JP2004221056A - Manufacturing method of membrane-electrode junction - Google Patents

Manufacturing method of membrane-electrode junction Download PDF

Info

Publication number
JP2004221056A
JP2004221056A JP2003371049A JP2003371049A JP2004221056A JP 2004221056 A JP2004221056 A JP 2004221056A JP 2003371049 A JP2003371049 A JP 2003371049A JP 2003371049 A JP2003371049 A JP 2003371049A JP 2004221056 A JP2004221056 A JP 2004221056A
Authority
JP
Japan
Prior art keywords
layer
electrode
conductive material
catalyst layer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003371049A
Other languages
Japanese (ja)
Other versions
JP4392222B2 (en
Inventor
Masaki Tani
雅樹 谷
Katsuhiko Takayama
克彦 高山
Hiroshi Shinkai
洋 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003371049A priority Critical patent/JP4392222B2/en
Priority to US10/721,505 priority patent/US7306876B2/en
Publication of JP2004221056A publication Critical patent/JP2004221056A/en
Application granted granted Critical
Publication of JP4392222B2 publication Critical patent/JP4392222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a membrane-electrode junction capable of obtaining an excellent adhesiveness between an electrode catalyst layer and a diffusion electrode, a polymer electrolyte fuel cell having the structure, an electric equipment using this fuel cell, and a transportation equipment. <P>SOLUTION: Electrode catalyst layers 3, 3 are formed by coating catalyst paste containing an electron conductive material carrying a catalyst and an ion conductive material on a sheet-like support body 2 and drying it. A lamination body 4 is formed by thermally transcribing an electrode catalyst layer on both sides of a polymer electrolyte membrane 1 to form a laminated body 4. A first slurry containing a water-repellent material and the electron conductive material is coated on a carbon base layer 6 and dried to form a water-repellent layer 7. A diffusion electrode 5 is formed by forming a hydrophilic layer 8 by coating a second slurry containing the electron conductive material and the ion conductive material on the water-repellent layer 7 and drying it. The diffusion electrode 5 formed beforehand is laminated on the electrode catalyst layer 3 through the hydrophilic layer 8 and depressed under heating and thereby, the laminated body 4 and the diffusion electrode 5 are integrated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に用いられる膜−電極構造体の製造方法に関するものである。   The present invention relates to a method for manufacturing a membrane-electrode structure used in a polymer electrolyte fuel cell.

石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化している。そこで、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目されて広範に開発され、一部では実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。   While petroleum resources are being depleted, environmental problems such as global warming due to consumption of fossil fuels are becoming more serious. In view of this, fuel cells have attracted attention as clean electric power sources for electric motors that do not generate carbon dioxide, and have been widely developed, and some have begun to be put into practical use. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current are easily obtained.

前記固体高分子型燃料電池に用いる膜−電極構造体として、図7示のように、白金等の触媒がカーボンブラック等の炭素粒子に担持させた触媒粒子がイオン伝導性高分子バインダーにより一体化されることにより形成されている一対の電極触媒層3,3を備え、両電極触媒層3,3の間にイオン導伝可能な高分子電解質膜1を挟持すると共に、各電極触媒層3,3の上に、拡散電極5,5を積層した膜−電極構造体10が知られている。   As shown in FIG. 7, as a membrane-electrode structure used in the polymer electrolyte fuel cell, catalyst particles in which a catalyst such as platinum is supported on carbon particles such as carbon black are integrated with an ion-conductive polymer binder. And a pair of electrode catalyst layers 3 and 3 formed by the above-described process. The ion-conductive polymer electrolyte membrane 1 is sandwiched between the two electrode catalyst layers 3 and 3. There is known a membrane-electrode structure 10 in which diffusion electrodes 5 and 5 are stacked on the electrode 3.

膜−電極構造体10では、電極触媒層3はプロトンの移動、生成した水の排出等のために親水性となっている。一方、拡散電極5は前記還元性ガスまたは酸化性ガスの拡散のために、炭素基材層6上に多孔性の撥水性層7が形成された構成となっており、撥水性層7を介して電極触媒層3に積層されている。前記膜−電極構造体10は、さらに各拡散電極5,5の上に、ガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成する。   In the membrane-electrode structure 10, the electrode catalyst layer 3 is hydrophilic due to the movement of protons and the discharge of generated water. On the other hand, the diffusion electrode 5 has a structure in which a porous water-repellent layer 7 is formed on a carbon base material layer 6 for diffusing the reducing gas or the oxidizing gas. To the electrode catalyst layer 3. The membrane-electrode structure 10 further constitutes a polymer electrolyte fuel cell by laminating a separator also serving as a gas passage on each of the diffusion electrodes 5 and 5.

前記固体高分子型燃料電池では、一方の電極触媒層3を燃料極として該燃料極側の拡散電極5を介して水素、メタノール等の還元性ガスを導入し、他方の電極触媒層3を酸素極として該酸素極側の拡散電極5を介して空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層3に含まれる触媒の作用により、前記還元性ガスからプロトンが生成し、前記プロトンは高分子電解質膜1を介して、前記酸素極側の電極触媒層3に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層3で、該電極触媒層3に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガスと反応して水を生成する。従って、前記燃料極と酸素極とを導線を介して接続することにより電流を取り出すことができる。   In the polymer electrolyte fuel cell, one electrode catalyst layer 3 is used as a fuel electrode, and a reducing gas such as hydrogen or methanol is introduced through the diffusion electrode 5 on the fuel electrode side, and the other electrode catalyst layer 3 is supplied with oxygen. An oxidizing gas such as air or oxygen is introduced as a pole through the diffusion electrode 5 on the oxygen electrode side. In this manner, on the fuel electrode side, protons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer 3, and the protons are passed through the polymer electrolyte membrane 1 to the oxygen electrode side. It moves to the electrode catalyst layer 3. Then, the protons react with the oxidizing gas introduced into the oxygen electrode in the electrode catalyst layer 3 on the oxygen electrode side by the action of a catalyst contained in the electrode catalyst layer 3 to generate water. Therefore, a current can be taken out by connecting the fuel electrode and the oxygen electrode via a conducting wire.

従来、前記電極構造体は、高分子電解質膜1の両面に前記電極触媒層3,3が接合された積層体に、前記拡散電極5を積層し、加熱下に押圧することにより、製造されている(例えば特許文献1参照。)。   Conventionally, the electrode structure is manufactured by laminating the diffusion electrode 5 on a laminate in which the electrode catalyst layers 3 and 3 are bonded to both surfaces of the polymer electrolyte membrane 1 and pressing the diffusion electrode 5 under heating. (For example, see Patent Document 1).

