JP2004225832A - Metal seal - Google Patents

Metal seal Download PDF

Info

Publication number
JP2004225832A
JP2004225832A JP2003015725A JP2003015725A JP2004225832A JP 2004225832 A JP2004225832 A JP 2004225832A JP 2003015725 A JP2003015725 A JP 2003015725A JP 2003015725 A JP2003015725 A JP 2003015725A JP 2004225832 A JP2004225832 A JP 2004225832A
Authority
JP
Japan
Prior art keywords
seal
flat surface
metal seal
contact flat
surface portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015725A
Other languages
Japanese (ja)
Other versions
JP4260496B2 (en
Inventor
Hiroki Oida
弘紀 笈田
Takayoshi Mitsui
孝禎 三ツ井
Tetsuya Ashida
哲哉 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003015725A priority Critical patent/JP4260496B2/en
Publication of JP2004225832A publication Critical patent/JP2004225832A/en
Application granted granted Critical
Publication of JP4260496B2 publication Critical patent/JP4260496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasket Seals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal seal with a coating layer moved while being crushed for preventing the degradation of sealing performance. <P>SOLUTION: The metal seal comprises a wholly circular metal seal body 3 and the coating layer 4 coating the seal body 3. Small protrusions P<SB>1</SB>, P<SB>2</SB>are protruded on curved protruded seal surfaces 11, 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属シールに関する。
【0002】
【従来の技術】
従来からシール材としてゴム製Oリングが広く使用されているが、高温、低温、ゴム腐食ガス環境等では使用できない場合がある。そこで、従来から以下の▲1▼〜▲4▼のような金属製のシールが用いられている。即ち、▲1▼メタルOリング、▲2▼メタルCリング、▲3▼バネ入りCリング、▲4▼レジェントシール等が使用されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
実開昭62−028959号公報
【0004】
【発明が解決しようとする課題】
しかしながら、各々の金属シールには以下のような問題がある。
▲1▼メタルOリング
最も一般的で実績のある金属シールであり、安定したシール性能が得られるが、締付力が大きく、かつ、復元量が0.05mm程度と小さい等の欠点がある。
▲2▼メタルCリング
メタルOリングに比べて締付力は小さく、かつ復元量も比較的大きく、0.05mm〜0.15mm程度である。しかしながら、用途(使用条件)によっては、依然、締付力の値が大きく、復元量も不足する。
▲3▼バネ入りCリング
復元量は0.1 〜0.15mmと大きい。しかしながら、用途(使用条件)によっては復元量が不足する。さらに、コイルバネを包み込むようにCリング本体内に入れるので、製作が面倒で構造が複雑化すると共に、締付力が大きく、コストも高くなる欠点がある。
▲4▼レジェントシール
他のメタルシールに比べて締付力が小さく、かつ復元量も0.1 〜0.2 mmと大きい。しかし、切削加工であるため、製作が面倒で、非常に高価である。
【0005】
要するに、従来の金属シールでは、製作が容易で、締付力が小さく、かつ、復元力が大きくて、安価であるという全ての条件(要望)を満足させ得るものが、なかった。
特に、シールを装着する取付部材の材質が、セラミックス等の脆い材質や、アルミニウム等の柔らかい材質に、不適当であったり、シール溝の深さ寸法公差が大きい場合に、シール性(密封性)にバラツキを生じ易かったり、シールが使用可能なセット高さ範囲が狭い等の問題やシールの取り付けに注意を要するという問題もあった。
【0006】
また、シール性(密封性)を高めるために、樹脂やゴムを金属製シール本体の表面に被覆したコーティング層を有する金属シールも、提案されているが、相手部材にシール面が押圧された装着圧縮状態(特に高温使用条件下)に於て、コーティング層が軟化して、シール面のコーティング層が圧縮を受けない側へ移動(フロー)してゆくという問題がある。
このようなコーティング層の移動(フロー)によっての逃げが生ずると、シール面は金属製シール本体が直接に相手部材に接触し、密封性が低下することとなる。
【0007】
【課題を解決するための手段】
本発明は、全体が環状の金属製シール本体と、該シール本体を被覆したコーティング層とを備え、相互に平行な一対の接触平坦面部の間に介装される金属シールであって、該一対の接触平坦面部に夫々当接する弯曲凸状シール面に於て、上記コーティング層にその内面から食い込むように小突起が上記シール本体に突設されている。
また、全体が環状の金属製シール本体と、該シール本体を被覆したコーティング層とを備え、相互に平行な一対の接触平坦面部の間に介装される金属シールであって、該一対の接触平坦面部に夫々当接する弯曲凸状シール面に於て、上記コーティング層の内面の一部が食い込んだ小凹溝が上記シール本体に凹設されている。
【0008】
また、金属製シール本体は、中間基部と、上記接触平坦面部の一方に当接する一方の弯曲シール面を形成する第1接触凸部と、上記接触平坦面部の他方に当接する他方の弯曲シール面を形成する第2接触凸部と、を備え、該金属製シール本体は、装着圧縮状態にて上記一対の接触平坦面部から受ける押圧力によって、上記中間基部を中心に回転する捩れ弾性変形を生ずるように構成されている。
また、上記一対の接触平坦面部と直交する方向から見て、全体が環状の上記シール本体の周方向に沿って全体が環状に、上記小突起が形成されている。
