JP2004218646A - Direct injection type internal combustion engine - Google Patents

Direct injection type internal combustion engine Download PDF

Info

Publication number
JP2004218646A
JP2004218646A JP2004082351A JP2004082351A JP2004218646A JP 2004218646 A JP2004218646 A JP 2004218646A JP 2004082351 A JP2004082351 A JP 2004082351A JP 2004082351 A JP2004082351 A JP 2004082351A JP 2004218646 A JP2004218646 A JP 2004218646A
Authority
JP
Japan
Prior art keywords
cylinder
air
intake
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004082351A
Other languages
Japanese (ja)
Other versions
JP2004218646A5 (en
Inventor
Mamoru Fujieda
護 藤枝
Takashi Fujii
敬士 藤井
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004082351A priority Critical patent/JP2004218646A/en
Publication of JP2004218646A publication Critical patent/JP2004218646A/en
Publication of JP2004218646A5 publication Critical patent/JP2004218646A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a direct injection engine cannot perform stratified operation because of an insufficient flow of air within a cylinder at the startup of the engine, although fuel is directly injected into the cylinder, fuel-air mixture with high fuel concentration is gathered and burnt around a spark plug, and stratified charge combustion with lean air-fuel ratio combustion as a whole is made possible. <P>SOLUTION: A bulkhead of an internal combustion engine divides an air intake pathway for leading air to the cylinder into up and down two stages, is formed by bimetal. A valve is arranged for closing the lower pathway of the air intake pathway at the time of low temperature of the internal combustion engine, and the bimetal is formed so that it transforms to a position where it narrows the upper pathway. At a startup when a flow of air is insufficient, exhaust of unburnt fuel is minimized by adding a means of increasing the flow of air, thus enabling a stratified charge combustion operation at the startup. Stable stratified charge combustion is made possible from the startup of the engine(from the first combustion cylinder). Because of the stratified charge combustion, a large amount of redundant oxygen remains in the exhaust, and the oxygen achieves another fuel supply for a temperature rise of the exhaust. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、内燃機関(エンジンと称す)に関し、特にシリンダ内への空気の供給を制御する技術に関する。   The present invention relates to an internal combustion engine (referred to as an engine), and more particularly to a technique for controlling air supply into a cylinder.

従来の例えば筒内噴射エンジンは気筒(シリンダ)内に直接燃料を噴射すると共に、点火プラグ付近に燃料の濃い混合気を集めて燃焼させ、全体的には希薄空燃比燃焼とする成層燃焼が可能である。   Conventional cylinder-injection engines, for example, directly inject fuel into a cylinder (cylinder) and collect and burn a rich mixture of fuel near the spark plug, thus enabling stratified combustion with lean air-fuel ratio combustion as a whole. It is.

しかし、エンジンの始動時は、気筒内の空気の流動が少ないため、成層運転ができず、従来のエンジンのように気筒内に均一な混合気を形成して燃焼させる均質燃焼が用いられている。   However, when the engine is started, stratified operation cannot be performed because the flow of air in the cylinder is small, and homogeneous combustion that forms a uniform air-fuel mixture in the cylinder and burns the same as in a conventional engine is used. .

特開平6−8165号公報JP-A-6-8165 特開平9−317475号公報JP-A-9-317475

均質燃焼の場合は、気筒内全体に燃料を供給するため、始動時といった比較的エンジンが冷たい場合は、未燃燃料の排出が多く、排気対策上問題がある。   In the case of homogeneous combustion, since fuel is supplied to the entire cylinder, when the engine is relatively cold, such as at the time of starting, a large amount of unburned fuel is discharged, which poses a problem in terms of exhaust measures.

本発明は、空気流動が少ない始動時において、空気の流動を高める手段を付加することにより、始動時より成層燃焼運転を可能にし、未燃燃料の排出を最小にしたものである。   According to the present invention, a stratified charge combustion operation is made possible at the time of start-up by adding means for increasing the flow of air at the time of start-up with little air flow, and the emission of unburned fuel is minimized.

本発明により、エンジンの始動(最初の燃焼気筒から)から安定した成層燃焼が可能になる。成層燃焼により、排気には余剰な酸素が多く残存し、この酸素により、排気の昇温のための再度の燃料供給が可能になる。   According to the present invention, stable stratified combustion can be performed from the start of the engine (from the first combustion cylinder). Due to stratified combustion, a large amount of excess oxygen remains in the exhaust gas, and this oxygen makes it possible to supply fuel again for raising the temperature of the exhaust gas.

