JP2004225919A - Liquid fuel atomizing method - Google Patents

Liquid fuel atomizing method Download PDF

Info

Publication number
JP2004225919A
JP2004225919A JP2002357342A JP2002357342A JP2004225919A JP 2004225919 A JP2004225919 A JP 2004225919A JP 2002357342 A JP2002357342 A JP 2002357342A JP 2002357342 A JP2002357342 A JP 2002357342A JP 2004225919 A JP2004225919 A JP 2004225919A
Authority
JP
Japan
Prior art keywords
fuel
liquid fuel
steam
reaction chamber
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002357342A
Other languages
Japanese (ja)
Inventor
Toshiaki Hasegawa
敏明 長谷川
Makoto Miyata
誠 宮田
Susumu Mochida
晋 持田
Tadahiro Araaki
但宏 荒明
Mamoru Matsuo
護 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP2002357342A priority Critical patent/JP2004225919A/en
Publication of JP2004225919A publication Critical patent/JP2004225919A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid fuel atomizing method using light or heavy hydrocarbon liquid fuel of high viscosity, and capable of performing clean and stable combustion free from combustion delay. <P>SOLUTION: In this liquid fuel atomizing method, steam is heated to high temperature superheated stream of 600 °C or more, the liquid fuel and high temperature superheated steam are injected into a reaction chamber, the liquid fuel and the high temperature steam are mixed in a reaction zone of the reaction chamber to vaporize/evaporate volatile portions of the liquid fuel, and the liquid fuel is at least partially thermally decomposed by the high temperature superheated steam to atomize the liquid fuel to achieve an average particle size of 150 μm or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液体燃料の微粒化方法に関するものであり、より詳細には、炭化水素系液体燃料を微粒化し又はガス化する液体燃料の微粒化方法に関するものである。
【0002】
【従来の技術】
工業用バーナにおける燃料油等の燃焼法として、噴霧燃焼法が一般に採用されている。噴霧燃焼では、霧化器により微細な粒子に細分化した燃料油を噴射するとともに、微粒化した燃料油噴霧群の周囲より噴霧群に向けて燃焼用空気を供給し、空気及び噴霧群の燃焼反応を生じさせる。燃料油等の液体燃料の微粒化方法として、水蒸気又は高圧空気を霧化媒体として用いた二流体噴霧方式の微粒化方法が知られている。この方式の微粒化方法は、(1) 燃料噴射ノズルのノズル出口における霧化媒体(水蒸気又は高圧空気)の高速噴流中に液体を注入し、主として剪断により液体燃料の微粒化を行う外部混合式、(2) ノズル内部の混合室で予め液体燃料及び霧化媒体を混合した後、ノズル噴出時の混合物の膨張により液体燃料の微粒化を行う内部混合式、(3) 両方式の利点を利用した中間混合式に大別される(「液体の微粒化に関する調査研究報告書」第10〜12頁、平成元年3月30日、日本バーナ研究会・研究開発委員会)。
【0003】
また、窒素酸化物濃度の低下を意図した工業用バーナとして、燃料油と同等圧力の飽和水蒸気を燃料油に添加するように構成されたバーナが知られている。例えば、特開平6−193823号公報に記載された蓄熱式低NOx バーナは、燃料及び水蒸気を混合するベンチュリー部を備え、特公昭61−12165号公報に記載されたバーナは、水蒸気及び重油を噴霧し、これを高温燃焼ガスと混合接触せしめるように構成され、特公昭62−186108号公報に記載されたバーナは、窒素酸化物濃度を低下すべく、液体燃料及び水蒸気を混合した混合流を噴射し、燃焼域における水蒸気濃度を増大するように構成される。
【0004】
図12は、内部混合式の噴霧型バーナの概略構成を概念的に示すブロック図である。
霧化器は、液体燃料供給管及び霧化媒体供給管に接続された混合室を有する。適正温度且つ適正粘度に調整した中圧(数気圧)の燃料油が燃料供給管内の燃料供給路から霧化器に供給され、燃料供給ポートから混合室内に流入する。燃料供給路の燃料油温度は、燃料油中の揮発分が噴霧過程で部分的気化を起こさない温度範囲内に規制されるとともに、燃料供給ポートから円滑に混合室内に吐出するような燃料油の粘度(動粘度30cSt未満)が得られる温度範囲内に制御される。燃料油と概ね同等圧力の霧化媒体、例えば、燃料油と同圧又は1気圧程度高圧の飽和水蒸気が、霧化媒体供給管の霧化媒体供給路から霧化器に供給され、水蒸気は、霧化媒体供給ポートから混合室内に流入する。水蒸気は、燃料油の乳化剤として作用し、燃料油は、混合室内で水蒸気に乳化(エマルジョン化)・混合する。燃料油及び水蒸気のエマルジョンは、音速に近い高速(亜高速)で噴霧ノズルから噴射し、噴霧ノズルから高速噴射する際の膨張・減圧により微粒化し、燃料油の噴霧群として霧化器前方に噴出する。ここに、燃料油温度が高過ぎる場合、燃料油中の揮発成分が霧化器供給前に部分的に気化し、間欠的な燃料油吐出や吐出油の脈流により不安定な振動燃焼や断火等が生じ得るが、前述の如く、燃料油温度を所定温度以下に規制することにより、振動燃焼や断火等の発生を防止することができる。噴霧群は、燃焼火炎より受熱して蒸発・気化し、蒸発・気化した噴霧群は、その周囲から噴霧群に供給された燃焼用空気と燃焼反応し、燃焼域に火炎を形成する。なお、噴霧群は、燃焼開始時には、点火用バーナが形成する火炎より受熱し、燃焼開始後は、噴霧群自身が形成する火炎より受熱し続ける。
【0005】
【非特許文献1】「液体の微粒化に関する調査研究報告書」第10〜12頁
平成元年3月30日、日本バーナ研究会・研究開発委員会
【特許文献1】特開平6−193823号公報
【特許文献2】特公昭61−12165号公報
【特許文献3】特公昭62−186108号公報
【0006】
【発明が解決しようとする課題】
近年、C重油、残査油等の如く、揮発分含有量が比較的少ない高粘性の粗悪油を工業用バーナの燃料として効率的に利用すべき必要が生じている。ここに、気体燃料の燃焼過程では、燃料及び燃焼用空気の燃焼が燃料噴射とほぼ同時に開始するので、煤が発生し難いクリーンな燃焼反応が得られ、また、燃料油中に比較的多量の揮発分を含む低粘度の良質油(灯油、A重油等)を用いた場合には、燃料油は、燃料噴射口から噴射する際の膨張・減圧時に微小粒径の噴霧群に微粒化し、即座に蒸発・気化を開始するので、気体燃焼に類似したクリーンな燃焼反応が得られる。しかしながら、C重油、残査油等の如く、揮発分含有量が比較的少なく且つ高粘度の粗悪油は、従来の霧化器では、平均粒径150μm以下に微粒化し難く、噴射後の蒸発・気化速度が遅いことから、大気汚染の原因となり得る比較的多量の煤や煤塵が発生し易く、また、噴霧群は、蒸発・気化後に周囲の燃焼用空気と燃焼反応し始めるので、燃焼の遅れが生じる。
【0007】
このような粗悪油の微粒化を促進すべく、適正温度を超えて燃料を過熱することも考慮し得るが、このように燃料油を過熱すると、前述の如く、燃料油中の揮発分の気化により燃料の脈流が生起し、これに起因して振動燃焼や断火等が発生したり、噴霧燃焼に伴う高輝度火炎が形成され、炉内伝熱が不均一になるといった問題が生じる。
【0008】
また、C重油、残査油等の粗悪油は一般に、有機窒素(N)含有量が多く、燃焼排ガスのフュエル(Fuel)NOx濃度が比較的高い値を示す傾向があることから、燃焼排ガスの低NOx対策を適切に達成し難い事情がある。
【0009】
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、C重油、残査油等の高粘度且つ低質又は重質の炭化水素系液体燃料を用い、灯油(ケロシン)又はA重油等の良質燃料油と同様、燃焼遅れのないクリーンな安定燃焼を可能にする液体燃料の微粒化方法を提供することにある。
【0010】
本発明は又、C重油、残査油等の高粘度且つ低質又は重質の炭化水素系液体燃料を用い、燃焼遅れのないクリーンな安定燃焼を実現するとともに、窒素酸化物の生成を抑制することができる燃焼方法を提供することを目的とする。
【0011】
【課題を解決するための手段及び作用】
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、霧化媒体且つ乳化剤として200℃程度の過熱水蒸気を利用するにすぎない従来の二流体混合式微粒化方法の概念を脱却し、最新の水蒸気加熱技術を用いて600℃以上の高温に加熱した高温過熱水蒸気を高温熱媒体、ガス化剤且つ改質剤として使用することにより、高粘度の液体燃料を150μm以下の平均粒径に微粒化し得ることを見出し、かかる知見に基づき、本発明を達成したものである。即ち、本発明は、
炭化水素系液体燃料を燃焼域に供給すべく、該液体燃料を微粒化する液体燃料の微粒化方法において、
水蒸気を600℃以上の高温過熱水蒸気に加熱し、前記液体燃料と前記高温過熱水蒸気とを反応室に供給し、
前記液体燃料及び高温過熱水蒸気を反応室内に噴射して、該反応室内の反応域で前記液体燃料及び高温過熱水蒸気を混合し、該液体燃料の揮発分を蒸発・気化させるとともに、液体燃料を高温過熱水蒸気で少なくとも部分的に熱分解し、これにより、前記液体燃料を150μm以下の平均粒径に微粒化することを特徴とする液体燃料の微粒化方法を提供する。
【0012】
本発明の上記構成によれば、液体燃料は反応室内で高温過熱水蒸気と混合し、高温過熱水蒸気との接触混合過程で急激に加熱され、液体燃料中の揮発分は蒸発・気化する。200 ℃程度の水蒸気を霧化媒体且つ乳化剤として用いる従来の内部混合式微粒化方法と異なり、本発明の微粒化方法では、600℃以上の高温に加熱した高温過熱水蒸気が、高温熱媒体且つガス化剤として液体燃料に作用し、反応域の温度は、高温過熱水蒸気の供給により高温状態を維持する。なお、水蒸気加熱技術については、本願出願人の出願に係る特願平10−189号(特開平10−246428 号公報) 等により既に公開されている。
【0013】
高温過熱水蒸気及び液体燃料の混合接触により、液体燃料の揮発分は蒸発・気化してガス化し、液体燃料の一部は熱分解を伴ってガス化する。高温過熱水蒸気は又、ガス化した炭化水素に対して改質剤として作用するので、ガス化ガスの少なくとも一部は、高温過熱水蒸気と改質反応し、CO、H、CH 等の軽質炭化水素に転化する。かくして、液温80℃で粘度30cSt 以上の値を示すような高粘度且つ低質又は重質の炭化水素系液体燃料を用いた場合、液体燃料は、ガス化により150μm以下、好ましくは、100μm以下、更に好ましくは、50μm以下の平均粒径に微粒化し、燃料微粒子は、CO、H2及び軽質炭化水素を比較的多量に含む可燃性ガスとともに燃料噴射口より燃焼域に噴射し、燃焼域に供給された燃焼用空気と混合する。燃焼域では、可燃性ガス及び燃焼用空気の燃焼反応が直ちに開始するので、150μm以下の平均粒径に微粒化した燃料噴霧群は、可燃性ガス及び燃焼用空気の燃焼熱を受熱して速やかに蒸発燃焼する。従って、本発明の液体燃料微粒化方法では、C重油、残査油等の如く高粘度且つ低質又は重質の炭化水素系液体燃料は150μm以下の平均粒径に微粒化し、可燃性ガスとともに燃焼域に噴霧されるので、可燃性ガスの気体燃焼および噴霧群の蒸発燃焼により、灯油又はA重油等の良質燃料油と同様、燃焼遅れがなく、煤や煤塵を発生させないクリーンな燃焼を達成することが可能となる。
【0014】
また、上記構成の微粒化では、粘度低下のために液体燃料を過熱することなく、液体燃料を150μm以下の平均粒径に微粒化するので、燃料の脈流や、これに起因する振動燃焼及び断火等の発生を回避することができる。更には、可燃性ガスの即時燃焼と噴霧群の蒸発燃焼とが燃焼域において同時進行するので、噴霧燃焼に伴う高輝度火炎の形成を防止し、炉内伝熱作用を均一化することができる。
【0015】
本発明の応用により、実質的に全液体燃料を反応域において可燃性ガスにガス化し、可燃性ガスのみを燃料噴射口から燃焼域に噴射することも可能である。これにより、炭化水素系液体燃料を使用して、実質的に気体燃焼に相当する燃焼反応を燃焼域に生じさせることが可能となる。
【0016】
更には、本発明において、800℃以上、好ましくは、1000℃以上の高温に加熱した高温過熱水蒸気を反応室に導入し、反応室内で液体燃料の化学反応を促進することができる。燃料及び水蒸気の化学反応は、600℃以下においても既に開始すると考えられるが、800℃以上(好ましくは、1000℃以上)の高温雰囲気の下では、燃料成分及び水蒸気の化学反応が活性化し、これにより、燃料は、効果的に改質される。これは、800℃以上(好ましくは、1000℃以上)の高温雰囲気における炭化水素ラジカル、水素ラジカル等の遊離に起因するものと考えられる。
【0017】
本発明は又、上記構成の液体燃料微粒化方法を用いて微粒化した液体燃料の噴霧群と、上記反応域に生成した可燃性ガスとの混合流を燃料噴射口から燃焼域に噴射し、可燃性ガス及び燃焼用空気の燃焼熱で噴霧群の燃料微粒子を蒸発させ、噴霧群の蒸発燃焼を促進することを特徴とする燃焼方法を提供する。
【0018】
従来の内部混合式微粒化方法では、高粘度の液体燃料を150μm以下の平均粒径に微粒化することができず、このため、燃焼域に噴射した噴霧群は、燃焼開始時には、点火用バーナの火炎より受熱し、燃焼開始後は、噴霧群自身が形成する火炎より受熱することにより、蒸発燃焼する。しかしながら、本発明の燃焼方法においては、150μm以下の平均粒径に微粒化した液体燃料の噴霧群と、可燃性ガスとの混合流を燃焼域に噴射するので、可燃性ガス及び燃焼用空気の燃焼反応が直ちに開始し、噴霧群は、可燃性ガスの燃焼熱で速やかに蒸発する。即ち、可燃性ガスの即時燃焼と噴霧群の蒸発燃焼とが燃料噴射直後より同時進行するので、燃焼遅れがなく、煤及び煤塵の発生が抑制され、しかも、可燃性ガスの気体燃焼により燃焼反応自体も安定する。また、液体燃料中の有機窒素(N)分の多くは、高温過熱水蒸気によるガス化時にNに転換するので、燃焼時のNOx 生成量が低下する。
【0019】
他の観点より、本発明は、上記微粒化方法により生成した可燃性ガスを燃焼域に噴射し、可燃性ガス及び燃焼用空気の気体燃焼反応を燃焼域に生じさせることを特徴とする燃焼方法を提供する。上記微粒化方法に従って、実質的に全液体燃料を反応域で可燃性ガスにガス化することにより、気体燃焼に相当する燃焼反応を燃焼域に生じさせることができる。例えば、本発明の微粒化方法を軽質油の微粒化に適用した場合、全液体燃料を比較的容易に反応室でガス化することができる。この場合、燃料単位容積当たりの発熱量が低い低カロリーガス、例えば、概ね2000kcal/Nm以下の低カロリーガスが反応室から燃焼域に噴射し、これにより、局所的な高温部が少なく比較的低温で、しかも、火炎容積が大きい火炎が燃焼域に形成され、これにより、温度分布を平準化し且つNOx 発生(主にサーマルNOx の発生) を抑制した燃焼反応を燃焼域に生じさせることができる。
【0020】
本発明は更に、上記構成の微粒化方法を用いた燃料噴射ノズルであって、高温過熱水蒸気及び液体燃料を導入可能な反応室をノズル先端部に備えるとともに、反応室に生成した可燃性ガスと、反応室において微粒化した液体燃料の噴霧群との混合流を燃焼域に噴射する噴射口をノズル先端に備えたことを特徴とする燃料噴射ノズルを提供する。
【0021】
本発明は又、上記構成の微粒化方法を用いた燃料噴射ノズルであって、飽和水蒸気を液体燃料に混合する混合室と、高温過熱水蒸気及び燃料エマルジョンを導入可能な反応室とをノズル先端部に配設した燃料噴射ノズルを提供する。反応室には、混合室で混合した燃料エマルジョンと高温過熱水蒸気とが流入する。燃料噴射ノズル先端に設けられた噴射口は、反応室に生成した可燃性ガスと、反応室において微粒化した液体燃料の噴霧群との混合流を燃焼域に噴射する。
【0022】
このような燃料噴射ノズルによれば、従来の内部混合式の噴霧型バーナでは燃焼安定性等が得られないと考えられてきた高粘性の低質又は重質燃料油を用いて、燃焼遅れがなく、煤や煤塵を発生させないクリーンな安定燃焼を実現することができる。また、本発明の燃料噴射ノズルにおける微粒化は、噴射時の膨張・減圧及び剪断による機械的な燃料微粒化作用に依存しておらず、機械的微粒化作用が副次的には得られたとしても、主たる微粒化は、反応域におけるガス化及び改質反応による化学的微粒化に依存したものである。このため、本発明によれば、霧化媒体(高圧空気又は水蒸気)の圧力及び流量、液体燃料の圧力及び流量、ノズル噴射口の形状及び構造等による制限を受けない液体燃料の微粒化が可能となり、これにより、燃料噴射ノズルの形状及び構造に関する設計自由度を大きく向上することができる。
【0023】
本発明は更に、上記構成の微粒化方法を実施可能な燃料噴射ノズルであって、高温過熱水蒸気及び液体燃料を導入可能な反応室をノズル先端部に備えるとともに、ほぼ全液体燃料のガス化により反応室に生成した可燃性ガスを燃焼域に噴射する噴射口をノズル先端に備えたことを特徴とする燃料噴射ノズルを提供する。
【0024】
他の観点より、本発明は、上記構成の燃料微粒化方法を実施するための燃料微粒化装置であって、
上記反応室は、可燃性ガス供給路を介して燃料噴射ノズルの燃料噴射口と連通しており、液体燃料又は燃料エマルジョンを反応室内に供給する液体燃料供給路が反応室の燃料導入口に接続され、高温過熱水蒸気を供給する高温過熱水蒸気供給路が反応室の水蒸気導入口に接続され、燃料導入口は液体燃料又は燃料エマルジョンを反応室内に噴霧し、水蒸気導入口は高温過熱水蒸気を反応室内に噴射し、液体燃料又は燃料エマルジョンと高温過熱水蒸気とは反応室内の反応域で接触混合し、反応域に可燃性ガスを生成し、可燃性ガス供給路は可燃性ガスを燃料噴射ノズルに供給することを特徴とする燃料微粒化装置を提供する。
【0025】
