JP2004218753A - Fluid sealing type vibration control device - Google Patents

Fluid sealing type vibration control device Download PDF

Info

Publication number
JP2004218753A
JP2004218753A JP2003007534A JP2003007534A JP2004218753A JP 2004218753 A JP2004218753 A JP 2004218753A JP 2003007534 A JP2003007534 A JP 2003007534A JP 2003007534 A JP2003007534 A JP 2003007534A JP 2004218753 A JP2004218753 A JP 2004218753A
Authority
JP
Japan
Prior art keywords
mounting member
orifice
chamber
rubber elastic
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007534A
Other languages
Japanese (ja)
Inventor
Hajime Maeno
肇 前野
Atsushi Muramatsu
篤 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2003007534A priority Critical patent/JP2004218753A/en
Publication of JP2004218753A publication Critical patent/JP2004218753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure capable of effectively achieving a vibration control effect by an orifice passage without incorporating a special valve and an actuator in a fluid sealing type vibration control device utilizing the resonance action of a fluid. <P>SOLUTION: A first divided chamber 74, a second divided chamber 76, a third divided chamber 78, and an auxiliary liquid chamber 50 are communicated to one another in series by a first orifice passage 54, a second orifice passage 94, and a third orifice passage 96. A part of the wall of the first divided chamber 74 is composed of a main body rubber elastic body 16 and a support rubber elastic body 84. A part of the wall of the second divided chamber 76 is composed of the support rubber elastic body 84. A part of the wall of the third divided chamber 78 is composed of a movable rubber plate 62. A part of the wall of the auxiliary liquid chamber 50 is composed of a flexible film 40. The first orifice passage 54 is tuned to a middle frequency band, the second orifice passage 94 is tuned to a low frequency band, and the third orifice passage 96 is tuned to a high frequency band. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置に係り、特に複数の周波数域の振動に対して有効な防振効果を得ることが出来、例えば自動車用エンジンマウント等として有利に採用され得る流体封入式防振装置に関するものである。
【0002】
【背景技術】
従来から、振動伝達系を構成する部材間に介装される防振連結体乃至は防振支持体の一種として、内部に封入した非圧縮性流体の共振作用等の流動作用に基づいて防振効果を得るようにした流体封入式防振装置が知られており、例えば自動車用のエンジンマウントやボデーマウント等への適用が検討されている。かかる防振装置は、例えば特許文献1や特許文献2に記載されているように、第一の取付部材を筒状の第二の取付部材の一方の開口部側に離隔配置せしめて、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結することにより、第二の取付部材の一方の開口部を該本体ゴム弾性体で覆蓋すると共に、第二の取付部材の他方の開口部を可撓性膜で覆蓋せしめて、それら本体ゴム弾性体と可撓性膜の対向面間に非圧縮性流体の封入領域を形成し、更に該第二の取付部材で支持せしめた仕切部材によって該封入領域を二分せしめて、壁部の一部が本体ゴム弾性体で構成された主液室と、壁部の一部が可撓性膜で構成された副液室を形成すると共に、主液室と副液室をオリフィス通路によって相互に連通せしめた構造とされている。
【0003】
ところで、防振装置においては、防振効果が要求される振動が複数種類に亘る場合が多く、例えば自動車用エンジンマウントにおいては、走行状態下で入力されるエンジンシェイク等の低周波振動と走行こもり音等の高周波振動に加えて、停車状態下で入力されるアイドリング振動等の中周波数域の振動に対して、何れも有効な防振性能を発揮することが要求される。
【0004】
ところが、オリフィス通路を通じて流動せしめられる流体の共振作用に基づいて発揮される防振効果は、オリフィス通路がチューニングされる特定の狭い周波数域に限られることから、そのように複数の乃至は広い周波数域の振動に対して、それぞれ有効な防振効果を得ることが極めて難しかったのである。蓋し、互いに異なる周波数域にチューニングした複数のオリフィス通路を、主液室と平衡室の間に並列的に形成すると、実質的に単一のオリフィス通路としてしか機能しないからである。
【0005】
そこで、前述の如き要求される防振性能を得るために、例えば、特許文献1や特許文献2に示されているように、互いに異なる周波数域にチューニングされた複数のオリフィス通路を、主液室と副液室の間に並列的に設けると共に、それらのオリフィス通路を適宜に開閉して切り換えるためのバルブ手段を設けて、複数のオリフィス通路を択一的に機能させるようにしたオリフィス切換式の流体封入式防振装置が提案されている。
【0006】
しかしながら、このような従来構造のオリフィス切換式の防振装置においては、オリフィス通路を切り換えるためのバルブ手段だけでなく、該バルブ手段を切換駆動せしめるための電動モータや空気圧式アクチュエータ等の駆動手段を防振装置に組み込む必要があることから部品点数の増加と構造の複雑化が避けられず、製造が困難で高コスト化するという問題があった。
【0007】
【特許文献1】
特開2000−257665号公報
【特許文献2】
特開2000−266107号公報
【0008】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、複数の乃至は広い周波数域の振動に対して、何れも、封入された非圧縮性流体の流動作用に基づく防振効果を有効に発揮し得る、構造が簡単で製造の容易な新規な構造の流体封入式防振装置を提案することにある。
【0009】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0010】
(本発明の態様1)
本発明の態様1は、第一の取付部材を筒状の第二の取付部材の一方の開口部側に離隔配置せしめて該第一の取付部材と該第二の取付部材を本体ゴム弾性体で連結することにより、該第二の取付部材の一方の開口部を該本体ゴム弾性体で覆蓋すると共に、該第二の取付部材の他方の開口部を可撓性膜で覆蓋せしめて、それら本体ゴム弾性体と可撓性膜の対向面間に非圧縮性流体の封入領域を形成し、該第一の取付部材と該第二の取付部材の間への入力振動に対して該非圧縮性流体の流動作用に基づく防振効果が発揮されるようにした流体封入式防振装置において、前記封入領域をマウント軸方向で仕切る仕切部材を設けて該仕切部材を前記第二の取付部材で支持せしめることにより、壁部の一部が該本体ゴム弾性体で構成された主液室と、壁部の一部が該可撓性膜で構成された副液室を形成して、該主液室に可動オリフィス部材を収容配置すると共に該可動オリフィス部材を環状の支持ゴム弾性体で前記第二の取付部材に弾性支持せしめて該主液室をマウント軸方向で仕切ることにより、該可動オリフィス部材と前記第一の取付部材の対向面間に第一の分割室を画成し、更に該主液室に固定オリフィス部材を収容配置せしめて該主液室を該可動オリフィス部材と該仕切部材の対向面間においてマウント軸方向で仕切ることにより、該可動オリフィス部材と該固定オリフィス部材の対向面間に第二の分割室を画成すると共に、該固定オリフィス部材と該仕切部材の対向面間に第三の分割室を画成し、且つ該第三の分割室の壁部の一部を弾性変形可能な可動ゴム板で構成する一方、該仕切部材において該副液室と該第三の分割室を相互に連通する第一のオリフィス通路を形成すると共に、該可動オリフィス部材において該第一の分割室と該第二の分割室を相互に連通する第二のオリフィス通路を形成し、更に該固定オリフィス部材において該第二の分割室と該第三の分割室を相互に連通する第三のオリフィス通路を形成し、且つ該第一のオリフィス通路を該第二のオリフィス通路よりも高周波数域にチューニングすると共に、該第三のオリフィス通路を該第一のオリフィス通路よりも高周波数域にチューニングした流体封入式防振装置を、特徴とする。
【0011】
このような本態様に従う構造とされた流体封入式防振装置においては、前記特許公報1,2に示されている如き従来構造の並列的なオリフィス通路を備えた防振装置と異なり、第一,第二,第三の分割室と平衡室からなる合計4つの分割された室の間に相互に直列的に形成された第一,第二及び第三のオリフィス通路を備えているのであり、それによって、オリフィス通路を切り換えるバルブを特別に設けることなく、互いに異なる周波数域にチューニングされたそれら三つのオリフィス通路を、それぞれ、入力振動に応じて有効に機能せしめて、各オリフィス通路がチューニングされた周波数域の振動に対して、何れも、オリフィス通路を流動せしめられる流体の共振作用等の流動作用に基づく防振効果を有効に得ることが可能となるのである。
【0012】
すなわち、低周波数域の振動入力時には、第一及び第三のオリフィス通路の通路抵抗が充分に小さくされて、第二及び第三の分割室と副液室が実質的に単一の平衡室として機能し、この平衡室の容積変化が可撓性膜の変形に基づいて容易に許容されることにより、本体ゴム弾性体の弾性変形に伴って第一の分割室に圧力変動が惹起されて、第一の分割室と平衡室(第二及び第三の分割室と副液室)の間の相対的な圧力変動に基づいて第二のオリフィス通路を通じての流体流動が有利に生ぜしめられることとなる。それ故、低周波数域にチューニングされた第二のオリフィス通路を流動せしめられる流体の共振作用に基づいて、低周波振動に対して有効な防振効果が発揮され得るのである。
【0013】
また、中周波数域の振動入力時には、第二のオリフィス通路の通路抵抗が著しく大きくなって実質的に閉塞状態となるが、第三のオリフィス通路の通路抵抗が充分に小さく維持されて、第二及び第三の分割室が実質的に単一とされる。かかる状態下で中周波数域の振動が入力されると、実質的に密閉状態とされて非圧縮性流体が充填された第一の分割室の圧力変動を介して或いは第一の取付部材と可動オリフィス部材の直接的な当接に基づいて、第一の取付部材と可動オリフィス部材が略一体的に第二の取付部材に対して相対変位せしめられると共に本体ゴム弾性体と支持ゴム弾性体が弾性変形せしめられることにより、実質的に単一の室として機能する第二及び第三の分割室に対して有効な圧力変動が惹起されることとなる。それ故、かかる単一の室としての第二及び第三の分割室と、可撓性膜の変形に基づいて容積変化が許容される平衡室としての副液室との間で相対的な圧力変動が惹起されて、かかる圧力変動に基づき第一のオリフィス通路を通じての流体流動が有利に生ぜしめられることとなる。その結果、中周波数域にチューニングされた第一のオリフィス通路を流動せしめられる流体の共振作用に基づいて、中周波振動に対して有効な防振効果が発揮され得るのである。
【0014】
更にまた、高周波数域の振動入力時には、第二のオリフィス通路だけでなく第一のオリフィス通路の通路抵抗も著しく大きくなって実質的に閉塞状態となるが、第二の分割室には、上述の中周波数域の振動入力時と同様に、第一の取付部材と可動オリフィス部材が略一体的に第二の取付部材に対して相対変位せしめられると共に本体ゴム弾性体と支持ゴム弾性体が弾性変形せしめられることにより、第二の分割室に対して有効な圧力変動が惹起されることとなる。また、第三の分割室においては、壁部の一部を構成する可動ゴム板の弾性変形に基づく容積変化が許容され或いは液圧吸収が発揮されることから、特に振動振幅の小さい高周波数域では、かかる第三の分割室が平衡室として有効に機能し得ることとなる。それ故、第二の分割室と第三の分割室との間で相対的な圧力変動が惹起されて、それら第二の分割室と第三の分割室の間の相対的な圧力変動に基づき、それら両分割室の間で第三のオリフィス通路を通じての流体流動が有利に生ぜしめられることとなり、高周波数域にチューニングされた第三のオリフィス通路を流動せしめられる流体の共振作用に基づいて、高周波振動に対して有効な防振効果が発揮され得るのである。
【0015】
特に、本態様に従う構造とされた流体封入式防振装置においては、中周波数域の振動入力時に実質的に単一の室として機能する第二及び第三の分割室における壁ばね剛性が、本体ゴム弾性体と支持ゴム弾性体の両者によって協働して充分に大きな剛性をもって発揮されることとなり、その結果、かかる単一の室としての第二及び第三の分割室と、平衡室としての副液室との間での相対的な圧力変動が一層効率的に惹起されて、第一のオリフィス通路を通じての流体流動量が有利に確保されることにより、第一のオリフィス通路を流動せしめられる流体の共振作用に基づく、上述の如き防振効果が、より一層効果的に発揮され得るのである。
【0016】
(本発明の態様2)
本発明の態様2は、前記態様1に係る流体封入式防振装置において、前記第一の取付部材と前記第二の取付部材が接近方向に相対変位せしめられた場合に、前記本体ゴム弾性体と前記支持ゴム弾性体の弾性変形に基づいて、該第一の取付部材と前記固定オリフィス部材が前記可動オリフィス部材を介して相互に当接せしめられることにより、該第一の取付部材と該第二の取付部材の接近方向における相対変位量が制限され得るようになっていることを、特徴とする。
【0017】
このような本態様に従う構造とされた流体封入式防振装置においては、過大な荷重が及ぼされた際の第一の取付部材と第二の取付部材のバウンド方向での相対的変位量を制限するストッパ機構が、主液室の内部スペースを巧く利用して構成され得るのであり、バウンド方向のストッパ機構を備えた流体封入式防振装置が、全体としてコンパクトに実現可能となる。しかも、本態様においては、可動オリフィス部材を第二の取付部材に弾性支持せしめる支持ゴム弾性体を利用して、過大な荷重入力時における非線形ばね特性を有利に得ることが出来るのであり、支持ゴム弾性体によって防振装置のばね特性のチューニング自由度も大幅に向上され得ることとなる。
【0018】
(本発明の態様3)
本発明の態様3は、前記態様1又は2に係る流体封入式防振装置において、自動車のパワーユニットとボデーの一方に前記第一の取付部材を取り付けると共に、それらパワーユニットとボデーの他方に前記第二の取付部材を取り付けることによってエンジンマウントを構成し、前記第二のオリフィス通路をエンジンシェイクに相当する低周波数域にチューニングすると共に、前記第一のオリフィス通路をアイドリング振動に相当する中周波数域にチューニングし、更に前記第三のオリフィス通路を走行こもり音に相当する高周波数域にチューニングしたことを、特徴とする。
【0019】
このような本態様においては、自動車において、走行時に特に問題となるエンジンシェイク等の低周波振動と走行こもり音等の高周波振動に対する防振効果と、停車時に特に問題となるアイドリング振動等の中周波振動に対する防振効果が、何れも、第一〜三の何れかのオリフィス通路を流動せしめられる流体の共振作用に基づいて有効に発揮され得ることとなる。
【0020】
(本発明の態様4)
本発明の態様4は、上述の態様3に係る流体封入式防振装置において、自動車のアイドリング状態下において、前記第一の取付部材と前記第二の取付部材の間に及ぼされるエンジントルク反力に伴う前記本体ゴム弾性体の弾性変形に基づいて該第一の取付部材が前記可動オリフィス部材に対する当接状態に保持されて、かかる当接状態下で該第一の取付部材と該可動オリフィス部材が該第二の取付部材に対して一体的に相対加振変位せしめられ得るようにしたことを、特徴とする。
【0021】
このような本態様においては、自動車のアイドリング状態下で第一の取付部材と可動オリフィス部材が一体的に加振変位せしめられることから、可動オリフィス部材の加振効率が向上されて、単一の室として機能する第二及び第三の分割室と平衡室としての副液室との間での相対的な圧力変動が一層効率的に惹起されて、第一のオリフィス通路を通じての流体流動量が有利に確保され得ることとなり、以て、かかる第二のオリフィス通路を流動せしめられる流体の共振作用に基づく、アイドリング振動に対する防振効果が一層有利に発揮され得るのである。