図1に本発明の実施例の構成図を示す。シリンダ1にはピストン2,噴射弁3,点火プラグ4がある。吸気ポート5には吸気弁7が、排気ポート6には、排気弁8がある。吸気ポート5にはロータリー弁11がある。吸気ポート5のロータリー弁11の下流は隔壁
10により上下2段に分割されている。ロータリー弁11は吸気ポート5の上下の通路を塞ぐように締め切り部12がある。図1はエンジンの始動時において、吸気行程の後半の状態を示している。吸気弁7は開し、ピストン2は降下中でシリンダ1に空気が流入している。ロータリー弁11が全閉であるため、空気はロータリー弁11をバイパスして配置された通路9より噴流14としてシリンダ1に流入しシリンダ1内にタンブル流15を形成する。通路9は始動時の回転数150〜200rpm でシリンダ1の吸気行程の圧力が
−100mmHg(88kPa )程度になるような通路径であることが望ましい。
FIG. 1 shows a configuration diagram of an embodiment of the present invention. The cylinder 1 has a piston 2, an injection valve 3, and a spark plug 4. The intake port 5 has an intake valve 7, and the exhaust port 6 has an exhaust valve 8. The intake port 5 has a rotary valve 11. The downstream side of the rotary valve 11 of the intake port 5 is divided into two upper and lower stages by a partition wall 10. The rotary valve 11 has a cut-off portion 12 so as to close the upper and lower passages of the intake port 5. FIG. 1 shows a state in the latter half of the intake stroke when the engine is started. The intake valve 7 is opened, the piston 2 is descending, and air is flowing into the cylinder 1. Since the rotary valve 11 is fully closed, the air flows into the cylinder 1 as a jet 14 from the passage 9 arranged bypassing the rotary valve 11 and forms a tumble flow 15 in the cylinder 1. The diameter of the passage 9 is desirably such that the pressure during the intake stroke of the cylinder 1 is about -100 mmHg (88 kPa) at a rotation speed of 150 to 200 rpm at the time of starting.

図2は図1のクランク角で200度後の圧縮行程後半の状態を示す。吸気弁7は閉され、ピストン2も上昇中である。タンブル流15もやや偏平になっている。ここで噴射弁3より燃料が噴射され噴霧16が形成される。噴霧16はタンブル流15に前進を阻まれると共に、上部に持ち上げられ、点火プラグ4の付近に点火可能な混合気を形成し、全体では希薄な成層混合気(A/F=25〜30)となる。   FIG. 2 shows a state in the latter half of the compression stroke after 200 degrees at the crank angle of FIG. The intake valve 7 is closed, and the piston 2 is also rising. The tumble flow 15 is also slightly flat. Here, fuel is injected from the injection valve 3 to form a spray 16. The spray 16 is prevented from moving forward by the tumble flow 15 and is lifted upward to form an ignitable air-fuel mixture near the ignition plug 4, and the overall mixture becomes a lean stratified air-fuel mixture (A / F = 25 to 30). Become.

図3は図1を上面より見た図である。吸気ポート5は2本(5a,5b)あるいわゆる吸気2弁式のエンジンである。そのため吸気弁7(7a,7b)、隔壁10(10a,
10b)、通路9(9a,9b)は2個ずつあり、タンブル流15も15a,15bの2個生成される。通路9は、図2に示すように吸気弁7の点火プラグ4側に開口されているが、図3に示すように水平方向はシリンダの中心よりに設置することが望ましい。こうすることによりタンブル流15は相互に強め合いより強いタンブル流を作ることができる。
FIG. 3 is a view of FIG. 1 as viewed from above. The intake port 5 is a so-called intake two-valve engine having two (5a, 5b). Therefore, the intake valve 7 (7a, 7b) and the partition 10 (10a,
10b), there are two passages 9 (9a, 9b), and two tumble flows 15 are also generated, 15a and 15b. Although the passage 9 is opened on the side of the ignition plug 4 of the intake valve 7 as shown in FIG. 2, it is desirable that the passage 9 be located horizontally from the center of the cylinder as shown in FIG. In this way, the tumble flows 15 can reinforce each other to create a stronger tumble flow.