しかしながら、前記従来の製造方法では、親水性の電極触媒層3に撥水性層7を介して拡散電極5を積層するので、加熱下に押圧しても電極触媒層3と拡散電極5との間で十分な密着性を得ることができないことがあるとの不都合がある。前記電極触媒層3と前記拡散電極5との間で十分な密着性を得ることができないと、前記膜−電極構造体10を用いて固体高分子型燃料電池を構成したときに、抵抗過電圧が大きくなり、発電性能が低減する。
特開2001−345110号公報
However, in the above-mentioned conventional manufacturing method, the diffusion electrode 5 is laminated on the hydrophilic electrode catalyst layer 3 via the water repellent layer 7, so that even if pressed under heating, the gap between the electrode catalyst layer 3 and the diffusion electrode 5 can be increased. However, there is an inconvenience that sufficient adhesion may not be obtained. If sufficient adhesion between the electrode catalyst layer 3 and the diffusion electrode 5 cannot be obtained, when a polymer electrolyte fuel cell is constructed using the membrane-electrode structure 10, a resistance overvoltage is reduced. And the power generation performance decreases.
JP 2001-345110 A

本発明は、かかる不都合を解消して、電極触媒層と拡散電極との間で優れた密着性を得ることができる膜−電極構造体の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a membrane-electrode structure capable of solving such disadvantages and obtaining excellent adhesion between an electrode catalyst layer and a diffusion electrode.

かかる目的を達成するために、本発明の膜−電極構造体の製造方法は、触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、撥水性層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該撥水性層上に塗布し、乾燥させて、親水性層を形成して、該炭素基材と撥水性層と親水性層とからなる拡散電極を形成する工程と、該積層体の該電極触媒層上に、予め形成された該拡散電極を、該親水性層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備えることを特徴とする。   In order to achieve such an object, the method for producing a membrane-electrode structure of the present invention comprises applying a catalyst paste containing a catalyst-supporting electron conductive material and an ion conductive material onto a sheet-like support, and drying the paste. Forming an electrode catalyst layer, and thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane to form a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane. A first slurry containing a water-repellent material and an electron-conductive material is applied on the carbon substrate layer and dried to form a water-repellent layer, and then contains the electron-conductive material and the ion-conductive material. Applying a second slurry on the water-repellent layer and drying to form a hydrophilic layer, and forming a diffusion electrode composed of the carbon substrate, the water-repellent layer and the hydrophilic layer; The diffusion electrode formed in advance on the electrode catalyst layer of the laminate is placed on the hydrophilic layer. Is pressed under heating laminated through, characterized in that it comprises the step of integrating the laminated body and the diffusion electrode.

本発明の製造方法では、拡散電極を形成する際に、まず、炭素基材層上に撥水性層を形成し、次いで該撥水性層上に第2のスラリーを塗布し、乾燥させて、親水性層を形成する。前記第2のスラリーは、電子伝導性材料とイオン伝導性材料とを含み、触媒を含まないことを除いて、前記触媒ペーストと同一の組成を備えている。しかし、前記親水性層は、前記第2のスラリーを前記撥水性層の上に、塗布し、乾燥させて形成することにより、該撥水性層との間で優れた密着性を得ることができる。   In the production method of the present invention, when forming a diffusion electrode, first, a water-repellent layer is formed on a carbon substrate layer, and then a second slurry is applied on the water-repellent layer, and dried to form a hydrophilic layer. Forming a conductive layer. The second slurry includes an electron conductive material and an ion conductive material, and has the same composition as the catalyst paste except that it does not include a catalyst. However, by forming the hydrophilic layer by applying and drying the second slurry on the water-repellent layer, excellent adhesion with the water-repellent layer can be obtained. .

次に、本発明の製造方法では、前述のように予め前記撥水性層の上に前記親水性層を形成した拡散電極を、該親水性層を介して前記電極触媒層に積層し、加熱下に押圧する。前記拡散電極に形成されている親水性層は、前記第2のスラリーにより形成されているので、触媒を含まないことを除いて、前記電極触媒層と同一の組成を備えている。従って、前記親水性層は、前述のように加熱下に押圧することにより、容易に前記電極触媒層と接合することができ、該電極触媒層との間で優れた密着性を得ることができる。   Next, in the production method of the present invention, a diffusion electrode in which the hydrophilic layer is previously formed on the water-repellent layer as described above is laminated on the electrode catalyst layer via the hydrophilic layer, and heated under heating. Press Since the hydrophilic layer formed on the diffusion electrode is formed of the second slurry, it has the same composition as the electrode catalyst layer except that it does not contain a catalyst. Therefore, the hydrophilic layer can be easily bonded to the electrode catalyst layer by pressing under heating as described above, and excellent adhesion between the electrode layer and the electrode catalyst layer can be obtained. .

この結果、本発明の製造方法によれば、前記電極触媒層と前記拡散電極とが前記親水性層を介して一体化され、該電極触媒層と該拡散電極との間で優れた密着性を得ることができる。   As a result, according to the production method of the present invention, the electrode catalyst layer and the diffusion electrode are integrated via the hydrophilic layer, and excellent adhesion between the electrode catalyst layer and the diffusion electrode is obtained. Obtainable.

また、本発明の製造方法は、前記第2のスラリーが細孔形成材料を含むことを特徴とする。前記細孔形成材料としては、炭素繊維等を挙げることができる。前記細孔形成材料を含む前記第2のスラリーを前記撥水性層上に塗布して、乾燥させることにより、前記炭素繊維同士の間に細孔が形成された前記親水性層を得ることができ、該細孔を介して前記還元性ガスまたは酸化性ガスを拡散させることができる。   Further, the production method of the present invention is characterized in that the second slurry contains a pore forming material. Examples of the pore forming material include carbon fibers. The hydrophilic layer having pores formed between the carbon fibers can be obtained by applying the second slurry containing the pore forming material on the water repellent layer and drying the slurry. The reducing gas or the oxidizing gas can be diffused through the pores.

また、本発明の製造方法は、前記触媒ペーストが細孔形成材料を含むことを特徴とする。前記細孔形成材料としては、前記第2ペーストの場合と同一の炭素繊維等を挙げることができる。前記細孔形成材料を含む前記触媒ペーストを前記シート状支持体上に塗布して、乾燥させることにより、前記炭素繊維同士の間に細孔が形成された前記電極触媒層を得ることができ、該細孔を介して前記還元性ガスまたは酸化性ガスを拡散させ、前記還元性ガスまたは酸化性ガスと前記触媒との接触を有利に行うことができる。また、前記細孔を介して、生成した水の排出を有利に行うことができる。   Further, the production method of the present invention is characterized in that the catalyst paste contains a pore forming material. Examples of the pore forming material include the same carbon fibers as those of the second paste. By coating the catalyst paste containing the pore-forming material on the sheet-like support and drying, the electrode catalyst layer having pores formed between the carbon fibers can be obtained, The reducing gas or the oxidizing gas is diffused through the pores, and the contact between the reducing gas or the oxidizing gas and the catalyst can be advantageously performed. Further, the generated water can be advantageously discharged through the pores.

また、本発明の製造方法では、前記触媒ペーストと前記第2のスラリーとが前記細孔形成材料を含むときに、該細孔形成材料により前記親水性層に形成される孔径0.01〜1μmの範囲の細孔の容積に対する、該細孔形成材料により前記電極触媒層に形成される孔径0.01〜1μmの範囲の細孔の容積の比の値が、1.0未満となるように該親水性層と電極触媒層とを形成することにより、前記還元性ガスまたは酸化性ガスの拡散を阻害することなく、前記電極触媒層と前記拡散電極との間で優れた密着性を得ることができる。これに対して、前記比の値が1.0以上であるときには、前記電極触媒層と前記拡散電極との間で十分な密着性を得ることができたとしても、前記還元性ガスまたは酸化性ガスの拡散が阻害され、濃度過電圧が上昇してしまう。   Further, in the production method of the present invention, when the catalyst paste and the second slurry contain the pore forming material, the pore size formed in the hydrophilic layer by the pore forming material is 0.01 to 1 μm. The ratio of the volume of the pores formed in the electrode catalyst layer by the pore-forming material to the volume of the pores in the range of 0.01 to 1 μm with respect to the volume of the pores in the range of less than 1.0 is less than 1.0. By forming the hydrophilic layer and the electrode catalyst layer, it is possible to obtain excellent adhesion between the electrode catalyst layer and the diffusion electrode without hindering the diffusion of the reducing gas or the oxidizing gas. Can be. On the other hand, when the value of the ratio is 1.0 or more, even if sufficient adhesion between the electrode catalyst layer and the diffusion electrode can be obtained, the reducing gas or oxidizing The diffusion of gas is hindered, and the concentration overvoltage increases.