【0022】
なお、可動オリフィス部材に形成される第二のオリフィス通路は、可動オリフィス部材が第一のオリフィス部材に当接した状態下で閉塞するようになっていても上述の如き第一のオリフィス通路による防振効果は充分に発揮され得るが、好ましくは、可動オリフィス部材が第一のオリフィス部材に当接した状態下でも、第二のオリフィス通路が、第一の分割室と第二の分割室を繋ぐ連通状態に維持され得るように、特に第一の分割室への開口部を、第一の取付部材への当接部位を避けて形成することが望ましい。
【0023】
(本発明の態様5)
本発明の態様5は、前記態様1乃至態様4の何れかに係る流体封入式防振装置において、前記本体ゴム弾性体および前記支持ゴム弾性体を、何れも、前記第一の取付部材から前記第二の取付部材に向かってマウント軸方向で次第に拡開するテーパ付きの略円筒形状としたことを、特徴とする。このような本態様においては、第一の取付部材と第二の取付部材の対向方向となるマウント中心軸方向に対して、本体ゴム弾性体および支持ゴム弾性体を傾斜させることができ、主たる振動の入力方向となるマウント中心軸方向での弾性変形ストロークを有利に確保することが可能となると共に、それら本体ゴム弾性体および支持ゴム弾性体の傾斜角度(テーパ角度)を調節することによって、マウント中心軸の方向やそれに直交する方向等においてばね特性を大きな自由度でチューニングすることが可能となる。
【0024】
(本発明の態様6)
本発明の態様6は、前記態様1乃至態様5の何れかに係る流体封入式防振装置において、前記可動ゴム板に対して、前記第三の分割室と反対側に、該可動ゴム板の弾性変形を許容する空気室を形成すると共に、該空気室を大気と外部の負圧源に対して択一的に接続せしめる空気通路を形成したことを、特徴とする。このような本態様においては、空気室を負圧源に接続して可動ゴムを負圧吸引させて拘束することにより、可動ゴムの弾性変形に伴う第三の分割室の容積変化や圧力吸収機能を抑えることが出来るのであり、それによって、例えば、第一のオリフィス通路のチューニング周波数域での振動入力時において、第三の分割室と副液室の間での相対的な圧力変動が一層効率的に惹起されるようにし、第一のオリフィス通路を通じての流体流動量を増大させて、第一のオリフィス通路を流動せしめられる流体の共振作用に基づく防振効果の向上を図ることが可能となる。
【0025】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0026】
先ず、図1,2には、本発明の一実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16によって弾性連結された構造とされており、図示はされていないが、第一の取付金具12が自動車のパワーユニットに取り付けられる一方、第二の取付金具14が自動車のボデーに取り付けられることにより、パワーユニットをボデーに対して防振支持せしめるようになっている。また、そのような装着状態下、パワーユニットの分担支持荷重と防振すべき主たる振動は、図1中で上下方向に延びる、第一の取付金具12と第二の取付金具14の対向方向であるマウント中心軸18上で入力されるようになっている。なお、以下の説明中、上下方向とは、原則として、図1中の上下方向をいうものとする。
【0027】
より詳細には、第一の取付金具12は、マウント中心軸18に直交する方向に長手状に延びるブロック形状を有しており、アルミニウム合金や鉄鋼等の剛性材で形成されている。また、第一の取付金具12の下部には、逆円錐台形状の固着突部20が一体形成されていると共に、固着突部20の大径側端部の外周縁部には、外周側に向かって突出する鍔状部22が周方向に突設されている。更にまた、第一の取付金具20には、長手方向に貫通する取付用孔24が形成されており、この取付用孔24に挿通される図示しないボルト等を介して、第一の取付金具12が自動車のパワーユニットに取り付けられるようになっている。
【0028】
また、第一の取付金具12には、本体ゴム弾性体16が加硫接着されており、本体ゴム弾性体16が第一の取付金具12を有する一体加硫成形品とされている。かかる本体ゴム弾性体16は、全体としてテーパ付きの略厚肉円筒形状を有しており、マウント中心軸18上で下方に向かって拡開するように配設されている。そして、本体ゴム弾性体16の小径側開口端縁部に対して、第一の取付金具12の固着突部20の外周面が加硫接着されており、それによって、本体ゴム弾性体16の小径側開口部が第一の取付金具12によって流体密に閉塞されている。一方、本体ゴム弾性体16の大径側端部外周面には、円筒形状の連結金具26が加硫接着されている。
【0029】
更にまた、第一の取付金具12の固着突部20の下端面には、その全面を覆う緩衝ゴム28が形成されて加硫接着されている。また、第一の取付金具12の上面には、鍔状部22で支持されて上方に向かって突出するストッパゴム30が形成されて加硫接着されている。なお、これら緩衝ゴム28とストッパゴム30は、何れも、本体ゴム弾性体16と一体成形されている。また、ストッパゴム30は、後述するように、リバウンド方向のストッパ機構を構成するものである。
【0030】
一方、第二の取付金具14は、全体として大径の円筒形状を有しており、第一の取付金具12と同様に剛性材で形成されて、第一の取付金具12の下方に離隔位置してマウント中心軸18上に延びるように配設されている。この第二の取付金具14は、軸方向中間部分に環状の段差部32を有しており、該段差部32を挟んで軸方向下側が小径筒部34とされている一方、上側が大径筒部36とされている。また、小径筒部34の開口端縁部には、内方に向かって突出するフランジ状部38が一体形成されている。
【0031】
また、第二の取付金具14の軸方向下側の開口部には、可撓性膜としてのダイヤフラム40が配設されている。このダイヤフラム40は、薄肉のゴム膜によって形成されており、上方に凸となるドーム形状とされて容易に変形し得るようになっている。そして、ダイヤフラム40の外周縁部がフランジ状部38に加硫接着されていることにより、第二の取付金具14の軸方向下側の開口部が流体密に閉塞されている。なお、第二の取付金具14の小径筒部34と大径筒部36には、それぞれ、内周面の略全面に亘って薄肉のシールゴム層42が加硫接着されている。
【0032】
そして、第二の取付金具14の大径筒部36の開口部分に対して、本体ゴム弾性体16の大径側端部の外周縁部に加硫接着された連結金具26が嵌め込まれて、大径筒部36が連結金具26に外嵌固定されている。これにより、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で弾性的に連結されている。また、第二の取付金具14の軸方向上側の開口部が、本体ゴム弾性体16で流体密に覆蓋されている。
【0033】
また、第二の取付金具14の内部には、本体ゴム弾性体16とダイヤフラム40の対向面間において、外部空間に対して封止されて非圧縮性流体が封入された流体封入領域44が画成されている。なお、封入される非圧縮性流体としては、例えば水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が何れも採用可能であり、特に後述するオリフィス通路を流動せしめられる流体の共振作用に基づく防振効果を有効に得るために、粘度が0.1Pa・S以下の低粘性流体が好適に採用される。
【0034】
さらに、かかる流体封入領域44には、仕切部材46が収容配置されている。この仕切部材46は、全体として略厚肉円板形状を有しており、アルミニウム合金等の金属材や合成樹脂材等の硬質材で形成されている。そして、かかる仕切部材46は、第二の取付金具14の小径筒部34に嵌め込まれて、第二の取付金具14の軸方向中間部分において軸直角方向に広がって固着されている。
【0035】
これにより、流体封入領域44が、仕切部材46で流体密に二分されており、以て、仕切部材46と本体ゴム弾性体16の間には主液室48が画成されている一方、仕切部材46とダイヤフラム40の間には副液室50が画成されている。そして、副液室50は、壁部の一部を構成するダイヤフラム40が容易に変形し得ることによって、容積変化が容易に許容されて内圧変動が速やかに解消されるようになっている。
【0036】
また、仕切部材46には、外周面に開口して周方向に一周弱の長さで延びる凹溝52が形成されており、この凹溝52が、小径筒部34でシールゴム層42を介して流体密に覆蓋されることにより、第一のオリフィス通路54が形成されている。そして、第一のオリフィス通路54の周方向の各端部が、連通孔56,58を通じて主液室48と副液室50の各一方に接続されており、以て、主液室48と副液室50が、第一のオリフィス通路54を通じて相互に連通せしめられている。
【0037】
更にまた、仕切部材46には、主液室48に面する上端面の中央に位置してすり鉢形状の凹所60が形成されていると共に、この凹所60の開口部に可動ゴム板としてのゴム弾性板62が配設されている。かかるゴム弾性板62は、所定厚さの略円板形状を有しており、外周縁部には円環状の嵌着金具64が加硫接着されている。そして、嵌着金具64が凹所60の開口部に圧入されることにより、凹所60の開口部を流体密に覆蓋するようにしてゴム弾性板62が組み付けられている。なお、本実施形態では、仕切部材46に貫設されて凹所60の底面に開口する連通路66を通じて、凹所60が外部空間に連通せしめられている。
【0038】
要するに、ゴム弾性板62は、その配設状態下、凹所60によって背後に形成された空気室68により弾性変形が許容されるようになっている。そこにおいて、ゴム弾性板62のばね剛性は、本体ゴム弾性体16よりは充分に小さいが、ダイヤフラム40よりは大きく設定されている。そして、ゴム弾性板62の弾性変形に基づいて、主液室48における微小な圧力変動が吸収されて軽減乃至は解消されるようになっている。
【0039】
さらに、主液室48には、可動オリフィス部材70と、固定オリフィス部材としての固定オリフィス金具72が収容配置されている。これら可動オリフィス部材70と固定オリフィス金具72は、第一の取付金具12と仕切部材46の対向面間においてそれぞれ略軸直角方向に広がる状態で、マウント中心軸18上で互いに離隔して配設されており、それによって、主液室48がマウント中心軸18上で3つの領域に仕切られている。即ち、第一の取付金具12と可動オリフィス部材70の間には、壁部の一部が本体ゴム弾性体16で構成された第一の分割室74が形成されており、可動オリフィス部材70と固定オリフィス金具72の間には、第二の分割室76が形成されており、固定オリフィス金具72と仕切部材46の間には、第三の分割室78が形成されている。
【0040】
可動オリフィス部材70は、逆円錐台形状の可動オリフィス金具80を備えている。この可動オリフィス金具80は、金属や合成樹脂等の硬質材で形成されており、大径側端面の中央部分には、上方に向かって円形断面をもって突出する中央突部82が一体形成されており、この中央突部82の突出先端面が、第一の取付金具12の固着突部20の小径側端面に対してマウント中心軸18上で離隔して対向位置せしめられている。そして、中央突部82の突出先端面が、固着突部20の小径側端面に対して、緩衝ゴム28を介して当接されるようになっている。
【0041】
また、可動オリフィス金具80の外周面には、支持ゴム弾性体84が加硫接着されている。この支持ゴム弾性体84は、可動オリフィス金具80の外周面から軸直角方向外方に向かってテーパ角度をもって広がっており、全体としてマウント中心軸18と同軸上で斜め下方に向かってスカート状に広がる円環形状を呈している。また、支持ゴム弾性体84の外周面には、円筒形状の連結金具86が加硫接着されており、この連結金具86が第二の取付金具14の大径筒部36に圧入されて嵌着固定されることにより、支持ゴム弾性体84の外周面が第二の取付金具14に対して固着されている。
【0042】
なお、可動オリフィス部材70を構成する可動オリフィス金具80と支持ゴム弾性体84は、振動入力時に本体ゴム弾性体16への干渉が可及的に回避され得るように、本体ゴム弾性体16に対して適当な隙間をもって配設されている。また、可動オリフィス金具80の小径側端面には、下方に向かって突出する緩衝ゴム88が、支持ゴム弾性体84と一体形成されて、突設されている。
【0043】
このようにして組み付けられた可動オリフィス部材70においては、支持ゴム弾性体84が、可動オリフィス金具80から軸方向下方に向かってテーパ状に傾斜して外周側に広がる形態とされていることにより、可動オリフィス金具80が軸方向に変位せしめられた際に、支持ゴム弾性体84が、剪断成分をもって弾性変形せしめられることとなる。また、支持ゴム弾性体84は、そのテーパ角度を適宜に変更設定することにより、可動オリフィス金具80の軸方向の変位に際して惹起される剪断成分と圧縮成分を適宜に調節して、ばね特性をチューニングすることが出来るようになっている。特に、支持ゴム弾性体84は、ゴム弾性板62よりも大きな壁ばね剛性を発揮し得るように充分な肉厚寸法をもって形成されており、振動入力時に可動オリフィス金具80が変位せしめられることにより、本体ゴム弾性体16と協働して、主液室48に有効な圧力変動を生ぜしめ得るようにされている。
【0044】
また、可動オリフィス金具80には、下面中央に開口して中心軸上を上方に向かって延び、中央突部82内で屈曲して中央突部82の外周面に開口する第二のオリフィス通路94が形成されている。そして、この第二のオリフィス通路94によって、第一の分割室74と第二の分割室76が相互に連通せしめられている。なお、第二のオリフィス通路94の上端部は、中央突部82の外周面に開口せしめられていることから、中央突部82が第一の取付金具12に近接乃至は当接せしめられた状態下でも、第二のオリフィス通路94の第一の分割室74への連通状態が充分な開口面積をもって維持されるようになっている。
【0045】
また一方、固定オリフィス金具72は、所定厚さの円板形状を有しており、アルミニウム合金等の剛性材で形成されている。そして、かかる固定オリフィス金具72は、第二の取付金具14の大径筒部36に嵌め込まれて、外周縁部を段差部32に重ね合わされて固定的に支持されることにより、マウント中心軸18に対して直交する方向に広がる状態で、マウント中心軸18上において可動オリフィス金具80と仕切部材46の対向面間の中間部分に配設せしめられている。即ち、第二の取付金具14の段差部32には、固定オリフィス金具72の外周縁部と、支持ゴム弾性体84に加硫接着された連結金具86と、本体ゴム弾性体16に加硫接着された連結金具26が、軸方向に重ね合わされており、これら固定オリフィス金具72の外周縁部と連結金具86,連結金具26の各外周面が、シールゴム層42を介して、第二の取付金具14の大径筒部36に対して流体密に嵌着固定されているのである。
【0046】
また、固定オリフィス金具72には、中央部分と、径方向中間部分の複数箇所において、複数の貫通孔96が形成されており、これらの貫通孔96によって第三のオリフィス通路96が形成されている。そして、かかる第三のオリフィス通路96によって、固定オリフィス金具72を挟んだ両側に画成された第二の分割室76と第三の分割室78が、相互に連通せしめられている。なお、可動オリフィス金具80は、支持ゴム弾性体84の弾性変形に基づいて軸方向下方に変位せしめられた際に、固定オリフィス金具72に対して、緩衝ゴム88を介して当接されるようになっている。
【0047】
更にまた、可動オリフィス金具80が固定オリフィス金具72に当接せしめられた状態下でも、可動オリフィス金具80の第二のオリフィス通路94は、固定オリフィス金具72の貫通孔96を通じて第三の分割室78に開口せしめられるようになっており、第二のオリフィス通路94の閉塞が回避されるようになっている。
【0048】
要するに、本実施形態のエンジンマウント10にあっては、本体ゴム弾性体16とダイヤフラム40の対向面間に画成された流体封入領域44において、それを仕切るようにして仕切部材46と可動オリフィス部材70と固定オリフィス金具72が配設されて組み付けられているのであり、以て、かかる流体封入領域44が合計4つの領域に区画されて、マウント中心軸18上で上から順に、第一の分割室74,第二の分割室76,第三の分割室78および副液室50が形成されているのである。また、これら4つの領域を仕切る可動オリフィス部材70,固定オリフィス金具72および仕切部材46には、マウント中心軸18上で相互に隣接する領域を互いに連通せしめて相互間での流体流動を許容するオリフィス通路が形成されているのであり、以て、副液室50と第三の分割室78が第一のオリフィス通路54で連通せしめられていると共に、第一の分割室74と第二の分割室76が第二のオリフィス通路94で連通せしめられており、第二の分割室と第三の分割室78が第三のオリフィス通路96で連通せしめられている。
【0049】
ここにおいて、第一〜三の各オリフィス通路54,94,96は、その通路断面積や通路長さを適当に調節することによって、互いに異なる周波数域の振動入力時に内部を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮されるようにチューニングされている。具体的には、第一のオリフィス通路54は、アイドリング振動等の中周波振動に対して流体共振作用に基づく低動ばね効果が発揮されるようにチューニングされており、第二のオリフィス通路94は、エンジンシェイク等の低周波振動に対して流体共振作用に基づく有効な減衰効果が発揮されるようにチューニングされており、更に第三のオリフィス通路96は、走行こもり音等の高周波振動に対して流体共振作用に基づく低動ばね効果が発揮されるようにチューニングされている。
【0050】
上述の如き構造とされたエンジンマウント10は、前述のように第一の取付金具12が自動車のパワーユニットに取り付けられる一方、図1に示されているように、第二の取付金具14に対してブラケット98が固着せしめられ、かかるブラケット98を介して、第二の取付金具14が自動車のボデー(図示せず)に取り付けられることにより、パワーユニットとボデーの間に介装されて、パワーユニットをボデーに対して防振支持せしめるようにされる。なお、かかるブラケット98は、大径円筒形状の筒状嵌着部100に対して、その外周面に複数の脚部102が溶着されると共に、筒状嵌着部100の上方には、径方向一方向に跨いで延びるアーチ状のストッパ部104が固着されている。
