JP2004223344A - Exhaust gas treatment method and apparatus therefor - Google Patents

Exhaust gas treatment method and apparatus therefor Download PDF

Info

Publication number
JP2004223344A
JP2004223344A JP2003011838A JP2003011838A JP2004223344A JP 2004223344 A JP2004223344 A JP 2004223344A JP 2003011838 A JP2003011838 A JP 2003011838A JP 2003011838 A JP2003011838 A JP 2003011838A JP 2004223344 A JP2004223344 A JP 2004223344A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas treatment
discharge electrodes
corrugated plate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011838A
Other languages
Japanese (ja)
Inventor
Koichi Goi
光一 後夷
Ayuchi Kurono
あゆち 黒野
Kazuhiko Kitahora
和彦 北洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2003011838A priority Critical patent/JP2004223344A/en
Publication of JP2004223344A publication Critical patent/JP2004223344A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating an exhaust gas which can prolong the time taken for the exhaust gas to pass through a plasma reaction field. <P>SOLUTION: The method for treating an exhaust gas by passing the exhaust gas through a low-temperature plasma reaction field under atmospheric pressure is characterized in that the exhaust gas is passed while a plurality of rows of eddy groups each comprising linearly joined spectacle-like eddies of the exhaust gas are formed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、大気圧環境下にある低温プラズマ反応場に排ガスを通過させてこの排ガスを処理する排ガス処理方法およびその装置に関する。
【0002】
【従来の技術】
従来、排ガス処理装置の一つとして、大気圧環境下にある放電電極間に高電圧を印加して燃焼温度が2300℃以下の低温プラズマ(以下単にプラズマという)を発生させ、このプラズマが形成する反応場に排ガスを通過させて排ガスを分解させるようにしたものがある。そして、この排ガスの分解は、電子を排ガスに直接衝突させたり、電子によって排ガスの分子を励起させたり、あるいはラジカル・オゾンを発生させたりして、排ガスを酸化させる方法で行っている。
【0003】
ところで、従来、いわゆるプラズマを生成するプラズマ生成手段としては、図9に示すように平板の放電電極91の中心付近に線状の放電電極92を配設した線対平板型や、図10に示すように円筒状の放電電極101の中心に線状の放電電極102を配置した線対円筒型や、図11に示すように2枚の平板状の放電電極111・111が平行して対応する平行平板型などがある(例えば、非特許文献1および2参照)。
【0004】
【 非特許文献1】
応用物理学会出版 「応用物理」
第69巻 第3号
p.272
【 非特許文献2】
シーエムシー出版 「月刊エコインダストリー」 5月号
p.7
【0005】
【発明が解決しようとする課題】
しかし、このように構成された従来のプラズマ生成手段では、放電電極の間を通過する排ガスの流れが直線的になるため、プラズマの密度の相違によるプラズマ分布が発生する場合には、プラズマ密度の低い部分を通過する排ガスに対してはその分解効率が低くなる。したがって、排ガスがプラズマ反応場を通過する時間を長くせずにその分解効率を向上させるには、プラズマ生成手段を強力なプラズマを生成させる大型なものにする必要があり、これに伴って、電源装置が高価なものになる上に、プラズマ生成手段のランニングコストも上昇するなどの問題が生じる。
【0006】
本発明は、上記の問題を解消するために成されたもので、その目的は、排ガスがプラズマ反応場を通過する時間を長くすることが可能な排ガス処理方法およびその装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために本発明における排ガス処理方法は、大気圧環境下にある低温プラズマ反応場に排ガスを通過させてこの排ガスを処理する排ガス処理方法において、前記排ガスによる眼鏡状の渦が一列に連なって成る渦群を複数列形成させながら排ガスを通過させることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を適用した排ガス処理装置におけるプラズマを生成するプラズマ生成手段の実施例について図1〜図8に基づき詳細に説明する。図1および図2に示すように、本プラズマ生成手段1は、前記排ガスが流れる方向へ延びる波形を成す板体であってかつ所要の間隔をおき対向して配設された少なくとも2個以上の波形板状放電電極2・2と、これら対向する2個以上の波形板状放電電極2・2が形成する複数の円柱状の空間3・3のそれぞれのほぼ中央位置に配設されて波形板状放電電極2・2とで低温プラズマを生成しかつ前記空間3・3のそれぞれに沿って延びる線状放電電極4・4と、で構成してある。そして、前記プラズマ生成手段1は、キャビネット5内に装着してある。
【0009】
そして、前記波形板状放電電極2・2のそれぞれにおける前記波形は、向きが交互に異なる多数の円弧が連なって形成されるようにしてある。また、前記波形板状放電電極2・2と前記線状放電電極4・4との間には交流電源6が接続してある(図3参照)。なお、電源として直流を使用してもよく、直流を使用する場合には、記波形板状放電電極2・2と前記線状放電電極4・4の片側をそれぞれ接地させて記波形板状放電電極2・2と前記線状放電電極4・4とを接続する。
【0010】
このように構成されたものは、処理すべき排ガスをプラズマ生成手段1に流入させると、この排ガスは、図4に示すように、波形板状放電電極2・2により、眼鏡状に並ぶ2個の渦が一列に連なって成る渦群を複数列形成しながらプラズマ生成手段1の波形板状放電電極2・2間を貫流し、これにより、排ガスは攪拌されながら流れて遅い速度でプラズマ生成手段1内を通過することとなる。
【0011】
なお、上記の実施例では線状放電電極4・4は、2個以上の波形板状放電電極2・2が形成する円柱状の空間3・3の中央位置に配設してあるが、これに限定されるものではなく、図5に示すように、2個以上の前記波形板状放電電極2・2が形成する複数のスリット状の空間6・6のそれぞれのほぼ中央位置に、または図6に示すように、複数の円柱状の空間3・3および複数のスリット状の空間6・6のそれぞれのほぼ中央位置に配設してもよい。
【0012】
またなお、図7に示すように、上述の波形板状放電電極2・2に誘電体7・7をコーティングしてもよい。ただし、この誘電体7とは、電界印加時には電気分極が生じるが、直流電流が流れない物質を総称する。そして、交流電場を印加したときにはその分極応答の遅れによる交流電流が生じるものであり、代表的なものとしてはBaTiOなどがあるが、これに限定するものではない。この誘電体7・7を波形板状放電電極2・2にコーティングするとプラズマ放電が安定化するため、高い引加電圧を加えることが可能となり、排ガスの分解効率を向上させることができる。また、図7に示すように波形板状放電電極2・2を複数枚配設してユニットとする場合には波形板状放電電極2・2の両面に誘電体7・7をコーティングするとよい。
【0013】
またなお、図8に示すように、誘電体7・7の表面に放電電極8・8を取り付けてもよい。これにより、誘電体7・7の表面上にプラズマが生成する。したがって、線状放電電極4・4と波形板状放電電極2・2とでのバリア放電によるプラズマと、放電電極8・8と波形板状放電電極2・2とでの円面放電によるプラズマとを併用することができる。ただし、前記放電電極8は、プラズマ生成手段1の性能と発生させる沿面放電の部分とにより、その取付け位置と大きさとを適宜選定する。また、線状放電電極4・4をなくし放電電極8・8と波形板状放電電極2・2による沿面放電だけでの使用も可能である。
【0014】
【発明の効果】
以上の説明から明らかなように本発明は、大気圧環境下にある低温プラズマ反応場に排ガスを通過させてこの排ガスを処理する排ガス処理方法において、前記排ガスによる眼鏡状の渦が一列に連なって成る渦群を複数列形成させながら排ガスを通過させるから、排ガスがプラズマ反応場を通過する時間を確実に長くすることが可能になるなどの優れた実用的効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す斜視図である。
【図2】図1のA部拡大詳細図である。
【図3】本発明の第1実施例の原理について説明する説明図である。
【図4】本発明の第1実施例における排ガスの流れを示す平面図である。
【図5】本発明の第2実施例における主要部の平面図である。
【図6】本発明の第3実施例における主要部の平面図である。
【図7】本発明の第4実施例における主要部の平面図である。
【図8】本発明の第5実施例における主要部の平面図である。
【図9】従来のプラズマ生成手段の第1実施例を示す斜視図である。
【図10】従来のプラズマ生成手段の第2実施例を示す斜視図である。