また、本発明の製造方法では、前記親水性層に含まれるイオン伝導性材料の重量に対する、前記電極触媒層に含まれるイオン伝導性材料の重量の比の値が、1.0〜1.4の範囲となるように、該親水性層と電極触媒層とを形成することにより、前記電極触媒層と前記拡散電極との間で優れた密着性を得ることができる。これに対して、前記比の値が1.0未満または1.4より大きいときには、前記電極触媒層と前記拡散電極との間で保水量バランスが変化してしまい、活性化過電圧あるいは濃度過電圧が上昇し、十分な発電性能が得られないことがある。   Further, in the manufacturing method of the present invention, the value of the ratio of the weight of the ion conductive material included in the electrode catalyst layer to the weight of the ion conductive material included in the hydrophilic layer is 1.0 to 1.4. By forming the hydrophilic layer and the electrode catalyst layer so as to satisfy the range described above, excellent adhesion between the electrode catalyst layer and the diffusion electrode can be obtained. On the other hand, when the value of the ratio is less than 1.0 or greater than 1.4, the water retention balance between the electrode catalyst layer and the diffusion electrode changes, and the activation overvoltage or the concentration overvoltage is reduced. And the power generation performance may not be sufficient.

さらに、本発明の製造方法では、前記親水性層に含まれる固形分の重量に対する、前記電極触媒層に含まれる固形分の重量の比の値が、1.0〜3.5の範囲となるように、該親水性層と電極触媒層とを形成することにより、前記電極触媒層と前記拡散電極との間で優れた密着性を得ることができる。これに対して、前記比の値が1.0未満または3.5より大きいときには、前記電極触媒層と前記拡散電極との間で十分な密着性を得ることができないことがある。   Furthermore, in the production method of the present invention, the ratio of the weight of the solid content contained in the electrode catalyst layer to the weight of the solid content contained in the hydrophilic layer is in the range of 1.0 to 3.5. Thus, by forming the hydrophilic layer and the electrode catalyst layer, it is possible to obtain excellent adhesion between the electrode catalyst layer and the diffusion electrode. On the other hand, when the value of the ratio is less than 1.0 or greater than 3.5, sufficient adhesion may not be obtained between the electrode catalyst layer and the diffusion electrode.

また、本発明は、前記製造方法により得られた膜−電極構造体を用いる固体高分子型燃料電池にもある。本発明の固体高分子型燃料電池は、例えば、パーソナルコンピュータ、携帯電話等の電気機器の電源、バックアップ電源等として用いることができる。また、本発明の固体高分子型燃料電池は、例えば、自動車、潜水艦等の船舶等の輸送用機器の動力等としても用いることができる。   The present invention also relates to a polymer electrolyte fuel cell using the membrane-electrode structure obtained by the above manufacturing method. The polymer electrolyte fuel cell of the present invention can be used, for example, as a power supply, a backup power supply, and the like for electric devices such as personal computers and mobile phones. Further, the polymer electrolyte fuel cell of the present invention can be used, for example, as a power source for transportation equipment such as automobiles and submarines.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の膜−電極構造体の製造方法を模式的に示す製造工程図であり、図2と図3とは本実施形態の膜−電極構造体の発電性能を示すグラフである。また、図4は本実施形態の膜−電極構造体における親水性層と電極触媒層との細孔容積比と発電性能との関係を示すグラフであり、図5は親水性層と電極触媒層とのイオン伝導性材料の重量比と発電性能との関係を示すグラフであり、図6は親水性層と電極触媒層との固形分の重量比と発電性能との関係を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a manufacturing process diagram schematically showing a method for manufacturing the membrane-electrode structure of the present embodiment, and FIGS. 2 and 3 are graphs showing the power generation performance of the membrane-electrode structure of the present embodiment. . FIG. 4 is a graph showing the relationship between the pore volume ratio of the hydrophilic layer and the electrode catalyst layer and the power generation performance in the membrane-electrode structure of the present embodiment, and FIG. 5 is a graph showing the relationship between the hydrophilic layer and the electrode catalyst layer. 6 is a graph showing the relationship between the weight ratio of the ion conductive material and the power generation performance, and FIG. 6 is a graph showing the relationship between the weight ratio of the solid content of the hydrophilic layer and the electrode catalyst layer and the power generation performance.

本実施形態の製造方法では、まず、スルホン化ポリアリーレン系ポリマーを調製する。尚、本明細書では、「スルホン化ポリアリーレン系ポリマー」とは、次式の構成を備えるポリマーのスルホン化物を意味する。   In the production method of the present embodiment, first, a sulfonated polyarylene-based polymer is prepared. In addition, in this specification, a "sulfonated polyarylene-based polymer" means a sulfonated product of a polymer having the following formula.

Figure 2004221056

前記2価の有機基としては、−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の電子吸引性基、−O−、−S−、−CH=CH−、−C≡C−等の基、さらに次式で表される電子供与性基等を挙げることができる。
Figure 2004221056

Examples of the divalent organic group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO- , -SO 2 - electron-withdrawing group such as, -O -, - S -, - CH = CH -, - C≡C- such groups further include an electron-donating groups represented by the following formula Can be.

Figure 2004221056

また、前記2価の電子吸引性基としては、−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の基を挙げることができる。
Figure 2004221056

Further, as the divalent electron attractive group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO- , -SO -, - SO 2 - group and the like.

前記スルホン化ポリアリーレン系ポリマーは、例えば、式(1)で表されるポリアリーレン系ポリマーに濃硫酸を加えてスルホン化することにより調製することができる。   The sulfonated polyarylene-based polymer can be prepared, for example, by adding concentrated sulfuric acid to the polyarylene-based polymer represented by the formula (1) to perform sulfonation.

Figure 2004221056

式(1)において、m:n=0.5〜100:99.5〜0であり、lは1以上の整数である。
Figure 2004221056

In the formula (1), m: n = 0.5 to 100: 99.5 to 0, and 1 is an integer of 1 or more.

