面部分を走査プローブ顕微鏡手段6によって観察する。走査プローブ顕微鏡としては、走査型トンネル顕微鏡STMや原子間力顕微鏡AFMなど多様な観察原理、観察方法が知られているが、積層構造物の材質や膜の厚さ、そして観察の目的などに合わせて最適な測定モードの顕微鏡が選択できる。以下に電気・磁気的測定、力学的測定、高分解能形状測定について説明する。
【0021】
第一に加工試料面の電気・磁気的測定例として、ドーパンド濃度あるいは誘電率測定は、プローブ近傍に、高感度のキャパシタンス検出器を配備し、バイアス電源より交流電圧を試料に印加し、プローブ直下のキャパシタンス変化を同期検出する。このキャパシタンス変化より試料のドーパンド濃度あるいは誘電率を算出する。また、加工試料面あるいは断面の導電性を測定する場合は、導電性プローブを被測定部に接触させ、バイアス電源より電圧を走査し、その時流れる電流を前記微小電流計により検出し、接触点でのI/Vカーブを測定する。あるいはバイアス電圧一定で、プローブを走査させ、電流像マッピングを行なう。さらに加工試料面あるいは断面の電位を測定する場合は、試料面に交流電圧を印加し、この交流電界の周波数で振動するカンチレバーの振幅がゼロになるようにバイアス電源電圧を制御し、この制御電圧から試料の表面電位を測定する。最後に磁性体プローブを用いて表面あるいは断面より漏洩している磁区を磁気力顕微鏡により測定する。
【0022】
第二に加工試料面の力学的性質の測定を説明する。試料面の摩擦情報は、摩擦力顕微鏡により測定する。層状に構成された断面材質の摩擦力の違いにより積層された物質のコントラストがつき積層された膜厚が測定できる。また加工表面の摩擦力の違いより、積層された物質中の異物などが検出できる。つぎに加工試料面の硬さ情報は、試料面にプローブを接触させ微小振動を与える。この微小振動を与えている電源とプローブの振動位相差より試料面の硬さ情報が求まる。
第三にSPMを用いた高分解能測定を説明する。
【0023】
断面の層状試料の厚みは、1−2nmと縮小している。この断面を高分解能で測定するために、断面部分のエッチングには、低加速のアルゴンイオンビーム照射し、イオンビーム加工によるダメージ層を除去する。最後に加工面を鏡面に近い状態に仕上げる。さらにエッチングガスを断面部分に吹き付けても良い。このとき、エッチングガス吹き付けと同時に電子ビーム照射手段2によって電子ビームを照射しても良い。これにより、断面の損傷部分を除去すると同時に、断面部が鏡面に近い状態に仕上がり、また断面を構成する積層構造物の材質の差に基づいた選択エッチングにより、断面部分に微小な段差が生成し、この段差を高分解能SPMで測定することにより、サブナノメータの分解能で断面層状構造の画像化が可能になる。
【0024】
【発明の効果】
本発明により、異なる情報を得ることのできる走査プローブ顕微鏡にて試料表面に形成した一つ乃至複数の表面あるいは断面部分を観察することで、透過電子顕微鏡に匹敵する空間分解能を得ると共に、従来方法では得られなかった加工試料面の電気・磁気・力学的情報がより短い作業時間にて観察することができる。
【図面の簡単な説明】
【図1】本発明による表面あるいは断面加工観察方法の説明図である。
【図2】本発明による表面あるいは断面加工観察装置の説明図である。
【符号の説明】
1 集束イオンビーム照射手段
2 電子ビーム照射手段
3 真空容器
4 真空ポンプ
5 試料ステージ
6 走査プローブ顕微鏡手段
7 装置制御コンピュータ
11 集束エネルギービーム
14 アルゴンイオンビーム
[0001]
BACKGROUND OF THE INVENTION
In recent years, various devices such as semiconductor devices and display devices have become finer and more complicated in order to realize functional improvements. In particular, the elements and wirings forming each device have a laminated structure in which thin films of several atomic layers are stacked, and the demand for observing the structure is high.
