JP2004225645A - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP2004225645A
JP2004225645A JP2003015874A JP2003015874A JP2004225645A JP 2004225645 A JP2004225645 A JP 2004225645A JP 2003015874 A JP2003015874 A JP 2003015874A JP 2003015874 A JP2003015874 A JP 2003015874A JP 2004225645 A JP2004225645 A JP 2004225645A
Authority
JP
Japan
Prior art keywords
suction muffler
heat insulating
refrigerant
refrigerant compressor
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015874A
Other languages
Japanese (ja)
Inventor
Souzou Suzuki
創三 鈴木
Shuhei Sugimoto
修平 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003015874A priority Critical patent/JP2004225645A/en
Publication of JP2004225645A publication Critical patent/JP2004225645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve refrigerating capacity or efficiency and downsize an intake muffler, relating to reduction in heat received by the intake muffler for intake gas of a refrigerant compressor. <P>SOLUTION: A whole outer wall of the intake muffler 26 is constituted of an evacuated insulation member 27, the evacuated insulation member 27 is constituted by covering a core member 28 having a void with a nonporous casing member 29 to keep the void of the core member 28 vacuum. Therefore, convective heat transfer caused by the heat does not occur in the evacuated insulation member 27, heat conduction is suppressed to the minimum to implement high adiathermancy, the heat is hardly transmitted in the intake muffler 26, high density of intake gas refrigerant is kept, and increase a refrigerant circulation amount, so that the efficiency of the refrigerant compressor is improved. Further, high insulation efficiency of the evacuated insulation member 27 allows thin structure of the evacuated insulation member 27, and thereby the intake muffler 26 is downsized. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍冷蔵装置等に使用される冷媒圧縮機の効率向上に関するものである。
【0002】
【従来の技術】
近年、冷凍冷蔵装置等に使用される冷媒圧縮機は効率向上が強く望まれている。
【0003】
従来の冷媒圧縮機の効率向上したものとしては、吸入マフラーの外壁を2重壁として断熱空間を設け、圧縮室内に吸入するガス冷媒の温度を低くすることにより、ガス冷媒の密度を高くして冷媒循環量を大きくし、効率を高めたものがある(例えば、特許文献1参照。)。
【0004】
以下、図面を参照しながら上記従来の冷媒圧縮機の一例について説明する。
【0005】
図7は従来の冷媒圧縮機の要部断面図であり、図8は従来の冷媒圧縮機の吸入マフラーの断面図である。
【0006】
図7、図8において、1は容器であり、2は電動モータ、3は電動モータで駆動される圧縮要素である。4は固定子、5は回転子であり、前記電動要素2を構成している。
【0007】
6は吸入室7と吐出室8を形成したシリンダヘッド、9はシリンダ10を有したシリンダブロック、11は吸入孔12と吐出孔13を有したバルブプレート、14は吸入リード、15はピストン、16はクランク軸、17は前記クランク軸の偏芯部18に連結された連接棒、19は連通管20を介してシリンダ10と連通した膨張型の吸入マフラーであり、21は吸入マフラー19の外壁であり、内側の壁22と外側の壁23との2重壁で空間24を形成しており、25は外壁21に設けた吸入口である。