式(1)で表されるポリアリーレン系ポリマーは、例えば、次のようにして調製することができる。まず、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(ビスフェノールAF)67.3重量部、4,4’−ジクロロベンゾフェノン53.5重量部、炭酸カリウム34.6重量部を、N,N−ジメチルアセトアミドとトルエンとの混合溶媒中、窒素雰囲気下で加熱し、撹拌しながら130℃で反応させる。反応により生成する水をトルエンと共沸させて系外に除去しながら、水の生成が殆ど認められなくなるまで反応させた後、反応温度を徐々に150℃まで上げてトルエンを除去する。150℃で10時間反応を続けた後、4,4’−ジクロロベンゾフェノン3.3重量部を加え、さらに5時間反応させる。   The polyarylene-based polymer represented by the formula (1) can be prepared, for example, as follows. First, 6,7.3 parts by weight of 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane (bisphenol AF) and 53.5 parts by weight of 4,4′-dichlorobenzophenone And 34.6 parts by weight of potassium carbonate are heated in a mixed solvent of N, N-dimethylacetamide and toluene under a nitrogen atmosphere and reacted at 130 ° C. while stirring. While removing water generated by the reaction by azeotropic distillation with toluene and removing the water outside the system, the reaction is allowed to proceed until almost no generation of water is recognized, and then the reaction temperature is gradually increased to 150 ° C. to remove the toluene. After continuing the reaction at 150 ° C. for 10 hours, 3.3 parts by weight of 4,4′-dichlorobenzophenone is added, and the reaction is further performed for 5 hours.

得られた反応液を冷却後、副生した無機化合物の沈殿物を濾過して除去し、濾液をメタノール中に投入する。沈殿した生成物を濾別、回収して乾燥後、テトラヒドロフランに溶解する。これをメタノールで再沈殿することにより、次式(2)で表されるオリゴマーが得られる。前述のようにして得られる式(2)のオリゴマーでは、lの平均値は、例えば、18.9である。   After cooling the obtained reaction solution, the precipitate of the by-product inorganic compound is removed by filtration, and the filtrate is poured into methanol. The precipitated product is separated by filtration, recovered, dried and then dissolved in tetrahydrofuran. By reprecipitating this with methanol, an oligomer represented by the following formula (2) is obtained. In the oligomer of the formula (2) obtained as described above, the average value of 1 is, for example, 18.9.

Figure 2004221056

次に、式(2)で表されるオリゴマー28.4重量部、2,5−ジクロロ−4’−(4−フェノキシ)フェノキシベンゾフェノン29.2重量部、ビス(トリフェニルホスフィン)ニッケルジクロリド1.37重量部、ヨウ化ナトリウム1.36重量部、トリフェニルホスフィン7.34重量部、亜鉛末11.0重量部をフラスコに取り、乾燥窒素置換する。次に、N−メチル−2−ピロリドンを加え、80℃に加熱して撹拌下に4時間重合を行う。重合溶液をテトラヒドロフランで希釈し、塩酸/メタノールで凝固させ回収する。回収物に対してメタノール洗浄を繰り返し、テトラヒドロフランに溶解する。これをメタノールで再沈殿して精製し、濾集したポリマーを真空乾燥することにより、式(1)で表されるポリアリーレン系ポリマーが得られる。
Figure 2004221056

Next, 28.4 parts by weight of the oligomer represented by the formula (2), 29.2 parts by weight of 2,5-dichloro-4 ′-(4-phenoxy) phenoxybenzophenone, and bis (triphenylphosphine) nickel dichloride. 37 parts by weight, 1.36 parts by weight of sodium iodide, 7.34 parts by weight of triphenylphosphine, and 11.0 parts by weight of zinc dust are placed in a flask and purged with dry nitrogen. Next, N-methyl-2-pyrrolidone is added, and the mixture is heated to 80 ° C. and polymerized for 4 hours with stirring. The polymerization solution is diluted with tetrahydrofuran and solidified and recovered with hydrochloric acid / methanol. The collected product is repeatedly washed with methanol and dissolved in tetrahydrofuran. This is purified by reprecipitation with methanol, and the polymer collected by filtration is vacuum-dried to obtain a polyarylene-based polymer represented by the formula (1).

式(1)で表されるポリアリーレン系ポリマーのスルホン化は、例えば、該ポリアリーレン系ポリマーに96%硫酸を加え、窒素気流下に24時間撹拌することにより行うことができる。   The sulfonation of the polyarylene-based polymer represented by the formula (1) can be performed, for example, by adding 96% sulfuric acid to the polyarylene-based polymer and stirring for 24 hours under a nitrogen stream.

前記スルホン化ポリアリーレン系ポリマーとして、式(1)で表されるポリアリーレン系ポリマーのスルホン化物に代えて、次式(3)で表されるスルホン化ポリアリーレン系ポリマーを用いてもよい。   As the sulfonated polyarylene-based polymer, a sulfonated polyarylene-based polymer represented by the following formula (3) may be used instead of the sulfonated polyarylene-based polymer represented by formula (1).

Figure 2004221056

式(3)で表される共重合体は、次式(4)で表されるモノマーと、前記式(2)で表されるオリゴマーとを共重合させた後、スルホン酸エステル基(−SO3CH(CH3)C25)を加水分解してスルホン酸基(−SO3H)とすることにより得ることができる。
Figure 2004221056

The copolymer represented by the formula (3) is obtained by copolymerizing a monomer represented by the following formula (4) and an oligomer represented by the above formula (2), and then a sulfonic acid ester group (-SO 3 CH (CH 3 ) C 2 H 5 ) by hydrolysis to form a sulfonic acid group (—SO 3 H).

Figure 2004221056

本実施形態の製造方法では、次に、前記スルホン化ポリアリーレン系ポリマーをN−メチルピロリドン等の溶媒に溶解して、高分子電解質溶液を調製する。そして、前記高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、図1(a)に示すように、例えば乾燥膜厚20〜60μmの高分子電解質膜1を形成する。
Figure 2004221056

Next, in the production method of the present embodiment, the sulfonated polyarylene-based polymer is dissolved in a solvent such as N-methylpyrrolidone to prepare a polymer electrolyte solution. Then, a film is formed from the polymer electrolyte solution by a casting method and dried in an oven to form a polymer electrolyte membrane 1 having a dry film thickness of, for example, 20 to 60 μm as shown in FIG.

次に、白金等の触媒をカーボンブラック(ファーネスブラック)等の電子伝導性材料に、例えば触媒:電子伝導性材料=50:50の重量比で担持させて触媒粒子を調製する。次に、前記触媒粒子と、細孔形成材料としての炭素繊維(例えば、昭和電工株式会社製VGCF(商品名))とを、イオン伝導性材料溶液としてのパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))溶液に、例えば触媒粒子:細孔形成材料:イオン伝導性材料=5:2:7の重量比で均一に分散させることにより、触媒ペーストを調製する。   Next, catalyst particles such as platinum are supported on an electron conductive material such as carbon black (furnace black) in a weight ratio of, for example, catalyst: electron conductive material = 50: 50. Next, the catalyst particles and a carbon fiber (for example, VGCF (trade name) manufactured by Showa Denko KK) as a pore forming material are combined with a perfluoroalkylenesulfonic acid polymer compound (for example, The catalyst paste is prepared by uniformly dispersing in a solution of Nafion (trade name, manufactured by DuPont) at a weight ratio of, for example, catalyst particles: pore-forming material: ion conductive material = 5: 2: 7.