[0002]
In the present invention, one or a plurality of surface or cross-sectional structure processed portions are formed at desired locations on the sample surface, and the surface or cross section is observed to conduct research and development of various devices, manufacturing process management, defect analysis, etc. Therefore, it is intended to contribute to the development of various devices.
[0003]
[Prior art]
As a first technique, a cross-sectional structure exposure is formed at a desired location on the sample surface with a focused ion beam, and the exposed surface or cross section is observed with a scanning ion microscope image using a focused ion beam or a scanning electron microscope image using an electron beam scan. There is a known method (see, for example, Patent Document 1).
[0004]
As a second technique, there is known a method in which a desired portion of a sample surface is etched with a focused ion beam, a small piece sample is taken out, and the taken out small piece sample is observed with a transmission electron microscope (for example, Patent Document 2). reference).
[0005]
[Patent Document 1]
JP-A-2-123749 (page 2-3, FIG. 2)
[0006]
[Patent Document 2]
JP 2002-148162 (2nd page, FIG. 3)
[0007]
[Problems to be solved by the invention]
In the first conventional technique, the surface or cross-sectional structure of a sample is observed using a scanning ion beam microscope image or a scanning electron microscope image, but there is a problem that the observation resolution is insufficient. The spatial resolution of the scanning electron microscope image is comparable to 1 nm, which is known as the highest performance, but the thickness of the thinnest film structure forming the sample is about 1 nm. Insufficient to manage.
[0008]
The second conventional technique uses a transmission electron microscope image for observing the cross-sectional structure of a sample. In the transmission electron microscope, atoms forming the film structure can be observed, so that the spatial resolution is sufficient. However, since a small sample for observation with a transmission electron microscope is produced with a focused ion beam apparatus and the produced small piece sample is observed with a transmission electron microscope, there is a problem that the throughput of the entire process cannot be increased. .
[0009]
In addition, according to the conventional techniques, only the shape information of the sample can be obtained, but the electrical characteristics and mechanical characteristics of the sample cannot be obtained.
[0010]
[Means for Solving the Problems]
The present invention has been invented to solve the above problems.
[0011]
Etching is performed by applying a focused energy beam to a desired location on the sample surface to expose the surface or cross-sectional structure of a predetermined layer of the sample, and the exposed surface or cross-section is observed with a scanning probe microscope. This is a surface or cross-section processing observation method. A focused ion beam, an inert particle beam, a laser beam, or the like is used as the focused energy beam.
[0012]
And a surface having a focused energy beam irradiating means for drilling a desired portion of the sample surface and a scanning probe microscope means for observing the side wall of the hole drilled using the focused energy beam irradiating means. Or it is a cross-section processing observation apparatus. As a means for drilling, in addition to the focused ion beam irradiation means, there are an inert particle beam irradiation means, a laser beam irradiation means, or a cutting means for cutting the sample surface with a diamond needle.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 illustrates the method of the present invention.
[0014]
As shown in FIG. 1a, a focused energy beam 11 is irradiated to a predetermined portion of the sample, and drilling is performed using the sample 12 13 as an etched region. Subsequently, as shown in FIG. 1b, an etching process is performed on the exposed surface or the cross-sectional surface. For example, the etching process is performed by irradiating the argon ion beam 14 at an extremely shallow angle with respect to the surface or the cross-sectional surface. Alternatively, an etching gas may be sprayed. As a result, the damaged layer remaining on the surface or cross-sectional surface during the sputter etching process performed by the focused energy beam irradiation is removed as the etched region 15. Further, after the mirror finish, as shown in FIG. 1c, the step 16 based on the difference in the material of the laminated structure can be formed using the difference in the etching rate depending on the material. Alternatively, it is possible to create unevenness due to the material of the layered structure by utilizing the difference in etching rate of the material with respect to the reactive gas.
[0015]
Then, as shown in FIG. 1d, the surface or cross section is observed by scanning the probe 17 of the scanning probe microscope.
[0016]
FIG. 2 illustrates an apparatus according to the present invention.