【図11】従来のプラズマ生成手段の第3実施例を示す斜視図である。
【符号の説明】
1 プラズマ生成手段
2 波形板状放電電極
3 円柱状の空間
4 線状放電電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas treatment method and an apparatus for treating exhaust gas by passing the exhaust gas through a low-temperature plasma reaction field under an atmospheric pressure environment.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as one of exhaust gas treatment apparatuses, a high voltage is applied between discharge electrodes under an atmospheric pressure environment to generate low-temperature plasma (hereinafter simply referred to as plasma) having a combustion temperature of 2300 ° C. or lower, and this plasma is formed. There is one in which exhaust gas is passed through a reaction field to decompose the exhaust gas. The decomposition of the exhaust gas is performed by directly colliding the electrons with the exhaust gas, exciting the molecules of the exhaust gas by the electrons, or generating radicals / ozone to oxidize the exhaust gas.
[0003]
By the way, conventionally, as a plasma generating means for generating a so-called plasma, a line-to-plate type in which a linear discharge electrode 92 is disposed near the center of a flat discharge electrode 91 as shown in FIG. As shown in FIG. 11, a line-to-cylinder type in which a linear discharge electrode 102 is arranged at the center of a cylindrical discharge electrode 101, or two parallel plate-like discharge electrodes 111, 111 shown in FIG. There is a flat plate type or the like (for example, see Non-Patent Documents 1 and 2).
[0004]
[Non-Patent Document 1]
Published by the Japan Society of Applied Physics “Applied Physics”
Vol. 69, No. 3, p. 272
[Non-Patent Document 2]
CMC Publishing “Monthly Eco-Industry” May Issue p. 7
[0005]
[Problems to be solved by the invention]
However, in the conventional plasma generating means configured as described above, the flow of the exhaust gas passing between the discharge electrodes becomes linear, so that when the plasma distribution is generated due to the difference in the plasma density, the plasma density is reduced. For exhaust gas passing through the lower part, its decomposition efficiency is lower. Therefore, in order to improve the decomposition efficiency of the exhaust gas without increasing the time required for the exhaust gas to pass through the plasma reaction field, it is necessary to increase the size of the plasma generating means for generating a strong plasma. In addition to the expensive apparatus, the running cost of the plasma generating means also increases.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to provide an exhaust gas treatment method and an apparatus thereof that can increase the time required for exhaust gas to pass through a plasma reaction field. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the exhaust gas treatment method of the present invention is an exhaust gas treatment method for treating an exhaust gas by passing the exhaust gas through a low-temperature plasma reaction field under an atmospheric pressure environment. It is characterized in that exhaust gas is passed while forming a plurality of vortex groups connected in a row.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a plasma generation unit that generates plasma in an exhaust gas treatment apparatus to which the present invention is applied will be described in detail with reference to FIGS. As shown in FIG. 1 and FIG. 2, the present plasma generating means 1 is a plate body having a waveform extending in the direction in which the exhaust gas flows, and at least two or more The corrugated plate disposed at substantially the center of each of the corrugated plate-shaped discharge electrodes 2 and the plurality of columnar spaces 3.3 formed by the two or more opposed corrugated plate-shaped discharge electrodes 2.2. And a linear discharge electrode 4.4 that generates low-temperature plasma with the linear discharge electrodes 2 and extends along each of the spaces 3.3. The plasma generating means 1 is mounted in a cabinet 5.
[0009]
The waveform in each of the corrugated plate-shaped discharge electrodes 2 is formed by continuously forming a large number of arcs having different directions alternately. An AC power supply 6 is connected between the corrugated plate-shaped discharge electrodes 2 and the linear discharge electrodes 4 (see FIG. 3). Note that a direct current may be used as a power source. In the case of using a direct current, the corrugated plate-like discharge electrodes 2 and one side of the linear discharge electrodes 4 are grounded, respectively. The electrodes 2 are connected to the linear discharge electrodes 4.