本発明の上記構成によれば、燃料微粒化装置は、反応室において炭化水素系液体燃料又は燃料エマルジョンをガス化し、可燃性ガス、或いは、可燃性ガス及び燃料微粒子の混合流を燃料噴射ノズルに供給する。このような燃料微粒化装置によれば、燃料噴射ノズルと別体の反応室を設置し得るので、単一の反応室を複数の燃料噴射ノズルに接続したり、或いは、既存の燃焼設備に本発明の微粒化方法を適用することが可能となる。
【0026】
【発明の実施の形態】
本発明の好適な実施形態によれば、液体燃料は、液温80℃で粘度30cSt 以上の値を示す高粘度且つ低質又は重質の炭化水素系液体燃料からなり、反応室に対する高温過熱水蒸気の供給量は、液体燃料1kg当たり0.2kg以上且つ0.8kg以下に設定される。好ましくは、水蒸気の加熱温度は、液体燃料のC/H 比に応じて設定変更され、高温過熱水蒸気の供給量は、液体燃料の質量(供給量)に応じて設定変更される。更に好ましくは、水蒸気の加熱温度は、液体燃料のC/H 比が増大するにつれて高温に設定され、高温過熱水蒸気の供給量は、液体燃料の質量(供給量)が増大するにつれて増量される。反応室に供給される高温過熱水蒸気の温度を液体燃料の自己着火温度以上に設定しても良い。
【0027】
本発明の好ましい実施形態において、800℃以上(好ましくは、1000℃以上)に加熱した高温過熱水蒸気が反応室に導入され、反応域の温度は600℃以上(好ましくは、800℃以上)に保持され、液体燃料の化学反応は促進する。反応室に供給される液体燃料の温度は、気化温度(沸点)未満に設定される。好適には、高温過熱水蒸気の供給管内に空気管又は飽和水蒸気管が配置され、空気管又は飽和水蒸気管内に液体燃料の供給管が配置され、液体燃料の過熱は、空気又は飽和水蒸気の断熱作用により防止される。本発明の或る実施形態では、液体燃料に飽和水蒸気が混合し、液体燃料は、燃料エマルジョンとして反応室に噴射する。本発明の他の実施形態によれば、反応室内に噴射する液体燃料噴流又は燃料エマルジョン噴流は、エジェクタ効果により高温過熱水蒸気を誘引し、高温過熱水蒸気の圧送負荷を軽減する。所望により、高温過熱水蒸気の一部は、燃焼域に流出し、噴射口から噴流した可燃性ガス及び微粒化燃料と混合する。
【0028】
本発明の或る実施形態では、微粒化後の液体燃料の平均粒径が実質的に零になるように水蒸気量、水蒸気温度、水蒸気圧力、液体燃料供給量等が設定され、液体燃料の実質的に全量が反応室で可燃性ガスにガス化する。可燃性ガスは、燃焼域に噴射し、燃焼域において燃焼用空気と反応し、気体燃焼する。
【0029】
本発明の好適な実施形態において、燃料噴射ノズル又は燃料微粒化装置は、水蒸気を600℃以上に加熱する水蒸気加熱装置を備える。水蒸気加熱装置として、燃焼熱により水蒸気を加熱する伝熱管を備えた形式の水蒸気加熱装置、或いは、蓄熱体により蓄熱した燃焼排ガスの顕熱を水蒸気に伝熱するリジェネレータ形式の水蒸気加熱装置を採用することができる。600℃以上の高温過熱水蒸気を系外の設備より本発明の反応室に搬送する場合、高温過熱水蒸気の温度は、搬送過程で降下し易く、所望の温度の高温過熱水蒸気を反応室に導入することは困難であるが、水蒸気加熱装置を燃料噴射ノズル又は燃料微粒化装置に付設し、水蒸気搬送経路を短縮することにより、このような水蒸気温度降下の問題を克服し得る。
【0030】
【実施例】
以下、添付図面を参照して、本発明の好適な実施例について詳細に説明する。図1は、本発明の第1実施例に係るガス化反応ノズルの構造を示す断面図であり、図2は、図1に示すガス化反応ノズルの構成を概念的に示すブロック図である。
【0031】
燃料供給管10、水蒸気供給管20及び反応器30を備えたガス化反応ノズル1が、燃焼用空気を燃焼域に供給する燃焼用空気流路50内に配置される。ガス化反応ノズル1は、本発明の微粒化方法を実施可能な燃料噴射ノズルを構成する。水蒸気供給管20は、反応器30の外径と実質的に同一の外径を有し、燃料供給管10は、水蒸気供給管20の中心に同心状に配置される。反応器30は、供給管10、20を連結した供給管連結部31を備え、連結部31には、供給管10、20の前端部が接続される。噴射部32が連結部31の前側に一体的に連結され、中空且つ無触媒の反応室40が反応器30内に形成される。
【0032】
燃料供給管10は、連結部31の中心部に接続され、燃料供給管10内の燃料供給路12は、燃料供給ポート34を介して反応室40と連通する。燃料供給ポート34は、ガス化反応ノズル1の中心軸線上に配置され、燃料を反応室40の中心に向けて噴射するように配向される。燃料供給ポート34の燃料供給路側には、反応室40に向かって燃料流路を縮小する縮径部33が形成される。
【0033】
水蒸気供給管20は、連結部31の外周部に接続され、水蒸気供給管20内の水蒸気供給路22は、水蒸気供給ポート36を介して反応室40と連通する。水蒸気供給ポート36は、ノズル1の中心軸線に対して傾斜し、高温過熱水蒸気を反応室40の中心に向けて噴射するように配向される。
【0034】
噴射部32の基部35が、連結部31の外周部に一体的に連結され、前側中心部37が前方に突出する。基部35及び中心部37の間に延びる傾斜部38には、噴射ポート39が形成される。噴射ポート39は、反応室40から放射方向に可燃性ガス及び燃料油微粒子の混合流を噴射するように配向される。
【0035】
適正温度且つ適正粘度に調整したC重油、残査油等の粗悪燃料油Fが、燃料供給路12を圧送され、燃料供給ポート34から反応室40内に噴射する。燃料油Fは、油温80℃においても依然として動粘度30cSt 以上の値を示すような高粘度且つ低質又は重質の液体燃料である。高温熱媒体、ガス化剤且つ改質剤として、600℃以上(好適には、800℃以上の温度)に加熱した高温の過熱水蒸気S(以下、「高温過熱水蒸気」という。)が、水蒸気供給路22に導入され、水蒸気供給ポート36から反応室40内に噴射する。燃料油及び高温過熱水蒸気は、反応室40の中心に向かって反応室40内に流入し、混合接触する。反応室40に供給される水蒸気量は、燃料油1kg当たり0.2kg以上且つ0.8kg以下の範囲内に設定される。
【0036】
燃料油は反応室40の反応域において高温過熱水蒸気と接触混合し、高温過熱水蒸気との接触混合過程で急激に加熱される。燃料油中の揮発分は蒸発・気化してガス化し、反応室40内に散布した燃料油の液滴群は、平均粒径150μm以下に微粒化する。燃料油の一部は熱分解を伴ってガス化する。
【0037】
反応域の温度は、高温過熱水蒸気の供給により高温状態を維持し、高温過熱水蒸気は、蒸発・気化した燃料油の揮発分、即ち、ガス化した炭化水素に対して、改質剤として作用するので、ガス化ガスの少なくとも一部は、高温過熱水蒸気と改質反応し、CO、H、CH等の軽質炭化水素に転化し、CO、H及び軽質炭化水素を比較的多量に含む可燃性ガスが反応域に生成する。
【0038】
このような燃料油のガス化・改質反応は、高温過熱水蒸気の温度が高温であるほど活発化するので、高温過熱水蒸気の温度は、好ましくは、800℃以上に設定される。更に好ましくは、ガス化・改質反応を最適化すべく、燃料油のC/H比に応じて高温過熱水蒸気の温度が制御され、例えば、水蒸気温度は、C/H比が増大するにつれて高温に設定される。
【0039】
反応室40内のガス化・改質反応により生成した可燃性ガスは、平均粒径150μm以下の燃料油微粒子とともに噴射ポート39から燃焼空気流路50内に高速で噴霧される。このように可燃性ガスを付加した燃料油噴霧群においては、可燃性ガスは、燃焼空気流路50の燃焼空気流Aと混合して直ちに気体燃焼し、燃料油微粒子は、可燃性ガス及び燃焼用空気の燃焼熱により速やかに蒸発して燃焼用空気と反応し、燃焼遅れがない蒸発燃焼が燃焼域に生じる。このような高速蒸発燃焼は、より多量の燃料油が反応室40の反応域でガス化するほど効果的に進行し、ほぼ全燃料が可燃性ガスに転化した場合、気体燃料の燃焼反応に近似した燃焼反応を燃焼域に生じさせることができる。
【0040】
ガス化反応ノズル1においては、燃料油に含まれる有機窒素 ( Fuel N )分は、ガス化時にNに転換するので、フュエルNOx の生成が抑制される。従って、ガス化反応ノズル1は、燃焼排ガスの窒素酸化物(NOx) 低減対策としても有効である。また、高温過熱水蒸気の増量および高温過熱水蒸気の温度上昇に伴って、ガス化反応ノズル1の噴霧流の可燃性ガス量が増加し、燃焼域の燃焼反応は、気体燃料の燃焼反応に近づき、よりクリーンな燃焼が燃焼域に生起し且つ進行する。従って、ガス化反応ノズル1は、燃焼排ガス中の煤及び煤塵の含有量を低下する上でも有効である。
【0041】
図3は、本発明の第2実施例に係るガス化反応ノズルの構造を示す断面図であり、図3に示すガス化反応ノズル1は、燃焼用空気及び燃料油の供給量に対して可燃性ガス量を相対的に増加させる場合に好適に使用される。
【0042】
前述の第1実施例と同じく、ガス化反応ノズル1は、燃料供給管10、水蒸気供給管20及び反応器30を備えており、供給管10、20及び反応器30は、ガス化反応ノズル1の中心軸線を中心に同心状に配置される。連結部31は、傾斜壁31a、31bにより段階的に後方に膨らみ、噴射部32は、全体的に大きく前方に突出する。連結部31の中心部には、燃料供給ポート34が形成され、傾斜壁31a、31bには、水蒸気供給ポート36が夫々形成される。反応室40の容積は、上記第1実施例に比べて拡大しており、比較的多量の燃料油及び高温過熱水蒸気を反応室40に収容し、燃料油及び高温過熱水蒸気の反応域滞留時間が確保される。燃料供給ポート34及び水蒸気供給ポート36は、C重油、残査油等の燃料油及び高温過熱水蒸気を反応室40の中心に向けて噴射するように配向される。燃料供給ポート34に隣接した燃料供給路12の内壁面には螺旋状の溝が形成され、燃料供給管10の先端部は、燃料油Fの旋回運動を誘起して燃料油Fを霧状に噴射するスプレーノズル15を構成する。噴射部32の傾斜部38には、第1実施例よりも多数の噴射ポート39が形成され、噴射ポート39は、反応室40から放射方向に反応ガスを噴射するように配向される。ガス化反応ノズル1の他の構造は、第1実施例と実質的に同一であるので、ノズル構造に関し、更なる詳細な説明は、省略する。
【0043】
適正温度且つ適正粘度に調整した燃料油Fが燃料供給路12に圧送され、燃料供給ポート34から反応室40内に供給される。水蒸気供給路22に供給された高温過熱水蒸気が水蒸気供給ポート36から反応室40内に噴射する。燃料供給路12のスプレーノズル15は、燃料油を反応室40内に霧状に散布し、燃料油と高温過熱水蒸気との混合接触を促進する。燃料油及び高温過熱水蒸気は、反応室40内で混合接触し、急激に加熱され、燃料油中の揮発分は蒸発・気化する。蒸発・気化した揮発分より、CO、H、CH を多量に含む可燃性ガスが生成し、可燃性ガスは、平均粒径150μm以下の燃料油微粒子とともに噴射ポート39から燃焼空気流路50内に高速で噴霧される。可燃性ガスは、燃焼空気流路50の燃焼空気流Aと混合して直ちに燃焼を開始し、燃焼遅れがない燃焼反応が燃焼域に生じ、燃料油微粒子も燃焼熱を受熱して迅速に蒸発燃焼するので、煤発生量が少なく、良質燃料油の噴霧燃焼に類似したクリーンな燃焼反応が燃焼域に生じる。燃料油中の窒素 ( Fuel N )分は、ガス化反応時にNに転換するので、燃焼排ガスの窒素酸化物濃度は低下する。
【0044】
図4〜図6は、本発明の第3〜第5実施例に係るガス化反応ノズルの断面図である。各図において、前述の第1及び第2実施例の各構成要素と実質的に同じ構成要素には、同一の参照符号が付されている。
【0045】
図4に示すガス化反応ノズル1(第3実施例)は、燃料供給管10、断熱管11及び水蒸気供給管20の三重管構造を備えるとともに、スロート部材43を燃料噴射部(反応器30)に備え、反応室45がスロート部材43内に形成される。断熱管11の基端部(図4上の左端部(図示せず))は、盲板(図示せず)により封止され、断熱用空気が滞留する断熱空気層13が断熱管11の管壁と燃料供給管10の管壁との間に形成される。燃料管10は、先端部11aが縮径しており、燃料供給ポート34が先端に形成される。燃料供給ポート34に隣接した燃料供給路12の内壁面には螺旋状の溝が形成され、燃料供給管10の先端部は、燃料油Fの旋回運動を誘起して燃料油Fを霧状に噴射するスプレーノズル15を構成する。断熱管11の先端部14は、燃料供給管10の先端部に相応して縮径するとともに、その先端面が開口しており、断熱空気層13内の空気の膨張・収縮を可能にする。
【0046】
スロート部材43は、スプレーノズル15の前方に同心状に配置される。スロート部材43は、全体的に円筒状形態を有し、スロート部材43の中空部は、反応室45を構成する。反応室45は、前方に向かって拡開し、最大内径を有する反応室先端の円形開口は、燃料噴射口46として燃焼域に向かって開口する。スロート部材43の後端部49は、断熱管11の先端部14との間に水蒸気流路41を形成するように変形する。
【0047】
水蒸気供給管20の内径は、スロート部材43の外径よりも大きく、水蒸気流路42が水蒸気供給管20の内周面とスロート部43の外周面との間に形成される。水蒸気供給管20の先端部44は、前方に向かって若干縮径し、環状の水蒸気噴射口47が、先端部44の先端面に開口する。
【0048】
燃料供給路12に圧送された燃料油Fは、スプレーノズル15からスロート部材43内に霧状に噴射する。600℃以上(好適には、800℃以上の温度)に加熱した高温過熱水蒸気Sは、水蒸気供給路22に導入され、スロート部材43の後端部49により水蒸気流路41、42に分流する。断熱空気層13内に滞留したデッドエアーは、供給路12、22間の伝熱抵抗を増大し、噴霧前の燃料油Fが高温過熱水蒸気Sの顕熱を受熱して過熱し又は炭化するのを防止する。
【0049】
スプレーノズル15から圧力下に噴射される高速の燃料噴流により、水蒸気流路41に負圧が作用し、水蒸気流路41に流入した高温過熱水蒸気は、燃料噴流の根元部分に誘引され、燃料噴流に混入する。燃料及び高温過熱水蒸気は、反応室45の反応域において接触混合し、燃料は、高温過熱水蒸気との接触混合過程で急激に加熱され、燃料油中の揮発分は蒸発・気化してガス化し、燃料の一部は熱分解を伴ってガス化し、かくして、平均粒径150μm以下に微粒化する。ガス化ガスの一部は、高温過熱水蒸気と反応し、CO、H、CH 等の軽質炭化水素に転化し、CO、H及び軽質炭化水素を比較的多量に含む可燃性ガスが反応域に生成する。燃料油中の有機窒素 ( Fuel N )分は、ガス化時にNに転換するので、フュエルNOx の生成が抑制される。前述の各実施例と同様、高温過熱水蒸気の供給量は、燃料油1kg当たり0.2kg以上且つ0.8kg以下の範囲内に設定される。
【0050】
反応室45の微粒化燃料及び可燃性ガスは、燃料噴射口46から燃焼域に噴射し、水蒸気流路42の高温過熱水蒸気は、水蒸気噴射口47から燃焼域に噴射する。水蒸気噴射口47の水蒸気流量は、例えば、反応室45に導入される水蒸気流量の2乃至3割程度に設定される。可燃性ガスは、燃焼空気流路50の燃焼空気流Aと混合して直ちに気体燃焼し、燃料油微粒子は、可燃性ガス及び燃焼用空気の燃焼熱により速やかに蒸発して燃焼用空気と反応し、燃焼遅れがない蒸発燃焼が燃焼域に生じる。同時に、水蒸気噴射口47から噴出した高温過熱水蒸気は、燃焼域において可燃性ガス及び微粒化燃料と混合し、燃料微粒化を更に促進する。このような二段階の微粒化過程を経た可燃性ガス及び微粒化燃料は、燃焼域の燃焼ガス再循環流と混合しながら燃焼し、煤発生及びNOx 生成等は、効果的に防止される。
【0051】
前述の第1及び第2実施例では、反応室40の前部が噴射部32(図1及び図3)により囲まれ、噴射ポート39より微粒化燃料及び可燃性ガスを噴霧するように構成されているので、高温過熱水蒸気の供給圧力を比較的高い値に設定せざるを得ないが、本実施例においては、反応室45は、先端面が燃焼域に向かって全体的に開放しており、しかも、燃料噴流のエジェクタ効果を利用して高温過熱水蒸気を燃料噴流に誘引するので、高温過熱水蒸気の供給圧力を低下し、水蒸気供給源の水蒸気圧送負荷を軽減することができる。このような水蒸気圧送負荷の軽減は、高温過熱水蒸気Sの供給量を増大したり、高温過熱水蒸気の供給管路長を延長する上で実務的に有益である。
【0052】
図5に示すガス化反応ノズル1(第4実施例)は、上記第4実施例と同じく、水蒸気流路41、42、スロート部材43、燃料噴射口46及び水蒸気噴射口47を燃料噴射部(反応器30)に備え、スロート部材43内には、反応室45が形成される。しかしなから、本実施例では、ガス化反応ノズル1は、温度200℃程度の飽和水蒸気T(供給圧力に相応する温度の水蒸気)により燃料供給管10内の燃料油Fを断熱する点、燃料油F及び飽和水蒸気Tを混合した燃料エマルジョンを反応室45に噴射する点において、上記第4実施例と相違する。即ち、断熱管11内には、飽和水蒸気Tを霧化媒体として供給する水蒸気流路17が形成され、燃料供給管10及び断熱管11の先端部には、混合器16が配設される。混合器16の先端中央部には、反応室45に向かって開口した燃料エマルジョン噴射口14が形成される。水蒸気流路17の飽和水蒸気Tは、供給路12、22間の伝熱抵抗を増大し、高温過熱水蒸気Sから燃料油Fへの熱移動により噴霧前の燃料油Fが過熱し又は炭化するのを防止する。飽和水蒸気Tは、水蒸気導入ポート18から混合室19の中心に向って噴射し、燃料供給ポート34から混合室19内に噴射した燃料油Fと混合する。飽和水蒸気は、燃料油の乳化剤として働き、燃料油は、混合室19内で水蒸気に乳化(エマルジョン化)・混合する。燃料エマルジョンは、燃料エマルジョン噴射口14から反応室45に噴射し、水蒸気流路41の高温過熱水蒸気をエジェクタ効果により燃料エマルジョン噴流の根元部分に誘引混合する。
【0053】
このような実施例によれば、燃料油Fは、混合器16で既にエマルジョン化した後、反応室45に噴霧され、高温過熱水蒸気と混合するので、反応室45内の燃料微粒化作用を促進することができる。その他の構成及び作用は、上記第3実施例と実質的に同じであるので、更なる詳細な説明は、省略する。
【0054】
図6に示すガス化反応ノズル1(第5実施例)は、上記第4実施例と同じく、混合器16及び水蒸気流路17を備え、温度200℃程度の飽和水蒸気Tにより燃料供給管10内の燃料油Fの過熱又は炭化を防止するとともに、燃料油F及び飽和水蒸気Tの燃料エマルジョンを反応室45に噴射するように構成される。しかしながら、本実施例では、高温過熱水蒸気が比較的高い圧力(本例では10kPa 以上) で供給されることから、水蒸気流路41、42及びスロート部材43が設けられず、反応室45に噴射した高温過熱水蒸気が、混合器16から噴射した燃料エマルジョン噴流と衝突混合する点において、上記第4実施例と相違する。即ち、水蒸気供給路22の先端部は、環状壁(供給管連結部31)によって閉塞し、環状壁31には、複数の水蒸気供給ポート36が開口する。環状壁31は、前方に拡開し、燃焼域に向って大きく開口した燃料噴射口46が、ガス化反応ノズル1の先端面に形成される。環状壁31内に形成された反応室45には、比較的高圧の高温過熱水蒸気が水蒸気供給ポート36から噴射するとともに、燃料エマルジョンが複数の燃料エマルジョン噴射口14から噴霧する。高温過熱水蒸気及び燃料エマルジョンは、反応室45内で衝突混合し、燃料エマルジョンは急激に加熱され、燃料油は、燃料油中の揮発分の蒸発・気化及び熱分解によりガス化し、平均粒径150μm以下に微粒化する。ガス化ガスの一部は、高温過熱水蒸気と反応し、CO、H、CH 等の軽質炭化水素に転化し、CO、H及び軽質炭化水素を比較的多量に含む可燃性ガスを反応域に生成する。燃料油に含まれる有機窒素 ( Fuel N )分は、ガス化時にNに転換するので、フュエルNOx の生成が抑制される。前述の各実施例と同様、高温過熱水蒸気の供給量は、燃料油1kg当たり0.2kg以上且つ0.8kg以下の範囲内に設定される。
【0055】
図7は、ガス化反応ノズルの変形例を概念的に示すブロック図である。