図4はエンジンの部分負荷状態を示したものである。アイドルと部分負荷は燃費が重視されるため、成層運転がされる。この状態では通路9よりの空気だけでは少ないためロータリー弁11を破線矢印のように回転し、吸気ポート5の上部通路17を空気が流れるように開口部18を上部通路17に合せる。空気は矢印19,20のように流れてシリンダ1に流入し、タンブル流15を生成する。このタンブル流により成層運転が可能となる。   FIG. 4 shows a partial load state of the engine. Since idling and partial load emphasize fuel efficiency, stratified operation is performed. In this state, since only the air from the passage 9 is small, the rotary valve 11 is rotated as shown by the dashed arrow, and the opening 18 is aligned with the upper passage 17 so that air flows through the upper passage 17 of the intake port 5. The air flows as indicated by arrows 19 and 20 and flows into the cylinder 1 to generate a tumble flow 15. This tumble flow enables stratified operation.

図5はエンジンの全負荷運転状態を示したものである。ロータリー弁11は図4より回転し、開口部18が吸気ポート5の全通路に開口している。吸入空気21a,21bは、吸気ポート5の全通路よりシリンダ1に流入する。このためタンブル流は弱くなりシリンダ内の部分的な流動となる。このような状態において、燃料の噴射時期を吸気行程にすることによりシリンダ1内を均質な混合気とすることができる。また、吸気ポート5の全面積を使用するので吸入抵抗が少なくなり、エンジン出力が大きくなる。   FIG. 5 shows the full load operation state of the engine. The rotary valve 11 rotates as shown in FIG. 4, and the opening 18 is open to the entire passage of the intake port 5. The intake air 21a, 21b flows into the cylinder 1 from all the passages of the intake port 5. As a result, the tumble flow becomes weak and becomes a partial flow in the cylinder. In such a state, by setting the fuel injection timing to the intake stroke, the inside of the cylinder 1 can be made a homogeneous mixture. Further, since the entire area of the intake port 5 is used, the intake resistance is reduced, and the engine output is increased.

図6は図1のロータリー弁11に変えて蝶弁式の半円弁22,25を使用した場合の実施例である。半円弁22は吸気ポート5の下側通路を、半円弁25は上側通路を開,閉する。弁を開く順序は半円弁25が部分負荷時に開くためはじめに開き、半円弁22は全負荷近くで開くため次に開く。   FIG. 6 shows an embodiment in which semicircular valves 22, 25 of a butterfly valve type are used in place of the rotary valve 11 of FIG. The semicircular valve 22 opens and closes the lower passage of the intake port 5, and the semicircular valve 25 opens and closes the upper passage. The order of opening the valves is to open first because the semicircular valve 25 opens at a partial load, and to open the semicircular valve 22 next to near full load.

図7は本発明の他の実施例である。図7のタイミングも図1と同様に吸気行程の後半である。吸気ポート5には下半分が閉できる蝶弁式の半円弁22がある。隔壁はバイメタル型隔壁23が設置されている。バイメタル型隔壁23は、始動時のように温度が比較的小さい時は先端が吸気ポート5の上部通路17を狭くするように移動し吸入空気24の流速を高め、始動時の小吸入空気量でも、タンブル流15を生成することができる。この実施例では通常の弁駆動法としたが、吸気弁の開閉時期が変更できるいわゆる可変バルブ機構を付加すれば、吸気弁を遅く(ピストンが下がり始めてから)開くことにより、吸気弁開弁時のシリンダ1の圧力が低くなり、シリンダに流入する空気の流速が高まり、タンブル流を強くすることができる。特にエンジン始動時は回転数が低く吸入空気量が少ないので弁の開く時期を遅くしても、エンジンの空気量が少なくなることはない。   FIG. 7 shows another embodiment of the present invention. The timing in FIG. 7 is also in the latter half of the intake stroke as in FIG. The intake port 5 has a butterfly valve type semicircular valve 22 that can close the lower half. The partition is provided with a bimetallic partition 23. When the temperature is relatively low, such as at the time of starting, the bimetal-type partition wall 23 moves so that the tip thereof narrows the upper passage 17 of the intake port 5 to increase the flow rate of the intake air 24, so that even at a small amount of intake air at the time of starting, , A tumble stream 15 can be generated. In this embodiment, the normal valve driving method is used. However, if a so-called variable valve mechanism capable of changing the opening / closing timing of the intake valve is added, the intake valve is opened late (after the piston starts lowering), thereby opening the intake valve. , The pressure of the cylinder 1 decreases, the flow velocity of the air flowing into the cylinder increases, and the tumble flow can be strengthened. Particularly, when the engine is started, the number of revolutions is low and the amount of intake air is small. Therefore, even if the valve opening timing is delayed, the amount of air in the engine does not decrease.