[0017]
A focused ion beam irradiating means 1 for focusing and irradiating the sample surface with the ion beam and an electron beam irradiating means 2 for focusing the electron beam and irradiating the same spot as the focused ion beam irradiation area on the sample surface are the vacuum vessel 3 Is attached. The vacuum vessel 3 is kept in a vacuum state by a vacuum pump 4. The vacuum vessel 3 has a sample stage on which a sample (not shown) is placed, and the sample stage is provided with a multi-axis sample stage 5 that adjusts the tilt with respect to the X, Y, and Z axes. Also attached to the vacuum vessel 3 is a scanning probe microscope 6 capable of observing the surface of the sample irradiated by the focused ion beam irradiation means or the electron beam irradiation means and the surface or cross section of the sample formed by the focused ion beam irradiation means. It has been. A bias power source is connected between the probe of the scanning probe microscope and the surface of the processed sample so that a voltage can be applied between the probe and the processed sample. There is also a microammeter that detects the current flowing through the probe or processed sample. These are managed by the computer system 7.
[0018]
The vacuum vessel 3 is brought into the atmospheric state, and the sample is placed on the sample stage 5. The sample stage 5 is operated so that the region to be processed on the sample surface becomes the focused ion beam irradiation region. Then, a focused ion beam irradiating means 1 irradiates the focused surface of the sample surface with the focused ion beam irradiation means 1, and the secondary charged particles generated when the sample surface is irradiated with the ion beam are not shown in the vacuum container 3 (not shown). And a scanning ion microscope image of the sample surface is observed. From the scanning ion microscope image, the surface or cross-section formation location is determined, and the surface or cross-section formation processing is performed by scanning and irradiating the surface or cross-section formation region with a focused ion beam.
[0019]
Subsequently, the exposed surface or cross-sectional portion is irradiated with an argon ion beam at a shallow incident angle with respect to the exposed surface or cross-sectional portion by an argon ion beam irradiation means (not shown), and the surface or cross-sectional portion surface is etched. Thereby, the damaged part remaining on the surface or the cross-sectional part is removed by the focused ion beam irradiation.
[0020]
Then, the surface or cross section is observed by the scanning probe microscope means 6. Various observation principles and methods are known as scanning probe microscopes, such as scanning tunnel microscope STM and atomic force microscope AFM. However, depending on the material of laminated structure, film thickness, and purpose of observation, etc. You can select a microscope with the optimal measurement mode. The electrical / magnetic measurement, mechanical measurement, and high-resolution shape measurement will be described below.
[0021]
First, as an example of electrical and magnetic measurement of the processed sample surface, for the measurement of the dopant concentration or dielectric constant, a highly sensitive capacitance detector is installed near the probe, an AC voltage is applied to the sample from the bias power source, and directly under the probe. The capacitance change is detected synchronously. From this capacitance change, the dopant concentration or dielectric constant of the sample is calculated. Also, when measuring the conductivity of the processed sample surface or cross section, the conductive probe is brought into contact with the part to be measured, the voltage is scanned from the bias power source, the current flowing at that time is detected by the microammeter, and the contact point is detected. Measure the I / V curve. Alternatively, the current image mapping is performed by scanning the probe with a constant bias voltage. Furthermore, when measuring the potential of the processed sample surface or cross section, an AC voltage is applied to the sample surface, and the bias power supply voltage is controlled so that the amplitude of the cantilever that vibrates at the frequency of the AC electric field becomes zero. To measure the surface potential of the sample. Finally, the magnetic domain leaking from the surface or cross section is measured with a magnetic force microscope using a magnetic probe.
[0022]
Second, the measurement of the mechanical properties of the processed sample surface will be described. The friction information on the sample surface is measured with a friction force microscope. The laminated film thickness can be measured with the contrast of the laminated substances due to the difference in the frictional force of the cross-sectional materials formed in layers. Further, foreign matters in the stacked materials can be detected from the difference in frictional force on the processed surface. Next, the hardness information of the processed sample surface gives a minute vibration by bringing the probe into contact with the sample surface. Hardness information on the sample surface can be obtained from the vibration phase difference between the power source and the probe giving this minute vibration.
Third, high-resolution measurement using SPM will be described.