【0008】
以上のように構成された冷媒圧縮機について以下その動作を説明する。
【0009】
まず、電動モータ2によって駆動される圧縮要素3には外部冷凍サイクル(図示せず)より戻ってきた低温低圧の冷媒ガスが吸入管(図示せず)から容器1内に吸入され、さらに吸入口25から吸入マフラー19内に吸入され、連通管20から吸入室7、吸入孔12を通り、吸入リード14を開いてシリンダ10へ導かれて圧縮され高温高圧となり吐出ライン(図示せず),吐出管(図示せず)を通り、外部冷凍サイクル(図示せず)へ導かれて冷凍作用をなす。この時、シリンダ10内で発生する圧力脈動は吸入マフラー19の消音作用で減衰されて、冷媒圧縮機の容器1内に伝達され、吸入管を介して外部冷凍サイクルに伝搬する冷媒圧縮機の圧力脈動に起因する騒音を低減する。また、吸入マフラー19内に吸入された冷媒ガスは、吸入マフラー19の外壁21に設けた空間24の断熱効果で、容器1内の高温冷媒ガスから加熱されにくくなっており、ガス冷媒の密度が高く維持され、冷媒循環量を大きくし、効率が高められる。
【0010】
【特許文献1】
特開平6−117372号公報
【0011】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、吸入マフラー19は断熱層となる空間24を設けるように2重構造の外壁21で構成されているため、吸入マフラー19の構造が複雑となるとともに外壁21全体の厚みが大きくなり吸入マフラー19が大型化し、しかも2重構造の外壁21の空間24には内部のガスの対流による対流熱伝達が発生し、空間24を大きくしないと容器1内の高温の潤滑油からの熱伝達や高温の電動モータ2及び圧縮要素3からの輻射熱が吸入マフラー19内部の冷媒に伝わり、十分な断熱効果を得られず冷凍能力および効率向上効果が小さいという欠点を有していた。
【0012】
本発明は従来の課題を解決するもので、吸入マフラーを大型化することなく、吸入マフラー内に吸入したガス冷媒の温度上昇を小さくすることにより、効率を向上した密閉型圧縮機を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、容器内に電動モータと前記電動モータによって駆動される圧縮要素と、前記圧縮要素のシリンダに連通した吸入マフラーとを備え、前記吸入マフラーの外壁の少なくとも一部が芯材と前記芯材を被う非通気性外被材からなる真空断熱材で構成されている。
【0014】
この構成により、薄い壁厚の真空断熱材により簡易な構造のコンパクトな吸入マフラーを構成でき、さらに吸入マフラーは密閉容器内の潤滑油からの熱伝達や高温の電動モータからの輻射熱を受けても、外壁の真空断熱材で十分に断熱されるため、吸入マフラー内の冷媒への熱伝達は大幅に低減され、冷媒の温度は低くたもたれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くすることができるという作用を有する。
【0015】
請求項2に記載の発明は、請求項1に記載の発明に、さらに真空断熱材の非通気性外被材をプラスチックフィルムと金属箔のラミネートフィルムで構成したものであり、請求項1に記載の発明の作用に加えて、ラミネ−トフィルムに金属泊を被膜することにより、真空断熱材内部を長期に安定した真空度を保つと共に外被の耐油性を増し、信頼性の高い断熱構造が得られるという作用を有する。
【0016】
請求項3に記載の発明は、請求項1または請求項2に記載の発明に、さらに吸入マフラーを複数に分割された真空断熱材を結合することで形成したものであり、請求項1または請求項2に記載の発明の作用に加えて、真空断熱材の形状を簡略化できるため、生産性の高い低コストの断熱構造の吸入マフラーが得られるという作用を有する。
【0017】
【発明の実施の形態】
以下、本発明による冷媒圧縮機の実施の形態について、図面を参照しながら説明する。なお、従来例と同一構成については同一符号を付して詳細な説明を省略する。
【0018】
(実施の形態1)
図1は、本発明の実施の形態1による冷媒圧縮機の要部断面図であり、図2は、同実施の形態の冷媒圧縮機の吸入マフラーの断面図である。
【0019】
図1、図2において、26は吸入マフラーであり、吸入マフラー26の外壁全体を真空断熱材27で構成しており、真空断熱材27は空隙を有した芯材28を非通気性外被材29で覆い、芯材28の空隙を真空に保持している。30は真空断熱材27の一部に設けた吸入口である。芯材28としては、耐熱性が高く熱伝導率の低いパーライトやシリカなどの無機粉末を用いることができ、本実施の形態ではシリカ粉を用いた。芯材28のシリカ粉の粒子と粒子との間には空隙ができるため、芯材28は連続した通気性をもち、非通気性外被材29で覆った真空断熱材30内部を真空に保持するのに適している。また。芯材28のシリカ粉は粒子径が非常に小さいため、粒子と粒子の接触面積が小さく、接触面を介した熱伝導が非常に小さい。非通気性外被材29としてはポリプロピレン等のプラスチックフィルム材や複数のフィルム材を積層したラミネート材が使用できる。
【0020】
以上のように構成された本実施の形態の冷媒圧縮機について、以下その動作を説明する。
【0021】
吸入マフラー26の外壁を構成する真空断熱材27は、容器1内の高温冷媒ガスや容器1内の潤滑油からの熱伝達及び高温の電動モータ2および圧縮要素3からの輻射熱を受けて加熱されるが、真空断熱材27の内部は空隙を有した芯材28の空隙が真空に保たれているため、熱による対流熱伝達が発生せず、芯材28の僅かな熱伝導に限られるため断熱性が高く、吸入マフラー26内には殆ど熱が伝達せず、吸入されたガス冷媒の密度が高く維持され、冷媒循環量を大きくし、冷媒圧縮機の効率が高められる。さらに、真空断熱材27の断熱性能が高いため、真空断熱材27を薄く構成することが可能であり、吸入マフラー26をコンパクトに構成することができる。