[0010]
With this configuration, when the exhaust gas to be treated is caused to flow into the plasma generation means 1, the exhaust gas is separated by corrugated plate-shaped discharge electrodes 2 and 2 into a pair of glasses as shown in FIG. The vortex flows through the corrugated plate-like discharge electrodes 2 and 2 of the plasma generating means 1 while forming a plurality of vortices formed in a row, whereby the exhaust gas flows while being stirred and is generated at a low speed. 1 will be passed.
[0011]
In the above embodiment, the linear discharge electrodes 4.4 are disposed at the center of the cylindrical spaces 3.3 formed by the two or more corrugated plate discharge electrodes 2.2. However, as shown in FIG. 5, as shown in FIG. 5, at or near the center of each of a plurality of slit-shaped spaces 6 formed by two or more of the corrugated plate-shaped discharge electrodes 2. As shown in FIG. 6, a plurality of cylindrical spaces 3.3 and a plurality of slit spaces 6.6 may be arranged at substantially central positions of the respective spaces.
[0012]
Further, as shown in FIG. 7, the above-mentioned corrugated plate-like discharge electrodes 2 may be coated with dielectrics 7. However, the dielectric 7 is a general term for substances that cause electric polarization when an electric field is applied but do not allow a direct current to flow. When an AC electric field is applied, an AC current is generated due to a delay in the polarization response. A typical example is BaTiO 3 , but the present invention is not limited to this. When this dielectric material 7 is coated on the corrugated plate-shaped discharge electrodes 2, the plasma discharge is stabilized, so that a high applied voltage can be applied and the exhaust gas decomposition efficiency can be improved. When a plurality of corrugated plate-like discharge electrodes 2 and 2 are arranged as a unit as shown in FIG. 7, a dielectric 7.7 may be coated on both surfaces of the corrugated plate-like discharge electrodes 2.2.
[0013]
Further, as shown in FIG. 8, the discharge electrodes 8.8 may be attached to the surfaces of the dielectrics 7.7. As a result, plasma is generated on the surfaces of the dielectrics 7. Therefore, the plasma generated by the barrier discharge between the linear discharge electrodes 4 and the corrugated plate-shaped discharge electrodes 2 and the plasma generated by the circular discharge between the discharge electrodes 8.8 and the corrugated plate-shaped discharge electrodes 2. Can be used in combination. However, the mounting position and size of the discharge electrode 8 are appropriately selected depending on the performance of the plasma generating means 1 and the portion of the creeping discharge to be generated. Further, it is also possible to eliminate the linear discharge electrodes 4 and use only the creeping discharge by the discharge electrodes 8 and the corrugated plate-shaped discharge electrodes 2.
[0014]
【The invention's effect】
As is apparent from the above description, the present invention relates to an exhaust gas treatment method for treating exhaust gas by passing the exhaust gas through a low-temperature plasma reaction field under an atmospheric pressure environment. Since the exhaust gas passes while forming a plurality of rows of vortices, excellent practical effects such as a longer time for the exhaust gas to pass through the plasma reaction field can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of the present invention.
FIG. 2 is an enlarged detailed view of a portion A in FIG. 1;
FIG. 3 is an explanatory diagram explaining the principle of the first embodiment of the present invention.
FIG. 4 is a plan view showing a flow of exhaust gas in the first embodiment of the present invention.
FIG. 5 is a plan view of a main part in a second embodiment of the present invention.
FIG. 6 is a plan view of a main part in a third embodiment of the present invention.
FIG. 7 is a plan view of a main part according to a fourth embodiment of the present invention.
FIG. 8 is a plan view of a main part according to a fifth embodiment of the present invention.
FIG. 9 is a perspective view showing a first embodiment of a conventional plasma generating means.
FIG. 10 is a perspective view showing a second embodiment of the conventional plasma generating means.
FIG. 11 is a perspective view showing a third embodiment of the conventional plasma generating means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma generation means 2 Corrugated plate-shaped discharge electrode 3 Columnar space 4 Linear discharge electrode