[0023]
The thickness of the layered sample in the cross section is reduced to 1-2 nm. In order to measure the cross section with high resolution, the cross section is etched by irradiating a low-acceleration argon ion beam to remove the damaged layer caused by the ion beam processing. Finally, finish the machined surface close to the mirror surface. Further, an etching gas may be sprayed on the cross section. At this time, the electron beam may be irradiated by the electron beam irradiation means 2 simultaneously with the etching gas spraying. As a result, the damaged portion of the cross section is removed, and at the same time, the cross section is finished in a state close to a mirror surface, and a minute step is generated in the cross section by selective etching based on the difference in material of the laminated structure constituting the cross section. By measuring this step with a high resolution SPM, it becomes possible to image the cross-sectional layered structure with a sub-nanometer resolution.
[0024]
【The invention's effect】
According to the present invention, by observing one or a plurality of surfaces or cross-sectional portions formed on the sample surface with a scanning probe microscope capable of obtaining different information, a spatial resolution comparable to that of a transmission electron microscope can be obtained, and a conventional method can be used. Thus, electrical / magnetic / mechanical information on the processed sample surface that could not be obtained can be observed in a shorter working time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a surface or cross-section processing observation method according to the present invention.
FIG. 2 is an explanatory view of a surface or cross-section processing observation apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Focusing ion beam irradiation means 2 Electron beam irradiation means 3 Vacuum container 4 Vacuum pump 5 Sample stage 6 Scanning probe microscope means 7 Device control computer 11 Focusing energy beam 14 Argon ion beam

Claims (30)

試料表面の一つ乃至複数の所望の箇所の表面あるいは断面を加工する第一の工程と、走査型プローブ顕微鏡のプローブを前記した加工表面あるいは加工断面上にて走査して、前記プローブと加工表面あるいは加工断面との間に発生する物理量を検出することにより前記加工表面あるいは加工断面を観察する第二の工程と、からなることを特徴とする表面あるいは断面加工観察方法。A first step of processing the surface or cross section of one or more desired locations on the sample surface, and scanning the probe of the scanning probe microscope on the above-described processing surface or processing cross section, and the probe and the processing surface Alternatively, a surface or cross-section processing observation method comprising: a second step of observing the processing surface or processing cross-section by detecting a physical quantity generated between the processing cross-section. 前記第一の工程において、試料表面に集束エネルギービームを照射し、エッチングを行なうことによって加工表面あるいは加工断面を露出させることを特徴とする請求項1記載の表面あるいは断面加工観察方法。2. The surface or cross-section processing observation method according to claim 1, wherein, in the first step, the processing surface or processing cross section is exposed by irradiating the sample surface with a focused energy beam and performing etching. 前記集束エネルギービームが集束イオンビームであることを特徴とする請求項2記載の表面あるいは断面加工観察方法。3. The surface or cross-section processing observation method according to claim 2, wherein the focused energy beam is a focused ion beam. 前記第一の工程で、集束イオンビームでのエッチング加工後、試料の所定の場所で有機金属ガスを集束イオンビームで分解させて電極及び配線を作成する工程を含む前記請求項1に記載の表面あるいは断面加工観察方法。2. The surface according to claim 1, wherein, in the first step, after etching with a focused ion beam, an electrode and a wiring are formed by decomposing an organic metal gas with a focused ion beam at a predetermined location of a sample. Or cross-section processing observation method. 試料表面を加工してその加工表面あるいは加工断面を露出する手段と、かつ、その加工表面あるいは加工断面を観察する走査プローブ顕微鏡手段とを持つ表面あるいは断面加工観察装置を用いて、前記第一の工程と、前記第二の工程を行なうことを特徴とする請求項1記載の表面あるいは断面加工観察方法。Using the surface or cross-section processing observation apparatus having means for processing the sample surface and exposing the processing surface or processing cross section, and scanning probe microscope means for observing the processing surface or processing cross section, 2. The surface or cross-section processing observation method according to claim 1, wherein the step and the second step are performed. 