【0051】
そして、脚部102によって自動車のボデーに固定された自動車への装着状態下では、パワーユニットに取り付けられた第一の取付金具12とボデーに取り付けられた第二の取付金具14の間に、マウント中心軸18上でそれら両取付金具12,14を相互に接近せしめる方向にパワーユニットの分担支持荷重が及ぼされて、本体ゴム弾性体16の弾性変形に基づいて、図示された状態よりも第一の取付金具12が第二の取付金具14に対して接近方向に変位して位置せしめられることとなる。即ち、かかる装着状態下では、第一の取付金具12のストッパゴム30が、ストッパ部104に対して所定距離を隔てて対向位置せしめられており、第一の取付金具12が第二の取付金具14から離隔する方向(リバウンド方向)に大きく相対変位せしめられた際、第一の取付金具12がストッパゴム30を介してストッパ部104に当接せしめられることにより、第一の取付金具12と第二の取付金具14のリバウンド方向への相対変位量が緩衝的に制限されて、リバウンド方向のストッパ機能が発揮されるようになっている。
【0052】
また、かくの如き装着状態下、第一の取付金具12と第二の取付金具14の間に略マウント中心軸18方向の振動が入力されると、本体ゴム弾性体16や支持ゴム弾性体84の弾性変形に伴って流体封入領域44内で各オリフィス通路54,94,96を通じての流体流動が生ぜしめられることとなり、これらのオリフィス通路54,94,96を流動せしめられる流体の共振作用に基づいて、入力振動に対して有効な防振効果が発揮され得るのである。
【0053】
具体的には、例えば、車両の走行状態下でエンジンシェイク等の低周波振動が入力されると、第一及び第三のオリフィス通路54,96は、何れも、その通路断面積:Aと通路長さ:Lの比の値(A/L)が充分に大きく、低周波数域での非圧縮性流体の通路抵抗が充分に小さくされていることから、第二及び第三の分割室76,78と副液室50が実質的に単一の室として機能し、ダイヤフラム40の変形に基づいて容積変化が容易に許容される一つの平衡室として機能することとなる。その結果、低周波振動が入力されると、第一の取付金具12の変位と本体ゴム弾性体16の弾性変形に基づいて、第一の分割室74に対して圧力変動が有効に惹起されて、該第一の分割室74と一つの平衡室として機能する第二及び第三の分割室76,78および副液室50との間に相対的な圧力変動が生ぜしめられることにより、かかる相対的な圧力変動に基づいて第二のオリフィス通路94を通じての流体流動が有利に生ぜしめられることとなる。それ故、低周波数域にチューニングされた第二のオリフィス通路94を流動せしめられる流体の共振作用に基づいて、低周波振動に対して有効な防振効果が発揮され得るのである。
【0054】
なお、第二のオリフィス通路94を流動せしめられる流体量を有利に確保して、流体の共振作用に基づいて発揮される低周波振動に対する防振効果を一層有利に得るためには、第一の分割室74の壁部の各一部を構成する本体ゴム弾性体16と支持ゴム弾性体84において、本体ゴム弾性体16の壁ばね剛性よりも支持ゴム弾性体84の壁ばね剛性を大きく設定して、支持ゴム弾性体84の弾性変形に基づく第一の分割室74の圧力吸収を抑えることが有効である。壁ばね剛性とは、壁部の弾性変形に基づいて第一の分割室74において単位量の容積変形を生ぜしめるために必要とされる第一の分割室74の圧力変化量に等しいものとして観念される。
【0055】
また、車両の走行状態下で走行こもり音等の高周波数域の振動が入力されると、低周波数域にチューニングされた第二のオリフィス通路94と、中周波数域にチューニングされた第一のオリフィス通路54は、何れも、その通路抵抗が著しく大きくなって実質的に閉塞状態となる。かかる状態下で第一の取付金具12と第二の取付金具14の間に振動が及ぼされると、第一の取付金具12に作用せしめられる加振力が第一の分割室74の圧力変動を介して可動オリフィス部材70に及ぼされることとなり、可動オリフィス部材70が支持ゴム弾性体84の弾性変形に基づいて加振変位せしめられるのであり、その結果、第二の分割室76に対して有効な圧力変動が惹起されることとなる。また一方、第三の分割室78は、その壁部の一部を構成するゴム弾性板62の弾性変形に基づいて、走行こもり音等の高周波数域の微小振幅の入力に伴って惹起されるの圧力変動を吸収し得る平衡室として機能し得るようになっている。
【0056】
従って、走行こもり音等の高周波数域の振動が入力されると、本体ゴム弾性体16と支持ゴム弾性体84の弾性変形に基づいて第一の取付金具12と可動オリフィス金具80が略同位相で、第二の取付金具14に対して相対変位せしめられることにより、第二の分割室76に対して有効な圧力変動が及ぼされて、第二の分割室76と第三の分割室78の間で相対的な圧力変動が惹起されることとなり、かかる圧力変動に基づいて両分割室76,78の間で第三のオリフィス通路96を通じての流体流動が有利に生ぜしめられることとなる。それ故、高周波数域にチューニングされた第三のオリフィス通路96を流動せしめられる流体の共振作用に基づいて、高周波振動に対して有効な防振効果が発揮され得るのである。
【0057】
また一方、車両の停車状態下で、アイドリング振動等に相当する中周波数域の振動が入力された場合には、低周波数域にチューニングされた第二のオリフィス通路94は、その通路抵抗が著しく大きくなって実質的に閉塞状態となるが、第三のオリフィス通路96は、その通路断面積:Aと通路長さ:Lの比の値(A/L)が充分に大きく、かかる中周波数域での非圧縮性流体の通路抵抗が充分に小さくされていることから、第二及び第三の分割室76,78が実質的に単一とされる。それ故、上述の高周波数域の振動入力時に同様に、第一の取付金具12と第二の取付金具14の間に振動が及ぼされると、第一の取付金具12に作用せしめられる加振力が第一の分割室74の圧力変動を介して可動オリフィス部材70に及ぼされることとなり、可動オリフィス部材70が支持ゴム弾性体84の弾性変形に基づいて加振変位せしめられるのであり、その結果、実質的に単一とされた第二及び第三の分割室76,78に対して有効な圧力変動が惹起されることとなる。また一方、副液室50は、その壁部の一部を構成するダイヤフラム40の弾性変形に基づいて圧力変動を吸収し得る平衡室として機能し得ることとなる。
【0058】
従って、アイドリング振動等の中周波数域の振動が入力されると、本体ゴム弾性体16と支持ゴム弾性体84の弾性変形に基づいて第一の取付金具12と可動オリフィス金具80が略同位相で、第二の取付金具14に対して相対変位せしめられることにより、実質的に単一の室として機能する第二及び第三の分割室76,78に対して有効な圧力変動が及ぼされて、第二及び第三の分割室76,78と副液室50の間で相対的な圧力変動が惹起されることとなり、かかる圧力変動に基づいて第二及び第三の分割室76,78と副液室50との間で第一のオリフィス通路54を通じての流体流動が有利に生ぜしめられることとなる。それ故、中周波数域にチューニングされた第一のオリフィス通路54を流動せしめられる流体の共振作用に基づいて、アイドリング振動等の中周波振動に対して有効な防振効果が発揮され得るのである。
【0059】
特に、中周波数域の振動入力時には、実質的に単一の室として機能せしめられて振動入力に伴う圧力変動が惹起される第二及び第三の分割室76,78において、ピストン的な作用を行う壁部の壁ばね剛性が、非圧縮性の流体が充填されて実質的に容積不変の密閉状態とされた第一の分割室74を介して直列的に重ね合わされた本体ゴム弾性体16と支持ゴム弾性体84によって充分に大きなばね剛性とされるのであり、それ故、第二及び第三の分割室76,78における圧力変動が効率的に生ぜしめられて、第一のオリフィス通路54を流動せしめられる流体量が充分に確保されることにより、上述の如き流体の共振作用に基づいて防振効果がより一層効果的に発揮され得るのである。
【0060】
従って、このようなエンジンマウント10においては、入力される複数の周波数域の振動に対して、互いに異なるチューニングが施された第一,第二及び第三のオリフィス通路54,94,96を選択的に作用せしめることにより、流体の共振作用に基づいて発揮される有効な防振効果を得ることができるのであり、特に、そこにおいて、第一,第二及び第三のオリフィス通路54,94,96を切り換えるためのバルブ手段やアクチュエータ等を組み込む必要がないことから、部品点数が少なく製造が容易なマウント構造をもって、かくの如き優れた防振性能を発揮し得るエンジンマウントが有利に実現され得ることとなるのである。
【0061】
以上、本発明の実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでなく、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0062】
例えば、本体ゴム弾性体16と支持ゴム弾性体84のばね特性を相対的に適当に調節することによって、特定の車両状態下で、図3に示されているように、第一の取付金具12と可動オリフィス金具80が相互に当接せしめられた状態に維持されるようにすることも可能である。具体的には、例えば、自動車の停車状態下でのアイドリング時にエンジンマウント10に及ぼされるトルク反力を利用して、第一の取付金具12と可動オリフィス金具80が相互に当接せしめられた状態に維持されるように設定せしめて、かかる状態下で、第一の取付金具12と第二の取付金具14の間にアイドリング振動が及ぼされるようにすることも可能である。即ち、このように第一の取付金具12と可動オリフィス金具80が相互に当接せしめられた状態下では、第一の取付金具12に及ぼされる加振力が直接的に可動オリフィス金具80に及ぼされることにより、第一の分割室74の液圧を介することなく直接に第二及び第三の分割室76,78に対して圧力変動を効率的に及ぼすことが可能となる。
【0063】
従って、中周波数域の振動であるアイドリング振動に対して、単一の室として機能する第二及び第三の分割室76,78と副液室50の間での相対的な圧力変動に伴う第一のオリフィス通路54を通じての流体流動量がより一層効率的に確保され得て、かかる流体の共振作用に基づく、上述の如きアイドリング振動に対する防振効果を一層効果的に得ることが可能となるのである。
【0064】
また、上述の如き構造とされたエンジンマウント10において、ゴム弾性板62の背後に形成された空気室68に接続された連通路66を空気通路として構成して、車両の走行状態等に基づいて、かかる連通路66を通じて空気室68を大気中と所定の負圧源とに択一的に切り換える空気圧切換手段を採用することも可能である。このような空気圧切換手段を採用すれば、例えば、自動車の走行状態下では空気室68を大気中に接続せしめて、走行状態下で及ぼされるエンジンシェイク等の低周波振動や走行こもり音等の高周波振動に対して、それぞれ前述の如き第二のオリフィス通路94や第三のオリフィス通路96を流動せしめられる流体の共振作用に基づいて防振効果を得るようにする一方、自動車の停車(アイドリング)状態下では空気室68を負圧源に接続せしめて、ゴム弾性板62の凹所60の底面に吸引吸着させて拘束することにより、ゴム弾性板62の弾性変形に伴う圧力吸収を抑えて、第一のオリフィス通路54を通じての流体流動量を一層増大せしめて、第一のオリフィス通路54を流動せしめられる流体の共振作用に基づいて発揮されるアイドリング振動に対する防振効果のより一層の向上を図ることも可能となる。
【0065】
或いはまた、エンジンマウント10に及ぼされる衝撃的な荷重に対する本体ゴム弾性体16や支持ゴム弾性体84のばね特性を適当に調節することにより、マウント中心軸18方向での大きな荷重が入力された場合に、先ず、第一の取付金具12が可動オリフィス金具80に対して当接し(図3参照)、その後、入力荷重が更に大きくなった場合に、図4に示されているように、第一の取付金具12に当接せしめられて一体的に変位せしめられる可動オリフィス金具80が、緩衝ゴム88を介して固定オリフィス金具72に当接せしめられることによって、第一の取付金具12と第二の取付金具14のバウンド方向における相対的な変位量を緩衝的に制限するバウンドストッパ機構を実現することも可能である。
【0066】
このようなバウンドストッパ機構においては、第一の取付金具12と第二の取付金具14の間に及ぼされる入力荷重が大きくなるに従って、荷重の比較的小さい初期段階では、主に本体ゴム弾性体16のばね特性だけが支配的に発揮されて、比較的に柔らかいばね特性が発揮されるのに対して、中荷重の段階(図3参照)では、本体ゴム弾性体16と支持ゴム弾性体84が並列的にばね成分として作用して全体として硬いばね特性が発揮されるようになり、更に、極めて大きな荷重が入力された段階で、緩衝ゴム28,88の弾性による緩衝作用のもとで、第一の取付金具12と第二の取付金具14が可動オリフィス部材70を介して当接せしめられることにより、第一の取付金具12と第二の取付金具14の相対変位量が確実に制限され得るのである。要するに、第一の取付金具12と第二の取付金具14の間に大きな荷重が入力された場合には、本体ゴム弾性体16の低ばね特性から、支持ゴム弾性体84を付加した高ばね特性に変化し、その後、緩衝ゴム28,88の圧縮ばねによる緩衝作用を伴う可動オリフィス金具80を介しての第一の取付金具12と第二の取付金具14の当接作用に基づく確実な変位規制に至ることとなるのであり、全体として、非線形的なばね特性が充分なストロークをもって有効に発揮され得て、第一の取付金具12と第二の取付金具14の接近方向(バウンド方向)での相対変位量が、大きな衝撃や打音を伴うことなく効果的に制限され得ることとなるのである。
【0067】
また、特に支持ゴム弾性体84は、剪断成分をもって変形せしめられることから、大きなストローク領域で、本体ゴム弾性体16に対する補助的なばね作用を安定して発揮し得るのであり、エンジンマウント10における防振性能を充分に確保しつつ、最終的に可動オリフィス金具80を介して第一の取付金具12と第二の取付金具14が相対的に当接せしめられることによりストッパ機能が発揮される場合の衝撃や打音を効果的に低減することが出来るのである。
【0068】
しかも、支持ゴム弾性体84は、マウント中心軸18に対する傾斜角度(スカード状に広がるテーパ角度)を調節することによって、部材容積(肉厚寸法)を大きくして充分な耐久性を確保しつつ、柔らかいばね特性を設定することが出来ると共に、発揮されるばね特性を大きな自由度で適当にチューニングすることが出来るのである。
【0069】
さらに、図4に示された構造例では、第二の取付金具14に対する可動オリフィス金具80の当接部位が、固定オリフィス金具72によって構成されていることから、かかる固定オリフィス金具72の第二の取付金具14に対する組付け位置を調節することで、第一の取付金具12と第二の取付金具14の相対的なストローク量を容易に設定,変更することが出来る。また、可動オリフィス金具80の当接部位を形成するために、第二の取付金具14において特別な固定オリフィス金具72を設けたことにより、仕切部材46への大荷重の入力を回避せしめて、オリフィス通路54が形成されたりする仕切部材46の損傷防止が実現され得ると共に、仕切部材46におけるゴム弾性板62の配設領域を有利に確保することが出来るのであり、それらの点に関しても、大きな設計自由度が実現され得ることとなる。
【0070】
そして、かくの如き構造においては、バウンド方向のストッパ機構が、主液室48をスペースとして巧く利用して配設され得ることから、マウントサイズの著しい大型化を伴うことなく、コンパクトなサイズでストッパ機能の実現が可能となるのである。
【0071】
なお、上述の図3及び図4においては、何れも、理解を容易とするために、前記実施形態と同様な構造とされた各部材および各部位に対して、それぞれ、図中に、前記実施形態と同一の符号を付しておく。
【0072】
さらに、本発明にあっては、前記実施形態に示されたエンジンマウント10において、連通路66を遮断して空気室68を密閉空間とすることによって、マウント防振特性を調節したり、或いは、上記段落番号(0064)に記載の如く、連通路66に切換弁を設けて、該切換弁を開閉操作することでマウント防振特性を調節するようにしても良い。或いはまた、特開平10−184769号公報等に記載されているように、連通路66を通じて外部から積極的に空気圧変動を及ぼして主液室48に能動的な圧力変動を及ぼすことにより、必要に応じて能動的な防振効果を発揮させるようにすることも可能である。
【0073】
また、本発明において採用される第一,第二及び第三のオリフィス通路の具体的構造や形態、通路長さや通路断面積等は、要求される防振特性に応じて適宜に設計変更されるものであって、前記実施形態の具体的な記載によって限定されるものでない。
【0074】
加えて、本発明は、例示の如き自動車用エンジンマウントの他、自動車用のボデーマウントや自動車以外の各種装置における防振装置に対して、何れも適用可能である。
【0075】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式防振装置においては、オリフィス通路を切り換えるバルブやアクチュエータ等を特別に防振装置内部に組み込むことなく、互いに異なる周波数域にチューニングされた三つのオリフィス通路を、それぞれ、入力振動に応じて有効に機能せしめて、各オリフィス通路がチューニングされた周波数域の振動に対して、何れも、オリフィス通路を流動せしめられる流体の共振作用等の流動作用に基づく防振効果を有効に得ることが出来るのである。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのエンジンマウントを示す縦断面図であって、図2におけるI−I断面に相当する図である。
【図2】図1に示されたエンジンマウントの平面図である。
【図3】本発明の別の具体例としてのエンジンマウントを示す、図1に対応する縦断面図である。
【図4】本発明の更に別の具体例としてのエンジンマウントを示す、図1に対応する縦断面図である。
【符号の説明】
10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
40 ダイヤフラム
46 仕切部材
48 主液室
50 副液室
54 第一のオリフィス通路
62 ゴム弾性板
70 可動オリフィス部材
72 固定オリフィス金具
74 第一の分割室
76 第二の分割室