あるいは、上記一対の接触平坦面部と直交する方向から見て、全体が環状の上記シール本体の周方向に沿って全体が環状に、上記小凹溝が形成されている。
【0009】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
図1(A)と図2は、本発明に係る金属シール(メタルシール)Sの実施の一形態を示し、自由状態(未装着状態)の断面図であり、図1(B)は使用状態───装着圧縮状態───を示す断面図である。
【0010】
この金属シールSは、全体が円環状や長円環状や楕円環状や(角が丸味のある)略矩形環状等の閉じた環状の形状を有する。しかも、この金属シールSは、ステンレス鋼やばね鋼やその他の金属から成る金属製シール本体3と、このシール本体3に(全面に略均一な暑さ寸法で)被覆したコーティング層4とを、備えている。
【0011】
金属製シール本体3は、切削や研削等の機械加工にて作製され、及び/又は、プレス加工等の塑性加工等で作製される。コーティング層4は、PTFE、FEP等のプラスチック、あるいは、各種ゴムから成る。
そして、この金属シールSは、相互に平行な一対の接触平坦面部1,2の間に介装されるものであり、この接触平坦面部1,2と直交する方向から見て、全体が(上述のように)円形、長円、楕円や略矩形の環状である。
【0012】
金属製シール本体3の横断面形状は、略S字状(波形状)であり、さらに詳しく説明すれば、中間基部5と、第1接触平坦面部1に当接する一方の弯曲凸状シール面11を形成する弯曲山型の第1接触凸部21と、第2接触平坦面部2に当接する他方の弯曲凸状シール面12を形成する第2接触凸部22と、を備えている。
【0013】
言い換えると、シール本体3は、第1接触凸部21を有する内周端部6と、中間基部5と、第2接触凸部22を有する外周端部7と、から成り、中間基部5は、内周端部6から外周端部7へしだいに拡径するテーパ状であると共に、この内周端部6と中間基部5と外周端部7は同一肉厚寸法で、緩やかに弯曲した断面S字状である。なお、本発明では、S字状とは、反転S字状───Z字状───をも含むものと定義する。また、同一肉厚寸法とせず、肉厚寸法を大小変化させても良い。
【0014】
このように、この金属シールS(シール本体3)は、緩やかな弯曲面にて構成された略円錐台形の皿バネ状であるということができ、内周端部6によって、孔部8が形成される。なお、図1〜図2(及び、後述の図3〜図5)に於て、接触平坦面部1,2は全体に平坦面として内径及び外径方向へ連続している場合を図示したが、所望により、この接触平坦面部1,2の内径側又は/及び外径側に、段差部を介して複数段状に平坦面を形成したり、あるいは、突起部を形成しても自由である(図示省略)。
【0015】
図2は金属シールSの自由状態(未装着状態)であり、図1(A)は、第1接触平坦面部1と第2接触平坦面部2の間隔寸法が十分に大きく(開いて)、金属シールSが圧縮力(締付力又は押圧力ということもある)が零の初期状態を示す。図1(B)は一対の上記接触平坦面部1,2が相互に接近して、両者の間隔寸法を減少させて、圧縮力(締付力又は押圧力ということもある)が比較的大きく作用している装着圧縮状態を示す。この図1(A)と(B)とを比較すれば分かるように、金属シールS(シール本体3)は、一対の接触平坦面部1,2から受ける押圧力によって、中間基部5を中心に回転する捩れ弾性変形を、生じている。
【0016】
そして、一対の接触平坦面部1,2に夫々当接する弯曲凸状シール面11, 12に於て、コーティング層4にその内面から食い込むように、断面三角形の小突起P ,P が、シール本体3に突設されている。
この小突起P ,P は、接触平坦面部1,2と直交する方向から見て、全体が(前述の)環状のシール本体3の周方向に沿って、全体が環状に形成されている。つまり、小突起P ,P はシール本体3と、相似形の環状となる。
【0017】
図1と図2に示す実施の形態では、図1(B)に示した装着圧縮状態にて、弯曲凸状シール面11, 12の内で最も接触平坦面部1,2に接近する位置に、小突起P ,P を配設した場合を例示し、かつ、各々単数本の場合を例示する。図1(B)に示すように、接触平坦面部1,2から相互に接近する方向の押圧力が作用したとき、小突起P ,P が突支りとなり、コーティング層4が過大に圧縮されて、図1(B)の左右方向に───内外径方向に───移動する(逃げる)のを、防止する。つまり、コーティング層4の損傷を防止して、シール性(密封性)を維持できる。
【0018】
なお、突起P ,P の高さ寸法は、コーティグ層4の平均肉厚寸法の25%〜90%とする。特に、50%〜75%とするのが望ましい。その理由は、下限値未満であるとコーティング層4が接触平坦面部1,2にて圧潰されつつ内外径方向へ移動(フロー)する量が増加して、シール性(密封性)が悪化するためであり、逆に上限値を越えると接触平坦面部1,2を傷付け易くなり、金属シールSのなじみが悪くなるためである。ところで、本発明に於て、図1(B)に示した装着圧縮状態で小突起P ,P は塑性変形させない。
【0019】
次に、図3は他の実施の形態を示し、図3(A)は図1(A)に、図3(B)は図1(B)に、夫々対応した状態を示す。この図3(A)(B)では、小突起P を、孔部8を形成する内周端面に最も近い弯曲凸状シール面11の内端部に突設し、また、小突起P を、外周端面に最も近い弯曲凸状シール面12外端部に突設している。
【0020】
図3(B)に示す装着圧縮状態で、弯曲凸状シール面11, 12が最も接触平坦面部1,2に接近した部位と、各小突起P ,P との間に、コーティング層4が必ず残留するポケット部(凹所)13, 14が形成される。このようにして、コーティング層4が内外径方向へ移動(フロー)するのを阻止できる。なお、小突起P ,P の高さ寸法は前述の図1の場合と同様とする。
【0021】
次に、図4は別の実施の形態を示し、図4(A)は図1(A)に、図4(B)は図1(B)に、夫々対応した状態を示す。この図4(A)(B)では、弯曲凸状シール面11に、2個(本)の小突起P ,P を配設し、また、弯曲凸状シール面12には、2個(本)の小突起P ,P を配設している。
図4(B)に示す装着圧縮状態で、弯曲凸状シール面11, 12が最も接触平坦面部1,2に接近した部位を中心に、2個(本)の小突起P とP 、及び、2個(本)の小突起P とP が、対応している。
【0022】
小突起P とP の間、及び、小突起P とP の間に、夫々、形成されたポケット部(凹所)13, 14には、必ずコーティング層4の一部が残留する。しかも、直接的に、小突起P ,P は第1接触平坦面部1の押圧力に対する突支となり、かつ、小突起P ,P は第2接触平坦面部2の押圧力に対する突支となり、一層確実に、コーティング層4の移動(逃げ)を防止できる。小突起P ,P 又はP ,P の高さ寸法については、図1の場合と同様とする。
この図4の場合、接触平坦面部1,2に直交する方向から見れば、2条の小突起P とP 、及び、2条の小突起P とP は、シール本体3の周方向に沿った平行な閉じた環状を呈する。
【0023】
次に、図5はさらに別の実施の形態を示し、図5(A)は図1(A)に、図5(B)は図1(B)に、夫々対応した状態を示す。この図5(A)(B)に於て、図1(A)(B)で説明した小突起P ,P の代わりに、小凹溝Q ,Q が設けられる。