Claims (5)

大気圧環境下にある低温プラズマ反応場に排ガスを通過させてこの排ガスを処理する排ガス処理方法において、
前記排ガスによる眼鏡状の渦が一列に連なって成る渦群を複数列形成させながら排ガスを通過させることを特徴とする排ガス処理方法。
In an exhaust gas treatment method for treating the exhaust gas by passing the exhaust gas through a low-temperature plasma reaction field under an atmospheric pressure environment,
An exhaust gas treatment method, wherein the exhaust gas is passed while forming a plurality of vortex groups in which the eyeglass-shaped vortices of the exhaust gas are arranged in a row.
大気圧環境下にある低温プラズマ反応場に排ガスを通過させてこの排ガスを処理する排ガス処理装置において、
前記低温プラズマを生成する低温プラズマ生成手段が、
前記排ガスが流れる方向へ延びる波形を成す板体であってかつ所要の間隔をおき対向して配設された少なくとも2個以上の波形板状放電電極と、
これら対向する2個以上の波形板状放電電極が形成する複数の円柱状の空間または複数のスリット状の空間のそれぞれのほぼ中央位置に配設されて波形板状放電電極とで低温プラズマを生成しかつ前記空間のそれぞれに沿って延びる線状放電電極と、
を備えたことを特徴とする排ガス処理装置。
In an exhaust gas treatment device that treats this exhaust gas by passing the exhaust gas through a low-temperature plasma reaction field under an atmospheric pressure environment,
The low-temperature plasma generating means for generating the low-temperature plasma,
A plate body having a waveform extending in a direction in which the exhaust gas flows, and at least two or more corrugated plate-like discharge electrodes disposed facing each other at a predetermined interval,
A low-temperature plasma is generated by the two or more corrugated plate-shaped discharge electrodes, which are arranged at substantially the center of each of a plurality of cylindrical spaces or a plurality of slit-shaped spaces formed by the two or more corrugated plate-shaped discharge electrodes. And linear discharge electrodes extending along each of the spaces,
An exhaust gas treatment device comprising:
請求項2に記載の排ガス処理装置において、
前記線状放電電極を、2個以上の前記波形板状放電電極が形成する複数の円柱状の空間および複数のスリット状の空間のそれぞれのほぼ中央位置に配設したことを特徴とする排ガス処理装置。
The exhaust gas treatment device according to claim 2,
An exhaust gas treatment, wherein the linear discharge electrode is disposed at substantially the center of each of a plurality of cylindrical spaces and a plurality of slit spaces formed by two or more of the corrugated plate-like discharge electrodes. apparatus.
請求項2または3に記載の排ガス処理装置において、
前記波形板状放電電極に誘電体をコーティングしたことを特徴とする排ガス処理装置。
The exhaust gas treatment device according to claim 2 or 3,
An exhaust gas treatment apparatus, wherein the corrugated plate-shaped discharge electrode is coated with a dielectric.
請求項4に記載の排ガス処理装置において、
前記誘電体の表面に放電電極を装着したことを特徴とする排ガス処理装置。
The exhaust gas treatment device according to claim 4,
An exhaust gas treatment device comprising a discharge electrode mounted on a surface of the dielectric.
JP2003011838A 2003-01-21 2003-01-21 Exhaust gas treatment method and apparatus therefor Pending JP2004223344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011838A JP2004223344A (en) 2003-01-21 2003-01-21 Exhaust gas treatment method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011838A JP2004223344A (en) 2003-01-21 2003-01-21 Exhaust gas treatment method and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2004223344A true JP2004223344A (en) 2004-08-12