上記各実施例では、反応室40、45をノズル先端部に配置し、反応室40、45から直に可燃性ガス及び微粒化燃料を燃焼域に噴霧しているが、図7に示す如く、反応室40’をノズル先端部から離間した位置に配置しても良い。この場合、ガス化反応ノズル1は、可燃性ガス及び微粒化燃料を反応室40’から燃料噴射口39に給送するガス化燃料供給路を備える。
【0056】
図8は、前述のガス化反応ノズルに高温過熱水蒸気を供給する水蒸気供給系の構成を示すシステム構成図である。
ガス化反応ノズル1の水蒸気供給管20は、二重管構造の水蒸気加熱装置60に接続される。水蒸気加熱装置60は、両端に交互燃焼式蓄熱型バーナ装置61A:61Bを備えた内管(伝熱管)62を備え、内管62は、外管63内に挿入される。水蒸気流路64が,内管62及び外管63の間に形成され、水蒸気流入ポート63A:63Bが、外管63の両端部に配設される。水蒸気流入ポート63A:63Bには、水蒸気供給路70の分岐路71A:71Bが夫々接続される。
【0057】
多数の伝熱フィン65が所定間隔を隔てて内管62の外面に形成され、伝熱フィン65は、内管62の放熱面積を増大する。水蒸気流路64を仕切る流路仕切板66が、水蒸気流路64の流路長を延長すべく内管62の外面に形成され、水蒸気送出ポート67が外管63の中央部に配設される。水蒸気供給管20の上流端が、水蒸気送出ポート67に接続され、水蒸気送出ポート67は、水蒸気供給管20を介してガス化反応ノズル1と連通する。
【0058】
各バーナ装置61A:61Bは、セラミックス製ハニカム構造体等からなる蓄熱体を内蔵する。燃焼用空気及び燃焼排ガスを交互に給気又は排気する給排路72A:72Bが、バーナ装置61A:61Bに夫々接続される。給排路72A:72Bは、4方弁形式の流路切換弁73によって燃焼用空気供給路74又は排気路75に交互に接続される。燃料供給路76A:76Bが、バーナ装置61A:61Bに夫々接続される。燃料供給路76A:76Bは、燃料供給路77の燃料を燃料制御弁78A:78Bの制御下にバーナ装置61A:61Bに交互に供給する。
【0059】
燃料制御弁78A:78B及び流路切換弁73は、所定時間毎に切換えられ、バーナ装置61A:61Bは、所定時間(例えば、30〜60秒)毎に燃焼及び排気を反復する。図8には、バーナ装置61Bが燃焼作動し、バーナ装置61Aが伝熱管(内管)62内の燃焼ガスを排気する状態が図示されている。所定時間経過後、燃料制御弁78A:78B及び流路切換弁73は切換えられ、水蒸気加熱装置60は、バーナ装置61Aが燃焼作動し且つバーナ装置61Bが伝熱管(内管)62内の燃焼ガスを排気する状態に移行し、更に所定時間経過すると、水蒸気加熱装置60は、燃料制御弁78A:78B及び流路切換弁73は切換えられ、図8に示す作動状態に再び移行する。
【0060】
このようなバーナ装置61A:61Bの交互燃焼により、内管62内の燃焼域にバーナ装置61A:61Bの火炎が交互に形成され、内管62内を流動する燃焼ガスにより内管62の管壁及び伝熱フィン66が継続的に加熱される。温度200℃程度の飽和水蒸気が、水蒸気供給路70から水蒸気加熱装置60に供給される。水蒸気流入ポート63A:63Bから水蒸気流路64内に流入した水蒸気は、内管62の管壁及び伝熱フィン66に伝熱接触し、600℃以上(好適には800℃以上)の高温に加熱される。伝熱フィン66を設けたことにより、内管62は、燃焼ガスの伝熱面積に対する水蒸気流路64の伝熱面積の比率が10倍以上となり、燃焼熱を水蒸気に効率的に放熱するので、内管62の過熱を防止することができる。例えば、内管62の温度は、水蒸気を1000℃に加熱した場合であっても、1050℃程度であるにすぎない。このため、内管62の素材として、ステンレス鋼等の耐久性が大きい金属材料を使用することができる。加熱後の水蒸気は、水蒸気送出ポート67から水蒸気供給管20に送出され、ガス化反応ノズル1の反応室40に供給され、前述の如く、低質燃料油と混合接触して燃料油のガス化反応を生じさせる。
【0061】
図9は、水蒸気供給系の変形例を示すシステム構成図である。
図9に示す水蒸気加熱装置60は、図8に示すフィンチューブ構造に換えて、水蒸気流路64の水蒸気流速を増大するリターダー69を備える。伝熱フィン65を省略してリターダー69のみを内管62に設けても良い。水蒸気は、リターダー69により仕切られた水蒸気流路64を比較的速い流速で流動し、水蒸気側の熱伝達率が燃焼ガス側の熱伝達率の数倍に増大するので、内管62は効率的に水蒸気に放熱し、内管62の過熱は、防止される。
【0062】
図10は、水蒸気を加熱するための他の構成の水蒸気加熱装置の構造を概略的に示す断面図である。
水蒸気加熱装置80は、図10(A) に示す作動形態と、図10(B) に示す作動形態とを所定時間(例えば、30〜60秒)毎に交互に実行する。
【0063】
水蒸気加熱装置80は、加熱炉本体88、4方弁形式の流路切換弁87と、制御弁85、86とを備える。加熱炉本体88は、左右一対のハニカム型蓄熱体81、燃焼室82、燃焼用空気吐出部83及び燃料噴射ノズル84を有する。燃焼用空気供給路SA及び燃料供給路SFの空気及び燃料が、制御弁85、86の制御下に空気吐出部83及び燃料噴射ノズル84から燃焼室82のいずれか一方に交互に供給され、比較的低温(100〜200℃)の水蒸気が、従来構造の水蒸気発生器から水蒸気供給路70に給送され、流路切換弁87の制御下に蓄熱体81のいずれか一方に交互に供給される。燃焼室82に生成した高温の燃焼ガスは、蓄熱体81を加熱した後、排気ファン89の排気誘引圧力下に排気路EA及び排気流路EGから排気される。低温水蒸気は、分配路L1又はL2から高温の蓄熱体81に供給され、蓄熱体81に伝熱接触して600℃以上、好ましくは、800℃以上の高温に加熱された後、水蒸気供給路20に送出され、ガス化反応ノズル1に供給される。
【0064】
図11は、本発明の応用例に係る燃料微粒化装置の構成を示すシステム構成図である。
図11に示す燃料微粒化装置は、水蒸気供給路20を介して水蒸気加熱装置60と接続した独立設置型反応器90を備える。低質燃料油のガス化ガスが、反応器90からスプレーノズル(図示せず)に供給され、スプレーノズルから燃焼域(図示せず)に噴射される。
【0065】
反応器90は、高温過熱水蒸気及び燃料油が供給される反応室を有する。油ポンプ91、油加熱器92、油量調節弁93及び流量計94を介装した燃料油供給路10が、反応器90の燃料噴射部95に接続される。燃料噴射部95は、液体燃料を反応室内に噴霧する。制御ユニット96の油量設定信号が油量調節弁93に出力され、流量計94の油量検出信号が制御ユニット96に入力される。制御ユニット96は、水蒸気量調節弁97に水蒸気量制御信号を出力する。
【0066】
水蒸気量調節弁97の流量は、流量計94が検出した油量と特定の相関関係に基づいて設定され、例えば、油量に比例するように設定される。水蒸気加熱装置60により加熱された水蒸気(高温過熱水蒸気)は、反応器90の反応室に噴射される。低質燃料油は、油加熱器92で加熱され、燃料噴射部95から反応室内に霧状に散布され、高温過熱水蒸気と混合接触する。燃料油及び高温過熱水蒸気は、反応室内で混合接触し、急激に加熱され、燃料油中の揮発分は蒸発・気化してガス化し、液体燃料の一部は熱分解を伴ってガス化する。高温過熱水蒸気は、ガス化した炭化水素に対して改質剤として作用し、ガス化ガスの少なくとも一部は、CO、H、CH 等の軽質炭化水素に転化する。比較的多量のCO、H、CHを含む可燃性ガスが反応室に生成し、可燃性ガスは、スプレーノズルに供給され、スプレーノズルから燃焼域に噴射される。
【0067】
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
【0068】
例えば、上記実施例では、高温過熱水蒸気及び液体燃料のみを反応域に導入しているが、反応域の高温状態を維持すべく、適量の空気又は酸素を反応域に導入することも可能である。
【0069】
また、本発明の燃料噴射ノズルを水蒸気加熱装置のバーナとして使用し、あるいは、上記ガス化反応ノズルの燃焼熱により水蒸気を加熱しても良い。
更には、図11に示す燃料油及び水蒸気の流量制御手段及び温度制御手段は、図8及び図9に示す燃料油及び高温水蒸気の供給系に設けても良い。
【0070】
【発明の効果】
以上説明した如く、請求項1〜14に記載された本発明の構成によれば、C重油、残査油等の高粘度且つ低質又は重質の炭化水素系液体燃料を用い、灯油又はA重油等の良質燃料油と同様、燃焼遅れのないクリーンな安定燃焼を可能にする液体燃料の微粒化方法が提供される。
【0071】
また、請求項15及び16に記載された本発明の構成によれば、C重油、残査油等の高粘度且つ低質又は重質の炭化水素系液体燃料を用い、燃焼遅れのないクリーンな安定燃焼を実現するとともに、窒素酸化物の生成を抑制することができる燃焼方法が提供される。
【0072】
更に、請求項17〜22に記載された本発明の構成によれば、上記微粒化方法を実用化可能な燃料噴射ノズル又は燃料微粒化装置が提供される。
【図面の簡単な説明】
【図1】本発明の第1実施例に係るガス化反応ノズルの構造を示す断面図である。
【図2】図1に示すガス化反応ノズルの構成を概念的に示すブロック図である。
【図3】本発明の第2実施例に係るガス化反応ノズルの構造を示す断面図である。
【図4】本発明の第3実施例に係るガス化反応ノズルの構造を示す断面図である。
【図5】本発明の第4実施例に係るガス化反応ノズルの構造を示す断面図である。
【図6】本発明の第6実施例に係るガス化反応ノズルの構造を示す断面図である。
【図7】ガス化反応ノズルの変形例を概念的に示すブロック図である。
【図8】ガス化反応ノズルに高温過熱水蒸気を供給する水蒸気供給系の構成を示すシステム構成図である。
【図9】水蒸気供給系の変形例を示すシステム構成図である。
【図10】水蒸気を加熱するための他の構成の水蒸気加熱装置の構造を概略的に示す断面図である
【図11】本発明の応用例に係る燃料微粒化装置の構成を示すシステム構成図である。
【図12】内部混合式の噴霧型バーナの概略構成を概念的に示すブロック図である。
【符号の説明】
1 ガス化反応ノズル
10 燃料供給管
12 燃料供給路
15 スプレーノズル
16 混合器
20 水蒸気供給管
22 水蒸気供給路
30 反応器
34 燃料供給ポート
36 水蒸気供給ポート
39 噴射ポート
40、40’、45 反応室
46 燃料噴射口
50 燃焼用空気流路
60、80 水蒸気加熱装置
70 水蒸気供給路
90 独立設置型反応器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for atomizing liquid fuel, and more particularly to a method for atomizing liquid fuel for atomizing or gasifying hydrocarbon-based liquid fuel.
[0002]
[Prior art]
A spray combustion method is generally employed as a method for burning fuel oil or the like in an industrial burner. In spray combustion, the atomizer atomizes the fuel oil that has been subdivided into fine particles, and combustion air is supplied from the periphery of the atomized fuel oil spray group toward the spray group to burn the air and the spray group. A reaction occurs. As a method for atomizing liquid fuel such as fuel oil, a two-fluid atomization method using steam or high-pressure air as an atomizing medium is known. The atomization method of this method is as follows: (1) An external mixing method in which a liquid is injected into a high-speed jet of an atomizing medium (water vapor or high-pressure air) at a nozzle outlet of a fuel injection nozzle, and the liquid fuel is atomized mainly by shearing. (2) an internal mixing method in which liquid fuel and an atomizing medium are mixed in advance in a mixing chamber inside a nozzle, and then the liquid fuel is atomized by expansion of the mixture when the nozzle is ejected; (3) the advantages of both types are used. ("Research report on atomization of liquid", pages 10-12, March 30, 1989, Japan Burner Research Group / Research and Development Committee).
[0003]
Further, as an industrial burner intended to reduce the nitrogen oxide concentration, a burner configured to add saturated steam having the same pressure as that of the fuel oil to the fuel oil is known. For example, a regenerative low NOx burner described in JP-A-6-193823 has a venturi section for mixing fuel and steam, and a burner described in JP-B-61-12165 sprays steam and heavy oil. The burner described in Japanese Patent Publication No. 62-186108 is configured to inject a mixed flow of liquid fuel and water vapor in order to reduce the nitrogen oxide concentration. And configured to increase the water vapor concentration in the combustion zone.
[0004]
FIG. 12 is a block diagram conceptually showing a schematic configuration of a spray burner of an internal mixing type.
The atomizer has a mixing chamber connected to the liquid fuel supply pipe and the atomization medium supply pipe. Medium pressure (several atmospheric pressure) fuel oil adjusted to an appropriate temperature and an appropriate viscosity is supplied to the atomizer from the fuel supply path in the fuel supply pipe, and flows into the mixing chamber from the fuel supply port. The temperature of the fuel oil in the fuel supply passage is regulated within a temperature range in which volatile components in the fuel oil do not partially evaporate during the spraying process, and the fuel oil is discharged from the fuel supply port into the mixing chamber smoothly. The viscosity is controlled within a temperature range in which a kinematic viscosity (less than 30 cSt) is obtained. An atomizing medium having substantially the same pressure as the fuel oil, for example, saturated steam at the same pressure as the fuel oil or about 1 atm is supplied to the atomizer from the atomizing medium supply path of the atomizing medium supply pipe, and the steam is It flows into the mixing chamber from the atomizing medium supply port. The water vapor acts as an emulsifier for the fuel oil, and the fuel oil is emulsified (emulsified) and mixed with the water vapor in the mixing chamber. The emulsion of fuel oil and water vapor is injected from the spray nozzle at a high speed (sub-high speed) close to the speed of sound, and atomized by expansion and decompression during high-speed injection from the spray nozzle, and is ejected to the front of the atomizer as a fuel oil spray group. I do. Here, if the fuel oil temperature is too high, volatile components in the fuel oil are partially vaporized before being supplied to the atomizer, and unstable vibration combustion or interruption due to intermittent fuel oil discharge or pulsating flow of the discharged oil. Although a fire or the like may occur, as described above, by regulating the fuel oil temperature to a predetermined temperature or less, it is possible to prevent the occurrence of vibration combustion, fire interruption, and the like. The spray group receives heat from the combustion flame and evaporates and vaporizes, and the evaporated and vaporized spray group reacts with combustion air supplied to the spray group from the surroundings to form a flame in the combustion area. Note that the spray group receives heat from the flame formed by the ignition burner at the start of combustion, and continues to receive heat from the flame formed by the spray group itself after the start of combustion.