さらに詳しく説明すれば、相互に平行な一対の接触平坦面部1,2に夫々当接する弯曲凸状シール面11, 12に於て、シール本体3に小凹溝Q ,Q が夫々凹設され、コーティング層4の内面の一部がこの小凹溝Q ,Q に食い込んでいる。なお、コーティング層4の外表面は、この小凹溝Q ,Q に対応した位置で、(凹状とならず)連続弯曲面状である。
【0024】
接触平坦面部1,2と直交する方向から見て、シール本体3の周方向に沿って、この小凹溝Q ,Q は全体環状に形成されている。つまり、この小凹溝Q ,Q はシール本体3と相互形の環状である。
さらに具体的に説明すると、各小凹溝Q ,Q は、横断面略半円形(又は半楕円形)であり、図5(B)に示した装着圧縮状態にて、弯曲凸状シール面11, 12の内で最も接触平坦面部1,2に接近する位置に、小凹溝Q ,Q は配設した場合を例示し、かつ、各々単数本の場合を示す。
【0025】
図5(B)に示すように、接触平坦面部1,2が相互に接近して、押圧力が金属シールSに作用した際、小凹溝Q ,Q が(前述の)ポケット部13, 14(図4参照)を構成して、シール性(密封性)を確保する。なお、小凹溝Q ,Q の幅寸法は当然にシール面の幅よりも小さく設定する。また、小凹溝Q ,Q の深さ寸法は、コーティング層4の厚さの75%以下とするのが良い。その理由はコーティング層4の内面の一部が小凹溝Q ,Q 内に十分に充填される必要があるためである。
【0026】
ところで、本発明は上述の実施の形態に限定されず、設計変更自由であって、図1〜図4に示した横断面三角形の小突起P ,P を、横断面半円形、半楕円形、四角形等としても良く、図1と図3とを結合した各2本ずつの小突条P ,P 及びP ,P としても良く、さらには、図3と図4とを結合した各3本ずつの小突起P …,P …とするも好ましい。あるいは、弯曲凸状シール面11, 12の夫々に、4本以上の小突条を突設することも可能である。
【0027】
また、図5に示したような小凹溝Q ,Q を、横断面四角や三角形等とすることも自由であり、場合によっては、(溝奥が拡大した)蟻溝とすることも好ましい。そして、この小凹溝Q ,Q の夫々を、複数本とすることも好ましいことである。
また、上述した小突起P ,P と小凹溝Q ,Q とを、結合して、弯曲凸状シール面11, 12に、夫々、配設すると、突支とポケット部の両者を具備して、一層好ましい。
【0028】
ところで、図1、及び、図3〜図5の各図の(A)と(B)とを比較対比すれば明らかな如く、一対の接触平坦面部1,2の間隔が増減変化すると、全体に捩れ弾性変形しつつ、各弯曲凸状シール面11, 12が接触平坦面部1,2と直接に接触する部位が、内端・外端から中間基部5の方向(内方)へ移り変わる。
従って、金属シールSを組み付ける(装着する)際に、上述の小突起P ,P 及び/又は小凹溝Q ,Q を備えた構成によって、弯曲凸状シール面11, 12が接触平坦面部1,2に直接に接触する部位が移り変わっても、コーティング層4が大きく損傷を受けずに済む。
【0029】
また、組み付け後───装着圧縮状態───においては、コーティング層4に過大な荷重が掛からないように突支となって、コーティング層4を安定した厚さに保つ。例えば、コーティング層4がプラスチックやゴムである場合、高温使用条件下で強度が低下し、圧縮力(押圧力)を受けて、移動(フロー)しやすくなるのが、小突起P ,P 等によって、この移動(フロー)を阻止して、コーティング層4を安定した状態に保つことができる。
【0030】
本発明は、上述の小突起P ,P が、装着圧縮状態下でも、塑性変形しない程度の低い締め付け力で組み付けられて使用されるのに、好適な金属シールである。
なお、上述の図1〜図5に於て、金属シールS(シール本体3)の横断面形状は略S字状でかつ同一肉厚寸法のものを例示したが、このような横断面形状以外に次のようなものにも適用可能である。即ち、例えば、シール本体の中間基部を横断面略矩形とすると共に、第1接触凸部・第2接触凸部を、横断面略半円形乃至略半楕円形としたり、あるいは、上記中間基部を、接触平坦面部1,2に対して、(平行とする以外に)図1〜図5とは逆方向に傾斜状とする等の設計変更は自由である。
なお、本発明の上述のコーティング層4と、小突起P ,P 、あるいは、小凹溝Q ,Q の構成を、メタルOリングやメタルCリングに適用することも好ましい(図示省略)。
【0031】
【発明の効果】
本発明は、上述の構成により次のような著大な効果を奏する。
(請求項1,4によれば、)接触平坦面部1,2に弯曲凸状シール面11, 12が当接した状態で、小突起P ,P は、コーティング層4が接触平坦面部1,2からの押圧力で圧潰されつつ内外径方向へ移動するのを防止する突支の役目をなし、あるいは、シール面にコーティング層4の一部が残留するポケット部13, 14を形成する。
このようにして、シール性(密封性)を確保できる。特に、低い締付力(押圧力)の一対の接触平坦面部1,2相互間に於て、優れたシール性(密封性)を発揮できる。
【0032】
(請求項2,5によれば、)一対の接触平坦面部1,2に弯曲凸状シール面11, 12が当接した状態で、コーティング層4の一部は小凹溝Q ,Q の内部に必ず残留し、シール性(密封性)を維持できる。
(請求項3,4,5によれば、)装着圧縮状態にて全体が捩れ弾性変形を生ずるため、弾性復元性(弾性変形領域)が大きく、広いセット高さに対応でき、取付部材の凹部(凹溝)等の寸法公差が大きくても、安定したシール性(密封性)を発揮でき、また、低い締付力で使用できて、取付部材(フランジ等)が脆い材質や軟らかい材質でも適用可能であり、しかも、シール面が装着時に移動しても、常に安定したシール性(密封性)を発揮できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す要部断面説明図である。
【図2】全体の断面図である。
【図3】本発明の第2の実施の形態を示す要部断面説明図である。
【図4】本発明の第3の実施の形態を示す要部断面説明図である。
【図5】本発明の第4の実施の形態を示す要部断面説明図である。
【符号の説明】
1 接触平坦面部
2 接触平坦面部
3 シール本体
4 コーティグ層
5 中間基部
11 弯曲凸状シール面
12 弯曲凸状シール面
21 第1接触凸部
22 第2接触凸部
S 金属シール
小突起
小突起
小凹溝
小凹溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to metal seals.
[0002]
[Prior art]
Conventionally, rubber O-rings have been widely used as seal materials, but may not be used in high temperature, low temperature, rubber corrosive gas environments, and the like. Therefore, metal seals such as the following (1) to (4) have conventionally been used. That is, (1) metal O-ring, (2) metal C-ring, (3) spring-loaded C-ring, (4) legend seal and the like are used (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. Sho 62-028959