Family

ID=32900623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011838A Pending JP2004223344A (en) 2003-01-21 2003-01-21 Exhaust gas treatment method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2004223344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019998A1 (en) * 2007-08-03 2009-02-12 Daihatsu Motor Co., Ltd. Electrode for plasma generation
JP5309303B2 (en) * 2007-03-02 2013-10-09 ライトグリーン株式会社 Negative ion generation source and generation method using kinetic energy and thermal energy of fluid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309303B2 (en) * 2007-03-02 2013-10-09 ライトグリーン株式会社 Negative ion generation source and generation method using kinetic energy and thermal energy of fluid
WO2009019998A1 (en) * 2007-08-03 2009-02-12 Daihatsu Motor Co., Ltd. Electrode for plasma generation
JP2010115566A (en) * 2007-08-03 2010-05-27 Daihatsu Motor Co Ltd Electrode for plasma generation
JP5312327B2 (en) * 2007-08-03 2013-10-09 ダイハツ工業株式会社 Electrode for plasma generation
US8623125B2 (en) 2007-08-03 2014-01-07 Daihatsu Motor Co., Ltd. Electrode for plasma generation

Similar Documents

Publication Publication Date Title
JP2008194670A (en) Gas treatment apparatus
KR101428524B1 (en) Plasma equipment for treating powder
US7453191B1 (en) Induction concentration remote atmospheric pressure plasma generating apparatus
JP2013544633A (en) Method and apparatus for scaling a plasma reactor for gas processing
JP6645385B2 (en) Gas reformer
JP6600834B2 (en) Apparatus and method for generating non-thermal atmospheric pressure plasma
JP2004223344A (en) Exhaust gas treatment method and apparatus therefor
US10577261B2 (en) Water treatment apparatus and water treatment method
JP4304342B2 (en) Atmospheric pressure corona discharge generator
JP2001193441A (en) Exhaust emission control device for internal combustion engine
KR100600756B1 (en) Surface discharge type air cleaning device
JP2008004488A (en) Ion generating element to supply space with ion having uniform concentration, ion generating unit, and destaticizer
JP2010050004A (en) Plasma generating electrode
KR100591343B1 (en) Sterilization module device
JP2004311116A (en) Plasma processing method and plasma processing device
JP2002129947A (en) Exhaust emission purifying device for internal combustion engine
Krichtafovitch et al. Electrostatic fluid accelerator and air purifier–The second wind
KR100600755B1 (en) Surface discharge type air cleaning device
KR870011709A (en) Method and apparatus for forming amorphous thin film
JP4281956B2 (en) Electrode for corona discharge, corona discharge generator, and chemical substance decomposition apparatus
JP2009165939A (en) Gas treatment apparatus
KR0135560B1 (en) Ozone generator
Balek et al. Stabilization of Multi-needle-to-Plate Electrical Discharges in a High-intensity Sound Field
ABIDAT et al. ELECTRICAL CHARACTERISTICS SIMULATION OF HOMOGENEOUS DBD AT ATMOSPHERIC PRESSURE. APPLICATION TO HELIUM AND ARGON PLASMAS.
KR100600757B1 (en) Surface discharge type air cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090306