[0005]
[Non-patent document 1] "Research report on atomization of liquid", pp. 10-12
March 30, 1989, Japan Burner Study Group and R & D Committee
[Patent Document 1] JP-A-6-193823
[Patent Document 2] Japanese Patent Publication No. 61-12165
[Patent Document 3] Japanese Patent Publication No. 62-186108
[0006]
[Problems to be solved by the invention]
In recent years, it has become necessary to efficiently use a highly viscous crude oil having a relatively low volatile content, such as heavy fuel oil C and residual oil, as a fuel for industrial burners. Here, in the combustion process of the gaseous fuel, the combustion of the fuel and the combustion air starts almost at the same time as the fuel injection, so that a clean combustion reaction in which soot is hardly generated is obtained. In the case of using a low-viscosity high-quality oil containing a volatile component (kerosene, heavy fuel oil A, etc.), the fuel oil is atomized into a spray group having a small particle diameter upon expansion and decompression when injected from a fuel injection port, and immediately Since the evaporation and vaporization are started, a clean combustion reaction similar to gas combustion can be obtained. However, a crude oil having a relatively low volatile content and a high viscosity, such as heavy oil C and residual oil, is difficult to be atomized to an average particle size of 150 μm or less with a conventional atomizer, and is difficult to evaporate after injection. Since the vaporization rate is low, a relatively large amount of soot and dust, which can cause air pollution, is likely to be generated.Moreover, since the spray group starts to react with the surrounding combustion air after evaporation and vaporization, the combustion is delayed. Occurs.
[0007]
In order to promote the atomization of such crude oil, it may be considered to overheat the fuel beyond an appropriate temperature. However, when the fuel oil is overheated in this way, as described above, the vaporization of volatile components in the fuel oil As a result, a pulsating flow of fuel is generated, which causes problems such as generation of oscillating combustion and fire, formation of a high-intensity flame associated with spray combustion, and uneven heat transfer in the furnace.
[0008]
In addition, crude oil such as heavy fuel oil C and residual oil generally has a high organic nitrogen (N) content and a relatively high fuel NOx concentration in the combustion exhaust gas. There are circumstances where it is difficult to properly achieve low NOx measures.
[0009]
The present invention has been made in view of such problems, and an object of the present invention is to use a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel such as fuel oil C or residual oil, and use kerosene ( It is an object of the present invention to provide a method for atomizing liquid fuel that enables clean and stable combustion with no combustion delay, similarly to high-quality fuel oil such as kerosene or heavy oil A.
[0010]
The present invention also uses a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel such as fuel oil C or residual oil to realize clean stable combustion with no combustion delay and suppress generation of nitrogen oxides. It is an object of the present invention to provide a combustion method that can perform the combustion.
[0011]
Means and Action for Solving the Problems
As a result of intensive studies to achieve the above object, the present inventor has departed from the concept of the conventional two-fluid mixing type atomization method which merely uses superheated steam at about 200 ° C. as an atomizing medium and an emulsifier. By using high-temperature superheated steam heated to a high temperature of 600 ° C or higher using the latest steam heating technology as a high-temperature heating medium, gasifying agent and reforming agent, high-viscosity liquid fuel can be converted to an average particle size of 150 μm or less. The present invention has been found based on such finding, and that the present invention has been achieved. That is, the present invention
In order to supply a hydrocarbon-based liquid fuel to a combustion zone, a liquid fuel atomization method for atomizing the liquid fuel,
Heating the steam to a high-temperature superheated steam of 600 ° C. or higher, supplying the liquid fuel and the high-temperature superheated steam to a reaction chamber,
The liquid fuel and the high-temperature superheated steam are injected into the reaction chamber, and the liquid fuel and the high-temperature superheated steam are mixed in the reaction zone in the reaction chamber, and the volatile components of the liquid fuel are evaporated and vaporized. A method for atomizing liquid fuel, characterized in that the liquid fuel is at least partially thermally decomposed with superheated steam, thereby atomizing the liquid fuel to an average particle diameter of 150 μm or less.
[0012]
According to the above configuration of the present invention, the liquid fuel is mixed with the high-temperature superheated steam in the reaction chamber, rapidly heated in the process of contact and mixing with the high-temperature superheated steam, and the volatile components in the liquid fuel evaporate and vaporize. Unlike the conventional internal mixing type atomization method in which steam at about 200 ° C. is used as an atomizing medium and an emulsifier, in the atomization method of the present invention, high-temperature superheated steam heated to a high temperature of 600 ° C. or more is converted into a high-temperature heat medium and a gas. It acts on the liquid fuel as an agent, and the temperature of the reaction zone is maintained at a high temperature by supplying high-temperature superheated steam. The steam heating technology has already been disclosed in Japanese Patent Application No. 10-189 (Japanese Patent Application Laid-Open No. Hei 10-246428) filed by the present applicant.
[0013]
Due to the mixed contact of the high-temperature superheated steam and the liquid fuel, the volatile components of the liquid fuel evaporate and vaporize to gasify, and a part of the liquid fuel gasifies with thermal decomposition. Since the hot superheated steam also acts as a reforming agent on the gasified hydrocarbons, at least a portion of the gasified gas undergoes a reforming reaction with the hot superheated steam to form CO, H 2 , CH 4 And other light hydrocarbons. Thus, when a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel having a viscosity of 30 cSt or more at a liquid temperature of 80 ° C. is used, the liquid fuel is gasified to 150 μm or less, preferably 100 μm or less, More preferably, the fuel particles are atomized to an average particle diameter of 50 μm or less, and the fuel fine particles are injected into a combustion region from a fuel injection port together with a combustible gas containing a relatively large amount of CO, H2 and light hydrocarbons, and supplied to the combustion region. Mix with combustion air. In the combustion zone, the combustion reaction of the combustible gas and the combustion air starts immediately, so that the fuel spray group atomized to an average particle size of 150 μm or less receives the heat of combustion of the combustible gas and the combustion air and rapidly. Evaporate and burn. Therefore, in the liquid fuel atomization method of the present invention, a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel such as heavy fuel oil C or residual oil is atomized to an average particle diameter of 150 μm or less, and burned together with the combustible gas. As it is sprayed into the area, the gas combustion of the combustible gas and the evaporative combustion of the spray group achieves clean combustion with no combustion delay and no generation of soot and dust, similar to high-quality fuel oil such as kerosene or Fuel Oil A. It becomes possible.