[Problems to be solved by the invention]
However, each metal seal has the following problems.
{Circle around (1)} Metal O-rings These are the most common and proven metal seals and provide stable sealing performance, but have drawbacks such as a large clamping force and a small restoration amount of about 0.05 mm.
{Circle around (2)} Metal C-ring The tightening force is smaller than the metal O-ring, and the restoration amount is relatively large, about 0.05 mm to 0.15 mm. However, depending on the application (use conditions), the value of the tightening force is still large and the amount of restoration is insufficient.
{Circle around (3)} The spring-loaded C-ring restoration amount is as large as 0.1 to 0.15 mm. However, the restoration amount is insufficient depending on the use (use condition). Furthermore, since the coil spring is inserted into the C-ring body so as to enclose it, there is a drawback that the production is troublesome and the structure is complicated, and the tightening force is large and the cost is high.
{Circle around (4)} Legend seal The clamping force is smaller than other metal seals, and the restoration amount is as large as 0.1 to 0.2 mm. However, since it is a cutting process, the production is troublesome and very expensive.
[0005]
In short, none of the conventional metal seals can satisfy all the conditions (requests) of being easy to manufacture, having a small fastening force, having a large restoring force, and being inexpensive.
In particular, if the material of the mounting member to which the seal is attached is inappropriate for a brittle material such as ceramics or a soft material such as aluminum, or if the depth dimension tolerance of the seal groove is large, the sealing performance (sealing performance) There is also a problem that the seal tends to vary, a set height range in which the seal can be used is narrow, and attention must be paid to the installation of the seal.
[0006]
A metal seal having a coating layer in which a resin or rubber is coated on the surface of a metal seal body in order to enhance the sealing property (sealing property) has also been proposed. In a compressed state (particularly under high-temperature use conditions), there is a problem that the coating layer softens and the sealing layer moves (flows) to the side not subjected to compression.
When the escape occurs due to the movement (flow) of the coating layer, the metal sealing body directly contacts the mating member on the sealing surface, and the sealing performance is reduced.
[0007]
[Means for Solving the Problems]
The present invention provides a metal seal including an annular metal seal body as a whole, and a coating layer covering the seal body, and interposed between a pair of mutually parallel contact flat surfaces. Small protrusions are provided on the seal body so as to bite into the coating layer from the inner surface thereof at the curved convex seal surfaces respectively contacting the contact flat surface portions.