【0022】
尚、本実施の形態の冷媒圧縮機は、吸入マフラーの外壁の一部を真空断熱材で構成してもよく、図3に示すように、吸入マフラー31をプラスチック材料32と真空断熱材33とで構成し、真空断熱材33を電動モータ2及び圧縮要素3に対抗する面に設置することで、吸入マフラー31への高温の電動モータ2および圧縮要素3からの輻射熱による吸入マフラー31内の冷媒ガスへの熱伝達を効果的に減少させることができる。
【0023】
(実施の形態2)
図4は、本発明の実施の形態2による冷媒圧縮機の吸入マフラーの断面図であり、図5は同実施の形態による冷媒圧縮機の吸入マフラーの真空断熱材の要部断面図である。
【0024】
図4および図5において、34は吸入マフラーであり、真空断熱材35を構成する非通気性外被材36を、空隙を有した芯材37に接する側に配したプラスチックフィルム38と、プラスチックフィルム38の外側に配した金属箔39と、プラスチックフィルム38と金属箔39を接着して形成したラミネートフィルム40で形成し、芯材37の空隙を真空に保持している。41は真空断熱材35の一部に設けた吸入口である。非通気性外被材のプラスチックフィルム34として好ましくはポリプロピレンやポリエステルなどを用いることができ、金属箔35としてはアルミニュウム箔を用いることができる。
【0025】
以上のように構成された本実施の形態の冷媒圧縮機について、以下その動作を説明する。
【0026】
吸入マフラー34の外壁を構成する真空断熱材35は、容器1内の高温冷媒ガスや容器1内の潤滑油からの熱伝達及び高温の電動モータ2からの輻射熱を受けて加熱されるが、真空断熱材35の内部は空隙を有した芯材37の空隙は真空に保たれているため、熱による対流熱伝達が発生せず、空隙を有した芯材37の僅かな熱伝導に限られるため断熱性が高く、吸入マフラー34内には殆ど熱が伝達せず、吸入されたガス冷媒の密度が高く維持され、冷媒循環量を大きくし、冷媒圧縮機の効率が高められる。さらに、非通気性外被材36としてはポリプロピレン製のプラスチックフィルム38の外側にアルミニウムの金属箔39を接着したラミネートフィルム40を用いているため、アルミニウム箔の非通気性が非常に高く、また冷媒圧縮機の容器1内の潤滑油に対する耐油性も高いため、真空断熱材35内部の真空度を長期に安定して保つことができ、吸入マフラー34に吸入されたガス冷媒への熱伝達の低減による冷媒圧縮機の効率向上効果を長期に安定して得ることができる。
【0027】
尚、本実施の形態ではプラスチックフィルム材の外側に金属箔を接着した2層構造の例を示したが、アルミニウムの金属箔35の外側にもプラスチックフィルムを積層した3層以上の構造としてもよく、さらに安定した断熱効果が得られ、吸入マフラー34に吸入されたガス冷媒への熱伝達の低減による冷媒圧縮機の効率向上効果をより長期に安定して得ることができる。
【0028】
(実施の形態3)
図6は、本発明の実施の形態3による冷媒圧縮機の吸入マフラーの要部断面図である。
【0029】
図6において、42は吸入マフラーであり本実施の形態は実施の形態1もしくは実施の形態2における冷媒圧縮機の吸入マフラーを2つに分割された真空断熱材A43と真空断熱材B44とで構成してあり、真空断熱材A43の非通気性外被材45の接合部46と真空断熱材B44の非通気性外被材47の接合部48とを接着することにより結合している。
【0030】
吸入マフラー42は、真空断熱材A43と真空断熱材B44とを別部品として形成してあり、真空断熱材A43の非通気性外被材45の接合部46と真空断熱材B44の非通気性外被材47の接合部48とを接着することにより結合して形成しているため、それぞれ真空断熱材43と44の形状を単純に形成することができ、真空断熱材により形成する吸入マフラー42の構造が簡単となり製作が容易で生産性の高い吸入マフラーを実現できる。
【0031】
尚、本実施の形態では吸入マフラーを2つの真空断熱材で構成した例を示したが、構成する真空断熱材の個数を増すことにより、さらに簡易な形状の真空断熱材で吸入マフラ−を形成することができ、より製作が容易で生産性の高い吸入マフラーを実現できる。
【0032】
【発明の効果】
以上説明したように請求項1に記載の発明は、前記吸入マフラーの外壁の少なくとも一部が空隙を有した芯材と前記芯材を被う非通気性外被材からなる真空断熱材で構成することにより、真空断熱材により薄い壁厚でコンパクトな吸入マフラーを構成でき、さらに吸入マフラーは密閉容器内の潤滑油からの熱伝達や高温の電動モータからの輻射熱を受けても、外壁の真空断熱材で十分に断熱されるため、吸入マフラー内の冷媒への熱伝達は大幅に低減され、冷媒の温度は低くたもたれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くすることができるという効果がある。
【0033】
また、請求項2に記載の発明は請求項1に記載の発明の効果に加えて、非通気性外被材をプラスチックフィルムと金属箔のラミネートフィルムで構成することにより、真空断熱材内部の空隙を長期に安定した真空度を保つと共に外被の耐油性を増し、信頼性の高い断熱構造が得られるというという効果がある。
【0034】
また、請求項3記載の発明は請求項1または2に記載の発明の効果に加えて、吸入マフラーを複数に分割された真空断熱材を結合して形成することにより、それぞれの真空断熱材の形状を簡略化できるため、生産性の高い低コストの断熱構造の吸入マフラーが得られるという効果がある。