[0014]
In addition, in the atomization of the above configuration, the liquid fuel is atomized to an average particle diameter of 150 μm or less without overheating the liquid fuel to lower the viscosity. The occurrence of fire or the like can be avoided. Furthermore, since the immediate combustion of the combustible gas and the evaporative combustion of the spray group proceed simultaneously in the combustion region, the formation of a high-intensity flame due to the spray combustion can be prevented, and the heat transfer function in the furnace can be made uniform. .
[0015]
By the application of the present invention, it is also possible to gasify substantially all the liquid fuel to a combustible gas in the reaction zone, and to inject only the combustible gas from the fuel injection port to the combustion zone. This makes it possible to cause a combustion reaction substantially corresponding to gas combustion in the combustion zone using the hydrocarbon-based liquid fuel.
[0016]
Further, in the present invention, high-temperature superheated steam heated to a high temperature of 800 ° C. or higher, preferably 1000 ° C. or higher can be introduced into the reaction chamber to promote the chemical reaction of the liquid fuel in the reaction chamber. It is considered that the chemical reaction between fuel and water vapor has already started even at 600 ° C. or lower. However, under a high temperature atmosphere of 800 ° C. or higher (preferably, 1000 ° C. or higher), the chemical reaction between the fuel component and water vapor is activated. Thus, the fuel is effectively reformed. This is considered to be caused by release of hydrocarbon radicals, hydrogen radicals, and the like in a high-temperature atmosphere of 800 ° C. or higher (preferably, 1000 ° C. or higher).
[0017]
The present invention also injects a mixed flow of a spray group of liquid fuel atomized using the liquid fuel atomization method having the above configuration and a combustible gas generated in the reaction zone from a fuel injection port to a combustion zone, There is provided a combustion method characterized by evaporating fuel particles in a spray group by combustion heat of a combustible gas and combustion air to promote evaporative combustion of a spray group.
[0018]
In the conventional internal mixing type atomization method, high-viscosity liquid fuel cannot be atomized to an average particle size of 150 μm or less. Therefore, the spray group injected into the combustion area is ignited by the ignition burner at the start of combustion. After the start of combustion, the spray group receives heat from the flame formed by itself and evaporates and burns. However, in the combustion method of the present invention, a mixed flow of a spray group of liquid fuel atomized to an average particle size of 150 μm or less and a flammable gas is injected into a combustion zone, so that the flammable gas and combustion air The combustion reaction starts immediately, and the spray group evaporates quickly with the heat of combustion of the combustible gas. That is, since the immediate combustion of the combustible gas and the evaporative combustion of the spray group progress simultaneously from immediately after the fuel injection, there is no combustion delay, soot and dust generation are suppressed, and the combustion reaction is caused by the gas combustion of the combustible gas. It also stabilizes itself. In addition, most of the organic nitrogen (N) content in the liquid fuel becomes N 2 , The amount of NOx generated during combustion decreases.
[0019]
From another viewpoint, the present invention provides a combustion method, comprising injecting a combustible gas generated by the above atomization method into a combustion zone, and causing a gas combustion reaction of the combustible gas and combustion air in the combustion zone. I will provide a. By gasifying substantially all the liquid fuel into a combustible gas in the reaction zone according to the atomization method, a combustion reaction corresponding to gas combustion can be caused in the combustion zone. For example, when the atomization method of the present invention is applied to atomization of light oil, all liquid fuel can be relatively easily gasified in the reaction chamber. In this case, a low calorie gas having a low calorific value per unit volume of fuel, for example, approximately 2000 kcal / Nm 3 The following low-calorie gas is injected from the reaction chamber into the combustion zone, thereby forming a flame having a relatively small temperature and a relatively low temperature and a large flame volume in the combustion zone. It is possible to cause a combustion reaction in the combustion zone in which leveling and NOx generation (mainly generation of thermal NOx) are suppressed.
[0020]
The present invention further provides a fuel injection nozzle using the atomization method having the above configuration, wherein a reaction chamber capable of introducing high-temperature superheated steam and liquid fuel is provided at the nozzle tip, and a combustible gas generated in the reaction chamber. In addition, the present invention provides a fuel injection nozzle provided with an injection port for injecting a mixed flow of atomized liquid fuel in a reaction chamber with a spray group into a combustion region at a nozzle tip.
[0021]
The present invention also provides a fuel injection nozzle using the atomization method having the above-described structure, wherein a mixing chamber for mixing saturated steam with liquid fuel and a reaction chamber capable of introducing high-temperature superheated steam and fuel emulsion are provided at the nozzle tip. And a fuel injection nozzle disposed in the fuel injection nozzle. The fuel emulsion and the high-temperature superheated steam mixed in the mixing chamber flow into the reaction chamber. An injection port provided at the tip of the fuel injection nozzle injects a mixed flow of a combustible gas generated in the reaction chamber and a spray group of liquid fuel atomized in the reaction chamber into a combustion area.
[0022]
According to such a fuel injection nozzle, there is no combustion delay by using a high-viscosity low- or heavy fuel oil, which has been considered to be unable to obtain combustion stability or the like with a conventional internal mixing type spray burner. In addition, clean stable combustion that does not generate soot and dust can be realized. Further, atomization in the fuel injection nozzle of the present invention does not depend on mechanical fuel atomization due to expansion / decompression and shearing during injection, and mechanical atomization was obtained as a secondary effect. Even so, the main atomization depends on chemical atomization by gasification and reforming reaction in the reaction zone. Therefore, according to the present invention, it is possible to atomize the liquid fuel without being restricted by the pressure and flow rate of the atomizing medium (high-pressure air or steam), the pressure and flow rate of the liquid fuel, and the shape and structure of the nozzle injection port. Accordingly, the degree of freedom in designing the shape and structure of the fuel injection nozzle can be greatly improved.
[0023]
The present invention further provides a fuel injection nozzle capable of performing the atomization method having the above-described configuration, wherein a reaction chamber capable of introducing high-temperature superheated steam and liquid fuel is provided at the nozzle tip, and gasification of almost all liquid fuel is performed. There is provided a fuel injection nozzle having an injection port for injecting a combustible gas generated in a reaction chamber into a combustion region at a nozzle tip.
[0024]
From another viewpoint, the present invention is a fuel atomization apparatus for performing the fuel atomization method having the above configuration,
The reaction chamber communicates with a fuel injection port of a fuel injection nozzle via a combustible gas supply path, and a liquid fuel supply path for supplying a liquid fuel or a fuel emulsion into the reaction chamber is connected to a fuel introduction port of the reaction chamber. A high-temperature superheated steam supply passage for supplying high-temperature superheated steam is connected to a steam inlet of the reaction chamber, the fuel inlet sprays liquid fuel or a fuel emulsion into the reaction chamber, and the steam inlet supplies high-temperature superheated steam to the reaction chamber. Liquid fuel or fuel emulsion and high-temperature superheated steam contact and mix in the reaction zone in the reaction chamber to generate flammable gas in the reaction zone, and the flammable gas supply path supplies flammable gas to the fuel injection nozzle The present invention provides a fuel atomization device characterized in that:
[0025]
According to the above configuration of the present invention, the fuel atomization device gasifies the hydrocarbon-based liquid fuel or the fuel emulsion in the reaction chamber, and supplies the combustible gas or the mixed flow of the combustible gas and the fuel fine particles to the fuel injection nozzle. Supply. According to such a fuel atomization device, a reaction chamber separate from the fuel injection nozzle can be installed, so that a single reaction chamber can be connected to a plurality of fuel injection nozzles or the existing combustion equipment can be used. It becomes possible to apply the atomization method of the invention.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
According to a preferred embodiment of the present invention, the liquid fuel is composed of a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel having a viscosity of 30 cSt or more at a liquid temperature of 80 ° C. The supply amount is set to 0.2 kg or more and 0.8 kg or less per 1 kg of liquid fuel. Preferably, the heating temperature of the steam is changed according to the C / H ratio of the liquid fuel, and the supply amount of the high-temperature superheated steam is changed according to the mass (supply amount) of the liquid fuel. More preferably, the heating temperature of the steam is set to a higher temperature as the C / H 2 ratio of the liquid fuel increases, and the supply amount of the hot superheated steam is increased as the mass (supply amount) of the liquid fuel increases. The temperature of the high-temperature superheated steam supplied to the reaction chamber may be set to be equal to or higher than the self-ignition temperature of the liquid fuel.
[0027]
In a preferred embodiment of the present invention, high-temperature superheated steam heated to 800 ° C. or higher (preferably 1000 ° C. or higher) is introduced into the reaction chamber, and the temperature of the reaction zone is maintained at 600 ° C. or higher (preferably 800 ° C. or higher). The chemical reaction of the liquid fuel is accelerated. The temperature of the liquid fuel supplied to the reaction chamber is set below the vaporization temperature (boiling point). Preferably, an air pipe or a saturated steam pipe is disposed in the supply pipe of the high-temperature superheated steam, and a supply pipe of the liquid fuel is disposed in the air pipe or the saturated steam pipe. Is prevented by In one embodiment of the invention, the liquid fuel is mixed with saturated steam, and the liquid fuel is injected into the reaction chamber as a fuel emulsion. According to another embodiment of the present invention, the liquid fuel jet or the fuel emulsion jet injected into the reaction chamber attracts high-temperature superheated steam by an ejector effect, and reduces the pumping load of the high-temperature superheated steam. If desired, a portion of the hot superheated steam flows into the combustion zone and mixes with the combustible gas and atomized fuel jetted from the injection port.
[0028]
In one embodiment of the present invention, the amount of steam, the steam temperature, the steam pressure, the liquid fuel supply amount, and the like are set so that the average particle size of the liquid fuel after atomization becomes substantially zero. The entire amount is gasified into combustible gas in the reaction chamber. The combustible gas is injected into a combustion zone, reacts with combustion air in the combustion zone, and performs gas combustion.
[0029]
In a preferred embodiment of the present invention, the fuel injection nozzle or the fuel atomization device includes a steam heating device that heats steam to 600 ° C. or higher. As the steam heating device, a steam heating device with a heat transfer tube that heats steam by combustion heat or a regenerator type steam heating device that transfers the sensible heat of combustion exhaust gas stored by a heat storage body to steam is adopted. can do. When the high-temperature superheated steam of 600 ° C. or more is transferred from the equipment outside the system to the reaction chamber of the present invention, the temperature of the high-temperature superheated steam easily drops in the transfer process, and the high-temperature superheated steam of a desired temperature is introduced into the reaction chamber. Although difficult, it is possible to overcome such a problem of steam temperature drop by attaching a steam heating device to the fuel injection nozzle or the fuel atomizing device and shortening the steam transport path.
[0030]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing the structure of a gasification reaction nozzle according to a first embodiment of the present invention, and FIG. 2 is a block diagram conceptually showing the structure of the gasification reaction nozzle shown in FIG.
[0031]
A gasification reaction nozzle 1 including a fuel supply pipe 10, a steam supply pipe 20, and a reactor 30 is disposed in a combustion air flow path 50 that supplies combustion air to a combustion zone. The gasification reaction nozzle 1 constitutes a fuel injection nozzle capable of performing the atomization method of the present invention. The steam supply pipe 20 has an outer diameter substantially the same as the outer diameter of the reactor 30, and the fuel supply pipe 10 is disposed concentrically at the center of the steam supply pipe 20. The reactor 30 includes a supply pipe connecting part 31 connecting the supply pipes 10 and 20, and a front end of the supply pipes 10 and 20 is connected to the connection part 31. The injection part 32 is integrally connected to the front side of the connection part 31, and a hollow and non-catalytic reaction chamber 40 is formed in the reactor 30.
[0032]
The fuel supply pipe 10 is connected to the center of the connecting portion 31, and the fuel supply path 12 in the fuel supply pipe 10 communicates with the reaction chamber 40 via the fuel supply port 34. The fuel supply port 34 is disposed on the central axis of the gasification reaction nozzle 1 and is oriented to inject fuel toward the center of the reaction chamber 40. On the fuel supply path side of the fuel supply port 34, a reduced diameter portion 33 for reducing the fuel flow path toward the reaction chamber 40 is formed.
[0033]
The steam supply pipe 20 is connected to the outer peripheral portion of the connecting portion 31, and the steam supply passage 22 in the steam supply pipe 20 communicates with the reaction chamber 40 via the steam supply port 36. The steam supply port 36 is inclined with respect to the central axis of the nozzle 1, and is oriented so as to jet hot superheated steam toward the center of the reaction chamber 40.
[0034]
The base 35 of the injection part 32 is integrally connected to the outer peripheral part of the connection part 31, and the front center part 37 protrudes forward. An injection port 39 is formed in the inclined portion 38 extending between the base portion 35 and the center portion 37. The injection port 39 is oriented to inject a mixed flow of combustible gas and fuel oil particulates from the reaction chamber 40 in a radial direction.
[0035]
Inferior fuel oil F such as C heavy oil and residual oil adjusted to an appropriate temperature and an appropriate viscosity is fed through the fuel supply passage 12 and injected into the reaction chamber 40 from the fuel supply port 34. The fuel oil F is a high-viscosity, low-quality or heavy liquid fuel that still exhibits a kinematic viscosity of 30 cSt or more even at an oil temperature of 80 ° C. High-temperature superheated steam S (hereinafter, referred to as “high-temperature superheated steam”) heated to 600 ° C. or more (preferably 800 ° C. or more) as a high-temperature heat medium, a gasifying agent, and a modifying agent is supplied as steam. The water is introduced into the passage 22 and injected into the reaction chamber 40 from the steam supply port 36. The fuel oil and the high-temperature superheated steam flow into the reaction chamber 40 toward the center of the reaction chamber 40 and come into mixed contact. The amount of steam supplied to the reaction chamber 40 is set within a range of 0.2 kg or more and 0.8 kg or less per kg of fuel oil.
[0036]
The fuel oil contacts and mixes with the high-temperature superheated steam in the reaction zone of the reaction chamber 40, and is rapidly heated during the contact mixing with the high-temperature superheated steam. Volatile components in the fuel oil are vaporized and vaporized to gasify, and the fuel oil droplets dispersed in the reaction chamber 40 are atomized to an average particle size of 150 μm or less. Part of the fuel oil is gasified with thermal decomposition.
[0037]
The temperature of the reaction zone is maintained at a high temperature by supplying high-temperature superheated steam, and the high-temperature superheated steam acts as a modifier for volatile components of the evaporated and vaporized fuel oil, that is, gasified hydrocarbons. Therefore, at least a part of the gasified gas undergoes a reforming reaction with the high-temperature superheated steam, and CO, H 2 , CH 4 To light hydrocarbons such as CO, H 2 And a combustible gas containing a relatively large amount of light hydrocarbons is generated in the reaction zone.
[0038]
Such a gasification / reforming reaction of fuel oil becomes more active as the temperature of the high-temperature superheated steam becomes higher. Therefore, the temperature of the high-temperature superheated steam is preferably set to 800 ° C. or higher. More preferably, the temperature of the high-temperature superheated steam is controlled according to the C / H ratio of the fuel oil in order to optimize the gasification / reforming reaction. For example, the steam temperature becomes higher as the C / H ratio increases. Is set.
[0039]
The combustible gas generated by the gasification / reforming reaction in the reaction chamber 40 is sprayed at high speed from the injection port 39 into the combustion air flow path 50 together with fuel oil fine particles having an average particle diameter of 150 μm or less. In the fuel oil spray group to which the flammable gas is added as described above, the flammable gas mixes with the combustion air flow A in the combustion air flow path 50 and immediately burns the gas. The fuel evaporates quickly due to the combustion heat of the service air and reacts with the combustion air, so that evaporative combustion with no combustion delay occurs in the combustion zone. Such high-speed evaporative combustion proceeds more effectively as a larger amount of fuel oil is gasified in the reaction zone of the reaction chamber 40, and when almost all fuel is converted to combustible gas, the combustion reaction approximates the combustion reaction of gaseous fuel. The generated combustion reaction can be caused in the combustion zone.