A metal seal including an annular metal seal body and a coating layer covering the seal body, the metal seal being interposed between a pair of mutually parallel contact flat surface portions, On the curved convex sealing surfaces respectively abutting on the flat surface portions, small concave grooves into which a part of the inner surface of the coating layer bites are formed in the seal main body.
[0008]
The metal seal body includes an intermediate base portion, a first contact convex portion that forms one curved seal surface that abuts one of the contact flat surface portions, and another curved seal surface that abuts the other of the contact flat surface portions. And a second contact convex portion forming the metal seal body, wherein the metal seal body generates a torsional elastic deformation that rotates about the intermediate base portion by a pressing force received from the pair of contact flat surface portions in the mounted and compressed state. It is configured as follows.
The small projection is formed in a ring shape as a whole along the circumferential direction of the seal body in a ring shape as viewed in a direction perpendicular to the pair of contact flat surface portions.
Alternatively, when viewed from a direction perpendicular to the pair of contact flat surface portions, the small concave groove is formed so as to be entirely annular along the circumferential direction of the entirely annular seal body.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
FIGS. 1A and 2 show an embodiment of a metal seal (metal seal) S according to the present invention, which is a cross-sectional view in a free state (unmounted state), and FIG. FIG. 4 is a cross-sectional view showing a {compressed state}.
[0010]
The metal seal S has a closed annular shape such as an annular shape, an elliptical annular shape, an elliptical annular shape, and a substantially rectangular annular shape (with rounded corners). In addition, the metal seal S includes a metal seal body 3 made of stainless steel, spring steel, or other metal, and a coating layer 4 covering the seal body 3 (with substantially uniform heat dimensions over the entire surface). Have.
[0011]
The metal seal body 3 is manufactured by machining such as cutting and grinding, and / or is manufactured by plastic processing such as press working. The coating layer 4 is made of plastic such as PTFE or FEP, or various rubbers.
The metal seal S is interposed between a pair of contact flat surface portions 1 and 2 which are parallel to each other. And so on) circular, oval, elliptical and substantially rectangular rings.
[0012]
The cross-sectional shape of the metal seal body 3 is substantially S-shaped (corrugated), and more specifically, one curved convex seal surface 11 that comes into contact with the intermediate base 5 and the first contact flat surface 1. And a second contact convex portion 22 that forms the other curved convex sealing surface 12 that abuts on the second contact flat surface portion 2.
[0013]
In other words, the seal body 3 includes an inner peripheral end 6 having the first contact convex portion 21, an intermediate base 5, and an outer peripheral end 7 having the second contact convex portion 22. The inner peripheral end 6, the intermediate base 5, and the outer peripheral end 7 have the same thickness and a gently curved cross section S. The tapered shape gradually increases in diameter from the inner peripheral end 6 to the outer peripheral end 7. It is shaped like a letter. In the present invention, the S-shape is defined to include an inverted S-shape {Z-shape}. Further, instead of having the same thickness, the thickness may be changed in size.
[0014]
Thus, the metal seal S (seal body 3) can be said to be a substantially truncated conical disc spring having a gentle curved surface, and the inner peripheral end 6 forms the hole 8. Is done. In FIGS. 1 and 2 (and FIGS. 3 to 5 described later), the case where the contact flat surface portions 1 and 2 are continuous as a whole in the inner diameter and outer diameter directions as flat surfaces is illustrated. If desired, a flat surface may be formed on the inner diameter side and / or the outer diameter side of the contact flat surface portions 1 and 2 in a plurality of steps via a step portion, or a protrusion may be formed freely ( Not shown).
[0015]
FIG. 2 shows a free state (unmounted state) of the metal seal S, and FIG. 1A shows a state in which the distance between the first contact flat surface portion 1 and the second contact flat surface portion 2 is sufficiently large (open). The seal S shows an initial state in which the compressive force (sometimes referred to as a tightening force or a pressing force) is zero. FIG. 1 (B) shows that the pair of contact flat surface portions 1 and 2 approach each other to reduce the distance between them, so that a compressive force (sometimes called a tightening force or a pressing force) acts relatively large. The mounted compression state is shown. As can be seen by comparing FIGS. 1A and 1B, the metal seal S (seal body 3) rotates about the intermediate base 5 by the pressing force received from the pair of contact flat surfaces 1 and 2. Torsional elastic deformation occurs.
[0016]
Small projections P 1 , P 2 having a triangular cross section are formed on the curved convex sealing surfaces 11, 12 abutting on the pair of contact flat surface portions 1, 2 so as to cut into the coating layer 4 from the inner surfaces thereof. It protrudes from the main body 3.
The small projections P 1 , P 2 are formed entirely in an annular shape along the circumferential direction of the annular seal body 3 (described above) as viewed from a direction orthogonal to the contact flat surface portions 1, 2. . That is, the small projections P 1 and P 2 are formed in an annular shape similar to the seal body 3.
[0017]
In the embodiment shown in FIG. 1 and FIG. 2, in the mounted and compressed state shown in FIG. 1B, at the position closest to the contact flat surface portions 1, 2 of the curved convex sealing surfaces 11, 12, The case where the small protrusions P 1 and P 2 are provided is illustrated, and the case where each is a single protrusion is illustrated. As shown in FIG. 1B, when a pressing force is applied from the contact flat surface portions 1 and 2 in a direction approaching each other, the small projections P 1 and P 2 project and the coating layer 4 is excessively compressed. Thus, it is prevented from moving (escape) in the left-right direction (in the inner and outer radial directions) of FIG. 1 (B). That is, it is possible to prevent the coating layer 4 from being damaged and maintain the sealing property (sealing property).