78 第三の分割室
80 可動オリフィス金具
84 支持ゴム弾性体
94 第二のオリフィス通路
96 第三のオリフィス通路
[0001]
【Technical field】
The present invention relates to a fluid-filled type vibration damping device that obtains a vibration damping effect based on the flow action of an incompressible fluid enclosed therein, and more particularly to a vibration damping effective against vibrations in a plurality of frequency ranges. The present invention relates to a fluid-filled anti-vibration device which can obtain an effect and can be advantageously used as, for example, an engine mount for an automobile.
[0002]
[Background Art]
2. Description of the Related Art Conventionally, as a kind of a vibration isolating coupling or a vibration isolating support interposed between members constituting a vibration transmission system, a vibration isolation is performed based on a flow action such as a resonance action of an incompressible fluid enclosed therein. 2. Description of the Related Art A fluid-filled type vibration damping device having an advantageous effect is known, and its application to, for example, an engine mount or a body mount for an automobile is being studied. As described in Patent Literature 1 and Patent Literature 2, for example, such a vibration isolator is configured such that a first mounting member is spaced apart from one opening side of a cylindrical second mounting member, and the first and second mounting members are separated from each other. By connecting one mounting member and the second mounting member with the main rubber elastic body, one opening of the second mounting member is covered with the main rubber elastic body, and the other of the second mounting member is covered. A partition in which the opening is covered with a flexible film to form an incompressible fluid sealing region between the main rubber elastic body and the opposing surfaces of the flexible film, and further supported by the second mounting member. The sealing region is divided into two parts by a member to form a main liquid chamber in which a part of the wall is made of a rubber elastic body and a sub liquid chamber in which a part of the wall is made of a flexible film. The main liquid chamber and the sub liquid chamber are connected to each other by an orifice passage.
[0003]
By the way, in an anti-vibration device, vibration in which an anti-vibration effect is required often occurs in a plurality of types. In addition to high-frequency vibrations such as sound, it is required that all of them exhibit effective vibration-proof performance against vibrations in the middle frequency range such as idling vibrations input when the vehicle is stopped.
[0004]
However, the vibration isolation effect exerted based on the resonance action of the fluid caused to flow through the orifice passage is limited to a specific narrow frequency range in which the orifice passage is tuned. It was extremely difficult to obtain an effective vibration damping effect for each vibration. This is because if a plurality of orifice passages which are covered and tuned to different frequency ranges are formed in parallel between the main liquid chamber and the equilibrium chamber, they function substantially only as a single orifice passage.
[0005]
Therefore, in order to obtain the required vibration isolation performance as described above, for example, as shown in Patent Literature 1 and Patent Literature 2, a plurality of orifice passages tuned to different frequency ranges are provided in the main liquid chamber. And an orifice switching type in which a plurality of orifice passages are alternately provided by providing valve means for appropriately opening and closing the orifice passages and switching the orifice passages. Fluid-filled vibration isolators have been proposed.
[0006]
However, in such an orifice switching type vibration damping device having such a conventional structure, not only valve means for switching the orifice passage but also driving means such as an electric motor or a pneumatic actuator for switching the valve means are used. Since it is necessary to incorporate it into the vibration isolator, an increase in the number of components and an increase in the complexity of the structure are unavoidable.
[0007]
[Patent Document 1]
JP 2000-257665 A
[Patent Document 2]
JP 2000-266107 A
[0008]
[Solution]
Here, the present invention has been made in view of the above-mentioned circumstances, and the problem to be solved is that any one of a plurality of vibrations in a wide or wide frequency range is sealed. It is an object of the present invention to propose a fluid-filled vibration damping device having a simple structure and a novel structure that can effectively exhibit a vibration damping effect based on a flow action of a compressible fluid and is easy to manufacture.
[0009]
[Solution]
Hereinafter, embodiments of the present invention made to solve such problems will be described. The components employed in each of the embodiments described below can be employed in any combination as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or based on the invention ideas that can be understood by those skilled in the art from the descriptions. It should be understood that it is recognized on the basis of.
[0010]
(Aspect 1 of the present invention)
In the first aspect of the present invention, the first mounting member is spaced apart from one of the openings of the cylindrical second mounting member, and the first mounting member and the second mounting member are separated from each other by a rubber elastic body. By connecting with one another, one opening of the second mounting member is covered with the main rubber elastic body, and the other opening of the second mounting member is covered with a flexible film. An incompressible fluid enclosing area is formed between the opposing surfaces of the main rubber elastic body and the flexible membrane, and the incompressible fluid is prevented from being applied to the input vibration between the first mounting member and the second mounting member. In a fluid filled type vibration damping device in which a vibration damping effect based on a fluid flow action is provided, a partition member for partitioning the sealed area in a mount axial direction is provided, and the partition member is supported by the second mounting member. The main liquid chamber in which a part of the wall is formed of the main body rubber elastic body, A sub-liquid chamber partially formed of the flexible film is formed, and a movable orifice member is accommodated and arranged in the main liquid chamber, and the movable orifice member is attached to the second mounting member by an annular support rubber elastic body. The main liquid chamber is elastically supported by a member to partition the main liquid chamber in the axial direction of the mount, thereby defining a first divided chamber between the movable orifice member and the opposing surface of the first mounting member. A fixed orifice member is accommodated in the main orifice member, and the main liquid chamber is partitioned in the mount axial direction between the movable orifice member and the opposing surface of the partition member. A second divided chamber is defined, a third divided chamber is defined between the fixed orifice member and the opposing surface of the partition member, and a part of the wall of the third divided chamber is elastically deformable. The movable rubber plate A first orifice passage is formed in the material to interconnect the sub-liquid chamber and the third divided chamber, and the movable orifice member connects the first divided chamber and the second divided chamber to each other. A second orifice passage, and a third orifice passage in the fixed orifice member for interconnecting the second and third divided chambers, and the first orifice passage. Is characterized in that a fluid-filled vibration damping device is tuned to a higher frequency range than the second orifice passage and the third orifice passage is tuned to a higher frequency range than the first orifice passage.