【図面の簡単な説明】
【図1】本発明による冷媒圧縮機の実施の形態1の要部断面図
【図2】同実施の形態の冷媒圧縮機の吸入マフラーの断面図
【図3】同実施の形態の他の実施例の冷媒圧縮機の吸入マフラーの断面図
【図4】本発明による冷媒圧縮機の実施の形態2の吸入マフラーの断面図
【図5】同実施の形態の冷媒圧縮機の吸入マフラーの真空断熱材の要部断面図
【図6】本発明による冷媒圧縮機の実施の形態3の吸入マフラーの断面図
【図7】従来の冷媒圧縮機の要部断面図
【図8】従来の冷媒圧縮機の吸入マフラーの断面図
【符号の説明】
1 容器
2 電動モータ
3 圧縮要素
10 シリンダ
19,26,31,34,42 吸入マフラー
27,33,35 真空断熱材
28,37 芯材
29,36 外被材
38 プラスチックフィルム
39 金属箔
40 ラミネ−トフィルム
43 真空断熱材A
44 真空断熱材B
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to improving the efficiency of a refrigerant compressor used for a refrigerator or the like.
[0002]
[Prior art]
In recent years, there has been a strong demand for improved efficiency of refrigerant compressors used in refrigerators and the like.
[0003]
As an improvement in the efficiency of the conventional refrigerant compressor, a heat insulating space is provided with the outer wall of the suction muffler as a double wall, and the density of the gas refrigerant is increased by lowering the temperature of the gas refrigerant sucked into the compression chamber. There is one in which the amount of circulating refrigerant is increased to increase the efficiency (for example, see Patent Document 1).
[0004]
Hereinafter, an example of the conventional refrigerant compressor will be described with reference to the drawings.
[0005]
FIG. 7 is a cross-sectional view of a main part of a conventional refrigerant compressor, and FIG. 8 is a cross-sectional view of a suction muffler of the conventional refrigerant compressor.
[0006]
7 and 8, reference numeral 1 denotes a container, 2 denotes an electric motor, and 3 denotes a compression element driven by the electric motor. Reference numeral 4 denotes a stator, and reference numeral 5 denotes a rotor, which constitutes the electric element 2.
[0007]
6 is a cylinder head having a suction chamber 7 and a discharge chamber 8, 9 is a cylinder block having a cylinder 10, 11 is a valve plate having a suction hole 12 and a discharge hole 13, 14 is a suction lead, 15 is a piston, 16 , A connecting rod connected to the eccentric portion 18 of the crankshaft; 19, an inflatable suction muffler connected to the cylinder 10 via a communication pipe 20; 21, an outer wall of the suction muffler 19; A space 24 is formed by a double wall of an inner wall 22 and an outer wall 23, and 25 is an inlet provided on the outer wall 21.
[0008]
The operation of the refrigerant compressor configured as described above will be described below.