[0018]
The height of the projections P 1 and P 2 is set to 25% to 90% of the average thickness of the coating layer 4. In particular, it is desirable to be 50% to 75%. The reason for this is that if it is less than the lower limit, the amount of the coating layer 4 moving (flowing) in the inner and outer radial directions while being crushed by the contact flat surface portions 1 and 2 increases, and the sealing performance (sealing performance) deteriorates. Conversely, if the upper limit value is exceeded, the contact flat surface portions 1 and 2 are easily damaged, and the familiarity of the metal seal S is deteriorated. By the way, in the present invention, the small protrusions P 1 and P 2 are not plastically deformed in the mounted and compressed state shown in FIG.
[0019]
Next, FIG. 3 shows another embodiment, FIG. 3 (A) shows a state corresponding to FIG. 1 (A), and FIG. 3 (B) shows a state corresponding to FIG. 1 (B). In FIG. 3 (A) (B), the small projection P 1, projecting from the inner end portion of the nearest curved convex sealing surface 11 on the peripheral edge surface inner forming the hole 8, also small projections P 2 Are protruded from the outer end of the curved convex seal surface 12 closest to the outer peripheral end face.
[0020]
In the mounted compressed state shown in FIG. 3B, the coating layer 4 is provided between the portions where the curved convex sealing surfaces 11 and 12 are closest to the contact flat surface portions 1 and 2 and the small projections P 1 and P 2. Are formed, and pocket portions (concave portions) 13 and 14 are formed. In this way, it is possible to prevent the coating layer 4 from moving (flowing) in the inner and outer radial directions. The heights of the small projections P 1 and P 2 are the same as those in FIG.
[0021]
Next, FIG. 4 shows another embodiment, FIG. 4 (A) shows a state corresponding to FIG. 1 (A), and FIG. 4 (B) shows a state corresponding to FIG. 1 (B). In FIGS. 4 (A) and 4 (B), two small protrusions P 1 and P 1 are arranged on the curved convex seal surface 11, and two small protrusions P 1 and P 1 are arranged on the curved convex seal surface 12. The (book) small projections P 2 and P 2 are provided.
In the mounted and compressed state shown in FIG. 4 (B), two (projections) small projections P 1 and P 1 , centering on a portion where the curved convex sealing surfaces 11 and 12 are closest to the contact flat surface portions 1 and 2, and two small protrusions P 2 and P 2 of the (present) corresponds.
[0022]
During small projection P 1 and P 1, and between the small protrusions P 2 and P 2, respectively, in the pocket portion (recess) 13, 14 formed is always part of the coating layer 4 is left . In addition, the small projections P 1 and P 1 directly serve as projections for the pressing force of the first contact flat surface portion 1, and the small projections P 2 and P 2 directly support the projection force for the pressing force of the second contact flat surface portion 2. Thus, the movement (escape) of the coating layer 4 can be more reliably prevented. The height dimensions of the small projections P 1 and P 1 or P 2 and P 2 are the same as those in FIG.
In the case of FIG. 4, when viewed from the direction perpendicular to the contact flat surface section 1 and 2, the small projections P 1 of Article 2 and P 1, and the small projection P 2 of two rows and P 2 are circumference of the seal body 3 It presents a parallel closed annulus along the direction.
[0023]
Next, FIG. 5 shows another embodiment, and FIG. 5 (A) shows a state corresponding to FIG. 1 (A), and FIG. 5 (B) shows a state corresponding to FIG. 1 (B). In FIGS. 5A and 5B, small concave grooves Q 1 and Q 2 are provided instead of the small protrusions P 1 and P 2 described in FIGS. 1A and 1B.
More specifically, small concave grooves Q 1 and Q 2 are respectively formed in the seal body 3 at the curved convex sealing surfaces 11 and 12 abutting on a pair of contact flat surface portions 1 and 2 parallel to each other. Then, a part of the inner surface of the coating layer 4 is cut into the small concave grooves Q 1 and Q 2 . The outer surface of the coating layer 4 has a continuous curved surface (not concave) at a position corresponding to the small concave grooves Q 1 and Q 2 .
[0024]
When viewed from a direction perpendicular to the contact flat surface portions 1 and 2, along the circumferential direction of the seal body 3, the small concave grooves Q 1 and Q 2 are formed in an overall annular shape. That is, the small concave grooves Q 1 , Q 2 are annular with the seal body 3.
More specifically, each of the small concave grooves Q 1 and Q 2 has a substantially semi-circular (or semi-elliptical) cross-sectional shape, and in the mounted compressed state shown in FIG. The case where the small concave grooves Q 1 , Q 2 are arranged at the position closest to the contact flat surface portions 1, 2 in the surfaces 11, 12 is exemplified, and the case of a single groove is shown.
[0025]
As shown in FIG. 5 (B), when the contact flat surface portions 1 and 2 approach each other and a pressing force acts on the metal seal S, the small concave grooves Q 1 and Q 2 form the pocket portions 13 (described above). , 14 (see FIG. 4) to ensure the sealing performance (sealing performance). The width of the small grooves Q 1 and Q 2 is naturally set smaller than the width of the sealing surface. The depth dimension of the small concave grooves Q 1 and Q 2 is preferably not more than 75% of the thickness of the coating layer 4. The reason is that a part of the inner surface of the coating layer 4 needs to be sufficiently filled in the small concave grooves Q 1 and Q 2 .