次に、図1(b)示のフッ素樹脂系離型フィルム2上に、前記触媒ペーストを触媒量が例えば0.4〜0.5mg/cmとなるようにスクリーン印刷し、乾燥させて、電極触媒層3を形成する。次に、図1(c)示のように、高分子電解質膜1を一対の電極触媒層3,3で挟持し、フッ素樹脂系離型フィルム2上からホットプレスする。 Next, on the fluororesin-based release film 2 shown in FIG. 1B, the catalyst paste was screen-printed such that the catalyst amount becomes, for example, 0.4 to 0.5 mg / cm 2, and dried. The electrode catalyst layer 3 is formed. Next, as shown in FIG. 1C, the polymer electrolyte membrane 1 is sandwiched between a pair of electrode catalyst layers 3 and 3, and hot pressed from above the fluororesin release film 2.

前記ホットプレスは、例えば、100〜160℃の範囲の温度で、2〜5MPaの範囲の面圧を掛け、5〜30分間行う。この結果、電極触媒層3が高分子電解質膜1側に転写され、高分子電解質膜1と接合される。次いで、フッ素樹脂系離型フィルム2を剥離すると、図1(d)示のように、高分子電解質膜1が一対の電極触媒層3,3で挟持された積層体4が得られる。   The hot pressing is performed, for example, at a temperature in the range of 100 to 160 ° C., applying a surface pressure in the range of 2 to 5 MPa, and for 5 to 30 minutes. As a result, the electrode catalyst layer 3 is transferred to the polymer electrolyte membrane 1 and joined to the polymer electrolyte membrane 1. Next, when the fluororesin release film 2 is peeled off, a laminate 4 in which the polymer electrolyte membrane 1 is sandwiched between the pair of electrode catalyst layers 3 and 3 is obtained as shown in FIG.

前記電極触媒層3は、前記炭素繊維を含む触媒ペーストにより形成されているので、該炭素繊維間の間隙に細孔が形成された多孔質体となっている。   Since the electrode catalyst layer 3 is formed of the catalyst paste containing the carbon fibers, it is a porous body having pores formed in the gaps between the carbon fibers.

次に、図1(e)示の拡散電極5を形成する。拡散電極5の形成は、まず、撥水性材料としてのポリテトラフルオロエチレン(PTFE)粒子と、電子伝導性材料としてのカーボンブラックとを、例えば撥水性材料:電子伝導性材料=5:4の重量比で混合して得られた混合物をエチレングリコールに均一に分散させることにより、第1のスラリーを調製する。そして、前記第1のスラリーを、炭素基材層としてのカーボンペーパー6上に塗布して、乾燥させることにより、例えば乾燥膜厚10〜20μmの撥水性層7を形成する。   Next, the diffusion electrode 5 shown in FIG. 1E is formed. The diffusion electrode 5 is formed by first mixing polytetrafluoroethylene (PTFE) particles as a water-repellent material and carbon black as an electron-conductive material, for example, with a weight of water-repellent material: electron-conductive material = 5: 4. A first slurry is prepared by uniformly dispersing the mixture obtained by mixing at a ratio in ethylene glycol. Then, the first slurry is applied onto carbon paper 6 as a carbon base material layer and dried to form a water-repellent layer 7 having a dry film thickness of, for example, 10 to 20 μm.

次に、電子伝導性材料としてのカーボンブラックと、細孔形成材料としての前記炭素繊維とを、イオン伝導性材料溶液としてのパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))溶液に、例えば電子伝導性材料:細孔形成材料:イオン伝導性材料=5:4:14の重量比で均一に分散させることにより、第2のスラリーを調製する。そして、前記第2のスラリーを、撥水性層7上に塗布して、乾燥させることにより、例えば乾燥膜厚2〜10μmの親水性層8を形成する。   Next, a carbon black as an electron conductive material and the carbon fibers as a pore forming material are combined with a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name, manufactured by DuPont) as an ion conductive material solution). )) A second slurry is prepared by uniformly dispersing in a solution, for example, a weight ratio of electron conductive material: pore forming material: ion conductive material = 5: 4: 14. Then, the second slurry is applied on the water-repellent layer 7 and dried to form the hydrophilic layer 8 having a dry film thickness of 2 to 10 μm, for example.

この結果、カーボンペーパー6上に撥水性層7を備え、撥水性層7上にさらに親水性層8を備える拡散電極5が形成される。前記親水性層8は、前記炭素繊維を含む前記第2のスラリーにより形成されているので、該炭素繊維間の間隙に細孔が形成された多孔質体となっている。   As a result, the diffusion electrode 5 including the water repellent layer 7 on the carbon paper 6 and the hydrophilic layer 8 on the water repellent layer 7 is formed. Since the hydrophilic layer 8 is formed of the second slurry containing the carbon fibers, the hydrophilic layer 8 is a porous body having pores formed in gaps between the carbon fibers.

拡散電極5が形成されたならば、次に図1(f)に示すように、拡散電極5を、親水性層8を介して電極触媒層3に積層し、カーボンペーパー6上からホットプレスする。前記ホットプレスは、例えば、80〜140℃の範囲の温度で、1〜5MPaの範囲の面圧を掛け、2〜10分間行う。この結果、拡散電極5が親水性層8を介して電極触媒層3に接合された膜−電極構造体9が得られる。   When the diffusion electrode 5 is formed, as shown in FIG. 1F, the diffusion electrode 5 is laminated on the electrode catalyst layer 3 via the hydrophilic layer 8 and hot-pressed on the carbon paper 6. . The hot pressing is performed, for example, at a temperature in a range of 80 to 140 ° C., applying a surface pressure in a range of 1 to 5 MPa, and for 2 to 10 minutes. As a result, a membrane-electrode structure 9 in which the diffusion electrode 5 is bonded to the electrode catalyst layer 3 via the hydrophilic layer 8 is obtained.

次に、膜−電極構造体9では、親水性層8に形成された孔径0.01〜1μmの範囲の細孔の容積に対する、電極触媒層3に形成された孔径0.01〜1μmの範囲の細孔の容積の比の値が1.0未満になっている。また、親水性層8に含まれるイオン伝導性材料の重量に対する、電極触媒層3に含まれるイオン伝導性材料の重量の比の値は、1.0〜1.4の範囲になっている。また、親水性層8に含まれる固形分の重量に対する、電極触媒層3に含まれる固形分の重量の比の値は、1.0〜3.5の範囲になっている。   Next, in the membrane-electrode structure 9, the pore size formed in the electrode catalyst layer 3 is in the range of 0.01 to 1 μm with respect to the volume of pores formed in the hydrophilic layer 8 in the range of 0.01 to 1 μm. Is less than 1.0. The value of the ratio of the weight of the ion conductive material contained in the electrode catalyst layer 3 to the weight of the ion conductive material contained in the hydrophilic layer 8 is in the range of 1.0 to 1.4. The value of the ratio of the weight of the solid content contained in the electrode catalyst layer 3 to the weight of the solid content contained in the hydrophilic layer 8 is in the range of 1.0 to 3.5.

次に、式(1)で表されるポリアリーレン系ポリマーのスルホン化物を用い、本実施形態の製造方法により得られた膜−電極構造体9と、親水性層8を形成しないことを除いて本実施形態と同一の製造方法により得られた図7示の膜−電極構造体10とを用いて、固体高分子型燃料電池を構成して発電を行い、電流密度に対する端子電圧と、抵抗過電圧とを測定した。電流密度に対する端子電圧の変化を図2に、電流密度に対する抵抗過電圧の変化を図3にそれぞれ示す。   Next, using a sulfonated polyarylene-based polymer represented by the formula (1), except that the membrane-electrode structure 9 obtained by the production method of the present embodiment and the hydrophilic layer 8 are not formed. Using the membrane-electrode structure 10 shown in FIG. 7 obtained by the same manufacturing method as in the present embodiment, a polymer electrolyte fuel cell is configured to generate power, and a terminal voltage with respect to a current density and a resistance overvoltage And were measured. FIG. 2 shows a change in terminal voltage with respect to current density, and FIG. 3 shows a change in resistance overvoltage with respect to current density.