[0009]
First, a low-temperature and low-pressure refrigerant gas returned from an external refrigeration cycle (not shown) is sucked into the container 1 from a suction pipe (not shown) to the compression element 3 driven by the electric motor 2, and furthermore, a suction port The air is sucked into the suction muffler 19 through the suction pipe 25, passes through the suction chamber 7, the suction hole 12, opens the suction lead 14, is guided to the cylinder 10, is compressed and becomes high temperature and high pressure, and is discharged from a discharge line (not shown). Through a pipe (not shown), it is guided to an external refrigeration cycle (not shown) to perform a refrigeration action. At this time, the pressure pulsation generated in the cylinder 10 is attenuated by the silencing effect of the suction muffler 19, transmitted to the container 1 of the refrigerant compressor, and transmitted to the external refrigeration cycle via the suction pipe. Reduce noise caused by pulsation. Further, the refrigerant gas sucked into the suction muffler 19 is hardly heated from the high-temperature refrigerant gas in the container 1 by the heat insulating effect of the space 24 provided on the outer wall 21 of the suction muffler 19, and the density of the gas refrigerant is reduced. It is kept high, the refrigerant circulation amount is increased, and the efficiency is improved.
[0010]
[Patent Document 1]
JP-A-6-117372
[Problems to be solved by the invention]
However, in the above-described conventional configuration, since the suction muffler 19 is configured by the double-walled outer wall 21 so as to provide the space 24 serving as a heat insulating layer, the structure of the suction muffler 19 becomes complicated and the thickness of the entire outer wall 21 is reduced. As the size of the suction muffler 19 increases, convection heat transfer occurs due to convection of the gas inside the space 24 of the outer wall 21 having the double structure. Heat transfer and radiant heat from the high-temperature electric motor 2 and the compression element 3 are transmitted to the refrigerant inside the suction muffler 19, so that a sufficient heat insulating effect cannot be obtained, and the refrigeration capacity and efficiency improving effect are small.
[0012]
The present invention is to solve the conventional problems, and to provide a hermetic compressor with improved efficiency by reducing the temperature rise of gas refrigerant sucked into the suction muffler without increasing the size of the suction muffler. With the goal.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention includes, in a container, an electric motor, a compression element driven by the electric motor, and a suction muffler communicating with a cylinder of the compression element, and at least an outer wall of the suction muffler. A part is constituted by a vacuum heat insulating material composed of a core material and a non-breathable outer material covering the core material.
[0014]
With this configuration, a compact suction muffler with a simple structure can be formed by the vacuum insulation material with a thin wall thickness. The heat transfer to the refrigerant inside the suction muffler is greatly reduced because the vacuum heat insulating material on the outer wall sufficiently insulates, and the temperature of the refrigerant leans down, so that the density of the gas refrigerant is high and the refrigerant circulation amount is large. This has the effect that the refrigerating capacity and the compression efficiency can be increased.
[0015]
According to a second aspect of the present invention, in addition to the first aspect of the present invention, the non-breathable covering material of the vacuum heat insulating material is constituted by a laminated film of a plastic film and a metal foil. In addition to the effect of the invention, the metal film is coated on the laminating film to maintain a stable degree of vacuum inside the vacuum heat insulating material for a long time, increase the oil resistance of the outer cover, and obtain a highly reliable heat insulating structure. Has the effect of being
[0016]
According to a third aspect of the present invention, the suction muffler is further formed by connecting a plurality of divided vacuum heat insulating materials to the first or the second aspect of the invention. In addition to the effect of the invention described in Item 2, the shape of the vacuum heat insulating material can be simplified, so that a suction muffler having a heat insulating structure with high productivity and low cost can be obtained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a refrigerant compressor according to the present invention will be described with reference to the drawings. The same components as those in the conventional example are denoted by the same reference numerals, and detailed description is omitted.
[0018]
(Embodiment 1)
FIG. 1 is a sectional view of a main part of a refrigerant compressor according to Embodiment 1 of the present invention, and FIG. 2 is a sectional view of a suction muffler of the refrigerant compressor of the embodiment.
[0019]
1 and 2, reference numeral 26 denotes a suction muffler, and the entire outer wall of the suction muffler 26 is formed by a vacuum heat insulating material 27. The vacuum heat insulating material 27 is formed by a core material 28 having a void and a non-breathable outer cover material. 29, and the gap of the core material 28 is kept in a vacuum. Reference numeral 30 denotes a suction port provided in a part of the vacuum heat insulating material 27. As the core material 28, inorganic powder such as pearlite or silica having high heat resistance and low thermal conductivity can be used. In the present embodiment, silica powder is used. Since there is a gap between the particles of the silica powder of the core material 28, the core material 28 has continuous air permeability, and the inside of the vacuum heat insulating material 30 covered with the non-air permeable outer material 29 is kept in vacuum. Suitable to do. Also. Since the silica powder of the core material 28 has a very small particle diameter, the contact area between the particles is small, and the heat conduction through the contact surface is very small. As the non-breathable covering material 29, a plastic film material such as polypropylene or a laminated material obtained by laminating a plurality of film materials can be used.