[0040]
In the gasification reaction nozzle 1, the amount of organic nitrogen (Fuel N) contained in the fuel oil is reduced to N during gasification. 2 , The generation of fuel NOx is suppressed. Therefore, the gasification reaction nozzle 1 is also effective as a measure for reducing nitrogen oxides (NOx) in the combustion exhaust gas. Further, with the increase in the amount of high-temperature superheated steam and the temperature of the high-temperature superheated steam, the amount of combustible gas in the spray flow of the gasification reaction nozzle 1 increases, and the combustion reaction in the combustion zone approaches the combustion reaction of gaseous fuel, Cleaner combustion occurs and proceeds in the combustion zone. Therefore, the gasification reaction nozzle 1 is also effective in reducing the content of soot and dust in the combustion exhaust gas.
[0041]
FIG. 3 is a sectional view showing the structure of a gasification reaction nozzle according to a second embodiment of the present invention. The gasification reaction nozzle 1 shown in FIG. 3 is flammable with respect to the supply amount of combustion air and fuel oil. It is suitably used when relatively increasing the amount of reactive gas.
[0042]
As in the first embodiment, the gasification reaction nozzle 1 includes a fuel supply pipe 10, a steam supply pipe 20, and a reactor 30, and the supply pipes 10, 20, and the reactor 30 are connected to the gasification reaction nozzle 1. Are arranged concentrically with respect to the center axis of. The connecting portion 31 swells backward stepwise by the inclined walls 31a and 31b, and the jetting portion 32 projects largely forward as a whole. A fuel supply port 34 is formed at the center of the connecting portion 31, and a steam supply port 36 is formed at each of the inclined walls 31a and 31b. The volume of the reaction chamber 40 is larger than that of the first embodiment, and a relatively large amount of fuel oil and high-temperature superheated steam are stored in the reaction chamber 40, and the residence time of the fuel oil and high-temperature superheated steam in the reaction zone is increased. Secured. The fuel supply port 34 and the steam supply port 36 are oriented so as to inject fuel oil such as heavy fuel oil C and residual oil and high-temperature superheated steam toward the center of the reaction chamber 40. A spiral groove is formed on the inner wall surface of the fuel supply passage 12 adjacent to the fuel supply port 34, and the tip of the fuel supply pipe 10 induces a turning motion of the fuel oil F to atomize the fuel oil F. The spray nozzle 15 for jetting is constituted. The inclined part 38 of the injection part 32 has a larger number of injection ports 39 than in the first embodiment, and the injection ports 39 are oriented so as to inject the reaction gas from the reaction chamber 40 in the radial direction. Since the other structure of the gasification reaction nozzle 1 is substantially the same as that of the first embodiment, further detailed description of the nozzle structure is omitted.
[0043]
The fuel oil F adjusted to an appropriate temperature and an appropriate viscosity is pressure-fed to the fuel supply path 12 and supplied from the fuel supply port 34 into the reaction chamber 40. The high-temperature superheated steam supplied to the steam supply passage 22 is injected into the reaction chamber 40 from the steam supply port 36. The spray nozzle 15 of the fuel supply path 12 sprays the fuel oil into the reaction chamber 40 in a mist state, and promotes the mixed contact between the fuel oil and the high-temperature superheated steam. The fuel oil and the high-temperature superheated steam come into mixed contact in the reaction chamber 40 and are rapidly heated, and the volatile components in the fuel oil evaporate and vaporize. CO, H from volatile matter which evaporated and vaporized 2 , CH 4 Is generated, and the combustible gas is sprayed at high speed from the injection port 39 into the combustion air flow path 50 together with the fuel oil fine particles having an average particle diameter of 150 μm or less. The combustible gas mixes with the combustion air flow A in the combustion air flow path 50 and starts burning immediately, a combustion reaction without combustion delay occurs in the combustion area, and the fuel oil fine particles receive the heat of combustion and rapidly evaporate. Because of combustion, a small amount of soot is generated, and a clean combustion reaction similar to spray combustion of high quality fuel oil occurs in the combustion zone. The nitrogen (fuel N) content in the fuel oil is reduced to N during the gasification reaction. 2 , The nitrogen oxide concentration of the combustion exhaust gas decreases.
[0044]
4 to 6 are sectional views of gasification reaction nozzles according to third to fifth embodiments of the present invention. In each of the drawings, components that are substantially the same as the components of the above-described first and second embodiments are given the same reference numerals.
[0045]
The gasification reaction nozzle 1 (third embodiment) shown in FIG. 4 has a triple pipe structure of a fuel supply pipe 10, a heat insulating pipe 11, and a steam supply pipe 20, and also includes a throat member 43 in a fuel injection section (reactor 30). , A reaction chamber 45 is formed in the throat member 43. The base end (the left end (not shown) in FIG. 4) of the heat insulating pipe 11 is sealed by a blind plate (not shown), and the heat insulating air layer 13 in which the heat insulating air stays is a pipe of the heat insulating pipe 11. It is formed between the wall and the pipe wall of the fuel supply pipe 10. The fuel tube 10 has a reduced diameter at the distal end 11a and a fuel supply port 34 formed at the distal end. A spiral groove is formed on the inner wall surface of the fuel supply passage 12 adjacent to the fuel supply port 34, and the tip of the fuel supply pipe 10 induces a turning motion of the fuel oil F to atomize the fuel oil F. The spray nozzle 15 for jetting is constituted. The distal end portion 14 of the heat insulating pipe 11 is reduced in diameter in accordance with the distal end portion of the fuel supply pipe 10 and has an open distal end surface, so that expansion and contraction of air in the heat insulating air layer 13 is enabled.
[0046]
The throat member 43 is disposed concentrically in front of the spray nozzle 15. The throat member 43 has a generally cylindrical shape, and the hollow portion of the throat member 43 forms a reaction chamber 45. The reaction chamber 45 expands forward, and the circular opening at the tip of the reaction chamber having the maximum inner diameter opens as a fuel injection port 46 toward the combustion area. The rear end portion 49 of the throat member 43 is deformed so as to form the steam flow path 41 between the throat member 43 and the front end portion 14 of the heat insulating pipe 11.
[0047]
The inner diameter of the steam supply pipe 20 is larger than the outer diameter of the throat member 43, and the steam flow passage 42 is formed between the inner peripheral surface of the steam supply pipe 20 and the outer peripheral surface of the throat 43. The distal end portion 44 of the steam supply pipe 20 has a slightly reduced diameter toward the front, and an annular water vapor injection port 47 opens at the distal end surface of the distal end portion 44.
[0048]
The fuel oil F pressure-fed to the fuel supply path 12 is sprayed from the spray nozzle 15 into the throat member 43 in a mist state. The high-temperature superheated steam S heated to 600 ° C. or higher (preferably 800 ° C. or higher) is introduced into the steam supply path 22 and is split by the rear end 49 of the throat member 43 into the steam paths 41 and 42. The dead air retained in the adiabatic air layer 13 increases the heat transfer resistance between the supply passages 12 and 22, and the fuel oil F before spraying receives the sensible heat of the high-temperature superheated steam S and is superheated or carbonized. To prevent
[0049]
A negative pressure acts on the steam flow path 41 due to the high-speed fuel jet injected from the spray nozzle 15 under pressure, and the high-temperature superheated steam flowing into the steam flow path 41 is attracted to the root portion of the fuel jet, and the fuel jet Mixed in. The fuel and the high-temperature superheated steam are contact-mixed in the reaction zone of the reaction chamber 45, the fuel is rapidly heated in the process of contact-mixing with the high-temperature superheated steam, and the volatile components in the fuel oil are vaporized and vaporized to gasify. Part of the fuel is gasified with thermal decomposition, and is thus atomized to an average particle size of 150 μm or less. Part of the gasified gas reacts with the high-temperature superheated steam to form CO, H 2 , CH 4 To light hydrocarbons such as CO, H 2 And a combustible gas containing a relatively large amount of light hydrocarbons is generated in the reaction zone. Organic nitrogen (Fuel N) in fuel oil is converted to N during gasification. 2 , The generation of fuel NOx is suppressed. As in the above embodiments, the supply amount of the high-temperature superheated steam is set within a range of 0.2 kg or more and 0.8 kg or less per 1 kg of fuel oil.
[0050]
The atomized fuel and combustible gas in the reaction chamber 45 are injected from the fuel injection port 46 into the combustion area, and the high-temperature superheated steam in the steam flow path 42 is injected from the steam injection port 47 into the combustion area. The steam flow rate of the steam injection port 47 is set to, for example, about 20 to 30% of the steam flow rate introduced into the reaction chamber 45. The combustible gas mixes with the combustion air flow A in the combustion air flow path 50 and immediately burns gas. The fuel oil fine particles evaporate quickly due to the combustion heat of the combustible gas and combustion air and react with the combustion air. Then, evaporative combustion with no combustion delay occurs in the combustion zone. At the same time, the high-temperature superheated steam ejected from the steam injection port 47 mixes with the combustible gas and the atomized fuel in the combustion zone, and further promotes atomization of the fuel. The combustible gas and the atomized fuel that have undergone such two-stage atomization process burn while mixing with the combustion gas recirculation flow in the combustion zone, and soot generation and NOx generation are effectively prevented.
[0051]
In the above-described first and second embodiments, the front part of the reaction chamber 40 is surrounded by the injection part 32 (FIGS. 1 and 3), and the atomization fuel and the combustible gas are sprayed from the injection port 39. Therefore, the supply pressure of the high-temperature superheated steam has to be set to a relatively high value. However, in this embodiment, the reaction chamber 45 has a front end surface entirely open toward the combustion region. Moreover, since the high-temperature superheated steam is attracted to the fuel jet utilizing the ejector effect of the fuel jet, the supply pressure of the high-temperature superheated steam can be reduced, and the steam pumping load of the steam supply source can be reduced. Such a reduction in the steam pumping load is practically useful in increasing the supply amount of the high-temperature superheated steam S or extending the supply pipe length of the high-temperature superheated steam.
[0052]
The gasification reaction nozzle 1 (fourth embodiment) shown in FIG. 5 is similar to the fourth embodiment, except that the steam passages 41 and 42, the throat member 43, the fuel injection port 46, and the steam injection port 47 are connected to the fuel injection section ( A reaction chamber 45 is formed in the throat member 43 in the reactor 30). However, in the present embodiment, the gasification reaction nozzle 1 is insulated from the fuel oil F in the fuel supply pipe 10 by the saturated steam T at a temperature of about 200 ° C. (steam having a temperature corresponding to the supply pressure). The fourth embodiment differs from the fourth embodiment in that a fuel emulsion in which oil F and saturated steam T are mixed is injected into the reaction chamber 45. That is, a steam flow path 17 that supplies saturated steam T as an atomizing medium is formed in the heat insulating pipe 11, and a mixer 16 is provided at the tip of the fuel supply pipe 10 and the heat insulating pipe 11. A fuel emulsion injection port 14 opening toward the reaction chamber 45 is formed at the center of the tip of the mixer 16. The saturated steam T in the steam passage 17 increases the heat transfer resistance between the supply passages 12 and 22, and the heat transfer from the high-temperature superheated steam S to the fuel oil F causes the fuel oil F before spraying to overheat or carbonize. To prevent The saturated steam T is injected from the steam introduction port 18 toward the center of the mixing chamber 19, and is mixed with the fuel oil F injected from the fuel supply port 34 into the mixing chamber 19. The saturated steam functions as an emulsifier for the fuel oil, and the fuel oil is emulsified (emulsified) and mixed with the steam in the mixing chamber 19. The fuel emulsion is injected into the reaction chamber 45 from the fuel emulsion injection port 14, and attracts and mixes the high-temperature superheated steam in the steam flow path 41 to the root of the fuel emulsion jet by the ejector effect.
[0053]
According to such an embodiment, since the fuel oil F is already emulsified in the mixer 16 and then sprayed into the reaction chamber 45 and mixed with the high-temperature superheated steam, the action of atomizing the fuel in the reaction chamber 45 is promoted. can do. Other configurations and operations are substantially the same as those of the third embodiment, and therefore, further detailed description will be omitted.
[0054]
The gasification reaction nozzle 1 (fifth embodiment) shown in FIG. 6 is provided with a mixer 16 and a steam flow path 17 similarly to the fourth embodiment, and the inside of the fuel supply pipe 10 is filled with saturated steam T at a temperature of about 200 ° C. The fuel oil F is prevented from being overheated or carbonized, and a fuel emulsion of the fuel oil F and the saturated steam T is injected into the reaction chamber 45. However, in the present embodiment, since the high-temperature superheated steam is supplied at a relatively high pressure (10 kPa or more in this embodiment), the steam paths 41 and 42 and the throat member 43 are not provided, and the steam is injected into the reaction chamber 45. The fourth embodiment is different from the fourth embodiment in that the high-temperature superheated steam collides with the fuel emulsion jet injected from the mixer 16. That is, the distal end of the steam supply passage 22 is closed by the annular wall (the supply pipe connecting portion 31), and a plurality of steam supply ports 36 are opened in the annular wall 31. The annular wall 31 expands forward and has a fuel injection port 46 which is largely open toward the combustion area, and is formed on the tip end surface of the gasification reaction nozzle 1. Into the reaction chamber 45 formed in the annular wall 31, relatively high-pressure high-temperature superheated steam is injected from the steam supply port 36, and the fuel emulsion is sprayed from the plurality of fuel emulsion injection ports 14. The high-temperature superheated steam and the fuel emulsion collide and mix in the reaction chamber 45, the fuel emulsion is rapidly heated, and the fuel oil is gasified by evaporation, vaporization, and thermal decomposition of volatile components in the fuel oil, and the average particle size is 150 μm. It is atomized below. Part of the gasified gas reacts with the high-temperature superheated steam to form CO, H 2 , CH 4 To light hydrocarbons such as CO, H 2 And a combustible gas containing a relatively large amount of light hydrocarbons in the reaction zone. Organic nitrogen (Fuel N) contained in fuel oil is converted to N during gasification. 2 , The generation of fuel NOx is suppressed. As in the above embodiments, the supply amount of the high-temperature superheated steam is set within a range of 0.2 kg or more and 0.8 kg or less per 1 kg of fuel oil.
[0055]
FIG. 7 is a block diagram conceptually showing a modification of the gasification reaction nozzle.
In each of the above embodiments, the reaction chambers 40 and 45 are disposed at the tip of the nozzle, and the combustible gas and the atomized fuel are directly sprayed from the reaction chambers 40 and 45 into the combustion area. However, as shown in FIG. The reaction chamber 40 'may be arranged at a position separated from the tip of the nozzle. In this case, the gasification reaction nozzle 1 is provided with a gasification fuel supply path for feeding the combustible gas and the atomized fuel from the reaction chamber 40 ′ to the fuel injection port 39.
[0056]
FIG. 8 is a system configuration diagram showing a configuration of a steam supply system that supplies high-temperature superheated steam to the gasification reaction nozzle.
The steam supply pipe 20 of the gasification reaction nozzle 1 is connected to a steam heating device 60 having a double pipe structure. The steam heating device 60 includes an inner tube (heat transfer tube) 62 provided with alternate combustion type heat storage burner devices 61A: 61B at both ends. The inner tube 62 is inserted into the outer tube 63. A steam passage 64 is formed between the inner tube 62 and the outer tube 63, and steam inflow ports 63 </ b> A: 63 </ b> B are provided at both ends of the outer tube 63. The branch paths 71A: 71B of the steam supply path 70 are connected to the steam inflow ports 63A: 63B, respectively.