試料表面の一つ乃至複数の所望の箇所を加工してその表面あるいは断面を露出する第一の工程と、前記露出した表面あるいは断面に残った損傷部分を取り除いた後、前記露出した表面あるいは断面を構成する各物質の相違に基づいた段差を形成する第二の工程と、前記露出した表面あるいは断面を走査プローブ顕微鏡にて観察する第三の工程と、からなることを特徴とする表面あるいは断面加工観察方法。A first step of processing one or more desired portions of the sample surface to expose the surface or cross section, and removing the damaged portion remaining on the exposed surface or cross section; A surface or cross section comprising: a second step of forming a step based on a difference in each material constituting the material; and a third step of observing the exposed surface or cross section with a scanning probe microscope Processing observation method. 前記段差を形成する前に前記露出した表面あるいは断面を鏡面にする工程を有することを特徴とする請求項6記載の表面あるいは断面加工観察方法。7. The surface or cross-section processing observation method according to claim 6, further comprising a step of making the exposed surface or cross-section a mirror surface before forming the step. 前記集束エネルギービーム照射手段にて試料の表面あるいは断面を露出し、前記プローブにて表面あるいは断面の観察を行なう工程を順次繰り返すことを特徴とする請求項1記載の表面あるいは断面加工観察方法。2. The surface or cross-section processing observation method according to claim 1, wherein the step of exposing the surface or cross-section of the sample with the focused energy beam irradiation means and observing the surface or cross-section with the probe is sequentially repeated. 集束エネルギービームを試料表面の所望の箇所に走査照射し、試料表面を加工して試料の表面あるいは断面を加工する集束エネルギービーム照射手段と、プローブを前記加工面にて走査して前記プローブと試料加工面との間に発生する物理量を検出することにより試料の加工表面あるいは断面を観察する走査プローブ顕微鏡手段とを持つことを特徴とする表面あるいは断面加工観察装置。A focused energy beam irradiating means that scans and irradiates a desired portion of the sample surface with a focused energy beam, processes the sample surface to process the surface or cross section of the sample, and scans the probe on the processing surface to scan the probe and the sample. A surface or cross-section processing observation apparatus comprising scanning probe microscope means for observing a processing surface or cross section of a sample by detecting a physical quantity generated between the processing surface and the processing surface. 前記集束エネルギービームが集束イオンビームであることを特徴とする請求項9記載の表面あるいは断面加工観察装置。10. The surface or cross-section processing observation apparatus according to claim 9, wherein the focused energy beam is a focused ion beam. 前記露出した表面あるいは断面をエッチング加工するエッチング加工手段を持つことを特徴とする請求項9記載の表面あるいは断面加工観察装置。10. The surface or cross section processing observation apparatus according to claim 9, further comprising an etching processing means for etching the exposed surface or cross section. 前記エッチング加工手段が、不活性粒子ビーム照射手段であることを特徴とする請求項11記載の表面あるいは断面加工観察装置。12. The surface or cross-section processing observation apparatus according to claim 11, wherein the etching processing means is an inert particle beam irradiation means. 前記エッチング加工手段が、エッチングガスの吹き付け手段であることを特徴とする請求項11記載の表面あるいは断面加工観察装置。12. The surface or cross-section processing observation apparatus according to claim 11, wherein the etching processing means is an etching gas spraying means. 前記エッチング加工手段が、レーザビーム照射手段であることを特徴とする請求項11記載の表面あるいは断面加工観察装置。12. The surface or cross-section processing observation apparatus according to claim 11, wherein the etching processing means is a laser beam irradiation means. 前記物理量が、試料の導電性、ドーパント濃度、誘電率、電位、漏洩磁界、スピン相互作用などの試料の電気磁気物性に関する物理量であることを特徴とする請求項9記載の表面あるいは断面加工観察装置。10. The surface or cross-section processing observation apparatus according to claim 9, wherein the physical quantity is a physical quantity related to the electromagnetic properties of the sample such as conductivity, dopant concentration, dielectric constant, potential, leakage magnetic field, spin interaction, etc. of the sample. . 前記物理量が、試料の硬さ、摩擦、粘弾性などの試料の力学的物性に関する物理量であることを特徴とする請求項9記載の表面あるいは断面加工観察装置。The surface or cross-section processing observation apparatus according to claim 9, wherein the physical quantity is a physical quantity related to mechanical properties of the sample such as hardness, friction, and viscoelasticity of the sample. 