[0020]
The operation of the refrigerant compressor of the present embodiment configured as described above will be described below.
[0021]
The vacuum heat insulating material 27 constituting the outer wall of the suction muffler 26 is heated by receiving heat transfer from the high-temperature refrigerant gas in the container 1 and the lubricating oil in the container 1 and radiant heat from the high-temperature electric motor 2 and the compression element 3. However, since the inside of the vacuum heat insulating material 27 is kept at a vacuum in the void of the core material 28 having a void, convective heat transfer due to heat does not occur, and the heat is limited to slight heat conduction of the core material 28. The heat insulation is high, heat is hardly transmitted into the suction muffler 26, the density of the sucked gas refrigerant is maintained high, the refrigerant circulation amount is increased, and the efficiency of the refrigerant compressor is increased. Furthermore, since the heat insulating performance of the vacuum heat insulating material 27 is high, the vacuum heat insulating material 27 can be made thin, and the suction muffler 26 can be made compact.
[0022]
In the refrigerant compressor of the present embodiment, a part of the outer wall of the suction muffler may be formed of a vacuum heat insulating material. As shown in FIG. 3, the suction muffler 31 is formed of a plastic material 32 and a vacuum heat insulating material 33. And the vacuum heat insulating material 33 is provided on the surface opposing the electric motor 2 and the compression element 3, so that the refrigerant in the suction muffler 31 due to radiant heat from the high-temperature electric motor 2 and the compression element 3 to the suction muffler 31 Heat transfer to the gas can be effectively reduced.
[0023]
(Embodiment 2)
FIG. 4 is a cross-sectional view of a suction muffler of a refrigerant compressor according to Embodiment 2 of the present invention, and FIG. 5 is a cross-sectional view of a main part of a vacuum heat insulating material of the suction muffler of the refrigerant compressor according to the same embodiment.
[0024]
4 and 5, reference numeral 34 denotes a suction muffler, and a plastic film 38 in which a non-breathable covering material 36 constituting a vacuum heat insulating material 35 is disposed on a side in contact with a core material 37 having a gap; A metal foil 39 disposed outside the metal film 38 and a laminate film 40 formed by bonding the plastic film 38 and the metal foil 39 are formed, and the gap of the core material 37 is kept in a vacuum. Reference numeral 41 denotes a suction port provided in a part of the vacuum heat insulating material 35. Preferably, polypropylene, polyester, or the like can be used as the plastic film 34 of the non-breathable covering material, and aluminum foil can be used as the metal foil 35.
[0025]
The operation of the refrigerant compressor of the present embodiment configured as described above will be described below.
[0026]
The vacuum heat insulating material 35 forming the outer wall of the suction muffler 34 is heated by receiving heat transfer from the high-temperature refrigerant gas in the container 1 and the lubricating oil in the container 1 and radiant heat from the high-temperature electric motor 2. Since the inside of the heat insulating material 35 is kept at a vacuum in the core 37 having a gap, convection heat transfer due to heat does not occur, and the heat is limited to slight heat conduction of the core 37 having the gap. Heat insulation is high, heat is hardly transmitted into the suction muffler 34, the density of the sucked gas refrigerant is maintained high, the refrigerant circulation amount is increased, and the efficiency of the refrigerant compressor is increased. Further, since the laminate film 40 in which the aluminum metal foil 39 is adhered to the outside of the polypropylene plastic film 38 is used as the non-breathable covering material 36, the non-breathability of the aluminum foil is very high, Since the oil resistance to the lubricating oil in the container 1 of the compressor is also high, the degree of vacuum inside the vacuum heat insulating material 35 can be stably maintained for a long time, and the heat transfer to the gas refrigerant sucked into the suction muffler 34 is reduced. , The effect of improving the efficiency of the refrigerant compressor can be stably obtained for a long period of time.
[0027]
In the present embodiment, an example of a two-layer structure in which a metal foil is adhered to the outside of a plastic film material has been described, but a structure of three or more layers in which a plastic film is laminated also to the outside of an aluminum metal foil 35 may be used. Further, a more stable heat insulating effect can be obtained, and the effect of improving the efficiency of the refrigerant compressor by reducing heat transfer to the gas refrigerant sucked into the suction muffler 34 can be stably obtained for a longer period of time.