[0011]
In such a fluid-filled type vibration damping device having a structure according to the present embodiment, unlike the vibration damping device having a parallel orifice passage having a parallel structure of the conventional structure as shown in Patent Documents 1 and 2, , A second, a third orifice passage and a first, second and third orifice passages formed in series with each other between a total of four divided chambers consisting of a second and a third divided chamber and a balancing chamber. Thereby, without specially providing a valve for switching the orifice passage, each of the three orifice passages tuned to a different frequency range effectively functioned according to the input vibration, and each orifice passage was tuned. For any vibration in the frequency range, it is possible to effectively obtain a vibration damping effect based on a flow action such as a resonance action of a fluid that is caused to flow through the orifice passage. That.
[0012]
That is, at the time of vibration input in the low frequency range, the passage resistances of the first and third orifice passages are sufficiently reduced, and the second and third divided chambers and the sub liquid chamber are substantially a single equilibrium chamber. Functioning, the change in volume of the equilibrium chamber is easily allowed based on the deformation of the flexible membrane, so that a pressure change is induced in the first divided chamber with the elastic deformation of the main rubber elastic body, Fluid flow through the second orifice passage is advantageously created based on relative pressure fluctuations between the first and the equilibrium chambers (the second and third subchambers and the sub-liquid chamber). Become. Therefore, an effective vibration damping effect against low-frequency vibrations can be exhibited based on the resonance action of the fluid that is caused to flow through the second orifice passage tuned to the low-frequency range.
[0013]
In addition, at the time of vibration input in the middle frequency range, the passage resistance of the second orifice passage becomes extremely large and becomes substantially closed, but the passage resistance of the third orifice passage is maintained sufficiently small, and the second orifice passage is kept sufficiently small. And the third compartment is substantially unitary. When vibrations in the middle frequency range are input in such a state, the vibration is substantially sealed, and the movable member can move with the first mounting member through pressure fluctuation of the first divided chamber filled with the incompressible fluid. Based on the direct contact of the orifice member, the first mounting member and the movable orifice member are relatively displaced relative to the second mounting member substantially integrally, and the main rubber elastic body and the supporting rubber elastic body are elastic. By being deformed, effective pressure fluctuations are caused to the second and third divided chambers which function substantially as a single chamber. Therefore, the relative pressure between the second and third divided chambers as such a single chamber and the auxiliary liquid chamber as an equilibrium chamber whose volume change is allowed based on the deformation of the flexible membrane. Fluctuations are induced, such that a fluid flow through the first orifice passage is advantageously created based on such pressure fluctuations. As a result, an effective vibration damping effect against the medium frequency vibration can be exhibited based on the resonance action of the fluid that is caused to flow through the first orifice passage tuned to the medium frequency range.
[0014]
Furthermore, at the time of vibration input in a high frequency range, not only the second orifice passage but also the passage resistance of the first orifice passage becomes extremely large and becomes substantially closed. As in the case of vibration input in the middle frequency range, the first mounting member and the movable orifice member are substantially integrally displaced relative to the second mounting member, and the main rubber elastic body and the supporting rubber elastic body are elastic. The deformation causes an effective pressure fluctuation in the second divided chamber. Further, in the third divided chamber, a volume change based on the elastic deformation of the movable rubber plate constituting a part of the wall portion is allowed or a hydraulic pressure is absorbed, and therefore, particularly in a high frequency region where the vibration amplitude is small. Then, such a third divided chamber can effectively function as an equilibrium chamber. Therefore, a relative pressure fluctuation is caused between the second divided chamber and the third divided chamber, and based on the relative pressure fluctuation between the second divided chamber and the third divided chamber. Fluid flow through the third orifice passage between the two divided chambers is advantageously generated, and based on the resonance action of the fluid caused to flow through the third orifice passage tuned to a high frequency range, An effective anti-vibration effect can be exhibited against high-frequency vibration.
[0015]
In particular, in the fluid-filled type vibration damping device having the structure according to the present embodiment, the wall spring rigidity in the second and third divided chambers functioning as a substantially single chamber at the time of vibration input in the middle frequency range has a main body. The rubber elastic body and the supporting rubber elastic body cooperate to exhibit a sufficiently large rigidity, and as a result, the second and third divided chambers as a single chamber and the equilibrium chamber The relative pressure fluctuation between the auxiliary liquid chamber and the auxiliary liquid chamber is caused more efficiently, and the amount of fluid flowing through the first orifice passage is advantageously ensured, so that the first orifice passage is caused to flow. The above-described vibration damping effect based on the resonance action of the fluid can be more effectively exerted.
[0016]
(Aspect 2 of the present invention)
In a second aspect of the present invention, in the fluid-filled type vibration damping device according to the first aspect, when the first mounting member and the second mounting member are relatively displaced in the approaching direction, the main rubber elastic body is provided. The first mounting member and the fixed orifice member are brought into contact with each other via the movable orifice member based on the elastic deformation of the supporting rubber elastic body and the first mounting member and the second mounting member. It is characterized in that the relative displacement amount in the approaching direction of the two mounting members can be limited.
[0017]
In the fluid-filled type vibration damping device having the structure according to this aspect, the relative displacement amount of the first mounting member and the second mounting member in the bound direction when an excessive load is applied is limited. The stopper mechanism can be configured by skillfully utilizing the internal space of the main liquid chamber, and the fluid-filled type vibration damping device having the stopper mechanism in the bound direction can be realized as a whole in a compact manner. Moreover, in this aspect, the support rubber elastic body that elastically supports the movable orifice member on the second mounting member can be used to advantageously obtain the non-linear spring characteristic when an excessive load is input. With the elastic body, the degree of freedom in tuning the spring characteristics of the vibration isolator can be greatly improved.
[0018]
(Embodiment 3 of the present invention)
According to a third aspect of the present invention, in the fluid filled type vibration damping device according to the first or second aspect, the first mounting member is attached to one of a power unit and a body of the vehicle, and the second mounting member is attached to the other of the power unit and the body. An engine mount is constructed by attaching the mounting member of the above, and the second orifice passage is tuned to a low frequency range corresponding to an engine shake, and the first orifice passage is tuned to a middle frequency range corresponding to an idling vibration. In addition, the third orifice passage is tuned to a high frequency range corresponding to a traveling muffled sound.
[0019]
In this embodiment, in an automobile, a vibration damping effect against low-frequency vibration such as engine shake and a high-frequency vibration such as a muffled sound, which is particularly problematic when the vehicle is running, and a medium frequency vibration such as idling vibration which is particularly problematic when the vehicle is stopped. Any of the anti-vibration effects against vibration can be effectively exerted on the basis of the resonance action of the fluid caused to flow through any of the first to third orifice passages.
[0020]
(Embodiment 4 of the present invention)
According to a fourth aspect of the present invention, in the fluid filled type vibration damping device according to the third aspect, an engine torque reaction force exerted between the first mounting member and the second mounting member when the vehicle is idling. The first mounting member is held in contact with the movable orifice member based on the elastic deformation of the main rubber elastic body accompanying the first mounting member and the movable orifice member under the contact state. Is capable of being integrally displaced relative to the second mounting member.
[0021]
In this aspect, the first mounting member and the movable orifice member are vibrated and displaced integrally under the idling state of the automobile, so that the vibration efficiency of the movable orifice member is improved, and the single orifice member is improved. The relative pressure fluctuation between the second and third divided chambers functioning as chambers and the auxiliary liquid chamber as the equilibrium chamber is caused more efficiently, and the fluid flow rate through the first orifice passage is reduced. Advantageously, the vibration damping effect against idling vibration based on the resonance action of the fluid caused to flow through the second orifice passage can be exhibited more advantageously.
[0022]
Note that the second orifice passage formed in the movable orifice member is prevented by the first orifice passage as described above even if the movable orifice member is closed in a state in which the movable orifice member is in contact with the first orifice member. Although the vibration effect can be sufficiently exerted, preferably, even in a state where the movable orifice member is in contact with the first orifice member, the second orifice passage connects the first divided chamber and the second divided chamber. In order to be able to maintain the communication state, it is particularly preferable that the opening to the first divided chamber is formed so as not to be in contact with the first mounting member.
[0023]
(Embodiment 5 of the present invention)
A fifth aspect of the present invention is the fluid-filled type vibration damping device according to any one of the first to fourth aspects, wherein the main rubber elastic body and the supporting rubber elastic body are each formed from the first mounting member. It is characterized in that it has a substantially cylindrical shape with a taper which gradually expands in the mount axis direction toward the second mounting member. In this embodiment, the main rubber elastic body and the supporting rubber elastic body can be inclined with respect to the mount center axis direction which is the direction in which the first mounting member and the second mounting member are opposed to each other. It is possible to advantageously secure the elastic deformation stroke in the direction of the center axis of the mount, which is the input direction of the mount, and by adjusting the inclination angles (taper angles) of the main rubber elastic body and the supporting rubber elastic body. The spring characteristic can be tuned with a large degree of freedom in the direction of the central axis, the direction perpendicular thereto, and the like.
[0024]
(Embodiment 6 of the present invention)
A sixth aspect of the present invention is the fluid filled type vibration damping device according to any one of the first to fifth aspects, wherein the movable rubber plate is provided on a side opposite to the third divided chamber with respect to the movable rubber plate. An air chamber which allows elastic deformation is formed, and an air passage for selectively connecting the air chamber to the atmosphere and an external negative pressure source is formed. In this embodiment, the air chamber is connected to the negative pressure source, and the movable rubber is sucked and restrained by negative pressure, whereby the volume change and the pressure absorbing function of the third divided chamber due to the elastic deformation of the movable rubber are achieved. Therefore, for example, when vibration is input in the tuning frequency range of the first orifice passage, relative pressure fluctuation between the third divided chamber and the sub-liquid chamber becomes more efficient. And the amount of fluid flowing through the first orifice passage is increased to improve the vibration isolation effect based on the resonance action of the fluid that is caused to flow through the first orifice passage. .
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
First, FIGS. 1 and 2 show an automobile engine mount 10 as one embodiment of the present invention. The engine mount 10 has a structure in which a first mounting member 12 as a first mounting member and a second mounting member 14 as a second mounting member are elastically connected by a main rubber elastic body 16. Although not shown, the first mounting bracket 12 is mounted on the power unit of the vehicle, while the second mounting bracket 14 is mounted on the body of the vehicle, so that the power unit is supported on the body by vibration isolation. Has become. In such a mounted state, the shared supporting load of the power unit and the main vibration to be damped are in the direction in which the first mounting bracket 12 and the second mounting bracket 14 extend vertically in FIG. The input is made on the mount center axis 18. In the following description, the vertical direction refers to the vertical direction in FIG. 1 in principle.
[0027]
More specifically, the first mounting member 12 has a block shape extending in a direction perpendicular to the mount center axis 18 and is formed of a rigid material such as an aluminum alloy or steel. In addition, an inverted truncated cone-shaped fixing projection 20 is integrally formed at a lower portion of the first mounting bracket 12, and an outer peripheral edge of a large diameter end of the fixing projection 20 has an outer peripheral side. A flange 22 protruding in the circumferential direction is provided in the circumferential direction. Further, the first mounting member 20 is formed with a mounting hole 24 penetrating in the longitudinal direction, and the first mounting member 12 is inserted through a bolt or the like (not shown) inserted into the mounting hole 24. Can be attached to the power unit of the car.
[0028]
Further, a main rubber elastic body 16 is vulcanized and bonded to the first mounting bracket 12, and the main rubber elastic body 16 is an integrally vulcanized molded product having the first mounting bracket 12. The main rubber elastic body 16 has a substantially thick cylindrical shape with a taper as a whole, and is disposed so as to expand downward on the mount center shaft 18. The outer peripheral surface of the fixing projection 20 of the first mounting member 12 is vulcanized and bonded to the small diameter side opening edge of the main rubber elastic body 16, whereby the small diameter of the main rubber elastic body 16 is formed. The side opening is fluid-tightly closed by the first fitting 12. On the other hand, a cylindrical connecting fitting 26 is vulcanized and bonded to the outer peripheral surface of the large-diameter end of the main rubber elastic body 16.
[0029]
Further, a buffer rubber 28 is formed on the lower end surface of the fixing projection 20 of the first mounting member 12 to cover the entire surface thereof, and is vulcanized and adhered. Further, a stopper rubber 30 which is supported by the flange portion 22 and protrudes upward is formed on the upper surface of the first mounting member 12 and is vulcanized and bonded. Both the cushion rubber 28 and the stopper rubber 30 are integrally formed with the main rubber elastic body 16. The stopper rubber 30 constitutes a rebound direction stopper mechanism as described later.
[0030]
On the other hand, the second mounting member 14 has a large-diameter cylindrical shape as a whole, and is formed of a rigid material similarly to the first mounting member 12, and is spaced apart from the first mounting member 12 by a distance. And extend on the mount center axis 18. The second mounting member 14 has an annular step portion 32 at an intermediate portion in the axial direction, and the lower side in the axial direction with the step portion 32 interposed therebetween is a small-diameter cylindrical portion 34, while the upper side is a large-diameter tube portion. A cylindrical portion 36 is provided. Further, a flange-like portion 38 that protrudes inward is formed integrally with the opening end edge of the small-diameter cylindrical portion 34.