図2から、親水性層8を形成した膜−電極構造体9(実施例)によれば、親水性層8を形成しなかった膜−電極構造体10(比較例)よりも、端子電圧が高く、優れた発電性能が得られることが明らかである。また、親水性層8を形成した膜−電極構造体9(実施例)によれば、親水性層8を形成しなかった膜−電極構造体10(比較例)よりも、抵抗過電圧が低く、優れた発電性能が得られることが明らかである。   2, the membrane-electrode structure 9 on which the hydrophilic layer 8 is formed (Example) has a higher terminal voltage than the membrane-electrode structure 10 on which the hydrophilic layer 8 is not formed (Comparative Example). It is clear that high and excellent power generation performance can be obtained. Further, according to the membrane-electrode structure 9 in which the hydrophilic layer 8 was formed (Example), the resistance overvoltage was lower than that of the membrane-electrode structure 10 in which the hydrophilic layer 8 was not formed (Comparative Example). It is clear that excellent power generation performance can be obtained.

図2、図3のように、親水性層8を形成した膜−電極構造体9(実施例)において優れた発電性能が得られることから、膜−電極構造体9では、電極触媒層3と拡散電極5との間で優れた密着性が得られていることが明らかである。   As shown in FIGS. 2 and 3, since excellent power generation performance is obtained in the membrane-electrode structure 9 (Example) in which the hydrophilic layer 8 is formed, the membrane-electrode structure 9 has the same structure as the electrode catalyst layer 3. It is clear that excellent adhesion with the diffusion electrode 5 is obtained.

次に、膜−電極構造体9において、親水性層8に形成された孔径0.01〜1μmの範囲の細孔の容積(VA)に対する、電極触媒層3に形成された孔径0.01〜1μmの範囲の細孔の容積(VB)の比(VB/VA)の値を、0.5〜1.5の間で変化させたときの、前記比(VB/VA)の値に対する端子電圧の変化を図4に示す。尚、図4において、端子電圧は供試膜−電極構造体9のうち、最も端子電圧の高いものの端子電圧を100とし、該端子電圧に対する比として表した。 Next, in the membrane-electrode structure 9, the pore size of the pores formed in the electrode catalyst layer 3 with respect to the volume ( VA ) of the pores formed in the hydrophilic layer 8 in the range of 0.01 to 1 μm is defined. the value of the ratio (V B / V a) of the pore volume range of ~1μm (V B), when varying between 0.5 and 1.5, the ratio (V B / V a FIG. 4 shows a change in terminal voltage with respect to the value of ()). In FIG. 4, the terminal voltage is expressed as a ratio with respect to the terminal voltage, where the terminal voltage of the highest terminal voltage among the test membrane-electrode structures 9 is 100.

図4から、前記比(VB/VA)の値が、1.0未満であるときに、電極触媒層3と拡散電極5との間で優れた密着性が得られ、しかも発電性能に影響を及ぼさないことが明らかである。一方、前記比(VB/VA)の値が、1.0を超える場合には、親水性層8によりガスの拡散が阻害されるために濃度過電圧が上昇し、発電性能を低下を引き起こしている。 FIG. 4 shows that when the value of the ratio (V B / V A ) is less than 1.0, excellent adhesion between the electrode catalyst layer 3 and the diffusion electrode 5 is obtained, and power generation performance is improved. It is clear that it has no effect. On the other hand, when the value of the ratio (V B / V A ) exceeds 1.0, the diffusion of gas is inhibited by the hydrophilic layer 8, so that the concentration overpotential increases and the power generation performance decreases. ing.

次に、膜−電極構造体9において、親水性層8に含まれるイオン伝導性材料の重量(WA1)に対する、電極触媒層3に含まれるイオン伝導性材料の重量(WB1)の比(WB1/WA1)の値を、0.8〜1.6の間で変化させたときの、前記比(WB1/WA1)の値に対する端子電圧の変化を図5に示す。尚、図5において、端子電圧は供試膜−電極構造体9のうち、最も端子電圧の高いものの端子電圧を100とし、該端子電圧に対する比として表した。 Next, in the membrane-electrode structure 9, the ratio of the weight (W B1 ) of the ion-conductive material contained in the electrode catalyst layer 3 to the weight (W A1 ) of the ion-conductive material contained in the hydrophilic layer 8 ( the value of W B1 / W A1), when varying between 0.8 to 1.6, shown in Figure 5 the value change in the terminal voltage with respect to the ratio (W B1 / W A1). In FIG. 5, the terminal voltage is expressed as a ratio with respect to the terminal voltage, where 100 is the terminal voltage of the test-membrane-electrode structure 9 having the highest terminal voltage.

図5から、前記比(WB1/WA1)の値が、1.0〜1.4の範囲にあるときに、電極触媒層3と拡散電極5との間で優れた密着性が得られ、しかも発電性能に影響を及ぼさないことが明らかである。一方、前記比(WB1/WA1)の値が、1.0未満の場合は活性化過電圧が上昇し、また前記比(WB1/WA1)の値が、1.4を超える場合には濃度過電圧が上昇して発電性能が低下する。 FIG. 5 shows that when the value of the ratio (W B1 / W A1 ) is in the range of 1.0 to 1.4, excellent adhesion between the electrode catalyst layer 3 and the diffusion electrode 5 is obtained. Further, it is clear that the power generation performance is not affected. On the other hand, when the value of the ratio (W B1 / W A1 ) is less than 1.0, the activation overvoltage increases, and when the value of the ratio (W B1 / W A1 ) exceeds 1.4, In this case, the concentration overvoltage increases and the power generation performance decreases.

従って、前記比(WB1/WA1)の値が、1.0〜1.4の範囲にある場合にのみ、発電性能を低下させることなく、電極触媒層3と拡散電極5との間で優れた密着性を得ることができる。 Therefore, only when the value of the ratio (W B1 / W A1 ) is in the range of 1.0 to 1.4, between the electrode catalyst layer 3 and the diffusion electrode 5 without lowering the power generation performance. Excellent adhesion can be obtained.

次に、膜−電極構造体9において、親水性層8に含まれる固形分の重量(WA2)に対する、電極触媒層3に含まれる固形分の重量(WB2)の比(WB2/WA2)の値を、0.8〜4.0の間で変化させたときの、前記比(WB2/WA2)の値に対する端子電圧の変化を図6に示す。尚、図6において、端子電圧は供試膜−電極構造体9のうち、最も端子電圧の高いものの端子電圧を100とし、該端子電圧に対する比として表した。 Next, in the membrane-electrode structure 9, the ratio (W B2 / W) of the weight of the solid content (W B2 ) contained in the electrode catalyst layer 3 to the weight (W A2 ) of the solid content contained in the hydrophilic layer 8. the value of A2), when varying between 0.8 to 4.0, Figure 6 shows the change in the terminal voltage with respect to the value of the ratio (W B2 / W A2). In FIG. 6, the terminal voltage is expressed as a ratio with respect to the terminal voltage, where 100 is the terminal voltage of the highest terminal voltage among the test membrane-electrode structures 9.

図6から、前記比(WB2/WA2)の値が、1.0〜3.5の範囲にあるときに、電極触媒層3と拡散電極5との間で優れた密着性が得られ、しかも発電性能に影響を及ぼさないことが明らかである。一方、前記比(WB2/WA2)の値が1.0未満の場合には活性化過電圧が上昇し、また前記比(WB2/WA2)の値が、3.5を超える場合には濃度過電圧が上昇して発電性能が低下する。 6, the value of the ratio (W B2 / W A2) is, when in a range of 1.0 to 3.5, excellent adhesion between the electrode catalyst layer 3 and the diffusion electrode 5 is obtained Further, it is clear that the power generation performance is not affected. On the other hand, when the value of the ratio ( WB2 / WA2 ) is less than 1.0, the activation overvoltage increases, and when the value of the ratio ( WB2 / WA2 ) exceeds 3.5, In this case, the concentration overvoltage increases and the power generation performance decreases.

本発明の膜−電極構造体の製造方法の一例を模式的に示す製造工程図。The manufacturing process figure which shows typically an example of the manufacturing method of the membrane-electrode structure of this invention. 本発明の膜−電極構造体の発電性能の一例を示すグラフ。5 is a graph showing an example of the power generation performance of the membrane-electrode structure of the present invention. 本発明の膜−電極構造体の発電性能の一例を示すグラフ。5 is a graph showing an example of the power generation performance of the membrane-electrode structure of the present invention. 本発明の膜−電極構造体における親水性層と電極触媒層との細孔容積比と発電性能との関係を示すグラフ。4 is a graph showing the relationship between the pore volume ratio of the hydrophilic layer and the electrode catalyst layer in the membrane-electrode structure of the present invention and the power generation performance. 本発明の膜−電極構造体における親水性層と電極触媒層とのイオン伝導性材料の重量比と発電性能との関係を示すグラフ。5 is a graph showing the relationship between the weight ratio of the ion conductive material of the hydrophilic layer and the electrode catalyst layer in the membrane-electrode structure of the present invention and the power generation performance. 本発明の膜−電極構造体における親水性層と電極触媒層との固形分の重量比と発電性能との関係を示すグラフ。4 is a graph showing the relationship between the weight ratio of the solid content of the hydrophilic layer and the electrode catalyst layer in the membrane-electrode structure of the present invention and the power generation performance. 従来の膜−電極構造体の一構成例を示す説明的断面図。Explanatory sectional view showing a configuration example of a conventional membrane-electrode structure.

符号の説明Explanation of reference numerals

1…高分子電解質膜、 2…シート状支持体、 3…電極触媒層、 4…積層体、 5…拡散電極、 6…炭素基材層、 7…撥水性層、 8…親水性層、 9…膜−電極構造体。   DESCRIPTION OF SYMBOLS 1 ... Polymer electrolyte membrane, 2 ... Sheet-like support, 3 ... Electrode catalyst layer, 4 ... Laminated body, 5 ... Diffusion electrode, 6 ... Carbon base layer, 7 ... Water-repellent layer, 8 ... Hydrophilic layer, 9 ... Membrane-electrode structure.

Claims (9)

触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、撥水性層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該撥水性層上に塗布し、乾燥させて、親水性層を形成して、該炭素基材と撥水性層と親水性層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該親水性層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備えることを特徴とする膜−電極構造体の製造方法。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a water repellent layer, and then a first slurry containing an electron conductive material and an ion conductive material is formed. Applying the slurry of 2 on the water-repellent layer and drying to form a hydrophilic layer, and forming a diffusion electrode comprising the carbon substrate, the water-repellent layer, and the hydrophilic layer;
A step of laminating the diffusion electrode formed in advance on the electrode catalyst layer of the laminate through the hydrophilic layer and pressing it under heating to integrate the laminate with the diffusion electrode; A method for manufacturing a membrane-electrode structure, comprising:
前記第2のスラリーは細孔形成材料を含むことを特徴とする請求項1記載の膜−電極構造体の製造方法。   2. The method according to claim 1, wherein the second slurry contains a pore forming material. 前記触媒ペーストは細孔形成材料を含むことを特徴とする請求項1または請求項2記載の膜−電極構造体の製造方法。   The method for producing a membrane-electrode structure according to claim 1, wherein the catalyst paste contains a pore forming material. 前記触媒ペーストと前記第2のスラリーとが前記細孔形成材料を含むときに、該細孔形成材料により前記親水性層に形成される孔径0.01〜1μmの範囲の細孔の容積に対する、該細孔形成材料により前記電極触媒層に形成される孔径0.01〜1μmの範囲の細孔の容積の比の値が、1.0未満となるように、該親水性層と電極触媒層とを形成することを特徴とする請求項3記載の膜−電極構造体の製造方法。   When the catalyst paste and the second slurry contain the pore-forming material, the volume of pores having a pore size in the range of 0.01 to 1 μm formed in the hydrophilic layer by the pore-forming material, The hydrophilic layer and the electrode catalyst layer are so formed that the value of the volume ratio of the pores having a pore diameter in the range of 0.01 to 1 μm formed in the electrode catalyst layer by the pore forming material is less than 1.0. 4. The method for manufacturing a membrane-electrode structure according to claim 3, wherein: 前記親水性層に含まれるイオン伝導性材料の重量に対する、前記電極触媒層に含まれるイオン伝導性材料の重量の比の値が、1.0〜1.4の範囲となるように、該親水性層と電極触媒層とを形成することを特徴とする請求項1乃至請求項4のいずれか1項記載の膜−電極構造体の製造方法。   The hydrophilic layer is formed such that the ratio of the weight of the ion conductive material contained in the electrode catalyst layer to the weight of the ion conductive material contained in the hydrophilic layer is in the range of 1.0 to 1.4. The method for producing a membrane-electrode structure according to any one of claims 1 to 4, wherein a conductive layer and an electrode catalyst layer are formed. 前記親水性層に含まれる固形分の重量に対する、前記電極触媒層に含まれる固形分の重量の比の値が、1.0〜3.5の範囲となるように、該親水性層と電極触媒層とを形成することを特徴とする請求項1乃至請求項5のいずれか1項記載の膜−電極構造体の製造方法。   The hydrophilic layer and the electrode are arranged such that the ratio of the weight of the solid content contained in the electrode catalyst layer to the weight of the solid content contained in the hydrophilic layer is in the range of 1.0 to 3.5. The method for manufacturing a membrane-electrode structure according to any one of claims 1 to 5, wherein a catalyst layer is formed. 触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、撥水性層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該撥水性層上に塗布し、乾燥させて、親水性層を形成して、該炭素基材と撥水性層と親水性層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該親水性層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備える製造方法により得られる膜−電極構造体を備えることを特徴とする固体高分子型燃料電池。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a water repellent layer, and then a first slurry containing an electron conductive material and an ion conductive material is formed. Applying the slurry of 2 on the water-repellent layer and drying to form a hydrophilic layer, and forming a diffusion electrode comprising the carbon substrate, the water-repellent layer, and the hydrophilic layer;
A step of laminating the diffusion electrode formed in advance on the electrode catalyst layer of the laminate through the hydrophilic layer and pressing it under heating to integrate the laminate with the diffusion electrode; A polymer electrolyte fuel cell comprising a membrane-electrode structure obtained by a manufacturing method comprising:
触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、撥水性層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該撥水性層上に塗布し、乾燥させて、親水性層を形成して、該炭素基材と撥水性層と親水性層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該親水性層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備える製造方法により得られる膜−電極構造体を備える固体高分子型燃料電池を用いることを特徴とする電気機器。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a water repellent layer, and then a first slurry containing an electron conductive material and an ion conductive material is formed. Applying the slurry of 2 on the water-repellent layer and drying to form a hydrophilic layer, and forming a diffusion electrode comprising the carbon substrate, the water-repellent layer, and the hydrophilic layer;
A step of laminating the diffusion electrode formed in advance on the electrode catalyst layer of the laminate through the hydrophilic layer and pressing it under heating to integrate the laminate with the diffusion electrode; An electric device characterized by using a polymer electrolyte fuel cell provided with a membrane-electrode structure obtained by a manufacturing method comprising:
触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、撥水性層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該撥水性層上に塗布し、乾燥させて、親水性層を形成して、該炭素基材と撥水性層と親水性層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該親水性層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備える製造方法により得られる膜−電極構造体を備える固体高分子型燃料電池を用いることを特徴とする輸送用機器。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a water repellent layer, and then a first slurry containing an electron conductive material and an ion conductive material is formed. Applying the slurry of 2 on the water-repellent layer and drying to form a hydrophilic layer, and forming a diffusion electrode comprising the carbon substrate, the water-repellent layer, and the hydrophilic layer;
A step of laminating the diffusion electrode formed in advance on the electrode catalyst layer of the laminate through the hydrophilic layer, pressing the laminate under heating, and integrating the laminate with the diffusion electrode; Transport equipment using a polymer electrolyte fuel cell provided with a membrane-electrode structure obtained by a manufacturing method comprising:
JP2003371049A 2002-11-29 2003-10-30 Method for manufacturing membrane-electrode structure Expired - Lifetime JP4392222B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003371049A JP4392222B2 (en) 2002-12-27 2003-10-30 Method for manufacturing membrane-electrode structure
US10/721,505 US7306876B2 (en) 2002-11-29 2003-11-26 Method for producing membrane-electrode structure and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002379820 2002-12-27
JP2003371049A JP4392222B2 (en) 2002-12-27 2003-10-30 Method for manufacturing membrane-electrode structure