[0057]
A number of heat transfer fins 65 are formed on the outer surface of the inner tube 62 at predetermined intervals, and the heat transfer fins 65 increase the heat radiation area of the inner tube 62. A flow path partition plate 66 for partitioning the water vapor flow path 64 is formed on the outer surface of the inner pipe 62 so as to extend the flow path length of the water vapor flow path 64, and a water vapor delivery port 67 is provided at the center of the outer pipe 63. . The upstream end of the steam supply pipe 20 is connected to the steam delivery port 67, and the steam delivery port 67 communicates with the gasification reaction nozzle 1 via the steam supply pipe 20.
[0058]
Each of the burner devices 61A: 61B incorporates a heat accumulator made of a ceramic honeycomb structure or the like. Supply / exhaust paths 72A: 72B for alternately supplying or exhausting combustion air and combustion exhaust gas are connected to the burner devices 61A: 61B, respectively. The supply / discharge paths 72 </ b> A: 72 </ b> B are alternately connected to a combustion air supply path 74 or an exhaust path 75 by a four-way valve type flow path switching valve 73. Fuel supply paths 76A: 76B are connected to burner devices 61A: 61B, respectively. The fuel supply paths 76A: 76B alternately supply the fuel in the fuel supply path 77 to the burner devices 61A: 61B under the control of the fuel control valves 78A: 78B.
[0059]
The fuel control valves 78A: 78B and the flow path switching valve 73 are switched at predetermined time intervals, and the burner devices 61A: 61B repeat combustion and exhaust at predetermined time intervals (for example, 30 to 60 seconds). FIG. 8 shows a state in which the burner device 61B performs a combustion operation and the burner device 61A exhausts the combustion gas in the heat transfer tube (inner tube) 62. After a lapse of a predetermined time, the fuel control valves 78A: 78B and the flow path switching valve 73 are switched, and in the steam heating device 60, the burner device 61A performs combustion operation, and the burner device 61B controls the combustion gas in the heat transfer tube (inner tube) 62. After the elapse of a predetermined time, the steam heating device 60 switches the fuel control valves 78A: 78B and the flow path switching valve 73 and shifts again to the operating state shown in FIG.
[0060]
The flames of the burner devices 61A: 61B are alternately formed in the combustion region in the inner tube 62 by the alternating combustion of the burner devices 61A: 61B, and the combustion gas flowing in the inner tube 62 causes the wall of the inner tube 62 to have a wall. And the heat transfer fins 66 are continuously heated. Saturated steam at a temperature of about 200 ° C. is supplied from the steam supply path 70 to the steam heating device 60. The steam flowing into the steam flow passage 64 from the steam inlet ports 63A: 63B comes into heat transfer contact with the tube wall of the inner tube 62 and the heat transfer fins 66, and is heated to a high temperature of 600 ° C. or more (preferably 800 ° C. or more). Is done. By providing the heat transfer fins 66, the ratio of the heat transfer area of the steam flow passage 64 to the heat transfer area of the combustion gas becomes 10 times or more, and the inner tube 62 efficiently radiates the combustion heat to the steam. Overheating of the inner tube 62 can be prevented. For example, the temperature of the inner tube 62 is only about 1050 ° C. even when steam is heated to 1000 ° C. For this reason, a highly durable metal material such as stainless steel can be used as the material of the inner tube 62. The heated steam is delivered from the steam delivery port 67 to the steam supply pipe 20 and is supplied to the reaction chamber 40 of the gasification reaction nozzle 1, and as described above, comes into contact with the low-quality fuel oil and comes into contact with the fuel oil gasification reaction. Cause.
[0061]
FIG. 9 is a system configuration diagram showing a modification of the steam supply system.
The steam heating device 60 illustrated in FIG. 9 includes a retarder 69 that increases the steam flow rate in the steam flow path 64 instead of the fin tube structure illustrated in FIG. The heat transfer fins 65 may be omitted and only the retarder 69 may be provided on the inner tube 62. The water vapor flows at a relatively high flow velocity in the water vapor passage 64 partitioned by the retarder 69, and the heat transfer coefficient on the water vapor side is increased to several times the heat transfer coefficient on the combustion gas side. The inner tube 62 is prevented from being overheated.
[0062]
FIG. 10 is a cross-sectional view schematically showing a structure of a steam heating device having another configuration for heating steam.
The steam heating device 80 alternately executes the operation mode shown in FIG. 10A and the operation mode shown in FIG. 10B every predetermined time (for example, 30 to 60 seconds).
[0063]
The steam heating device 80 includes a heating furnace main body 88, a four-way valve type flow path switching valve 87, and control valves 85 and 86. The heating furnace main body 88 has a pair of left and right honeycomb heat storage bodies 81, a combustion chamber 82, a combustion air discharge section 83, and a fuel injection nozzle 84. The air and the fuel in the combustion air supply passage SA and the fuel supply passage SF are alternately supplied from the air discharge portion 83 and the fuel injection nozzle 84 to one of the combustion chambers 82 under the control of the control valves 85 and 86. Steam having a very low temperature (100 to 200 ° C.) is supplied from a steam generator having a conventional structure to a steam supply path 70, and is alternately supplied to one of the heat storage bodies 81 under the control of a flow path switching valve 87. . The high-temperature combustion gas generated in the combustion chamber 82 is exhausted from the exhaust passage EA and the exhaust passage EG under the exhaust attraction pressure of the exhaust fan 89 after heating the heat storage body 81. The low-temperature steam is supplied from the distribution path L1 or L2 to the high-temperature heat storage body 81, and is brought into heat transfer contact with the heat storage body 81 and heated to a high temperature of 600 ° C. or higher, preferably 800 ° C. or higher. And supplied to the gasification reaction nozzle 1.
[0064]
FIG. 11 is a system configuration diagram showing a configuration of a fuel atomization device according to an application example of the present invention.
The fuel atomization device shown in FIG. 11 includes an independently installed reactor 90 connected to a steam heating device 60 via a steam supply passage 20. Gasified gas of low-quality fuel oil is supplied from a reactor 90 to a spray nozzle (not shown), and is injected from the spray nozzle into a combustion zone (not shown).
[0065]
The reactor 90 has a reaction chamber to which high-temperature superheated steam and fuel oil are supplied. A fuel oil supply passage 10 provided with an oil pump 91, an oil heater 92, an oil amount control valve 93, and a flow meter 94 is connected to a fuel injection unit 95 of the reactor 90. The fuel injection unit 95 sprays the liquid fuel into the reaction chamber. The oil amount setting signal of the control unit 96 is output to the oil amount adjusting valve 93, and the oil amount detection signal of the flow meter 94 is input to the control unit 96. The control unit 96 outputs a steam amount control signal to the steam amount control valve 97.
[0066]
The flow rate of the steam amount control valve 97 is set based on a specific correlation with the oil amount detected by the flow meter 94, and is set, for example, in proportion to the oil amount. The steam (high-temperature superheated steam) heated by the steam heating device 60 is injected into the reaction chamber of the reactor 90. The low-quality fuel oil is heated by the oil heater 92, sprayed into the reaction chamber from the fuel injection unit 95 in a mist state, and mixed and contacted with high-temperature superheated steam. The fuel oil and the high-temperature superheated steam come into contact with each other in the reaction chamber and are rapidly heated, and the volatile components in the fuel oil evaporate and vaporize to gasify, and a part of the liquid fuel gasifies with thermal decomposition. The hot superheated steam acts as a reforming agent on the gasified hydrocarbon, and at least a part of the gasified gas is CO, H 2 , CH 4 And other light hydrocarbons. Relatively large amount of CO, H 2 , CH 4 Is generated in the reaction chamber, and the combustible gas is supplied to the spray nozzle and is injected from the spray nozzle into the combustion zone.
[0067]
As described above, the preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the above embodiments, and various modifications or changes may be made within the scope of the present invention described in the claims. It is possible.
[0068]
For example, in the above embodiment, only the high-temperature superheated steam and the liquid fuel are introduced into the reaction zone, but it is also possible to introduce an appropriate amount of air or oxygen into the reaction zone in order to maintain the high temperature state of the reaction zone. .
[0069]
Further, the fuel injection nozzle of the present invention may be used as a burner of a steam heating device, or steam may be heated by the combustion heat of the gasification reaction nozzle.
Further, the fuel oil and steam flow rate control means and temperature control means shown in FIG. 11 may be provided in the fuel oil and high temperature steam supply system shown in FIGS.
[0070]
【The invention's effect】
As described above, according to the configuration of the present invention described in claims 1 to 14, kerosene or A heavy oil using a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel such as heavy fuel oil C or residual oil As in the case of high-quality fuel oils such as those described above, a method for atomizing liquid fuel that enables clean stable combustion without combustion delay is provided.
[0071]
Further, according to the configuration of the present invention described in claims 15 and 16, a clean and stable fuel without delay of combustion is used by using a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel such as fuel oil C and residual oil. A combustion method is provided that can achieve combustion and suppress generation of nitrogen oxides.
[0072]
Further, according to the configuration of the present invention described in claims 17 to 22, there is provided a fuel injection nozzle or a fuel atomization device that can make the above atomization method practical.
[Brief description of the drawings]
FIG. 1 is a sectional view showing the structure of a gasification reaction nozzle according to a first embodiment of the present invention.
FIG. 2 is a block diagram conceptually showing a configuration of a gasification reaction nozzle shown in FIG.
FIG. 3 is a cross-sectional view illustrating a structure of a gasification reaction nozzle according to a second embodiment of the present invention.
FIG. 4 is a sectional view showing the structure of a gasification reaction nozzle according to a third embodiment of the present invention.
FIG. 5 is a sectional view showing the structure of a gasification reaction nozzle according to a fourth embodiment of the present invention.
FIG. 6 is a sectional view showing a structure of a gasification reaction nozzle according to a sixth embodiment of the present invention.
FIG. 7 is a block diagram conceptually showing a modification of the gasification reaction nozzle.
FIG. 8 is a system configuration diagram showing a configuration of a steam supply system that supplies high-temperature superheated steam to a gasification reaction nozzle.
FIG. 9 is a system configuration diagram showing a modification of the steam supply system.
FIG. 10 is a sectional view schematically showing a structure of a steam heating device having another configuration for heating steam.
FIG. 11 is a system configuration diagram showing a configuration of a fuel atomization device according to an application example of the present invention.
FIG. 12 is a block diagram conceptually showing a schematic configuration of a spray burner of an internal mixing type.
[Explanation of symbols]
1 Gasification reaction nozzle
10 Fuel supply pipe
12 Fuel supply path
15 Spray nozzle
16 mixer
20 Steam supply pipe
22 Steam supply path
30 reactor
34 Fuel supply port
36 Steam supply port
39 Injection port
40, 40 ', 45 Reaction chamber
46 Fuel injection port
50 Combustion air flow path
60, 80 Steam heating device
70 Steam supply path
90 Independently installed reactor

Claims (22)

炭化水素系液体燃料を燃焼域に供給すべく、該液体燃料を微粒化する液体燃料の微粒化方法において、
水蒸気を600℃以上の高温過熱水蒸気に加熱し、前記液体燃料と前記高温過熱水蒸気とを反応室に供給し、
前記液体燃料及び高温過熱水蒸気を反応室内に噴射して、該反応室内の反応域で前記液体燃料及び高温過熱水蒸気を混合し、該液体燃料の揮発分を蒸発・気化させるとともに、液体燃料を高温過熱水蒸気で少なくとも部分的に熱分解し、これにより、前記液体燃料を150μm以下の平均粒径に微粒化することを特徴とする液体燃料の微粒化方法。
In order to supply a hydrocarbon-based liquid fuel to a combustion zone, a liquid fuel atomization method for atomizing the liquid fuel,
Heating the steam to a high-temperature superheated steam of 600 ° C. or higher, supplying the liquid fuel and the high-temperature superheated steam to a reaction chamber,
The liquid fuel and the high-temperature superheated steam are injected into the reaction chamber, and the liquid fuel and the high-temperature superheated steam are mixed in the reaction zone in the reaction chamber, and the volatile components of the liquid fuel are evaporated and vaporized. A method for atomizing liquid fuel, wherein the liquid fuel is at least partially thermally decomposed with superheated steam, whereby the liquid fuel is atomized to an average particle size of 150 μm or less.