[0031]
In addition, a diaphragm 40 as a flexible film is provided in an opening on the lower side in the axial direction of the second mounting member 14. The diaphragm 40 is formed of a thin rubber film, has a dome shape that is upwardly convex, and can be easily deformed. The outer peripheral edge portion of the diaphragm 40 is vulcanized and bonded to the flange portion 38, so that the lower axial opening of the second mounting member 14 is fluid-tightly closed. The small-diameter cylindrical portion 34 and the large-diameter cylindrical portion 36 of the second mounting member 14 are each vulcanized and bonded to a thin seal rubber layer 42 over substantially the entire inner peripheral surface.
[0032]
Then, the connecting fitting 26 that is vulcanized and bonded to the outer peripheral edge of the large-diameter end of the main rubber elastic body 16 is fitted into the opening of the large-diameter cylindrical portion 36 of the second mounting fitting 14, A large-diameter cylindrical portion 36 is externally fitted and fixed to the connection fitting 26. Thus, the first mounting member 12 and the second mounting member 14 are elastically connected by the main rubber elastic body 16. The axially upper opening of the second mounting member 14 is covered with a rubber elastic body 16 in a fluid-tight manner.
[0033]
Further, inside the second mounting member 14, a fluid sealing region 44 sealed between the main rubber elastic body 16 and the diaphragm 40 and sealed with an external space and filled with an incompressible fluid is defined. Has been established. As the incompressible fluid to be enclosed, for example, any of water, alkylene glycol, polyalkylene glycol, silicone oil, etc. can be adopted, and in particular, vibration isolation based on the resonance action of the fluid which is made to flow through the orifice passage described later. In order to obtain the effect effectively, a low-viscosity fluid having a viscosity of 0.1 Pa · S or less is suitably adopted.
[0034]
Further, a partition member 46 is accommodated and arranged in the fluid filled area 44. The partition member 46 has a substantially thick disk shape as a whole, and is formed of a hard material such as a metal material such as an aluminum alloy or a synthetic resin material. The partition member 46 is fitted into the small-diameter cylindrical portion 34 of the second mounting member 14, and is fixed so as to spread in a direction perpendicular to the axis at an axial middle portion of the second mounting member 14.
[0035]
As a result, the fluid-filled area 44 is fluid-tightly divided by the partition member 46, so that the main liquid chamber 48 is defined between the partition member 46 and the main rubber elastic body 16, while the partition is formed. A sub liquid chamber 50 is defined between the member 46 and the diaphragm 40. The sub-liquid chamber 50 is configured such that the diaphragm 40 constituting a part of the wall portion can be easily deformed, so that a change in volume is easily permitted and a change in internal pressure is quickly eliminated.
[0036]
Further, the partition member 46 is formed with a concave groove 52 which is opened on the outer peripheral surface and extends in the circumferential direction by a length slightly less than one round. The concave groove 52 is formed in the small-diameter cylindrical portion 34 via the seal rubber layer 42. The first orifice passage 54 is formed by being covered in a fluid-tight manner. Each end of the first orifice passage 54 in the circumferential direction is connected to one of the main liquid chamber 48 and the sub liquid chamber 50 through the communication holes 56 and 58, so that the main liquid chamber 48 and the sub liquid chamber 48 are connected to each other. Liquid chambers 50 are communicated with each other through a first orifice passage 54.
[0037]
Furthermore, a mortar-shaped recess 60 is formed in the partition member 46 at the center of the upper end face facing the main liquid chamber 48, and an opening of the recess 60 serves as a movable rubber plate. A rubber elastic plate 62 is provided. The rubber elastic plate 62 has a substantially disk shape with a predetermined thickness, and an annular fitting 64 is vulcanized and bonded to the outer peripheral edge. The rubber elastic plate 62 is assembled so that the fitting 64 is pressed into the opening of the recess 60 so as to cover the opening of the recess 60 in a fluid-tight manner. In the present embodiment, the recess 60 is communicated with the external space through a communication passage 66 that is provided through the partition member 46 and opens at the bottom surface of the recess 60.
[0038]
In short, the rubber elastic plate 62 is allowed to be elastically deformed by the air chamber 68 formed behind the recess 60 in the arrangement state. Here, the spring rigidity of the rubber elastic plate 62 is set sufficiently smaller than that of the main rubber elastic body 16 but larger than that of the diaphragm 40. Then, based on the elastic deformation of the rubber elastic plate 62, minute pressure fluctuations in the main liquid chamber 48 are absorbed and reduced or eliminated.
[0039]
Further, a movable orifice member 70 and a fixed orifice fitting 72 as a fixed orifice member are accommodated in the main liquid chamber 48. The movable orifice member 70 and the fixed orifice metal member 72 are spaced apart from each other on the mount center axis 18 in a state where the movable orifice member 70 and the fixed orifice metal member 72 spread in a direction substantially perpendicular to the axis between the opposing surfaces of the first mounting member 12 and the partition member 46. Accordingly, the main liquid chamber 48 is divided into three regions on the mount center axis 18. That is, between the first mounting member 12 and the movable orifice member 70, a first divided chamber 74 in which a part of the wall is formed of the main rubber elastic body 16 is formed. A second divided chamber 76 is formed between the fixed orifice fittings 72, and a third divided chamber 78 is formed between the fixed orifice fitting 72 and the partition member 46.
[0040]
The movable orifice member 70 includes a movable orifice fitting 80 having an inverted truncated cone shape. The movable orifice fitting 80 is formed of a hard material such as a metal or a synthetic resin, and has a central protruding portion 82 integrally protruding upward with a circular cross-section at the center of the large-diameter end face. The protruding distal end face of the central projection 82 is opposed to the small-diameter end face of the fixed projection 20 of the first mounting member 12 on the mount center axis 18 so as to be opposed to each other. The protruding distal end surface of the central projection 82 comes into contact with the small-diameter side end surface of the fixed projection 20 via the cushion rubber 28.
[0041]
Further, a supporting rubber elastic body 84 is vulcanized and bonded to the outer peripheral surface of the movable orifice fitting 80. The support rubber elastic body 84 extends from the outer peripheral surface of the movable orifice fitting 80 outward with a taper angle in a direction perpendicular to the axis, and spreads in a skirt shape obliquely downward coaxially with the mount center axis 18 as a whole. It has an annular shape. A cylindrical connecting member 86 is vulcanized and bonded to the outer peripheral surface of the supporting rubber elastic body 84. The connecting member 86 is press-fitted into the large-diameter cylindrical portion 36 of the second mounting member 14 and fitted. By being fixed, the outer peripheral surface of the support rubber elastic body 84 is fixed to the second mounting member 14.
[0042]
The movable orifice metal fitting 80 and the supporting rubber elastic body 84 constituting the movable orifice member 70 are arranged so that interference with the main rubber elastic body 16 during vibration input can be avoided as much as possible. They are arranged with an appropriate gap. On the small-diameter end surface of the movable orifice fitting 80, a cushion rubber 88 projecting downward is formed integrally with the supporting rubber elastic body 84 and protrudes therefrom.
[0043]
In the movable orifice member 70 assembled in this manner, the support rubber elastic body 84 is tapered downward from the movable orifice fitting 80 in the axial direction so as to expand toward the outer peripheral side. When the movable orifice fitting 80 is displaced in the axial direction, the support rubber elastic body 84 is elastically deformed with a shear component. The elasticity of the supporting rubber elastic body 84 is adjusted by appropriately changing the taper angle of the supporting rubber elastic body 84 so that the shear component and the compressive component caused when the movable orifice fitting 80 is displaced in the axial direction are appropriately adjusted to tune the spring characteristics. You can do it. In particular, the supporting rubber elastic body 84 is formed with a sufficient thickness so as to exhibit a wall spring rigidity greater than that of the rubber elastic plate 62, and the movable orifice metal fitting 80 is displaced when a vibration is input. In cooperation with the main rubber elastic body 16, an effective pressure fluctuation in the main liquid chamber 48 can be generated.
[0044]
The movable orifice fitting 80 has a second orifice passage 94 that opens in the center of the lower surface, extends upward on the central axis, bends in the central projection 82, and opens on the outer peripheral surface of the central projection 82. Is formed. The second orifice passage 94 allows the first divided chamber 74 and the second divided chamber 76 to communicate with each other. Since the upper end of the second orifice passage 94 is opened at the outer peripheral surface of the central projection 82, the state in which the central projection 82 is brought close to or in contact with the first mounting member 12. Even below, the state of communication of the second orifice passage 94 with the first divided chamber 74 is maintained with a sufficient opening area.
[0045]
On the other hand, the fixed orifice fitting 72 has a disk shape with a predetermined thickness, and is made of a rigid material such as an aluminum alloy. The fixed orifice metal fitting 72 is fitted into the large-diameter cylindrical portion 36 of the second mounting metal fitting 14, and the outer peripheral edge thereof is overlapped with the step 32 and fixedly supported. The movable orifice fitting 80 and the partition member 46 are disposed at an intermediate portion between the opposing surfaces of the movable orifice fitting 80 and the partition member 46 on the mount center axis 18 in a state of spreading in a direction perpendicular to the direction of the vertical axis. That is, the stepped portion 32 of the second mounting member 14 has an outer peripheral edge of the fixed orifice member 72, a connecting member 86 vulcanized and bonded to the support rubber elastic member 84, and a vulcanized bond to the main rubber elastic member 16. The connected metal fittings 26 are overlapped in the axial direction, and the outer peripheral edge of these fixed orifice metal fittings 72 and the respective outer peripheral surfaces of the connecting metal fittings 86 and 26 are connected via the seal rubber layer 42 to the second mounting metal fitting. It is fitted and fixed in a fluid-tight manner to the 14 large-diameter cylindrical portions 36.
[0046]
In the fixed orifice fitting 72, a plurality of through holes 96 are formed at a plurality of positions in a central portion and a radially intermediate portion, and a third orifice passage 96 is formed by these through holes 96. . The third orifice passage 96 allows the second and third divided chambers 76 and 78 defined on both sides of the fixed orifice fitting 72 to communicate with each other. When the movable orifice fitting 80 is displaced downward in the axial direction based on the elastic deformation of the support rubber elastic body 84, the movable orifice fitting 80 is brought into contact with the fixed orifice fitting 72 via the buffer rubber 88. Has become.
[0047]
Furthermore, even when the movable orifice fitting 80 is in contact with the fixed orifice fitting 72, the second orifice passage 94 of the movable orifice fitting 80 is formed through the through hole 96 of the fixed orifice fitting 72. The second orifice passage 94 is prevented from being closed.
[0048]
In short, in the engine mount 10 of the present embodiment, the partition member 46 and the movable orifice member are arranged so as to partition the fluid sealing region 44 defined between the main rubber elastic body 16 and the facing surface of the diaphragm 40. 70 and the fixed orifice fitting 72 are arranged and assembled. Thus, the fluid filled region 44 is divided into a total of four regions, and the first divided portion is arranged on the mount center axis 18 in order from the top. The chamber 74, the second divided chamber 76, the third divided chamber 78, and the auxiliary liquid chamber 50 are formed. The movable orifice member 70, the fixed orifice fitting 72, and the partition member 46, which partition these four regions, have orifices that allow mutually adjacent regions on the mount center axis 18 to communicate with each other to allow fluid flow between them. Since the passage is formed, the sub-liquid chamber 50 and the third divided chamber 78 are communicated with each other through the first orifice passage 54, and the first divided chamber 74 and the second divided chamber are connected. A second orifice passage 94 communicates with the second orifice passage 94, and a third orifice passage 78 communicates with the second divided chamber 78.
[0049]
Here, the first to third orifice passages 54, 94 and 96 are formed by appropriately adjusting the passage cross-sectional area and passage length so that the resonance of the fluid which is caused to flow inside when vibrations of different frequency ranges are inputted. It is tuned so that the anti-vibration effect based on the action is effectively exhibited. Specifically, the first orifice passage 54 is tuned so as to exhibit a low dynamic spring effect based on the fluid resonance action against medium frequency vibration such as idling vibration, and the second orifice passage 94 is The third orifice passage 96 is tuned so that an effective damping effect based on the fluid resonance action is exerted against low frequency vibrations such as engine shakes, and the third orifice passage 96 is also susceptible to high frequency vibrations such as running noise. The tuning is performed so that the low dynamic spring effect based on the fluid resonance action is exhibited.
[0050]
In the engine mount 10 having the above-described structure, the first mounting bracket 12 is mounted on the power unit of the automobile as described above, while the second mounting bracket 14 is mounted on the engine mounting 10 as shown in FIG. The bracket 98 is fixedly attached, and the second mounting member 14 is attached to the body (not shown) of the vehicle via the bracket 98, so that the second fitting 14 is interposed between the power units and the power unit is connected to the body. On the other hand, it is made to support vibration isolation. In the bracket 98, a plurality of legs 102 are welded to an outer peripheral surface of a large-diameter cylindrical fitting portion 100, and a radial direction is provided above the tubular fitting portion 100. An arch-shaped stopper portion 104 extending in one direction is fixed.
[0051]
Then, in a mounted state to the vehicle fixed to the body of the vehicle by the legs 102, the mounting center is located between the first mounting bracket 12 mounted on the power unit and the second mounting bracket 14 mounted on the body. A shared support load of the power unit is exerted on the shaft 18 in a direction in which the two mounting brackets 12 and 14 are brought closer to each other, and based on the elastic deformation of the main rubber elastic body 16, a first mounting state is shown. The metal fitting 12 is displaced in the approaching direction with respect to the second mounting metal 14 and positioned. That is, in such a mounted state, the stopper rubber 30 of the first mounting member 12 is opposed to the stopper portion 104 at a predetermined distance, and the first mounting member 12 is in the second mounting member. When the first mounting member 12 is relatively displaced in a direction away from the first mounting member 14 (rebound direction), the first mounting member 12 is brought into contact with the stopper portion 104 via the stopper rubber 30 so that the first mounting member 12 and the The amount of relative displacement of the second mounting bracket 14 in the rebound direction is limited in a buffer manner, so that a stopper function in the rebound direction is exhibited.