集束エネルギービームを試料表面の所望の箇所に走査照射し、試料表面を加工して試料の表面あるいは断面を加工する集束エネルギービーム照射手段と、プローブを前記加工面上にて走査して、追加工を行ない追加工後、前記プローブと加工試料表面あるいは断面との間に発生する物理量を検出することにより試料の表面あるいは断面を観察する走査プローブ顕微鏡手段とを持つことを特徴とする表面あるいは断面加工観察装置。A focused energy beam is irradiated onto the sample surface at a desired location, the sample surface is processed to process the surface or cross section of the sample, and the probe is scanned on the processing surface to perform additional processing. Surface or cross-section processing, characterized by having scanning probe microscope means for observing the surface or cross-section of the sample by detecting a physical quantity generated between the probe and the surface or cross-section of the processed sample. Observation device. 前記集束エネルギービームが集束イオンビームであることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing and observation apparatus according to claim 17, wherein the focused energy beam is a focused ion beam. 前記露出した表面あるいは断面をエッチング加工するエッチング加工手段を持つことを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross section processing observation apparatus according to claim 17, further comprising an etching processing means for etching the exposed surface or cross section. 前記エッチング加工手段が、不活性粒子ビーム照射手段であることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the etching processing means is an inert particle beam irradiation means. 前記エッチング加工手段が、エッチングガスの吹き付け手段であることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the etching processing means is etching gas spraying means. 前記エッチング加工手段が、レーザビーム照射手段であることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the etching processing means is a laser beam irradiation means. 前記物理量が、試料の導電性、ドーパント濃度、誘電率、電位、漏洩磁界、スピン相互作用などの試料の電気物性に関する物理量であることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the physical quantity is a physical quantity related to the electrical properties of the sample such as conductivity, dopant concentration, dielectric constant, electric potential, leakage magnetic field, and spin interaction of the sample. 前記物理量が、試料の硬さ、摩擦、粘弾性などの試料の力学的物性に関する物理量であることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the physical quantity is a physical quantity related to a mechanical physical property of the sample such as hardness, friction, and viscoelasticity of the sample. 前記追加工手段が、ダイアモンド針にて試料表面を削る切削手段であることを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the additional processing means is a cutting means for cutting the sample surface with a diamond needle. 前記追加工手段が、導電性プローブと表面あるいは断面に電圧を印加し、陽極酸化することにより表面あるいは断面に絶縁層を形成することを特徴とする請求項17記載の表面あるいは断面加工観察装置。18. The surface or cross-section processing observation apparatus according to claim 17, wherein the additional processing means forms an insulating layer on the surface or cross section by applying a voltage to the conductive probe and the surface or cross section and anodizing. 前記走査プローブ顕微鏡の前記プローブの位置を観察する顕微鏡手段を持ち、前記顕微鏡手段の観察情報に基づき前記プローブ位置を制御することを特徴とする請求項9記載の表面あるいは断面加工観察装置。The surface or cross-section processing observation apparatus according to claim 9, further comprising a microscope unit that observes a position of the probe of the scanning probe microscope, and controlling the probe position based on observation information of the microscope unit. 前記顕微鏡手段が、光学顕微鏡であることを特徴とする請求項27記載の表面あるいは断面加工観察装置。28. The surface or cross-section processing observation apparatus according to claim 27, wherein the microscope means is an optical microscope. 前記顕微鏡手段が、走査電子顕微鏡であることを特徴とする請求項27記載の表面あるいは断面加工観察装置。28. The surface or cross-section processing observation apparatus according to claim 27, wherein the microscope means is a scanning electron microscope. 前記集束エネルギービーム照射手段にて試料の表面あるいは断面を露出する工程と、前記走査プローブ顕微鏡にて表面あるいは断面の観察を行なう工程とを順次繰り返す切り換え手段を有することを特徴とする請求項9記載の表面あるいは断面加工観察装置。10. A switching unit that sequentially repeats the step of exposing the surface or cross section of the sample with the focused energy beam irradiation unit and the step of observing the surface or cross section with the scanning probe microscope. Surface or cross-section processing observation equipment.