Publications (2)

Publication Number Publication Date
JP2004221056A true JP2004221056A (en) 2004-08-05
JP4392222B2 JP4392222B2 (en) 2009-12-24

Family

ID=32911259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371049A Expired - Lifetime JP4392222B2 (en) 2002-11-29 2003-10-30 Method for manufacturing membrane-electrode structure

Country Status (1)

Country Link
JP (1) JP4392222B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP2006049248A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Thermal transfer sheet and lamination body for solid oxide fuel cell
JP2007242611A (en) * 2006-02-24 2007-09-20 Gm Global Technology Operations Inc Method of depositing nanoparticle coating on bipolar plate and removing nanoparticle coating from land of bipolar plate
JP2007254486A (en) * 2007-05-14 2007-10-04 Jsr Corp New aromatic sulfonate, and polyarylene having sulfonic acid group and method for producing the same
JP2009266774A (en) * 2008-04-30 2009-11-12 Toppan Printing Co Ltd Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010049825A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Membrane-electrode assembly manufacturing method, membrane-electrode assembly manufactured by the method, and fuel cell including the membrane-electrode assembly
WO2010073900A1 (en) * 2008-12-24 2010-07-01 株式会社 東芝 Anode electrode for direct methanol fuel cell, and membrane electrode complex and fuel cell using the same
US7837819B2 (en) 2007-09-07 2010-11-23 Hyundai Motor Company Method of manufacturing membrane-electrode assembly for fuel cell
WO2011114949A1 (en) * 2010-03-19 2011-09-22 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and method for producing cathode for solid polymer fuel cell
JP2014022119A (en) * 2012-07-13 2014-02-03 Japan Vilene Co Ltd Moisture control sheet, gas diffusion sheet, film-electrode assembly and solid polymer fuel battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP2005174768A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP2006049248A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Thermal transfer sheet and lamination body for solid oxide fuel cell
JP4560677B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Solid oxide fuel cell thermal transfer sheet and solid oxide fuel cell laminate
JP2007242611A (en) * 2006-02-24 2007-09-20 Gm Global Technology Operations Inc Method of depositing nanoparticle coating on bipolar plate and removing nanoparticle coating from land of bipolar plate
JP2007254486A (en) * 2007-05-14 2007-10-04 Jsr Corp New aromatic sulfonate, and polyarylene having sulfonic acid group and method for producing the same
US7837819B2 (en) 2007-09-07 2010-11-23 Hyundai Motor Company Method of manufacturing membrane-electrode assembly for fuel cell
JP2009266774A (en) * 2008-04-30 2009-11-12 Toppan Printing Co Ltd Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010049825A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Membrane-electrode assembly manufacturing method, membrane-electrode assembly manufactured by the method, and fuel cell including the membrane-electrode assembly
WO2010073900A1 (en) * 2008-12-24 2010-07-01 株式会社 東芝 Anode electrode for direct methanol fuel cell, and membrane electrode complex and fuel cell using the same
WO2011114949A1 (en) * 2010-03-19 2011-09-22 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and method for producing cathode for solid polymer fuel cell
US8475967B2 (en) 2010-03-19 2013-07-02 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cell and process for producing cathode for polymer electrolyte fuel cell
JP2014022119A (en) * 2012-07-13 2014-02-03 Japan Vilene Co Ltd Moisture control sheet, gas diffusion sheet, film-electrode assembly and solid polymer fuel battery

Also Published As

Publication number Publication date
JP4392222B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP4130792B2 (en) Membrane-electrode structure and polymer electrolyte fuel cell using the same
US8440363B2 (en) Electrode for fuel cell and fuel cell comprising same
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
CN1776943A (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP4804812B2 (en) Method for producing polymer membrane for fuel cell
JP4221164B2 (en) Polymer electrolyte fuel cell
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
US7306876B2 (en) Method for producing membrane-electrode structure and polymer electrolyte fuel cell
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
KR102175009B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP4647902B2 (en) Method for manufacturing membrane-electrode structure
KR101127343B1 (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP4421264B2 (en) Method for manufacturing membrane-electrode structure
JP3779171B2 (en) Polymer electrolyte fuel cell
JP2010238373A (en) Polymer electrolyte membrane, its manufacturing method, and membrane electrode assembly as well as solid polymer fuel cell using the same
KR20190089418A (en) Method of manufacturing membrane electrode assembly and laminate
JP2004214172A (en) Manufacturing method for film-electrode structure
JP4348154B2 (en) Catalyst membrane for polymer electrolyte fuel cell, production method thereof and fuel cell using the same
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2004186143A (en) Manufacture method of electrode structure for solid polymer fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2021190176A (en) Membrane electrode gas diffusion layer assembly for fuel battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250