[0028]
(Embodiment 3)
FIG. 6 is a cross-sectional view of a main part of a suction muffler of a refrigerant compressor according to Embodiment 3 of the present invention.
[0029]
In FIG. 6, reference numeral 42 denotes a suction muffler. This embodiment comprises a vacuum heat insulator A43 and a vacuum heat insulator B44 obtained by dividing the suction muffler of the refrigerant compressor according to the first or second embodiment into two parts. The joining portion 46 of the non-breathable covering material 45 of the vacuum heat insulating material A43 and the joining portion 48 of the non-breathable covering material 47 of the vacuum heat insulating material B44 are bonded to each other.
[0030]
The suction muffler 42 is formed by forming the vacuum heat insulating material A43 and the vacuum heat insulating material B44 as separate components, and the joining portion 46 of the non-air permeable outer material 45 of the vacuum heat insulating material A43 and the non-air permeable material of the vacuum heat insulating material B44. Since it is formed by bonding the joining portion 48 of the material 47 by bonding, the shapes of the vacuum heat insulating materials 43 and 44 can be simply formed, and the suction muffler 42 formed by the vacuum heat insulating material can be formed. The structure is simple, and a suction muffler that is easy to manufacture and has high productivity can be realized.
[0031]
In this embodiment, an example is shown in which the suction muffler is formed of two vacuum heat insulating materials. However, by increasing the number of vacuum heat insulating materials to be formed, the suction muffler is formed with a vacuum heat insulating material having a simpler shape. And a suction muffler that is easier to manufacture and has higher productivity can be realized.
[0032]
【The invention's effect】
As described above, the invention according to claim 1 is configured such that at least a part of the outer wall of the suction muffler is a vacuum heat insulating material including a core material having an air gap and a non-breathable outer material covering the core material. By using vacuum insulation material, a compact suction muffler with a thin wall thickness can be constructed. Heat insulation is sufficiently insulated by the heat insulating material, so the heat transfer to the refrigerant in the suction muffler is greatly reduced, and the temperature of the refrigerant is lowered, so that the density of the gas refrigerant is high and the refrigerant circulation amount is large, and the refrigeration capacity In addition, there is an effect that the compression efficiency can be increased.
[0033]
In addition, the invention according to claim 2 has the effect of the invention according to claim 1, and furthermore, the non-breathable covering material is constituted by a laminate film of a plastic film and a metal foil, so that the void inside the vacuum heat insulating material is formed. This has the effect of maintaining a stable degree of vacuum for a long period of time, increasing the oil resistance of the jacket, and obtaining a highly reliable heat insulating structure.
[0034]
In addition to the effects of the first or second aspect of the present invention, the third aspect of the present invention provides a suction muffler formed by combining a plurality of divided vacuum thermal insulators to form a vacuum muffler. Since the shape can be simplified, there is an effect that a suction muffler having a heat insulating structure with high productivity and low cost can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a refrigerant compressor according to a first embodiment of the present invention; FIG. 2 is a cross-sectional view of a suction muffler of the refrigerant compressor of the same embodiment; FIG. FIG. 4 is a cross-sectional view of a suction muffler of a refrigerant compressor according to an example. FIG. 4 is a cross-sectional view of a suction muffler according to a second embodiment of the refrigerant compressor according to the present invention. FIG. 6 is a cross-sectional view of a suction muffler according to a third embodiment of the refrigerant compressor according to the present invention. FIG. 7 is a cross-sectional view of a main part of a conventional refrigerant compressor. FIG. 8 is a conventional refrigerant compressor. Sectional view of intake muffler
DESCRIPTION OF SYMBOLS 1 Container 2 Electric motor 3 Compression element 10 Cylinder 19,26,31,34,42 Suction muffler 27,33,35 Vacuum heat insulating material 28,37 Core material 29,36 Jacket material 38 Plastic film 39 Metal foil 40 Laminate film 43 Vacuum insulation material A
44 Vacuum insulation material B

Claims (3)

容器内に電動モータと前記電動モータによって駆動される圧縮要素と、前記圧縮要素のシリンダに連通した吸入マフラーとを備え、前記吸入マフラーの外壁の少なくとも一部が芯材と前記芯材を被う非通気性外被材からなる真空断熱材で構成された冷媒圧縮機。An electric motor, a compression element driven by the electric motor, and a suction muffler communicating with a cylinder of the compression element are provided in a container, and at least a part of an outer wall of the suction muffler covers the core and the core. A refrigerant compressor composed of a vacuum heat insulating material made of a non-breathable covering material. 前記非通気性外被材をプラスチックフィルムと金属箔のラミネートフィルムで構成した請求項1記載の冷媒圧縮機。2. The refrigerant compressor according to claim 1, wherein the non-breathable covering material is formed of a laminated film of a plastic film and a metal foil. 前記吸入マフラーは複数に分割された真空断熱材を結合することで形成された請求項1または請求項2に記載の冷媒圧縮機。The refrigerant compressor according to claim 1, wherein the suction muffler is formed by combining a plurality of divided vacuum heat insulating materials.
JP2003015874A 2003-01-24 2003-01-24 Refrigerant compressor Pending JP2004225645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015874A JP2004225645A (en) 2003-01-24 2003-01-24 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015874A JP2004225645A (en) 2003-01-24 2003-01-24 Refrigerant compressor

Publications (1)

Publication Number Publication Date
JP2004225645A true JP2004225645A (en) 2004-08-12

Family

ID=32903505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015874A Pending JP2004225645A (en) 2003-01-24 2003-01-24 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JP2004225645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033096A1 (en) * 2006-09-12 2008-03-20 Panasonic Corporation A compressor structure for a refrigeration system
KR20110098494A (en) * 2010-02-26 2011-09-01 엘지전자 주식회사 Hermetic type compressor
CN102251950A (en) * 2011-07-07 2011-11-23 广州万宝集团压缩机有限公司 Exhausting and sound deadening structure of refrigerator compressor
CN102297118A (en) * 2011-09-30 2011-12-28 黄石东贝电器股份有限公司 Separate heat-insulating exhaust silencing device and refrigerant compressor adopted thereby
CN114761685A (en) * 2019-08-16 2022-07-15 日本电产全球电器巴西有限公司 Suction muffler heat insulation system in compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033096A1 (en) * 2006-09-12 2008-03-20 Panasonic Corporation A compressor structure for a refrigeration system
JP2008538231A (en) * 2006-09-12 2008-10-16 松下電器産業株式会社 Compressor structure for cooling system
KR20110098494A (en) * 2010-02-26 2011-09-01 엘지전자 주식회사 Hermetic type compressor
KR101698084B1 (en) 2010-02-26 2017-01-19 엘지전자 주식회사 Hermetic type compressor
CN102251950A (en) * 2011-07-07 2011-11-23 广州万宝集团压缩机有限公司 Exhausting and sound deadening structure of refrigerator compressor
CN102297118A (en) * 2011-09-30 2011-12-28 黄石东贝电器股份有限公司 Separate heat-insulating exhaust silencing device and refrigerant compressor adopted thereby
US9004879B2 (en) 2011-09-30 2015-04-14 Huangshi Dongbei Electrical Appliance Co., Ltd. Discrete heat-insulated exhaust muffler device and refrigeration compressor using same
CN114761685A (en) * 2019-08-16 2022-07-15 日本电产全球电器巴西有限公司 Suction muffler heat insulation system in compressor

Similar Documents

Publication Publication Date Title
US9004879B2 (en) Discrete heat-insulated exhaust muffler device and refrigeration compressor using same
CN101331320A (en) Hermetic compressor with internal thermal insulation
JP6259498B2 (en) Hermetic compressor and refrigeration system
JP2004225645A (en) Refrigerant compressor
US20090155114A1 (en) Compressor structure for a refrigeration system
JP4682596B2 (en) Hermetic compressor
CN104763612A (en) Exhaust muffler and refrigerating compressor
JP2004044568A (en) Reciprocating compressor having pulsing discharge reduction structure
JP2004251131A (en) Refrigerant compressor
EP1853822B1 (en) A compressor
CN206409365U (en) A kind of freezer compressor crankcase structure
JPH0599141A (en) Closed type motor-operated compressor
JP2015025363A (en) Hermetic compressor and refrigerator
JPS6368791A (en) Suction device for closed type rotary compressor
JP2012154213A (en) Scroll compressor
JP2848418B2 (en) Hermetic electric compressor
JPH09144681A (en) Rotary compressor with plurality of cylinders
JP2005076567A (en) Compressor
EP1718869B1 (en) A refrigerant compressor
JPH04252893A (en) Rotary compressor and refrigerator using rotary compressor
JP2003097430A (en) Sealed compressor
JPH06117388A (en) Hermetic rotary compressor
CN106545485A (en) A kind of freezer compressor crankcase structure
JP2009121280A (en) Refrigerant compressor and its manufacturing method
CN117685224A (en) Scroll, compressor and electric appliance