JP2003010648A 2003-01-20 2003-01-20 Surface or section processing observation method and its device Withdrawn JP2004226079A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003010648A JP2004226079A (en) 2003-01-20 2003-01-20 Surface or section processing observation method and its device
US10/759,354 US20040154744A1 (en) 2003-01-20 2004-01-16 Method and system for surface or cross-sectional processing and observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010648A JP2004226079A (en) 2003-01-20 2003-01-20 Surface or section processing observation method and its device

Publications (1)

Publication Number Publication Date
JP2004226079A true JP2004226079A (en) 2004-08-12

Family

ID=32820527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010648A Withdrawn JP2004226079A (en) 2003-01-20 2003-01-20 Surface or section processing observation method and its device

Country Status (2)

Country Link
US (1) US20040154744A1 (en)
JP (1) JP2004226079A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
JP2008191120A (en) * 2007-02-08 2008-08-21 Nippon Steel Corp Tension testing method and device
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
JP2009020466A (en) * 2007-07-13 2009-01-29 Ricoh Co Ltd Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus
JP2009075089A (en) * 2007-08-22 2009-04-09 Applied Materials Israel Ltd Method and system for imaging cross section of specimen
JP2009517842A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2009139379A (en) * 2007-12-06 2009-06-25 Fei Co Slice and view using decoration
JP2010192893A (en) * 2009-01-30 2010-09-02 Fei Co High selectivity, low damage electron-beam delineation etch
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
JP2015533263A (en) * 2012-10-05 2015-11-19 エフ・イ−・アイ・カンパニー Multidimensional structure access

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076511A1 (en) * 2004-10-08 2006-04-13 Applied Materials, Inc. Shallow angle cut along a longitudinal direction of a feature in a semiconductor wafer
GB0905571D0 (en) * 2009-03-31 2009-05-13 Sec Dep For Innovation Univers Method and apparatus for producing three dimensional nano and micro scale structures
US8791414B2 (en) * 2010-04-21 2014-07-29 Hermes Microvision, Inc. Dynamic focus adjustment with optical height detection apparatus in electron beam system
EP2416165A1 (en) * 2010-08-04 2012-02-08 FEI Company Method of forming a 3D reconstruction of a sample using a scanning probe microscope
US8365311B2 (en) * 2010-08-27 2013-01-29 The Regents Of The University Of California Quantitative analysis of MRNA and protein expression
CN102466577A (en) * 2010-11-03 2012-05-23 中芯国际集成电路制造(上海)有限公司 Preparation method of physical detection sample
CN102564953A (en) * 2010-12-09 2012-07-11 中国科学院金属研究所 Portable device for observing metal surface and metallographic phase
EP2749863A3 (en) * 2012-12-31 2016-05-04 Fei Company Method for preparing samples for imaging
RU2530784C1 (en) * 2013-06-07 2014-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Method of durability assessment for thin protective coatings on materials under high energy effects
CN103868768B (en) * 2014-02-14 2016-03-09 河南省农业科学院植物保护研究所 The scanning electron microscope example disposal route of a kind of insect feeler and appendage
CN109001493B (en) * 2018-04-26 2020-08-07 中北大学 Diamond nitrogen vacancy scanning and AFM integrated high-precision magnetic measurement microscopic device
CN110940683A (en) * 2019-11-18 2020-03-31 中国科学院金属研究所 Method for realizing in-situ compression observation by combination of Vickers hardness tester and transmission electron microscope

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612954A (en) * 1969-11-12 1971-10-12 Rca Corp Semiconductor diode array vidicon target having selectively insulated defective diodes
JP2569057B2 (en) * 1987-07-10 1997-01-08 株式会社日立製作所 X-ray mask defect repair method
US5229607A (en) * 1990-04-19 1993-07-20 Hitachi, Ltd. Combination apparatus having a scanning electron microscope therein
US5683547A (en) * 1990-11-21 1997-11-04 Hitachi, Ltd. Processing method and apparatus using focused energy beam
JPH1027971A (en) * 1996-07-10 1998-01-27 Nec Corp Dicing method for organic thin film multilayer wiring board
US5956565A (en) * 1996-11-14 1999-09-21 Matsushita Electronics Corporation Analysis apparatus and analysis methods for semiconductor devices