[0026]
By the way, the present invention is not limited to the above-described embodiment, and the design is free to be changed. The small projections P 1 and P 2 having the triangular cross section shown in FIGS. 1 and FIG. 3 may be combined into two small ridges P 1 , P 1 and P 2 , P 2. Further, FIGS. It is also preferable that each of the three small projections P 1 ..., P 2 . Alternatively, it is possible to project four or more small ridges on each of the curved convex sealing surfaces 11 and 12.
[0027]
Further, the small concave grooves Q 1 and Q 2 as shown in FIG. 5 may be freely formed into a square or a triangular cross section, and in some cases, may be formed as a dovetail groove (the groove depth is enlarged). preferable. It is also preferable that each of the small concave grooves Q 1 and Q 2 is plural.
When the small projections P 1 , P 2 and the small concave grooves Q 1 , Q 2 are combined and disposed on the curved convex sealing surfaces 11, 12, both the protrusion and the pocket are provided. Is more preferable.
[0028]
By the way, as is clear from comparing and comparing FIGS. 1A and FIGS. 3A to 5B with FIGS. 3A to 5B, when the interval between the pair of contact flat surface portions 1 and 2 increases and decreases, as a whole, The portion where each of the curved convex sealing surfaces 11 and 12 comes into direct contact with the contact flat surfaces 1 and 2 while being torsionally elastically deformed is shifted from the inner end / outer end toward the intermediate base 5 (inward).
Therefore, when assembling (mounting) the metal seal S, the curved convex seal surfaces 11 and 12 come into contact with each other due to the configuration including the small projections P 1 and P 2 and / or the small concave grooves Q 1 and Q 2. Even if the portion that directly contacts the flat surface portions 1 and 2 changes, the coating layer 4 does not need to be greatly damaged.
[0029]
Further, after the assembly (in a mounted and compressed state), the coating layer 4 serves as a support so as not to apply an excessive load to the coating layer 4 to keep the coating layer 4 at a stable thickness. For example, when the coating layer 4 is made of plastic or rubber, the small projections P 1 and P 2 are apt to be reduced in strength under high-temperature use conditions and easily moved (flow) by receiving a compressive force (pressing force). By such means, this movement (flow) can be prevented, and the coating layer 4 can be kept in a stable state.
[0030]
The present invention is a metal seal suitable for use when the above-mentioned small projections P 1 and P 2 are assembled and used with a low tightening force that does not cause plastic deformation even in a mounted compression state.
In addition, in FIGS. 1 to 5 described above, the cross-sectional shape of the metal seal S (seal body 3) is substantially S-shaped and has the same thickness dimension, but other than such a cross-sectional shape The following is also applicable to the following. That is, for example, the intermediate base of the seal body has a substantially rectangular cross section, and the first and second contact projections have a substantially semicircular to substantially semielliptical cross section, or the intermediate base has The design of the contact flat surface portions 1 and 2 can be freely changed, for example, by making the contact flat surface portions 1 and 2 inclined (in addition to being parallel to each other) in a direction opposite to that of FIGS.
In addition, it is also preferable to apply the configuration of the coating layer 4 and the small protrusions P 1 and P 2 or the small concave grooves Q 1 and Q 2 of the present invention to a metal O-ring or a metal C-ring (not shown). ).
[0031]
【The invention's effect】
The present invention has the following significant effects by the above configuration.
With the curved convex sealing surfaces 11 and 12 abutting the contact flat surface portions 1 and 2 (according to claims 1 and 4), the small protrusions P 1 and P 2 are formed by the coating layer 4 having the contact flat surface portions 1 and 12. , 2 serves as a projection to prevent the inner and outer diameters from moving while being crushed by the pressing force, or form pockets 13 and 14 where a part of the coating layer 4 remains on the sealing surface.
In this way, the sealing performance (sealing performance) can be ensured. In particular, excellent sealing performance (sealability) can be exhibited between the pair of contact flat surface portions 1 and 2 having a low fastening force (pressing force).
[0032]
In the state where the curved convex sealing surfaces 11 and 12 are in contact with the pair of contact flat surface portions 1 and 2, a part of the coating layer 4 is partially concave grooves Q 1 and Q 2. , And can always maintain the sealing property (sealing property).
According to the third, fourth and fifth aspects, since the entire body undergoes torsional elastic deformation in the compressed state of mounting, elastic restorability (elastic deformation area) is large, it can correspond to a wide set height, and the concave portion of the mounting member. Even if the dimensional tolerance of (concave groove) etc. is large, stable sealing performance (sealability) can be exhibited, and it can be used with low tightening force, and it can be used even with brittle or soft materials for mounting members (flanges, etc.) It is possible, and even if the sealing surface moves at the time of mounting, stable sealing performance (sealing performance) can always be exhibited.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view of a main part showing a first embodiment of the present invention.
FIG. 2 is an overall sectional view.
FIG. 3 is an explanatory cross-sectional view of a main part showing a second embodiment of the present invention.
FIG. 4 is an explanatory sectional view of a main part showing a third embodiment of the present invention.