[0052]
Further, when vibrations in the direction of the substantially mount center axis 18 are input between the first mounting bracket 12 and the second mounting bracket 14 in such a mounted state, the main rubber elastic body 16 and the supporting rubber elastic body 84 are provided. Due to the elastic deformation of the fluid, fluid flows through the orifice passages 54, 94 and 96 in the fluid filled region 44, and the fluid is caused to flow through the orifice passages 54, 94 and 96 based on the resonance action of the fluid. Thus, an effective vibration damping effect can be exhibited against input vibration.
[0053]
Specifically, for example, when low-frequency vibration such as engine shake is input while the vehicle is running, the first and third orifice passages 54 and 96 both have a passage cross-sectional area: A and a passage. Since the length (L) ratio value (A / L) is sufficiently large and the passage resistance of the incompressible fluid in the low frequency range is sufficiently small, the second and third divided chambers 76, The sub-liquid chamber 78 and the sub liquid chamber 50 substantially function as a single chamber, and function as one equilibrium chamber in which a volume change is easily allowed based on the deformation of the diaphragm 40. As a result, when low-frequency vibration is input, pressure fluctuation is effectively induced in the first divided chamber 74 based on the displacement of the first mounting member 12 and the elastic deformation of the main rubber elastic body 16. The relative pressure fluctuation is generated between the first divided chamber 74, the second and third divided chambers 76 and 78 functioning as one equilibrium chamber, and the auxiliary liquid chamber 50. Fluid flow through the second orifice passage 94 is advantageously created based on the actual pressure fluctuations. Therefore, an effective vibration damping effect against low frequency vibrations can be exhibited based on the resonance action of the fluid that is caused to flow through the second orifice passage 94 tuned to the low frequency range.
[0054]
In order to advantageously secure the amount of fluid that can flow through the second orifice passage 94 and obtain a vibration-proof effect against low-frequency vibration exerted based on the resonance action of the fluid, it is necessary to use the first In the main rubber elastic body 16 and the supporting rubber elastic body 84 constituting each part of the wall of the divided chamber 74, the wall spring rigidity of the supporting rubber elastic body 84 is set to be larger than the wall spring rigidity of the main rubber elastic body 16. Therefore, it is effective to suppress the pressure absorption of the first divided chamber 74 due to the elastic deformation of the support rubber elastic body 84. The concept of the wall spring stiffness is equal to the amount of pressure change in the first divided chamber 74 required to cause a unit amount of volume deformation in the first divided chamber 74 based on the elastic deformation of the wall. Is done.
[0055]
When vibration in a high frequency range such as a muffled sound is input under running conditions of the vehicle, a second orifice passage 94 tuned to a low frequency range and a first orifice tuned to a middle frequency range are input. Each of the passages 54 has a substantially large passage resistance and is substantially closed. When a vibration is applied between the first mounting member 12 and the second mounting member 14 in such a state, the exciting force applied to the first mounting member 12 causes the pressure fluctuation of the first divided chamber 74 to fluctuate. As a result, the movable orifice member 70 is vibrated and displaced based on the elastic deformation of the supporting rubber elastic body 84. As a result, the movable orifice member 70 is effective for the second divided chamber 76. Pressure fluctuations will be induced. On the other hand, the third divided chamber 78 is caused by the input of a minute amplitude in a high frequency region such as a running muffled sound based on the elastic deformation of the rubber elastic plate 62 constituting a part of the wall. Can function as an equilibrium chamber capable of absorbing the pressure fluctuation of the pressure.
[0056]
Therefore, when a vibration in a high frequency range such as a running muffled sound is input, the first mounting member 12 and the movable orifice member 80 have substantially the same phase based on the elastic deformation of the main rubber elastic body 16 and the supporting rubber elastic body 84. Then, by being relatively displaced with respect to the second mounting member 14, effective pressure fluctuation is exerted on the second divided chamber 76, and the second divided chamber 76 and the third divided chamber 78 Relative pressure fluctuations are caused between them, and based on such pressure fluctuations, a fluid flow through the third orifice passage 96 between the two divided chambers 76 and 78 is advantageously generated. Therefore, an effective vibration damping effect against high frequency vibrations can be exerted based on the resonance action of the fluid that is caused to flow through the third orifice passage 96 tuned to a high frequency range.
[0057]
On the other hand, when the vibration in the middle frequency range corresponding to the idling vibration or the like is input while the vehicle is stopped, the second orifice passage 94 tuned to the low frequency band has a significantly large passage resistance. Thus, the third orifice passage 96 has a sufficiently large value (A / L) of the ratio of the passage cross-sectional area: A to the passage length: L. Since the passage resistance of the incompressible fluid is made sufficiently small, the second and third divided chambers 76 and 78 are substantially unitary. Therefore, similarly, when vibration is applied between the first mounting member 12 and the second mounting member 14 at the time of the above-mentioned vibration input in the high frequency range, the exciting force applied to the first mounting member 12 is also increased. Is exerted on the movable orifice member 70 through the pressure fluctuation of the first divided chamber 74, and the movable orifice member 70 is vibrated and displaced based on the elastic deformation of the support rubber elastic body 84. As a result, Effective pressure fluctuations will be induced in the substantially single second and third divided chambers 76, 78. On the other hand, the auxiliary liquid chamber 50 can function as an equilibrium chamber that can absorb pressure fluctuations based on the elastic deformation of the diaphragm 40 that forms a part of the wall.
[0058]
Therefore, when a vibration in the middle frequency range such as an idling vibration is input, the first mounting member 12 and the movable orifice member 80 are substantially in phase based on the elastic deformation of the main rubber elastic body 16 and the supporting rubber elastic body 84. , Relative displacement with respect to the second mounting member 14, thereby exerting an effective pressure fluctuation on the second and third divided chambers 76 and 78 which function substantially as a single chamber, A relative pressure change is caused between the second and third divided chambers 76 and 78 and the auxiliary liquid chamber 50, and the second and third divided chambers 76 and 78 and the auxiliary Fluid flow through the first orifice passage 54 to and from the liquid chamber 50 is advantageously created. Therefore, based on the resonance action of the fluid that is caused to flow through the first orifice passage 54 tuned to the middle frequency range, an effective vibration damping effect against middle frequency vibration such as idling vibration can be exhibited.
[0059]
In particular, at the time of vibration input in the middle frequency range, the second and third divided chambers 76 and 78, which function as a substantially single chamber and cause pressure fluctuation due to the vibration input, have a piston-like action. The wall rubber stiffness of the wall portion to be formed is substantially the same as that of the main rubber elastic body 16 superimposed in series via the first divided chamber 74 filled with an incompressible fluid and in a substantially volume-invariant sealed state. The supporting rubber elastic body 84 provides a sufficiently large spring rigidity, so that pressure fluctuations in the second and third divided chambers 76 and 78 are efficiently generated, and the first orifice passage 54 is formed. By ensuring a sufficient amount of fluid to flow, the anti-vibration effect can be more effectively exerted based on the above-described resonance action of the fluid.
[0060]
Therefore, in such an engine mount 10, the first, second and third orifice passages 54, 94, 96 tuned differently from each other are selectively applied to vibrations in a plurality of input frequency ranges. , It is possible to obtain an effective vibration damping effect exerted based on the resonance action of the fluid. In particular, the first, second and third orifice passages 54, 94, 96 can be obtained there. Since there is no need to incorporate valve means or actuators for switching the engine, an engine mount that can exhibit such excellent vibration isolation performance can be advantageously realized with a mount structure that has a small number of parts and is easy to manufacture. It becomes.
[0061]
Although the embodiments of the present invention have been described in detail above, this is merely an example, and the present invention is not to be construed as being limited in any way by the specific description in such embodiments. Based on the knowledge of the present invention, various changes, modifications, improvements, and the like can be carried out, and any of such embodiments does not depart from the spirit of the present invention. It goes without saying that it is included within.
[0062]
For example, by appropriately adjusting the spring characteristics of the main rubber elastic body 16 and the supporting rubber elastic body 84 relatively, under a specific vehicle condition, as shown in FIG. The movable orifice fitting 80 and the movable orifice fitting 80 can be maintained in an abutted state with each other. Specifically, for example, a state in which the first mounting member 12 and the movable orifice member 80 are brought into contact with each other by utilizing a torque reaction force applied to the engine mount 10 when the vehicle is idling while the vehicle is stopped. In such a state, idling vibration may be applied between the first mounting member 12 and the second mounting member 14 in such a state. That is, when the first mounting member 12 and the movable orifice member 80 are in contact with each other as described above, the exciting force applied to the first mounting member 12 is directly applied to the movable orifice member 80. Thus, the pressure fluctuation can be efficiently applied directly to the second and third divided chambers 76 and 78 without passing through the liquid pressure of the first divided chamber 74.
[0063]
Accordingly, with respect to the idling vibration which is a vibration in the middle frequency range, the second pressure is caused by the relative pressure fluctuation between the second and third divided chambers 76 and 78 functioning as a single chamber and the auxiliary liquid chamber 50. Since the amount of fluid flowing through one orifice passage 54 can be more efficiently secured, and the vibration damping effect against idling vibration as described above based on the resonance action of the fluid can be more effectively obtained. is there.
[0064]
Further, in the engine mount 10 having the above-described structure, the communication path 66 connected to the air chamber 68 formed behind the rubber elastic plate 62 is configured as an air path, and the communication path 66 is determined based on the running state of the vehicle. It is also possible to employ air pressure switching means for selectively switching the air chamber 68 between the atmosphere and a predetermined negative pressure source through the communication passage 66. If such an air pressure switching means is employed, for example, when the vehicle is running, the air chamber 68 is connected to the atmosphere, so that low-frequency vibrations such as engine shakes and high-frequency sounds such as muffled sounds are exerted under the running state. In response to the vibration, the vibration damping effect is obtained based on the resonance action of the fluid flowing through the second orifice passage 94 and the third orifice passage 96 as described above, while the vehicle is stopped (idling). Below, the air chamber 68 is connected to a negative pressure source, and is sucked and adsorbed on the bottom surface of the concave portion 60 of the rubber elastic plate 62 to restrain it, thereby suppressing pressure absorption accompanying elastic deformation of the rubber elastic plate 62. An idler exerted on the basis of the resonance effect of the fluid caused to flow through the first orifice passage 54 by further increasing the amount of fluid flowing through the one orifice passage 54 It is also possible to further improved the vibration damping effect against grayed vibration.
[0065]
Alternatively, when a large load in the direction of the mount center axis 18 is input by appropriately adjusting the spring characteristics of the main rubber elastic body 16 and the supporting rubber elastic body 84 against an impact load applied to the engine mount 10. First, the first mounting member 12 abuts against the movable orifice member 80 (see FIG. 3). Thereafter, when the input load further increases, as shown in FIG. The movable orifice fitting 80 which is brought into contact with the mounting fitting 12 and is displaced integrally is brought into contact with the fixed orifice fitting 72 via the cushioning rubber 88 so that the first mounting fitting 12 and the second It is also possible to realize a bound stopper mechanism for buffering the relative displacement of the fitting 14 in the bound direction.
[0066]
In such a bound stopper mechanism, as the input load applied between the first mounting member 12 and the second mounting member 14 increases, mainly in the initial stage where the load is relatively small, the main rubber elastic body 16 is mainly used. Only the spring characteristic is predominantly exerted, and a relatively soft spring characteristic is exhibited. On the other hand, at the stage of medium load (see FIG. 3), the main rubber elastic body 16 and the supporting rubber elastic body 84 It acts as a spring component in parallel to exhibit a hard spring characteristic as a whole, and furthermore, when an extremely large load is input, the second spring is subjected to the cushioning effect of the elasticity of the cushioning rubbers 28 and 88, Since the one mounting member 12 and the second mounting member 14 are brought into contact with each other via the movable orifice member 70, the relative displacement between the first mounting member 12 and the second mounting member 14 can be reliably limited. Than it is. In short, when a large load is input between the first mounting member 12 and the second mounting member 14, the high spring characteristic with the support rubber elastic member 84 added is obtained from the low spring characteristic of the main rubber elastic member 16. After that, the displacement is reliably restricted based on the abutting action of the first mounting member 12 and the second mounting member 14 via the movable orifice metal member 80 having the buffering effect of the compression springs of the buffer rubbers 28 and 88. As a whole, the non-linear spring characteristic can be effectively exhibited with a sufficient stroke, and the first mounting bracket 12 and the second mounting bracket 14 in the approaching direction (bound direction). The relative displacement can be effectively limited without accompanying a large impact or impact sound.
[0067]
In addition, since the supporting rubber elastic body 84 is deformed by a shearing component in particular, it can stably exert the auxiliary spring action on the main rubber elastic body 16 in a large stroke region. A case where the stopper function is exerted by the first mounting member 12 and the second mounting member 14 being brought into relative contact with each other via the movable orifice metal member 80 while sufficiently securing the vibration performance. It is possible to effectively reduce impacts and hitting sounds.
[0068]
Moreover, the supporting rubber elastic body 84 can increase the member volume (thickness dimension) by adjusting the inclination angle (the taper angle that spreads in a squard shape) with respect to the mount center axis 18 to ensure sufficient durability while maintaining sufficient durability. The soft spring characteristics can be set, and the spring characteristics to be exhibited can be appropriately tuned with a large degree of freedom.
[0069]
Further, in the structural example shown in FIG. 4, since the contact portion of the movable orifice fitting 80 with the second mounting fitting 14 is constituted by the fixed orifice fitting 72, the second orifice of the fixed orifice fitting 72 is formed. By adjusting the mounting position with respect to the mounting bracket 14, the relative stroke amount between the first mounting bracket 12 and the second mounting bracket 14 can be easily set and changed. Further, a special fixed orifice fitting 72 is provided in the second mounting fitting 14 in order to form a contact portion of the movable orifice fitting 80, so that a large load is not input to the partition member 46, and the orifice fitting is prevented. The partition member 46 in which the passage 54 is formed can be prevented from being damaged, and the area where the rubber elastic plate 62 is provided in the partition member 46 can be advantageously secured. The degree of freedom can be realized.
[0070]
In such a structure, since the stopper mechanism in the bound direction can be disposed by using the main liquid chamber 48 as a space, the mount size can be reduced in size without increasing the mount size significantly. It is possible to realize the stopper function.
[0071]
In each of FIGS. 3 and 4 described above, in order to facilitate understanding, each member and each portion having the same structure as that of the above-described embodiment are respectively illustrated in the drawings. The same reference numerals as in the embodiment are attached.
[0072]
Further, in the present invention, in the engine mount 10 shown in the above-described embodiment, the communication passage 66 is closed to make the air chamber 68 a closed space, so that the mount anti-vibration characteristics can be adjusted, or As described in the paragraph number (0064), a switching valve may be provided in the communication passage 66, and the mount anti-vibration characteristics may be adjusted by opening and closing the switching valve. Alternatively, as described in Japanese Patent Application Laid-Open No. H10-184768, the air pressure fluctuation is positively applied from the outside through the communication passage 66 so as to exert an active pressure fluctuation on the main liquid chamber 48. It is also possible to exert an active anti-vibration effect accordingly.
[0073]
Further, the specific structure and form of the first, second and third orifice passages employed in the present invention, the passage length, the passage cross-sectional area, and the like are appropriately changed in design according to the required vibration isolation characteristics. It is not limited by the specific description of the embodiment.
[0074]
In addition, the present invention is applicable not only to the engine mounts for automobiles as illustrated, but also to body mounts for automobiles and anti-vibration devices in various devices other than automobiles.
[0075]
【The invention's effect】
As is apparent from the above description, in the fluid-filled type vibration damping device having the structure according to the present invention, the valves and actuators for switching the orifice passages are not specially incorporated in the vibration damping device, but are provided in different frequency ranges. The three tuned orifice passages function effectively according to the input vibration, respectively, and the vibration action of the fluid in which the orifice passages are caused to flow through the orifice passages in response to the vibration in the frequency range in which each orifice passage is tuned. Thus, it is possible to effectively obtain an anti-vibration effect based on the flow action.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an engine mount as one embodiment of the present invention, and is a view corresponding to a II section in FIG.
FIG. 2 is a plan view of the engine mount shown in FIG.
FIG. 3 is a longitudinal sectional view corresponding to FIG. 1, showing an engine mount as another specific example of the present invention.
FIG. 4 is a longitudinal sectional view corresponding to FIG. 1 and showing an engine mount as still another embodiment of the present invention.
[Explanation of symbols]
10 Engine mount
12 First mounting bracket
14 Second mounting bracket
16 Rubber elastic body
40 Diaphragm
46 Partition member
48 main liquid chamber
50 Secondary liquid chamber
54 First orifice passage
62 rubber elastic plate
70 Movable orifice member
72 Fixed orifice bracket
74 First Split Room
76 Second Split Room
78 Third Division Room
80 Movable orifice fitting
84 Support rubber elastic
94 Second orifice passage
96 Third orifice passage

Claims (6)

第一の取付部材を筒状の第二の取付部材の一方の開口部側に離隔配置せしめて該第一の取付部材と該第二の取付部材を本体ゴム弾性体で連結することにより、該第二の取付部材の一方の開口部を該本体ゴム弾性体で覆蓋すると共に、該第二の取付部材の他方の開口部を可撓性膜で覆蓋せしめて、それら本体ゴム弾性体と可撓性膜の対向面間に非圧縮性流体の封入領域を形成し、該第一の取付部材と該第二の取付部材の間への入力振動に対して該非圧縮性流体の流動作用に基づく防振効果が発揮されるようにした流体封入式防振装置において、前記封入領域をマウント軸方向で仕切る仕切部材を設けて該仕切部材を前記第二の取付部材で支持せしめることにより、壁部の一部が該本体ゴム弾性体で構成された主液室と、壁部の一部が該可撓性膜で構成された副液室を形成して、該主液室に可動オリフィス部材を収容配置すると共に該可動オリフィス部材を環状の支持ゴム弾性体で前記第二の取付部材に弾性支持せしめて該主液室をマウント軸方向で仕切ることにより、該可動オリフィス部材と前記第一の取付部材の対向面間に第一の分割室を画成し、更に該主液室に固定オリフィス部材を収容配置せしめて該主液室を該可動オリフィス部材と該仕切部材の対向面間においてマウント軸方向で仕切ることにより、該可動オリフィス部材と該固定オリフィス部材の対向面間に第二の分割室を画成すると共に、該固定オリフィス部材と該仕切部材の対向面間に第三の分割室を画成し、且つ該第三の分割室の壁部の一部を弾性変形可能な可動ゴム板で構成する一方、該仕切部材において該副液室と該第三の分割室を相互に連通する第一のオリフィス通路を形成すると共に、該可動オリフィス部材において該第一の分割室と該第二の分割室を相互に連通する第二のオリフィス通路を形成し、更に該固定オリフィス部材において該第二の分割室と該第三の分割室を相互に連通する第三のオリフィス通路を形成し、且つ該第一のオリフィス通路を該第二のオリフィス通路よりも高周波数域にチューニングすると共に、該第三のオリフィス通路を該第一のオリフィス通路よりも高周波数域にチューニングしたことを特徴とする流体封入式防振装置。By disposing the first mounting member at one opening side of the cylindrical second mounting member and connecting the first mounting member and the second mounting member with the main rubber elastic body, One opening of the second mounting member is covered with the main rubber elastic body, and the other opening of the second mounting member is covered with a flexible film. Forming an incompressible fluid enclosing area between the opposing surfaces of the insulative membrane, and preventing the input vibration between the first mounting member and the second mounting member based on the flow action of the incompressible fluid. In the fluid filled type vibration damping device in which the vibration effect is exerted, by providing a partition member for partitioning the sealed region in the mount axial direction and supporting the partition member with the second mounting member, A main liquid chamber partially constituted by the main body rubber elastic body, and a part of a wall portion formed by the flexible membrane The main liquid chamber is formed and accommodated with a movable orifice member, and the movable orifice member is elastically supported by the second mounting member with an annular support rubber elastic body. By partitioning the chamber in the mount axis direction, a first divided chamber is defined between the movable orifice member and the facing surface of the first mounting member, and a fixed orifice member is accommodated and arranged in the main liquid chamber. By partitioning the main liquid chamber in the mount axial direction between the opposing surfaces of the movable orifice member and the partition member, a second divided chamber is defined between the opposing surfaces of the movable orifice member and the fixed orifice member. A third division chamber is defined between the fixed orifice member and the opposing surface of the partition member, and a part of the wall of the third division chamber is formed of an elastically deformable movable rubber plate; The secondary liquid in the partition member A first orifice passage communicating the first and second divided chambers with each other in the movable orifice member, and a second orifice passage communicating with the first divided chamber and the second divided chamber in the movable orifice member. And forming a third orifice passage in the fixed orifice member for interconnecting the second and third divided chambers, and connecting the first orifice passage to the second orifice. A fluid-filled type vibration damping device, wherein the third orifice passage is tuned to a higher frequency range than the first orifice passage while tuning to a higher frequency range than the passage. 前記第一の取付部材と前記第二の取付部材が接近方向に相対変位せしめられた場合に、前記本体ゴム弾性体と前記支持ゴム弾性体の弾性変形に基づいて、該第一の取付部材と前記固定オリフィス部材が前記可動オリフィス部材を介して相互に当接せしめられることにより、該第一の取付部材と該第二の取付部材の接近方向における相対変位量が制限され得るようになっている請求項1に記載の流体封入式防振装置。When the first mounting member and the second mounting member are relatively displaced in the approaching direction, the first mounting member and the first mounting member are based on elastic deformation of the main rubber elastic body and the supporting rubber elastic body. Since the fixed orifice member is brought into contact with the movable orifice member via the movable orifice member, the relative displacement amount in the approach direction of the first mounting member and the second mounting member can be limited. The fluid filled type vibration damping device according to claim 1. 自動車のパワーユニットとボデーの一方に前記第一の取付部材を取り付けると共に、それらパワーユニットとボデーの他方に前記第二の取付部材を取り付けることによってエンジンマウントを構成し、前記第二のオリフィス通路をエンジンシェイクに相当する低周波数域にチューニングすると共に、前記第一のオリフィス通路をアイドリング振動に相当する中周波数域にチューニングし、更に前記第三のオリフィス通路を走行こもり音に相当する高周波数域にチューニングした請求項1又は2に記載の流体封入式防振装置。An engine mount is configured by attaching the first mounting member to one of a power unit and a body of the automobile and attaching the second mounting member to the other of the power unit and the body, and the second orifice passage is engine shaken. And the first orifice passage was tuned to a middle frequency range corresponding to idling vibration, and the third orifice passage was further tuned to a high frequency range corresponding to a traveling muffled sound. The fluid filled type vibration damping device according to claim 1. 自動車のアイドリング状態下において、前記第一の取付部材と前記第二の取付部材の間に及ぼされるエンジントルク反力に伴う前記本体ゴム弾性体の弾性変形に基づいて該第一の取付部材が前記可動オリフィス部材に対する当接状態に保持されて、かかる当接状態下で該第一の取付部材と該可動オリフィス部材が該第二の取付部材に対して一体的に相対加振変位せしめられ得るようにした請求項3に記載の流体封入式防振装置。Under an idling state of the automobile, the first mounting member is formed based on an elastic deformation of the main rubber elastic body due to an engine torque reaction force exerted between the first mounting member and the second mounting member. The first mounting member and the movable orifice member are held in a state of contact with the movable orifice member so that the first mounting member and the movable orifice member can be integrally vibrated and displaced with respect to the second mounting member under the abutting state. The fluid filled type vibration damping device according to claim 3, wherein 前記本体ゴム弾性体および前記支持ゴム弾性体を、何れも、前記第一の取付部材から前記第二の取付部材に向かってマウント軸方向で次第に拡開するテーパ付きの略円筒形状とした請求項1乃至4の何れかに記載の流体封入式防振装置。Each of the main rubber elastic body and the support rubber elastic body has a tapered substantially cylindrical shape that gradually expands in the mount axial direction from the first mounting member toward the second mounting member. The fluid filled type vibration damping device according to any one of 1 to 4. 前記可動ゴム板に対して、前記第三の分割室と反対側に、該可動ゴム板の弾性変形を許容する空気室を形成すると共に、該空気室を大気と外部の負圧源に対して択一的に接続せしめる空気通路を形成した請求項1乃至5の何れかに記載の流体封入式防振装置。With respect to the movable rubber plate, an air chamber that allows elastic deformation of the movable rubber plate is formed on the side opposite to the third divided chamber, and the air chamber is formed with respect to the atmosphere and an external negative pressure source. The fluid-filled type vibration damping device according to any one of claims 1 to 5, wherein an air passage which is alternatively connected is formed.
JP2003007534A 2003-01-15 2003-01-15 Fluid sealing type vibration control device Pending JP2004218753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007534A JP2004218753A (en) 2003-01-15 2003-01-15 Fluid sealing type vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007534A JP2004218753A (en) 2003-01-15 2003-01-15 Fluid sealing type vibration control device

Publications (1)

Publication Number Publication Date
JP2004218753A true JP2004218753A (en) 2004-08-05

Family

ID=32897602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007534A Pending JP2004218753A (en) 2003-01-15 2003-01-15 Fluid sealing type vibration control device

Country Status (1)

Country Link
JP (1) JP2004218753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828497B1 (en) 2006-10-11 2008-05-13 현대자동차주식회사 Reciprocation this is a possibility public pressure active mount which it has
WO2010013465A1 (en) * 2008-08-01 2010-02-04 東海ゴム工業株式会社 Fluid-sealed vibration-damping device
JP2012082942A (en) * 2010-10-14 2012-04-26 Toyo Tire & Rubber Co Ltd Liquid sealed vibration-proof device
CN111602214A (en) * 2018-11-30 2020-08-28 Ck高新材料有限公司 Broadband driver

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828497B1 (en) 2006-10-11 2008-05-13 현대자동차주식회사 Reciprocation this is a possibility public pressure active mount which it has
WO2010013465A1 (en) * 2008-08-01 2010-02-04 東海ゴム工業株式会社 Fluid-sealed vibration-damping device
US8191876B2 (en) 2008-08-01 2012-06-05 Tokai Rubber Industries, Ltd. Fluid filled type vibration damping device
JP5154579B2 (en) * 2008-08-01 2013-02-27 東海ゴム工業株式会社 Fluid filled vibration isolator
JP2012082942A (en) * 2010-10-14 2012-04-26 Toyo Tire & Rubber Co Ltd Liquid sealed vibration-proof device
CN111602214A (en) * 2018-11-30 2020-08-28 Ck高新材料有限公司 Broadband driver

Similar Documents

Publication Publication Date Title
JP5396431B2 (en) Fluid filled vibration isolator
JP3539067B2 (en) Fluid-filled mounting device
JP4381333B2 (en) Fluid filled vibration isolator
JP2005172172A (en) Fluid filled vibration control device
JPH04277338A (en) Liquid-filled type mount device
JP2005273684A (en) Fluid filled type vibration isolation device
WO2015145672A1 (en) Anti-vibration device
JP2004036780A (en) Fluid-sealed tubular vibration control device
JP2010031989A (en) Fluid-sealed vibration control device
JP2006250338A (en) Fluid encapsulated type vibration isolating device
JP3551637B2 (en) Fluid-filled mounting device
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP5530816B2 (en) Fluid filled vibration isolator
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP2004069005A (en) Fluid-sealed type vibration damper
JP2007271004A (en) Fluid-sealed vibration isolating device
JPH1089402A (en) Liquid sealed-type mount equipment
JP2004218753A (en) Fluid sealing type vibration control device
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP3407616B2 (en) Fluid filled type vibration damping device
JP2884804B2 (en) Fluid-filled mounting device
JP4210851B2 (en) Fluid-filled engine mount for vehicles
JP5386289B2 (en) Fluid filled vibration isolator