JPH11154479A (en) * 1997-11-20 1999-06-08 Hitachi Ltd Secondary electron image detection method and its device, and treatment method by focused charged particle beam and its device
US6207575B1 (en) * 1998-02-20 2001-03-27 Advanced Micro Devices, Inc. Local interconnect etch characterization using AFM
US6437343B1 (en) * 1998-03-13 2002-08-20 Olympus Optical Co., Ltd. Scanner system and piezoelectric micro-inching mechansim used in scanning probe microscope
US6670717B2 (en) * 2001-10-15 2003-12-30 International Business Machines Corporation Structure and method for charge sensitive electrical devices
US6986280B2 (en) * 2002-01-22 2006-01-17 Fei Company Integrated measuring instrument
US6668628B2 (en) * 2002-03-29 2003-12-30 Xerox Corporation Scanning probe system with spring probe

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
US8748845B2 (en) 2003-10-16 2014-06-10 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US9236225B2 (en) 2003-10-16 2016-01-12 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
US9012867B2 (en) 2003-10-16 2015-04-21 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
JP2009517842A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2008191120A (en) * 2007-02-08 2008-08-21 Nippon Steel Corp Tension testing method and device
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
JP2009020466A (en) * 2007-07-13 2009-01-29 Ricoh Co Ltd Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus
JP2009075089A (en) * 2007-08-22 2009-04-09 Applied Materials Israel Ltd Method and system for imaging cross section of specimen
JP2014167474A (en) * 2007-12-06 2014-09-11 Fei Co Slice and view with decoration
JP2009139379A (en) * 2007-12-06 2009-06-25 Fei Co Slice and view using decoration
JP2010192893A (en) * 2009-01-30 2010-09-02 Fei Co High selectivity, low damage electron-beam delineation etch
JP2015533263A (en) * 2012-10-05 2015-11-19 エフ・イ−・アイ・カンパニー Multidimensional structure access

Also Published As

Publication number Publication date
US20040154744A1 (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP2004226079A (en) Surface or section processing observation method and its device
TW461964B (en) Voltage contrast method and apparatus for semiconductor inspection using low voltage particle beam
US8709269B2 (en) Method and system for imaging a cross section of a specimen
US20160299103A1 (en) Application of electron-beam induced plasma probes to inspection, test, debug and surface modifications
US7262408B2 (en) Process and apparatus for modifying a surface in a work region
US20040185586A1 (en) Preparation of sample chip, method of observing wall surface thereof and system therefor
JP2002543439A (en) Integrated micro column and scanning probe microscope array
TW200826144A (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
Rommel et al. Comprehensive study of focused ion beam induced lateral damage in silicon by scanning probe microscopy techniques
US20170294291A1 (en) APPLICATION OF eBIP TO INSPECTION, TEST, DEBUG AND SURFACE MODIFICATIONS
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
Schmid et al. Coaxial arrangement of a scanning probe and an X-ray microscope as a novel tool for nanoscience
Xia et al. Enhancement of XeF2-assisted gallium ion beam etching of silicon layer and endpoint detection from backside in circuit editing
KR100963450B1 (en) A system and method for inspecting charged particle responsive resist
Iida et al. Development of standard samples with programmed defects for evaluation of pattern inspection tools for 7-nm and smaller nodes
JP2004151004A (en) Film thickness measuring method for groove sidewall and its device
Banerjee et al. Applications of focused ion beams
JP2000195460A (en) Analytical method by scanning electron microscope
CN113912004A (en) FIB-based micro-nano structure preparation method
Rodriguez et al. Evaluation of scanning capacitance microscopy sample preparation by focused ion beam
JP2011179959A (en) Method for preparing electric characteristic measuring sample, measuring method, and sample processing and measuring device
WO2006126576A1 (en) Micro region imaging device and micro region imaging method
JPH08211076A (en) Surface observation method and device and fine-machining device
JP2023042371A (en) Scanning tunneling microscope and method
US20090278059A1 (en) Apparatus for detecting film delamination and a method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080526