前記液体燃料は、液温80℃で粘度30cSt 以上の値を示す高粘度且つ低質又は重質の炭化水素系液体燃料からなることを特徴とする請求項1に記載の微粒化方法。2. The atomization method according to claim 1, wherein the liquid fuel comprises a high-viscosity, low-quality or heavy hydrocarbon-based liquid fuel having a viscosity of 30 cSt or more at a liquid temperature of 80 ° C. 3. 800℃以上に加熱した前記高温過熱水蒸気を前記反応室に導入して、前記反応域の温度を600℃以上に保持し、液体燃料の化学反応を促進することを特徴とする請求項1又は2のいずれか1項に記載の微粒化方法。The high-temperature superheated steam heated to 800 ° C. or higher is introduced into the reaction chamber to maintain the temperature of the reaction zone at 600 ° C. or higher to promote a chemical reaction of the liquid fuel. Atomization method according to any one of the above. 前記高温過熱水蒸気の供給量は、液体燃料1kg当たり0.2kg〜0.8kgの範囲内に設定されることを特徴とする請求項1乃至3のいずれか1項に記載の微粒化方法。4. The atomization method according to claim 1, wherein a supply amount of the high-temperature superheated steam is set in a range of 0.2 kg to 0.8 kg per 1 kg of liquid fuel. 5. 前記高温過熱水蒸気の供給量は、前記液体燃料の供給量に応じて設定変更されることを特徴とする請求項1乃至4のいずれか1項に記載の微粒化方法。5. The atomization method according to claim 1, wherein the supply amount of the high-temperature superheated steam is changed according to the supply amount of the liquid fuel. 6. 前記高温過熱水蒸気の供給量は、前記液体燃料の供給量が増大するにつれて増量されることを特徴とする請求項5に記載の微粒化方法。The atomization method according to claim 5, wherein the supply amount of the high-temperature superheated steam is increased as the supply amount of the liquid fuel increases. 水蒸気の加熱温度は、前記液体燃料のC/H 比に応じて設定変更されることを特徴とする請求項1乃至6のいずれか1項に記載の微粒化方法。The atomization method according to any one of claims 1 to 6, wherein a heating temperature of the steam is set and changed according to a C / H ratio of the liquid fuel. 水蒸気の加熱温度は、前記液体燃料のC/H 比が増大するにつれて高温に設定されることを特徴とする請求項7に記載の微粒化方法。The atomization method according to claim 7, wherein the heating temperature of the steam is set to a higher temperature as the C / H ratio of the liquid fuel increases. 水蒸気の加熱温度は、前記液体燃料の自己着火温度以上に設定されることを特徴とする請求項1乃至8のいずれか1項に記載の微粒化方法。The atomization method according to any one of claims 1 to 8, wherein a heating temperature of the steam is set to be equal to or higher than an auto-ignition temperature of the liquid fuel. 前記高温過熱水蒸気の供給管内に空気管又は飽和水蒸気管を配置し、該空気管又は飽和水蒸気管内に前記液体燃料の供給管を配置し、前記空気又は飽和水蒸気により前記液体燃料の過熱を防止するようにしたことを特徴とする請求項1乃至9のいずれか1項に記載の微粒化方法。An air pipe or a saturated steam pipe is arranged in the supply pipe of the high-temperature superheated steam, and a supply pipe of the liquid fuel is arranged in the air pipe or the saturated steam pipe, and the liquid fuel is prevented from being overheated by the air or the saturated steam. The atomization method according to any one of claims 1 to 9, wherein: 前記反応室に供給される液体燃料の温度は、沸点温度未満に設定されることを特徴とする請求項1乃至10のいずれか1項に記載の微粒化方法。The atomization method according to any one of claims 1 to 10, wherein a temperature of the liquid fuel supplied to the reaction chamber is set to be lower than a boiling point temperature. 前記液体燃料に飽和水蒸気を混合し、燃料エマルジョンとして前記反応室に噴射することを特徴とする請求項1乃至11のいずれか1項に記載の微粒化方法。The atomization method according to any one of claims 1 to 11, wherein a saturated steam is mixed with the liquid fuel and the mixture is injected into the reaction chamber as a fuel emulsion. 前記反応室内に噴射する液体燃料噴流又は燃料エマルジョン噴流のエジェクタ効果により、該液体燃料噴流又は燃料エマルジョン噴流に前記高温過熱水蒸気を誘引混合しながら液体燃料及び高温過熱水蒸気を前記反応室内に噴射することを特徴とする請求項1乃至12のいずれか1項に記載の微粒化方法。Injecting liquid fuel and high-temperature superheated steam into the reaction chamber while attracting and mixing the high-temperature superheated steam into the liquid fuel jet or fuel emulsion jet by an ejector effect of the liquid fuel jet or the fuel emulsion jet injected into the reaction chamber. The atomization method according to any one of claims 1 to 12, wherein: 実質的に前記液体燃料の全量を前記反応室でガス化することを特徴とする請求項1乃至13のいずれか1項に記載の微粒化方法。The atomization method according to any one of claims 1 to 13, wherein substantially all of the liquid fuel is gasified in the reaction chamber. 請求項1乃至13のいずれか1項に記載の微粒化方法を用いて微粒化した前記液体燃料の噴霧群と、前記反応域に生成した可燃性ガスとの混合流を燃料噴射口から燃焼域に噴射し、可燃性ガス及び燃焼用空気の燃焼熱で前記噴霧群の燃料微粒子を蒸発させ、該噴霧群の蒸発燃焼を促すことを特徴とする燃焼方法。14. A mixed flow of a spray group of the liquid fuel atomized by the atomization method according to claim 1 and a combustible gas generated in the reaction zone from a fuel injection port to a combustion zone. A combustion method characterized by injecting fuel into the spray group and evaporating the fuel particles in the spray group with the combustion heat of the combustible gas and the combustion air to promote the evaporative combustion of the spray group. 請求項14に記載の微粒化方法により生成した可燃性ガスを燃料噴射口から前記燃焼域に噴射し、可燃性ガス及び燃焼用空気の気体燃焼反応を前記燃焼域に生じさせることを特徴とする燃焼方法。A flammable gas generated by the atomization method according to claim 14 is injected from a fuel injection port into the combustion zone to cause a gas combustion reaction of the flammable gas and combustion air in the combustion zone. Burning method. 請求項1乃至11のいずれか1項に記載の微粒化方法を実施可能な燃料噴射ノズルであって、
高温過熱水蒸気及び液体燃料を導入可能な前記反応室をノズル先端部に備えるとともに、前記反応室に生成した前記可燃性ガスと、該反応室において微粒化した前記液体燃料の噴霧群との混合流を前記燃焼域に噴射する噴射口をノズル先端に備えたことを特徴とする燃料噴射ノズル。
A fuel injection nozzle capable of performing the atomization method according to any one of claims 1 to 11,
The reaction chamber capable of introducing high-temperature superheated steam and liquid fuel is provided at the nozzle tip, and a mixed flow of the combustible gas generated in the reaction chamber and the atomized liquid fuel spray group in the reaction chamber A fuel injection nozzle provided with an injection port for injecting fuel into the combustion region at a nozzle tip.
請求項12に記載の微粒化方法を実施可能な燃料噴射ノズルであって、
前記飽和水蒸気を前記液体燃料に混合する混合室と、前記高温過熱水蒸気及び燃料エマルジョンを導入可能な前記反応室とがノズル先端部に配設され、前記混合室で混合した燃料エマルジョンと前記高温過熱水蒸気とが前記反応室に流入し、
前記反応室に生成した前記可燃性ガスと、該反応室において微粒化した前記液体燃料の噴霧群との混合流を前記燃焼域に噴射する噴射口がノズル先端に設けられたことを特徴とする燃料噴射ノズル。
A fuel injection nozzle capable of performing the atomization method according to claim 12,
A mixing chamber for mixing the saturated steam with the liquid fuel and the reaction chamber into which the high-temperature superheated steam and the fuel emulsion can be introduced are provided at a nozzle tip, and the fuel emulsion mixed in the mixing chamber and the high-temperature superheat are provided. Steam and flows into the reaction chamber,
An injection port for injecting a mixed flow of the combustible gas generated in the reaction chamber and the spray group of the liquid fuel atomized in the reaction chamber into the combustion area is provided at a nozzle tip. Fuel injection nozzle.
請求項14に記載の微粒化方法を実施可能な燃料噴射ノズルであって、高温過熱水蒸気及び液体燃料を導入可能な前記反応室をノズル先端部に備えるとともに、前記反応室に生成した前記可燃性ガスを前記燃焼域に噴射する噴射口をノズル先端に備えたことを特徴とする燃料噴射ノズル。A fuel injection nozzle capable of performing the atomization method according to claim 14, wherein the reaction chamber capable of introducing high-temperature superheated steam and liquid fuel is provided at a nozzle tip, and the flammability generated in the reaction chamber is provided. A fuel injection nozzle, characterized in that an injection port for injecting gas into the combustion zone is provided at a nozzle tip. 前記高温過熱水蒸気の一部は、燃焼域に流出し、前記噴射口から噴流した前記可燃性ガス及び微粒化燃料と混合することを特徴とする請求項17又は18に記載の燃料噴射ノズル。19. The fuel injection nozzle according to claim 17, wherein a portion of the high-temperature superheated steam flows out into a combustion zone and mixes with the combustible gas and atomized fuel jetted from the injection port. 水蒸気を600℃以上に加熱する水蒸気加熱装置を備えたことを特徴とする請求項17乃至20のいずれか1項に記載の燃料噴射ノズル。The fuel injection nozzle according to any one of claims 17 to 20, further comprising a steam heating device for heating steam to 600 ° C or higher. 請求項1乃至14のいずれか1項に記載の微粒化方法を実施するための燃料微粒化装置であって、
前記反応室は、可燃性ガス供給路を介して燃料噴射ノズルの燃料噴射口と連通しており、前記液体燃料又は燃料エマルジョンを反応室内に供給する液体燃料供給路が該反応室の燃料導入口に接続され、前記高温過熱水蒸気を供給する高温過熱水蒸気供給路が前記反応室の水蒸気導入口に接続され、前記燃料導入口は液体燃料又は燃料エマルジョンを反応室内に噴霧し、前記水蒸気導入口は高温過熱水蒸気を反応室内に噴射し、液体燃料又は燃料エマルジョンと高温過熱水蒸気とは反応室内の反応域で接触混合し、該反応域に可燃性ガスを生成し、前記可燃性ガス供給路は可燃性ガスを燃料噴射ノズルに供給することを特徴とする燃料微粒化装置。
A fuel atomization device for performing the atomization method according to any one of claims 1 to 14,
The reaction chamber is in communication with a fuel injection port of a fuel injection nozzle via a combustible gas supply path, and a liquid fuel supply path for supplying the liquid fuel or the fuel emulsion into the reaction chamber is connected to a fuel inlet of the reaction chamber. A high-temperature superheated steam supply path for supplying the high-temperature superheated steam is connected to a steam inlet of the reaction chamber, the fuel inlet sprays a liquid fuel or a fuel emulsion into the reaction chamber, and the steam inlet is The high-temperature superheated steam is injected into the reaction chamber, and the liquid fuel or the fuel emulsion and the high-temperature superheated steam are contact-mixed in a reaction zone in the reaction chamber to generate a flammable gas in the reaction zone, and the flammable gas supply path is flammable. A fuel atomizing device for supplying a reactive gas to a fuel injection nozzle.
JP2002357342A 2002-11-26 2002-12-09 Liquid fuel atomizing method Pending JP2004225919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357342A JP2004225919A (en) 2002-11-26 2002-12-09 Liquid fuel atomizing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002341571 2002-11-26
JP2002357342A JP2004225919A (en) 2002-11-26 2002-12-09 Liquid fuel atomizing method

Publications (1)

Publication Number Publication Date
JP2004225919A true JP2004225919A (en) 2004-08-12

Family

ID=32910855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357342A Pending JP2004225919A (en) 2002-11-26 2002-12-09 Liquid fuel atomizing method

Country Status (1)

Country Link
JP (1) JP2004225919A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162095A (en) * 2004-12-02 2006-06-22 Idemitsu Eng Co Ltd Burner and fuel combustion equipment having this burner
JP2006200876A (en) * 2005-01-18 2006-08-03 Air Products & Chemicals Inc Emulsion atomizer nozzle, burner and method for oxy-fuel burner application
JP2007078331A (en) * 2005-09-16 2007-03-29 Petroleum Energy Center Burner, and high-temperature air combustion furnace
JP2007247515A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Internal combustion engine
JP2013081923A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and mixing method of gas and liquid
JP2013081924A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and fluid atomizing device using the spray nozzle
WO2014024842A1 (en) * 2012-08-08 2014-02-13 三菱重工業株式会社 Burner tip, combustion burner, and boiler
WO2015045835A1 (en) * 2013-09-24 2015-04-02 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
JP2015081696A (en) * 2013-10-21 2015-04-27 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, boiler
JP2015117868A (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
JP2016006377A (en) * 2015-09-24 2016-01-14 新潟原動機株式会社 Gas turbine combustor
CN105444167A (en) * 2015-12-30 2016-03-30 上海华之邦科技股份有限公司 Internal mixing type bubble atomization oil gun
WO2016104430A1 (en) * 2014-12-22 2016-06-30 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
EP3054211A1 (en) * 2015-02-05 2016-08-10 Mitsubishi Hitachi Power Systems, Ltd. Atomizer and combustion device using the same
JP2016164071A (en) * 2016-05-30 2016-09-08 ヤンマー株式会社 Exhaust gas purification device on ship
CN109882272A (en) * 2019-03-11 2019-06-14 无锡威孚力达催化净化器有限责任公司 A kind of flow guiding type tail gas urea mixing device
JP2020180773A (en) * 2019-04-23 2020-11-05 株式会社イスト Combustor
JP2021183900A (en) * 2020-05-21 2021-12-02 中外炉工業株式会社 Superheated steam production device
WO2023228634A1 (en) * 2022-05-25 2023-11-30 パナソニックIpマネジメント株式会社 Atomization device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500849B2 (en) 2004-01-16 2009-03-10 Air Products And Chemicals, Inc. Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications
JP2006162095A (en) * 2004-12-02 2006-06-22 Idemitsu Eng Co Ltd Burner and fuel combustion equipment having this burner
JP2006200876A (en) * 2005-01-18 2006-08-03 Air Products & Chemicals Inc Emulsion atomizer nozzle, burner and method for oxy-fuel burner application
JP2009030971A (en) * 2005-01-18 2009-02-12 Air Products & Chemicals Inc Emulsion atomizer nozzle, burner, and method for oxygen-containing fuel burner application
JP2007078331A (en) * 2005-09-16 2007-03-29 Petroleum Energy Center Burner, and high-temperature air combustion furnace
JP2007247515A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Internal combustion engine
JP2013081923A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and mixing method of gas and liquid
JP2013081924A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and fluid atomizing device using the spray nozzle
WO2014024842A1 (en) * 2012-08-08 2014-02-13 三菱重工業株式会社 Burner tip, combustion burner, and boiler
JP2014035126A (en) * 2012-08-08 2014-02-24 Mitsubishi Heavy Ind Ltd Burner tip, combustion burner, and boiler
WO2015045835A1 (en) * 2013-09-24 2015-04-02 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
JP2015081696A (en) * 2013-10-21 2015-04-27 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, boiler
WO2015060089A1 (en) * 2013-10-21 2015-04-30 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
US10378758B2 (en) 2013-10-21 2019-08-13 Mitsubishi Hitachi Power Systems, Ltd. Burner tip, combustion burner, and boiler
WO2015093377A1 (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
JP2015117868A (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
WO2016104430A1 (en) * 2014-12-22 2016-06-30 三菱日立パワーシステムズ株式会社 Burner tip, combustion burner, and boiler
US10113746B2 (en) 2015-02-05 2018-10-30 Mitsubishi Hitachi Power Systems, Ltd. Atomizer and combustion device using the same
EP3054211A1 (en) * 2015-02-05 2016-08-10 Mitsubishi Hitachi Power Systems, Ltd. Atomizer and combustion device using the same
CN105864760A (en) * 2015-02-05 2016-08-17 三菱日立电力***株式会社 Atomizer and combustion device using the same
JP2016006377A (en) * 2015-09-24 2016-01-14 新潟原動機株式会社 Gas turbine combustor
CN105444167A (en) * 2015-12-30 2016-03-30 上海华之邦科技股份有限公司 Internal mixing type bubble atomization oil gun
JP2016164071A (en) * 2016-05-30 2016-09-08 ヤンマー株式会社 Exhaust gas purification device on ship
CN109882272A (en) * 2019-03-11 2019-06-14 无锡威孚力达催化净化器有限责任公司 A kind of flow guiding type tail gas urea mixing device
JP2020180773A (en) * 2019-04-23 2020-11-05 株式会社イスト Combustor
JP2021183900A (en) * 2020-05-21 2021-12-02 中外炉工業株式会社 Superheated steam production device
JP7340561B2 (en) 2020-05-21 2023-09-07 中外炉工業株式会社 Superheated steam production equipment
WO2023228634A1 (en) * 2022-05-25 2023-11-30 パナソニックIpマネジメント株式会社 Atomization device

Similar Documents

Publication Publication Date Title
JP2004225919A (en) Liquid fuel atomizing method
KR100696091B1 (en) Apparatus and method for preparing and delivering fuel
US5617716A (en) Method for supplying vaporized fuel oil to a gas turbine combustor and system for same
JP4029179B2 (en) Processes and apparatus for the combustion of liquid fuels
US7363867B2 (en) Method and apparatus for adding reducing agent to secondary overfire air stream
KR20070040294A (en) Fuel system and method of reducing emission
WO1979000773A1 (en) Dual phase fuel vaporizing combustor
JP2010261714A (en) Liquid fuel type hvof thermal spray gun and burner design
PL187189B1 (en) Liquid fuel fired burner with pre-evaporation and premixing features
US6067789A (en) Method and appliance for operating a gas turbine installation combustion chamber with liquid fuel
JP2016142248A (en) Spray nozzle and combustion apparatus using spray nozzle
JP2006046765A (en) Combustion device
US20100215864A1 (en) Method of high intensity cooling of permeable burner block of a flame spray apparatus
US20050079458A1 (en) Heater with an atomizer nozzle
JP2002115812A (en) Combustion method and apparatus for water-fossile fuel mixed emulsion
WO2010073710A1 (en) Gasifying combustion device
JP2010078313A (en) Gasifying combustion apparatus
JPS6220372B2 (en)
KR100804185B1 (en) Fuel vaporizer and burner using thereof
JP5214890B2 (en) Water gas burner
JP2003054905A (en) Reforming apparatus for fuel cell
KR101557991B1 (en) Combustion device using Brown&#39;s gas for promoting combustion of the fuel gas and method for the same
JPH04356606A (en) Method of burning liquid fuel and burner
JP6886681B2 (en) Liquid fuel reforming / atomizing method and reforming / atomizing equipment
JPH05106806A (en) Combustion method and combustion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127