FIG. 5 is an explanatory cross-sectional view of a main part showing a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Contact flat surface part 2 Contact flat surface part 3 Seal main body 4 Coating layer 5 Intermediate base 11 Curved convex sealing surface 12 Curved convex sealing surface 21 First contact convex part 22 Second contact convex part S Metal seal P 1 Small projection P 2 Small protrusion Q 1 Small concave groove Q 2 Small concave groove

Claims (5)

全体が環状の金属製シール本体と、該シール本体を被覆したコーティング層とを備え、相互に平行な一対の接触平坦面部の間に介装される金属シールであって、該一対の接触平坦面部に夫々当接する弯曲凸状シール面に於て、上記コーティング層にその内面から食い込むように小突起が上記シール本体に突設されていることを特徴とする金属シール。A metal seal including an annular metal seal main body and a coating layer covering the seal main body, the metal seal being interposed between a pair of mutually parallel contact flat surface portions, wherein the pair of contact flat surface portions is provided. A metal seal, characterized in that small projections are provided on the seal body so as to bite into the coating layer from the inner surface thereof on the curved convex seal surfaces respectively contacting the seal layer. 全体が環状の金属製シール本体と、該シール本体を被覆したコーティング層とを備え、相互に平行な一対の接触平坦面部の間に介装される金属シールであって、該一対の接触平坦面部に夫々当接する弯曲凸状シール面に於て、上記コーティング層の内面の一部が食い込んだ小凹溝が上記シール本体に凹設されていることを特徴とする金属シール。A metal seal including an annular metal seal main body and a coating layer covering the seal main body, the metal seal being interposed between a pair of mutually parallel contact flat surface portions, wherein the pair of contact flat surface portions is provided. A metal seal characterized in that a small concave groove in which a part of the inner surface of the coating layer is cut is formed in the seal main body at a curved convex seal surface which abuts on the seal main body. 金属製シール本体は、中間基部と、上記接触平坦面部の一方に当接する一方の弯曲シール面を形成する第1接触凸部と、上記接触平坦面部の他方に当接する他方の弯曲シール面を形成する第2接触凸部と、を備え、該金属製シール本体は、装着圧縮状態にて上記一対の接触平坦面部から受ける押圧力によって、上記中間基部を中心に回転する捩れ弾性変形を生ずるように構成された請求項1又は2記載の金属シール。The metal seal body forms an intermediate base, a first contact projection that forms one curved seal surface that abuts one of the contact flat surface portions, and another curved seal surface that abuts the other of the contact flat surface portions. The metal seal body is configured to generate a torsional elastic deformation that rotates about the intermediate base portion by a pressing force received from the pair of contact flat surface portions in a mounted and compressed state. The metal seal according to claim 1 or 2, which is configured. 上記一対の接触平坦面部と直交する方向から見て、全体が環状の上記シール本体の周方向に沿って全体が環状に、上記小突起が形成されている請求項1又は3記載の金属シール。4. The metal seal according to claim 1, wherein the small projection is formed so as to be entirely annular along the circumferential direction of the seal body which is entirely annular when viewed from a direction orthogonal to the pair of contact flat surface portions. 5. 上記一対の接触平坦面部と直交する方向から見て、全体が環状の上記シール本体の周方向に沿って全体が環状に、上記小凹溝が形成されている請求項2又は3記載の金属シール。The metal seal according to claim 2, wherein the small concave groove is formed entirely in an annular shape along the circumferential direction of the seal body, which is entirely annular when viewed from a direction orthogonal to the pair of contact flat surface portions. .
JP2003015725A 2003-01-24 2003-01-24 Metal seal Expired - Fee Related JP4260496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015725A JP4260496B2 (en) 2003-01-24 2003-01-24 Metal seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015725A JP4260496B2 (en) 2003-01-24 2003-01-24 Metal seal

Publications (2)

Publication Number Publication Date
JP2004225832A true JP2004225832A (en) 2004-08-12
JP4260496B2 JP4260496B2 (en) 2009-04-30

Family

ID=32903389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015725A Expired - Fee Related JP4260496B2 (en) 2003-01-24 2003-01-24 Metal seal

Country Status (1)

Country Link
JP (1) JP4260496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146961A (en) * 2005-11-28 2007-06-14 Jtekt Corp Sealing device
JP2008232399A (en) * 2007-03-23 2008-10-02 Mitsubishi Cable Ind Ltd Seal structure and metal seal material to be used for the same
JP2011002068A (en) * 2009-06-22 2011-01-06 Mitsubishi Cable Ind Ltd Rubber seal with fitting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146961A (en) * 2005-11-28 2007-06-14 Jtekt Corp Sealing device
JP2008232399A (en) * 2007-03-23 2008-10-02 Mitsubishi Cable Ind Ltd Seal structure and metal seal material to be used for the same
JP2011002068A (en) * 2009-06-22 2011-01-06 Mitsubishi Cable Ind Ltd Rubber seal with fitting

Also Published As

Publication number Publication date
JP4260496B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JPH0721968Y2 (en) Mechanical spring seal
JP5177825B2 (en) Tolerance ring
EP1677033B1 (en) Gasket ring with sharp peaks
US6505721B1 (en) Planar one-way clutch
RU2599695C2 (en) Hose clamp with flat spring insert
JPS6159069A (en) Mechanical seal
JPS6213871A (en) Radial shaft seal ring
US20020050684A1 (en) Brush seal device
JP2004225832A (en) Metal seal
JP4440882B2 (en) Ring-shaped metal gasket
JP4091373B2 (en) Metal seal
JPH0741969Y2 (en) O-ring
JPH0531328Y2 (en)
JPS6192368A (en) Seal for shaft
US2844426A (en) Torsion piston ring
JP4244585B2 (en) Sealing device
JP2004340315A (en) Metal seal
JP4128802B2 (en) Plasma resistant seal
JPH09159023A (en) Piston ring
JP4199013B2 (en) Sealed structure
JP4331502B2 (en) Sealed structure
JP7474632B2 (en) Sealing material
JPH018738Y2 (en)
CN215672976U (en) Piston sealing structure
JPH067219Y2 (en) Backup ring for packing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees