JP2004224608A - Flaky titanium nitride and method of manufacturing the same - Google Patents

Flaky titanium nitride and method of manufacturing the same Download PDF

Info

Publication number
JP2004224608A
JP2004224608A JP2003012092A JP2003012092A JP2004224608A JP 2004224608 A JP2004224608 A JP 2004224608A JP 2003012092 A JP2003012092 A JP 2003012092A JP 2003012092 A JP2003012092 A JP 2003012092A JP 2004224608 A JP2004224608 A JP 2004224608A
Authority
JP
Japan
Prior art keywords
gas
flaky
titanium nitride
heating
flaky titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012092A
Other languages
Japanese (ja)
Inventor
Noriyasu Hotta
憲康 堀田
Toshiki Goto
俊樹 後藤
Hirohito Mori
宏仁 森
Yukiya Haruyama
幸哉 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP2003012092A priority Critical patent/JP2004224608A/en
Publication of JP2004224608A publication Critical patent/JP2004224608A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To continuously and stably obtain flaky titanium nitride using flaky titanic acid as a raw material. <P>SOLUTION: The flaky titanium nitride having 0.1-1,000 μm average particle diameter and 1-5,000 nm average thickness is manufactured by floating the flaky titanic acid in a gas phase containing gaseous nitrogen and gaseous ammonia and heating it to 800-1,800°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は薄片状窒化チタン及びその製造方法に関する。
【0002】
【従来の技術】
近年、窒化物を中心とする各種の非酸化物系セラミックスが新素材として注目されている。中でも窒化チタンは優れた導電性を有し、高い強度と優れた耐摩耗性を持つという特徴を有しており、各種導電性材料及びサーメット原料等の切削材料として用いられている。これまでに金属窒化物の製造方法としては、金属又は金属酸化物をアンモニアガス雰囲気等の還元雰囲気下で加熱焼成する方法や金属ハライドと窒素又はアンモニアの混合ガスを水素を加えて気相反応させる方法が知られている。また、繊維状チタニア等をアンモニアガスを含む還元性雰囲気下で500〜1000℃にて加熱、還元し導電性酸窒化チタンを得る方法が知られている(例えば特許文献1参照)。
またチタン酸カリウム繊維をアンモニアガス雰囲気下に加熱焼成して、一部が窒化チタン化したチタン酸カリウム繊維を得る方法も知られている(例えば特許文献2参照)。
【0003】
〔特許文献1〕特開平1−215718号公報(請求項2)
〔特許文献2〕特公平5−27573号公報(請求項4)
【0004】
【発明の解決しようとする課題】
しかしながら、上記のうち原料を静置する方法の場合は窒化反応が進行するのに長時間を必要とし生成する窒化チタンは凝集したものになりやすい。また気相反応の場合は原料の金属ハライド等が腐食性を有するため、装置や取扱に注意を要するなどの問題点があった。
【0005】
このような問題点を解決する窒化チタン等の金属窒化物含有粉末の製造方法として、本発明者らは先に周期律表IVA族、VA族又はVIA族金属酸化物粉末を、窒素ガス及びアンモニアガスを含む気相中に浮遊させ移送しながら、800〜1800℃に加熱することにより平均粒子径が10nm〜1μmである金属窒化物含有粉末を連続的に得ることを特徴とする金属窒化物含有粉末の製造方法を出願した(特許文献3参照)。しかしながら、この方法で窒化チタン含有粉末を製造する場合の原料は酸化チタンが用いられ、その場合はその形状として粒子状、繊維状のものに限られ、薄片状のものを得る方法は知られていなかった。
〔特許文献3〕特開2001−106525号公報(特許第3089007号、請求項1)
本発明の課題は、薄片状窒化チタンを提供することにある。
また、本発明の課題は、薄片状チタン酸又はチタン酸塩を原料に用い、連続且つ安定的に薄片状窒化チタンを製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、平均粒子径0.1〜1000μm、平均厚さ1〜5000nmの形状である薄片状窒化チタンに係る。
本発明は平均粒子径0.1〜1000μm、平均厚さ1〜5000nmの薄片状チタン酸又はチタン酸塩を、窒素ガス及びアンモニアガスを含む気相中に浮遊させ移送しながら、800〜1800℃に加熱することにより平均粒子径が0.1〜1000μmである薄片状窒化チタンを連続的に得ることを特徴とする薄片状窒化チタンの製造方法に係る。
また本発明は、供給部と加熱部と捕集部とを繋いで形成された一連の移送配管系を構成し、該供給部から薄片状チタン酸又はチタン酸塩を気相により前記捕集部に向けて移送する工程、供給部、加熱部又は供給部から加熱部までの間に気相中に窒素ガス、アンモニアガス及び必要に応じて添加される有機ガスを導入する工程、気相中を移送される薄片状チタン酸又はチタン酸塩を加熱部において所定温度まで加熱する工程、を含むことを特徴とする薄片状窒化チタンの製造方法に係る。
【0007】
【発明の実施の形態】
本発明において、原料となるチタン酸はα−チタン酸(HTiO)、β−チタン酸(HTiO)、γ−チタン酸のいずれでも良い。これらチタン酸の塩としては、例えばカリウムリチウム塩等の塩を例示することができる。
原料となる薄片状チタン酸はフラックス法、水熱合成法等により合成された層状チタン酸塩を酸処理した後、アンモニウム及びアミン塩等を層間にインターカレーションする事により薄片化させたチタン酸を用いる。この方法は厚さ数nm〜数μmの薄片状チタン酸を得ることが可能であり薄片状窒化チタンの合成に適している。薄片化に使用したアミン塩等は薄片化の後、酸により除去しても良いし、そのまま残存させて窒化反応に供する事も可能である。
【0008】
本発明では、このように薄片状チタン酸又はチタン酸塩を用いる事により厚さが数十ナノレベルの極薄の薄片状窒化チタンを製造することも可能になった。
以下、チタン酸及びチタン酸塩を含めてHTOと称する。
本発明において、薄片状HTOを浮遊させる気相は、窒素及びアンモニアガスを必須とし、必要に応じて有機ガスを添加してもよい。アンモニアガスの使用量は窒素100体積部に対して10〜200体積部の使用が例示できる。
有機ガスとしては、炭化水素やアルコールが例示でき、これらのうち液状のものは加熱等により気化して用いる。具体例としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン類、エチレン、プロピレン、ブテン等のアルケン類、アセチレン、プロピン、2−ブチン等のアルキン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロピルアルコール等のアルコール類が例示できるが、炭化水素ガスが好ましく、芳香族炭化水素類が特に好ましい。有機ガス類を使用すると、有機ガスの還元作用により原料粉体の窒化が促進され、高純度の窒化チタンを得やすくなるため好ましい。有機ガスを使用する場合、その使用量は、窒素と還元性ガス(アンモニアガス及び下記水素ガスなど)の混合ガス100体積部に対して0.01〜0.8体積部とするのがよく、0.1〜0.5体積部とするのが好ましい。0.01体積部未満では、添加の効果が十分でなく、0.8体積部を超えると表面にカーボン被覆を形成することがある。また、表面がカーボン被覆された薄片状窒化チタンを得たい場合には、0.6〜100体積部とするのがよい。
【0009】
本発明においては、気相中に前記の各成分の他、ヘリウムガス、ネオンガス、アルゴンガス等の不活性ガス、水素ガス等の還元性ガスを添加してもよい。気相中に浮遊させ加熱する方法としては、気相により原料粉末を浮遊させながら加熱する流動焼成炉を用いる方法や気相により原料粉末を移送しながら加熱する流通法を例示できる。流通法によると連続して安定な製造を行うことができるため好ましい。
流通法は、供給部と加熱部と捕集部とを繋いで形成された一連の移送配管系から構成される反応装置により行われる。かかる反応装置としては、例えば、薄片状HTOを撹拌し気相中に浮遊させる撹拌手段と気相(キャリアガス)を導入するガス供給管の設けられた供給部、外部加熱手段により内部を通過する気相を所定温度に加熱し得る管からなる加熱部、粉末を気相から分離して捕集する捕集部を有しており、各部は必要によりガス供給管の設けられた密閉管により連結されている装置を挙げることができる。当該装置において加熱部における薄片状HTOの移送方向としては特に制限はなく、下から上へ、上から下へ、水平方向等、任意の方向に行うことができる。
【0010】
当該反応装置を用いて本発明の製造方法を実施する場合、供給部から薄片状HTOを気相(キャリアガス)により前記捕集部に向けて移送する工程、供給部、加熱部又は供給部から加熱部までの間に気相中に窒素ガス、アンモニアガス及び必要に応じて添加される有機ガスを導入する工程、気相中を移送される薄片状HTOを加熱部において所定温度まで加熱する工程によりこれを行うことができる。ここでキャリアガスは供給部において窒素ガス、アンモニアガス及び必要に応じて添加される有機ガスの所定量よりなるガスとして供給してもよいが、安全のため、あるいは反応条件の制御を容易にするため、(1)供給部においては窒素ガスを主体とし、供給部から加熱部までの間でアンモニアガス及び必要に応じて添加される有機ガスの所定量を導入する方法、(2)供給部においては窒素ガス及びアンモニアガスを主体とし、供給部から加熱部までの間で必要に応じて添加される有機ガスの所定量を導入する方法により行ってもよい。
【0011】
供給部に配置又は供給された原料薄片状HTOは、アジテーター等の撹拌手段により供給部内の空間に浮遊せしめられ、次いで供給部にガス供給管から導入される気相(キャリアガス)に乗って加熱部に向けて移送される。気相は加熱部までの間に、必要に応じて追加のガス成分が導入されてもよく加熱部における所定の気相混合率及び雰囲気圧力に調整される。加熱部において薄片状HTOを乗せた気相は、外部加熱手段等により800〜1800℃に加熱される。薄片状HTOが加熱部を通過するのに要する時間は、気相流量や加熱管径、加熱管長の調整により通常数秒〜数分程度となるよう調節される。気相流量は、加熱管平均断面積1cmあたり50〜500ml/分を例示できる。
【0012】
ここで、加熱温度を低め(800〜1300℃)に設定し、あるいは反応時間を短めに設定すると窒化率が低減され、酸窒化物粉末を得ることができる。また、高純度の薄片状窒化チタンを得たい場合には、加熱温度を高め(1000℃以上、より好ましくは1300℃以上)とし、窒素と還元性ガスの混合ガス100体積部に対して0.01〜0.8体積部の割合で有機ガスを導入するのが好ましい。適当な条件の下では、数秒の加熱でも高純度の薄片状窒化チタンを得ることができる。加熱温度が高すぎるとエネルギー効率が低下するため、省エネルギーの観点からは加熱温度は1800℃程度まで、好ましくは1600℃までとするのが好ましい。
【0013】
以上の点から本発明の製造方法における加熱温度としては、800〜1800℃、好ましくは1000〜1600℃、特に好ましくは1300〜1600℃とするのがよい。捕集部における薄片状窒化チタンの捕集は各種集塵装置を利用する等の公知の方法に従い行うことができる。また捕集部で回収された気相はアンモニアガス、有機ガスを加える等成分を調整して再利用することができる。
【0014】
本発明の上記製造法により製造された薄片状窒化チタンを、更に窒素ガスにアンモニア、有機ガスの少なくとも一方を添加させたガス中において800℃以上、好ましくは1000〜1500℃で再処理する事により、粒子同士の焼結を防ぎ純度の高い薄片状窒化チタンを製造することができる。
【0015】
本発明の方法によれば、原料の厚さを維持したまま窒化物を製造できるので、これまで製造の困難であった厚さ数十nmの薄片状窒化チタンを容易に製造できる。また、本発明の製造方法は、反応時間が短く短時間で薄片状窒化チタンを製造できるという特徴を有している。
【0016】
【実施例】
以下に実施例を挙げ、本発明を更に詳細に説明するが、何らこれらに制限されるものではない。
原料としては、チタン酸カリウムリチウム(K Li 27Ti 73)を塩酸とn−プロピルアミンで処理し調整した薄片状チタン酸(平均粒子径8.5μm、厚さ5〜100nm),n−ヘキサン(和光純薬製、試薬一級)、NガスとNHガス(共に純度99.999%)を用いた。なお、導電率(Ω・cm)については、直径8mmの円筒状容器の中に試料を入れ、上下から130kgf/cm(1.27×107Pa)の圧力をかけ、その圧粉体の中に2本の電極を上下8mmの間隔になるように挿入し、電流値と電圧値を測定した上で、計算して求めた。粒径の測定については、レーザ回折式粒度分布測定装置(島津製作所、SALD−2100)を使用した。本発明の原料、目的物共に薄片状の化合物であるのに平均粒子径で表されるのは水分散した粉体にレーザ光を照射し、その回折、散乱光の強度から粒度、粒径を算出するためである。原料、目的物の厚さはウレタンの水系エマルジョン塗料NEOREZ R−960(ZENECA社)を用い固形成分10%の濃度に調整した後塗膜を作製しその断面のSEM像をノギスにて測定した。組成分析については、柳本製作所のCHNコーダー及びX線回折等により行った。
原料の薄片状チタン酸のSEM像を図1(倍率10000倍)及び図2(倍率1000倍)に示す。そのXRD図を図3に示す。また原料及び目的物の厚さを測定するためにSEM像を図4に示す。
【0017】
実施例1〜2
図5に示すような内径42mm、長さ1000mmのアルミナ管1からなり垂直に設置された加熱部2と、加熱部下端に接続されたガス導入管3、4、5及び薄片状チタン酸導入管6、粉末貯蔵槽7、アジテーター8を備えた供給部9と、加熱部上端に接続された粉末捕集装置を有する捕集部(図示せず)からなる製造装置を用いて、薄片状チタン酸(平均粒子径8.5μm、比表面積44m/g、厚さ5〜100nm)を原料として供給し、表1に示す気相混合比率、加熱条件で薄片状窒化チタンを製造した。
実施例1で得られた薄片状窒化チタンのSEM像を図6(倍率2000倍)及び図7(倍率5000倍)に示す。そのXRD図を図8に示す。
【0018】
【表1】

Figure 2004224608
【0019】
実施例3〜9
表2に示す気相混合比率、加熱条件に代えた以外は実施例1と同様にして薄片状窒化チタンを製造した。
【0020】
【表2】
Figure 2004224608
【0021】
実施例10
実施例1により製造した薄片状窒化チタンをアルミナボートに充填し、横型電気炉で窒素66ml/min.、アンモニア100ml/min.の混合ガス中で1550℃で再処理した。得られた薄片状窒化チタンの平均粒子径は10.4μm、厚さは5〜100nm、粉体抵抗値は0.008Ω・cmであった。実施例10で得られた薄片状窒化チタンのSEM像を図9(倍率2000倍)及び図10(倍率5000倍)に示す。そのXRD図を図11に示す。
【0022】
実施例11〜13
表3に示す気相混合比率、加熱条件に代えた以外は実施例10と同様にして薄片状窒化チタンを製造した。
【0023】
【表3】
Figure 2004224608
【0024】
【発明の効果】
本発明により、従来知られていなかった厚さが数十ナノレベルの極薄の微細な薄片状窒化チタンを得ることもできる。
また、本発明によれば薄片状チタン酸を原料に用い、連続且つ安定的に微細な薄片状窒化チタンを製造することができる。
【図面の簡単な説明】
【図1】実施例で用いた原料の薄片状チタン酸のSEM像(倍率10000倍)である。
【図2】実施例で用いた原料の薄片状チタン酸のSEM像(倍率1000倍)である。
【図3】実施例で用いた原料の薄片状チタン酸のXRD図である。
【図4】原料及び目的物の厚さを測定するためのSEM像(倍率5000倍)である。
【図5】実施例で用いた製造装置の概略図である。
【図6】実施例1で得られた薄片状窒化チタンのSEM像(倍率2000倍)である。
【図7】実施例1で得られた薄片状窒化チタンのSEM像(倍率5000倍)である。
【図8】実施例1で得られた薄片状窒化チタンのXRD図である。
【図9】実施例10で得られた薄片状窒化チタンのSEM像(倍率2000倍)である。
【図10】実施例10で得られた薄片状窒化チタンのSEM像(倍率5000倍)である。
【図11】実施例10で得られた薄片状窒化チタンのXRD図である。
【符号の説明】
1 アルミナ管
2 加熱部
3、4,5 ガス導入管
6 薄片状HTO導入管
7 粉末貯蔵槽
8 アジテーター
9 供給部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flaky titanium nitride and a method for producing the same.
[0002]
[Prior art]
In recent years, various non-oxide ceramics, mainly nitrides, have been receiving attention as new materials. Among them, titanium nitride has excellent conductivity, high strength and excellent wear resistance, and is used as a cutting material such as various conductive materials and cermet raw materials. So far, as a method for producing a metal nitride, a method in which a metal or a metal oxide is heated and calcined in a reducing atmosphere such as an ammonia gas atmosphere, or a mixed gas of a metal halide and nitrogen or ammonia is added with hydrogen to cause a gas phase reaction Methods are known. Further, a method is known in which fibrous titania and the like are heated and reduced at 500 to 1000 ° C. in a reducing atmosphere containing ammonia gas to obtain conductive titanium oxynitride (for example, see Patent Document 1).
A method is also known in which a potassium titanate fiber is heated and baked in an ammonia gas atmosphere to obtain a partially titanated potassium titanate fiber (for example, see Patent Document 2).
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 1-215718 (Claim 2)
[Patent Document 2] Japanese Patent Publication No. 5-27573 (Claim 4)
[0004]
[Problems to be solved by the invention]
However, among the above methods, in the case of the method in which the raw material is allowed to stand, a long time is required for the nitridation reaction to proceed, and the generated titanium nitride tends to be aggregated. Further, in the case of a gas phase reaction, since the raw material metal halide or the like has a corrosive property, there is a problem that attention must be paid to the apparatus and handling.
[0005]
As a method for producing a metal nitride-containing powder such as titanium nitride which solves such a problem, the present inventors have previously prepared a powder of a metal oxide of Group IVA, VA or VIA of the periodic table using nitrogen gas and ammonia. A metal nitride-containing powder having an average particle diameter of 10 nm to 1 μm is continuously obtained by heating to 800 to 1800 ° C. while being suspended and transferred in a gas phase containing a gas. We applied for a method for producing powder (see Patent Document 3). However, in the case of producing titanium nitride-containing powder by this method, titanium oxide is used as a raw material, and in that case, the shape is limited to a particulate or fibrous shape, and a method of obtaining a flaky shape is known. Did not.
[Patent Document 3] Japanese Patent Application Laid-Open No. 2001-106525 (Japanese Patent No. 3089007, Claim 1)
An object of the present invention is to provide a flaky titanium nitride.
Another object of the present invention is to provide a method for continuously and stably producing flaky titanium nitride using flaky titanic acid or titanate as a raw material.
[0006]
[Means for Solving the Problems]
The present invention relates to a flaky titanium nitride having a shape having an average particle diameter of 0.1 to 1000 μm and an average thickness of 1 to 5000 nm.
In the present invention, flaky titanic acid or titanate having an average particle diameter of 0.1 to 1000 μm and an average thickness of 1 to 5000 nm is suspended and transferred in a gas phase containing nitrogen gas and ammonia gas at 800 to 1800 ° C. To obtain flaky titanium nitride having an average particle diameter of 0.1 to 1000 μm continuously.
Further, the present invention constitutes a series of transfer piping systems formed by connecting a supply section, a heating section, and a collection section, and from the supply section, flaky titanic acid or titanate is collected in a gaseous phase from the collection section. The process of introducing nitrogen gas, ammonia gas and optionally added organic gas into the gas phase between the supply unit, the heating unit or the supply unit to the heating unit, Heating the transferred flaky titanic acid or titanate to a predetermined temperature in a heating section.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the raw material titanic acid may be any of α-titanic acid (H 4 TiO 4 ), β-titanic acid (H 2 TiO 3 ), and γ-titanic acid. Examples of these salts of titanic acid include salts such as potassium lithium salt.
The flaky titanic acid used as a raw material is a flaky titanic acid obtained by subjecting a layered titanate synthesized by a flux method, a hydrothermal synthesis method or the like to an acid treatment, and then intercalating ammonium and amine salts between layers. Is used. This method can obtain flaky titanic acid having a thickness of several nm to several μm and is suitable for synthesizing flaky titanium nitride. The amine salt or the like used for exfoliation may be removed with an acid after exfoliation, or may be left as it is and subjected to a nitriding reaction.
[0008]
In the present invention, the use of flaky titanic acid or titanate as described above has made it possible to produce ultra-thin flaky titanium nitride having a thickness of several tens of nanometers.
Hereinafter, the term “HTO” includes titanic acid and titanate.
In the present invention, the gaseous phase in which the flaky HTO is suspended essentially contains nitrogen and ammonia gas, and an organic gas may be added as necessary. The amount of ammonia gas used is, for example, 10 to 200 parts by volume based on 100 parts by volume of nitrogen.
Examples of the organic gas include hydrocarbons and alcohols, and among them, liquid ones are used after being vaporized by heating or the like. Specific examples include alkanes such as methane, ethane, propane, butane, pentane and hexane; alkenes such as ethylene, propylene and butene; alkynes such as acetylene, propyne and 2-butyne; benzene, toluene and xylene. Aromatic hydrocarbons and alcohols such as methanol, ethanol and propyl alcohol can be exemplified, but hydrocarbon gas is preferred, and aromatic hydrocarbons are particularly preferred. The use of organic gases is preferable because nitriding of the raw material powder is promoted by the reducing action of the organic gas, and high-purity titanium nitride is easily obtained. When an organic gas is used, the amount used is preferably 0.01 to 0.8 parts by volume with respect to 100 parts by volume of a mixed gas of nitrogen and a reducing gas (such as ammonia gas and the following hydrogen gas). It is preferably 0.1 to 0.5 parts by volume. If the amount is less than 0.01 part by volume, the effect of the addition is not sufficient. If the amount exceeds 0.8 part by volume, a carbon coating may be formed on the surface. When it is desired to obtain flaky titanium nitride having a carbon coating on the surface, the volume is preferably 0.6 to 100 parts by volume.
[0009]
In the present invention, an inert gas such as helium gas, neon gas or argon gas, or a reducing gas such as hydrogen gas may be added to the gas phase in addition to the above components. Examples of the method of heating by floating the raw material powder in the gas phase include a method using a fluidized firing furnace for heating while floating the raw material powder in the gas phase, and a flow method of heating while transferring the raw material powder in the gas phase. The flow method is preferable because stable production can be continuously performed.
The flow method is performed by a reaction apparatus including a series of transfer piping systems formed by connecting a supply unit, a heating unit, and a collection unit. As such a reaction apparatus, for example, a stirring unit for stirring and suspending the flaky HTO in a gaseous phase, a supply unit provided with a gas supply pipe for introducing a gaseous phase (carrier gas), and an external heating unit are used to pass through the inside. It has a heating unit consisting of a tube that can heat the gas phase to a predetermined temperature, and a collecting unit that separates and collects the powder from the gas phase, and each unit is connected by a sealed pipe provided with a gas supply pipe as necessary. Listed devices. The transport direction of the flaky HTO in the heating unit in the apparatus is not particularly limited, and the transport can be performed in any direction, such as from bottom to top, from top to bottom, and horizontal.
[0010]
When carrying out the production method of the present invention using the reaction apparatus, a step of transferring flaky HTO from a supply section toward the collection section by a gas phase (carrier gas), from a supply section, a heating section or a supply section. A step of introducing a nitrogen gas, an ammonia gas and an organic gas added as necessary into the gas phase before the heating section, and a step of heating the flaky HTO transferred in the gas phase to a predetermined temperature in the heating section Can do this. Here, the carrier gas may be supplied as a gas composed of a predetermined amount of nitrogen gas, ammonia gas and an organic gas added as needed in the supply unit, but for safety or to facilitate control of reaction conditions. Therefore, (1) a method in which nitrogen gas is mainly used in the supply unit, and a predetermined amount of ammonia gas and an organic gas added as needed is introduced between the supply unit and the heating unit; May be carried out by a method mainly comprising nitrogen gas and ammonia gas and introducing a predetermined amount of an organic gas added as needed between the supply section and the heating section.
[0011]
The raw flaky HTO placed or supplied to the supply unit is floated in a space in the supply unit by a stirring means such as an agitator, and then heated by riding on a gas phase (carrier gas) introduced from a gas supply pipe into the supply unit. Transferred to the department. An additional gas component may be introduced into the gaseous phase as needed, up to the heating section, and the gaseous phase is adjusted to a predetermined gaseous phase mixing ratio and atmospheric pressure in the heating section. The gaseous phase loaded with flaky HTO in the heating section is heated to 800 to 1800 ° C. by an external heating means or the like. The time required for the flaky HTO to pass through the heating section is usually adjusted to several seconds to several minutes by adjusting the flow rate of the gas phase, the diameter of the heating tube, and the length of the heating tube. The gas-phase flow rate can be, for example, 50 to 500 ml / min per 1 cm 2 of the average cross-sectional area of the heating tube.
[0012]
Here, if the heating temperature is set low (800 to 1300 ° C.) or the reaction time is set short, the nitriding ratio is reduced, and an oxynitride powder can be obtained. When it is desired to obtain high-purity flaky titanium nitride, the heating temperature is set to be higher (1000 ° C. or higher, more preferably 1300 ° C. or higher), and 0.1 to 100 parts by volume of a mixed gas of nitrogen and reducing gas. It is preferable to introduce the organic gas at a rate of from 01 to 0.8 parts by volume. Under appropriate conditions, high-purity flaky titanium nitride can be obtained even by heating for several seconds. If the heating temperature is too high, the energy efficiency decreases, so from the viewpoint of energy saving, the heating temperature is preferably up to about 1800 ° C., preferably up to 1600 ° C.
[0013]
From the above points, the heating temperature in the production method of the present invention is 800 to 1800 ° C., preferably 1000 to 1600 ° C., and particularly preferably 1300 to 1600 ° C. The collection of the flaky titanium nitride in the collecting section can be performed according to a known method such as using various dust collectors. The gaseous phase collected in the collecting section can be reused by adjusting components such as adding ammonia gas and organic gas.
[0014]
The flaky titanium nitride produced by the above production method of the present invention is further treated at 800 ° C. or more, preferably 1000 to 1500 ° C., in a gas obtained by adding at least one of ammonia and organic gas to nitrogen gas. Thus, flaky titanium nitride having high purity can be manufactured by preventing sintering of particles.
[0015]
According to the method of the present invention, nitride can be produced while maintaining the thickness of the raw material, and thus flaky titanium nitride having a thickness of several tens nm, which has been difficult to produce, can be easily produced. Further, the production method of the present invention is characterized in that flaky titanium nitride can be produced in a short reaction time and in a short time.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
As a raw material, lithium potassium titanate (K 0. 8 Li 0. 27 Ti 1. 73 O 4) was treated with hydrochloric acid and n- propylamine adjusted flaky titanic acid (average particle size 8.5 .mu.m, thickness 5-100 nm), n-hexane (manufactured by Wako Pure Chemical Industries, first grade reagent), N 2 gas and NH 3 gas (both purity 99.999%) were used. Regarding the conductivity (Ω · cm), the sample was placed in a cylindrical container having a diameter of 8 mm, and a pressure of 130 kgf / cm 2 (1.27 × 107 Pa) was applied from above and below, and Two electrodes were inserted at an interval of 8 mm above and below, and a current value and a voltage value were measured and calculated. For the measurement of the particle size, a laser diffraction particle size distribution analyzer (Shimadzu Corporation, SALD-2100) was used. Although the raw material of the present invention and the target product are both flaky compounds, the particles represented by the average particle size are irradiated with laser light to the powder dispersed in water, and the diffraction, the particle size and the particle size are determined from the intensity of the scattered light. This is for calculation. The thickness of the raw material and the target product was adjusted to a solid component concentration of 10% using a urethane water-based emulsion paint NEOREZ R-960 (ZENECA), and then a coating film was prepared. The SEM image of the cross section was measured with a vernier caliper. The composition analysis was performed by a CHN coder manufactured by Yanagimoto Seisakusho and X-ray diffraction.
SEM images of the flaky titanic acid as a raw material are shown in FIG. 1 (magnification 10,000 times) and FIG. 2 (magnification 1000 times). The XRD diagram is shown in FIG. FIG. 4 shows an SEM image for measuring the thickness of the raw material and the target product.
[0017]
Examples 1-2
As shown in FIG. 5, a heating section 2 composed of an alumina pipe 1 having an inner diameter of 42 mm and a length of 1000 mm and installed vertically, gas introduction pipes 3, 4, 5 and a flaky titanate introduction pipe connected to the lower end of the heating section 6. A flaky titanic acid is produced by using a production apparatus including a supply section 9 having a powder storage tank 7, an agitator 8, and a collection section (not shown) having a powder collection apparatus connected to the upper end of the heating section. (Average particle diameter 8.5 μm, specific surface area 44 m 2 / g, thickness 5 to 100 nm) was supplied as a raw material, and flaky titanium nitride was produced under the gaseous phase mixing ratio and heating conditions shown in Table 1.
SEM images of the flaky titanium nitride obtained in Example 1 are shown in FIGS. 6 (2000 ×) and FIG. 7 (5000 ×). The XRD diagram is shown in FIG.
[0018]
[Table 1]
Figure 2004224608
[0019]
Examples 3 to 9
Flaky titanium nitride was produced in the same manner as in Example 1 except that the gas-phase mixing ratio and the heating conditions shown in Table 2 were used.
[0020]
[Table 2]
Figure 2004224608
[0021]
Example 10
The flaky titanium nitride produced in Example 1 was filled in an alumina boat, and nitrogen was added at 66 ml / min. In a horizontal electric furnace. , Ammonia 100 ml / min. At 1550 ° C in a mixed gas of The average particle diameter of the obtained flaky titanium nitride was 10.4 μm, the thickness was 5 to 100 nm, and the powder resistance value was 0.008 Ω · cm. SEM images of the flaky titanium nitride obtained in Example 10 are shown in FIGS. 9 (2000 ×) and FIG. 10 (5000 ×). The XRD diagram is shown in FIG.
[0022]
Examples 11 to 13
Flaky titanium nitride was produced in the same manner as in Example 10, except that the gas-phase mixing ratio and the heating conditions shown in Table 3 were used.
[0023]
[Table 3]
Figure 2004224608
[0024]
【The invention's effect】
According to the present invention, it is also possible to obtain ultrathin fine flaky titanium nitride having a thickness of several tens of nanometers, which has not been known before.
Further, according to the present invention, fine flaky titanium nitride can be continuously and stably produced using flaky titanic acid as a raw material.
[Brief description of the drawings]
FIG. 1 is an SEM image (magnification: 10,000 times) of flaky titanic acid as a raw material used in Examples.
FIG. 2 is a SEM image (magnification: 1000 times) of flaky titanic acid as a raw material used in Examples.
FIG. 3 is an XRD diagram of a flaky titanic acid used as a raw material in Examples.
FIG. 4 is an SEM image (magnification: 5,000) for measuring the thickness of a raw material and an object.
FIG. 5 is a schematic diagram of a manufacturing apparatus used in an example.
FIG. 6 is an SEM image (2000-fold magnification) of the flaky titanium nitride obtained in Example 1.
FIG. 7 is an SEM image (magnification: 5000) of the flaky titanium nitride obtained in Example 1.
8 is an XRD diagram of the flaky titanium nitride obtained in Example 1. FIG.
FIG. 9 is a SEM image (2000-fold magnification) of the flaky titanium nitride obtained in Example 10.
FIG. 10 is a SEM image (magnification: 5000) of the flaky titanium nitride obtained in Example 10.
11 is an XRD diagram of the flaky titanium nitride obtained in Example 10. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Alumina pipe 2 Heating part 3, 4, 5 Gas introduction pipe 6 Flaky HTO introduction pipe 7 Powder storage tank 8 Agitator 9 Supply part

Claims (9)

平均粒子径が0.1〜1000μm、平均厚さ1〜5000nmの薄片状チタン酸又はチタン酸塩を、窒素ガス及びアンモニアガスを含む気相中に浮遊させ移送しながら、800〜1800℃に加熱することにより平均粒子径が0.1〜1000μm、平均厚さ1〜5000nmである薄片状窒化チタンを連続的に得ることを特徴とする薄片状窒化チタンの製造方法。Heating flaky titanic acid or titanate having an average particle diameter of 0.1 to 1000 μm and an average thickness of 1 to 5000 nm in a gaseous phase containing nitrogen gas and ammonia gas while heating and heating to 800 to 1800 ° C. A flaky titanium nitride having an average particle diameter of 0.1 to 1000 [mu] m and an average thickness of 1 to 5000 nm is continuously obtained. 加熱温度が1000〜1600℃である請求項1の製造方法。The method according to claim 1, wherein the heating temperature is 1000 to 1600C. 薄片状チタン酸又はチタン酸塩を浮遊させる気相に更に有機ガスを存在させる請求項1〜2の製造方法。3. The method according to claim 1, wherein an organic gas is further present in a gas phase in which the flaky titanic acid or titanate is suspended. 供給部と加熱部と捕集部とを繋いで形成された一連の移送配管系を構成し、該供給部から薄片状チタン酸又はチタン酸塩を気相により前記捕集部に向けて移送する工程、供給部、加熱部又は供給部から加熱部までの間に気相中に窒素ガス、アンモニアガス及び必要に応じて添加される有機ガスを導入する工程、気相中を移送される薄片状チタン酸又はチタン酸塩を加熱部において所定温度まで加熱する工程、を含むことを特徴とする請求項1〜3のいずれかの薄片状窒化チタンの製造方法。A series of transfer piping systems formed by connecting the supply unit, the heating unit, and the collection unit are configured, and the flaky titanic acid or titanate is transferred from the supply unit to the collection unit in a gas phase. Step: introducing nitrogen gas, ammonia gas and organic gas added as needed into the gas phase between the supply section, the heating section or between the supply section and the heating section, flakes transferred in the gas phase The method for producing flaky titanium nitride according to any one of claims 1 to 3, further comprising a step of heating titanic acid or titanate to a predetermined temperature in a heating section. 請求項1〜4により製造された薄片状窒化チタンを窒素ガスにアンモニア、有機ガスの少なくとも一方を添加させたガス中において800℃以上で再処理する事を特徴とする薄片状窒化チタンの製造方法。5. A method for producing flaky titanium nitride, comprising reprocessing the flaky titanium nitride produced according to claims 1 to 4 in a gas obtained by adding at least one of ammonia and organic gas to nitrogen gas at 800 ° C. or higher. . 請求項1の方法により得られる平均粒子径0.1〜1000μm、平均厚さ1〜5000nmの形状である薄片状窒化チタン。A flaky titanium nitride having an average particle diameter of 0.1 to 1000 m and an average thickness of 1 to 5000 nm obtained by the method of claim 1. 請求項4の方法により得られる平均粒子径0.1〜1000μm、平均厚さ1〜5000nmの形状である薄片状窒化チタン。A flaky titanium nitride having an average particle diameter of 0.1 to 1000 m and an average thickness of 1 to 5000 nm obtained by the method of claim 4. 請求項5の方法により得られる平均粒子径0.1〜1000μm、平均厚さ1〜5000nmの形状である薄片状窒化チタン。A flaky titanium nitride having an average particle diameter of 0.1 to 1000 [mu] m and an average thickness of 1 to 5000 nm obtained by the method of claim 5. 平均粒子径0.1〜1000μm、平均厚さ1〜5000nmの形状である薄片状窒化チタン。A flaky titanium nitride having a shape having an average particle diameter of 0.1 to 1000 µm and an average thickness of 1 to 5000 nm.
JP2003012092A 2003-01-21 2003-01-21 Flaky titanium nitride and method of manufacturing the same Pending JP2004224608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012092A JP2004224608A (en) 2003-01-21 2003-01-21 Flaky titanium nitride and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012092A JP2004224608A (en) 2003-01-21 2003-01-21 Flaky titanium nitride and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004224608A true JP2004224608A (en) 2004-08-12

Family

ID=32900810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012092A Pending JP2004224608A (en) 2003-01-21 2003-01-21 Flaky titanium nitride and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004224608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069035A (en) * 2006-09-13 2008-03-27 Niigata Univ Manufacturing process of nitride and oxynitride
KR20200134686A (en) * 2019-05-23 2020-12-02 이화여자대학교 산학협력단 2-dimensional titanium nitride nanosheets including holes, hybrid including the nanosheet and metal layered double hydroxides, and electrochemical catalysts including the hybrid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069035A (en) * 2006-09-13 2008-03-27 Niigata Univ Manufacturing process of nitride and oxynitride
KR20200134686A (en) * 2019-05-23 2020-12-02 이화여자대학교 산학협력단 2-dimensional titanium nitride nanosheets including holes, hybrid including the nanosheet and metal layered double hydroxides, and electrochemical catalysts including the hybrid
KR102232615B1 (en) * 2019-05-23 2021-03-26 이화여자대학교 산학협력단 2-dimensional titanium nitride nanosheets including holes, hybrid including the nanosheet and metal layered double hydroxides, and electrochemical catalysts including the hybrid

Similar Documents

Publication Publication Date Title
EP2644565B1 (en) Novel carbon nanotubes and production method therefor
US10112837B2 (en) Carbon allotropes
US9556032B2 (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
Bartůněk et al. CoO and Co3O4 nanoparticles with a tunable particle size
WO2016012367A1 (en) Modification of carbon particles
FR2826646A1 (en) PROCESS FOR THE SELECTIVE MANUFACTURE OF ORDINATED CARBON NANOTUBES IN FLUIDIZED BED
US7754179B2 (en) Lower pressure synthesis of diamond material
Pełech et al. Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts
Miao et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD
JP2004224608A (en) Flaky titanium nitride and method of manufacturing the same
JP4696598B2 (en) carbon nanotube
JP3089007B1 (en) Method for producing metal nitride-containing powder
Picheau et al. Burning Graphite Faster than Carbon Black: A Case of Diffusion Control
CN110479253A (en) A kind of Nano diamond-carried palladium catalyst and its preparation method and application for benzyl alcohol producing benzaldehyde
Sahu et al. Spheroidal growth of graphite in arc plasma treatment
V Mohan Kumar et al. Effect of catalyst concentration on the synthesis of MWCNT by single step pyrolysis
Pooperasupong et al. Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3
KR101688512B1 (en) Large-scale composite synthesis system, reactor and composite synthesis method using the same
Ooi et al. Synthesis of single-walled carbon nanotubes by chemical vapor deposition using sodium chloride support
Radadiya Graphene preparation method
Chao-Mujica et al. Detailed yield assessment of carbon nanostructures synthesized by submerged arc discharge in water
Szala Combustion synthesis of hollow carbon fibers
Krishnarchana et al. Study on multi walled carbon nanotubes synthesis, modeling and applications
CN114011418A (en) Preparation method of methane cracking catalyst
Kirakosyan et al. Homogeneous deposition of copper oxide on mesoporous 1D alumina nanofibres by combustion approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118