図8も本発明の他の実施例である。本実施例は吸気弁,排気弁をエンジンの回転角とはほぼ無関係に開,閉できる電磁力で駆動するEMV機構28,29を付加した装置とした。また、4気筒エンジンの隣り合った気筒(第1気筒と第2気筒,第3気筒と第4気筒)の吸気ポートを連通する通路27を付けたことが特徴である。図8も同様に吸気行程(第1気筒)の後半である。通路26より噴流14が噴出し、シリンダ1内にタンブル流15を生成している。ロータリー弁11は吸気ポート5を全閉している。   FIG. 8 shows another embodiment of the present invention. In this embodiment, an EMV mechanism 28 or 29 is added to drive an intake valve and an exhaust valve with an electromagnetic force that can be opened and closed almost independently of the rotation angle of the engine. Further, a feature is that a passage 27 is provided to communicate the intake ports of adjacent cylinders (first and second cylinders, third and fourth cylinders) of the four-cylinder engine. FIG. 8 similarly shows the latter half of the intake stroke (first cylinder). The jet 14 is jetted from the passage 26 to generate a tumble flow 15 in the cylinder 1. The rotary valve 11 fully closes the intake port 5.

図9は図8を上から見た図である。第1気筒のピストン2a,第2気筒のピストン2bがある。通路27は第1気筒と第2気筒の吸気ポートを連通している。図10に示すように第1気筒が吸気行程の時、第2気筒は圧縮行程にありピストン2bは上昇している。そのため、図11に示すように第2気筒の吸気弁7c,7d開くことにより、第2気筒で圧縮された空気が通路26c,26dから通路27を通って第1気筒の通路26a,26bより噴出し、シリンダ2a内にタンブル流15を生成する。   FIG. 9 is a view of FIG. 8 as viewed from above. There are a first cylinder piston 2a and a second cylinder piston 2b. The passage 27 communicates the intake ports of the first cylinder and the second cylinder. As shown in FIG. 10, when the first cylinder is in the intake stroke, the second cylinder is in the compression stroke and the piston 2b is raised. Therefore, by opening the intake valves 7c and 7d of the second cylinder as shown in FIG. 11, the air compressed in the second cylinder is ejected from the passages 26a and 26b of the first cylinder through the passages 27 and 26d and the passage 27. Then, a tumble flow 15 is generated in the cylinder 2a.

図10は4気筒エンジンの行程順序を示したものである。吸気順序はNo.1−No.3−No.4−No.2である。ピストンの動きを見ると、第1気筒と第4気筒が第2気筒と第3気筒が同じタイミングで上下している。   FIG. 10 shows the stroke order of the four-cylinder engine. The intake sequence is No.1-No.3-No.4-No.2. Looking at the movement of the piston, the first cylinder and the fourth cylinder move up and down at the same timing in the second cylinder and the third cylinder.

図11は図9の吸気弁,排気弁,ロータリー弁の動作タイミングを示したものである。第1気筒の吸気タイミングより始動する場合である。第1気筒の吸気行程の後半に吸気弁が開く。これと同じタイミングで第2気筒の吸気弁が開き、図9に示すように第2気筒から第1気筒に空気が流れる。ここで第1気筒と第2気筒の吸気弁のタイミングを同じにしたが両者に差があっても同様の効果がある。ロータリー弁11は、第1気筒の吸気行程が終了すると中間開度(吸気ポートの上側通路を開く)まで開き、アイドル運転にはいる。本実施例では、始動する最初の気筒のみが、タンブル流の強化を行う。   FIG. 11 shows the operation timing of the intake valve, the exhaust valve, and the rotary valve of FIG. This is a case where the engine is started from the intake timing of the first cylinder. The intake valve opens in the second half of the intake stroke of the first cylinder. At the same timing, the intake valve of the second cylinder opens, and air flows from the second cylinder to the first cylinder as shown in FIG. Here, the timing of the intake valve of the first cylinder and the timing of the intake valve of the second cylinder are made the same, but the same effect is obtained even if there is a difference between the two. When the intake stroke of the first cylinder is completed, the rotary valve 11 opens to an intermediate opening (opens the upper passage of the intake port), and enters the idle operation. In this embodiment, only the first cylinder to be started enhances the tumble flow.

図12は第2気筒から始動する場合である。第2気筒が吸気行程の時、第1気筒は排気行程である。しかし第1気筒の排気弁は閉した状態にしておき、第2気筒の吸気行程後半に吸気弁を開く。こうすると図9に示した場合と逆に第1気筒から第2気筒に空気が流れ、第2気筒のシリンダ内にタンブル流を生成できる。第2気筒の次に吸気するのは第1気筒であるが、第2気筒は圧縮行程であり、第1気筒に空気を導入できない(導入すると第2気筒が燃焼できない)。そのためロータリー弁11を開き、吸気ポート5の上部通路より空気を吸入し、アイドル運転に入る。ここで第1気筒の吸気弁も吸気行程の後半に開くことによりタンブル流を強くできる。本実施例では第1気筒と第2気筒からの始動する場合を説明したが第3気筒,第4気筒の場合も同様である。   FIG. 12 shows a case where the engine is started from the second cylinder. When the second cylinder is in the intake stroke, the first cylinder is in the exhaust stroke. However, the exhaust valve of the first cylinder is kept closed, and the intake valve is opened in the latter half of the intake stroke of the second cylinder. In this way, air flows from the first cylinder to the second cylinder in reverse to the case shown in FIG. 9, and a tumble flow can be generated in the cylinder of the second cylinder. The first cylinder takes in the intake air next to the second cylinder, but the second cylinder is in the compression stroke, and air cannot be introduced into the first cylinder (if introduced, the second cylinder cannot burn). Therefore, the rotary valve 11 is opened, air is sucked from the upper passage of the intake port 5, and idle operation is started. Here, the tumble flow can be strengthened by opening the intake valve of the first cylinder also in the latter half of the intake stroke. In the present embodiment, the case of starting from the first cylinder and the second cylinder has been described, but the same applies to the case of the third cylinder and the fourth cylinder.

図13に4気筒エンジンの吸気系の構成を示す。コレクタ30と各シリンダ1a,1b,1c,1dの間にロータリー弁11があり、第1気筒と第2気筒をつなぐ通路27a,第3気筒と第4気筒をつなぐ通路27bがある。このように吸気系を構成することにより、第1気筒から第4気筒までどの気筒からの始動にも対応できる。   FIG. 13 shows a configuration of an intake system of a four-cylinder engine. The rotary valve 11 is provided between the collector 30 and each of the cylinders 1a, 1b, 1c, 1d, and has a passage 27a connecting the first cylinder and the second cylinder, and a passage 27b connecting the third cylinder and the fourth cylinder. By configuring the intake system in this way, it is possible to respond to starting from any cylinder from the first cylinder to the fourth cylinder.

次に、図13の空気系の構成で特定気筒(第1気筒または第4気筒)より始動する場合の実施例を説明する。図14は第1気筒より始動する場合である。第1気筒が吸気行程の場合は、第2気筒が圧縮行程であり、通路27aを使って第2気筒の空気を第1気筒に流入させる。次に第3気筒が吸気行程になる。この時は第4気筒の排気行程を利用し、第4気筒の排気弁を閉め、吸気弁を開き通路27bを使って第4気筒の空気を第3気筒に流入させる。次の第4気筒からは通常のアイドル運転(コレクタ30より空気を導入)に移行する。そのため、ロータリー弁を中間開度まで開く。この時の吸気弁の開時期は吸気行程後半でも、吸気行程初めでも可能である。図14は第1気筒からの始動について示しているが、第4気筒からも始動可能である、この場合は第4気筒,第2気筒がタンブル流を強化した始動になり、第1気筒からは通常のアイドル運転に入る。このようにして、始動から二つの気筒はタンブル流を強化できる。   Next, an embodiment in the case of starting from a specific cylinder (first cylinder or fourth cylinder) with the configuration of the air system in FIG. 13 will be described. FIG. 14 shows a case where the engine is started from the first cylinder. When the first cylinder is in the intake stroke, the second cylinder is in the compression stroke, and the air in the second cylinder flows into the first cylinder using the passage 27a. Next, the third cylinder enters the intake stroke. At this time, using the exhaust stroke of the fourth cylinder, the exhaust valve of the fourth cylinder is closed, the intake valve is opened, and the air of the fourth cylinder flows into the third cylinder using the passage 27b. From the next fourth cylinder, a transition is made to normal idle operation (air is introduced from the collector 30). Therefore, the rotary valve is opened to the intermediate opening. The opening timing of the intake valve at this time can be in the latter half of the intake stroke or at the beginning of the intake stroke. FIG. 14 shows the start from the first cylinder. However, the start from the fourth cylinder is also possible. In this case, the start of the fourth cylinder and the second cylinder is performed with the tumble flow strengthened. Enter normal idle operation. In this way, from the start, the two cylinders can enhance the tumble flow.

図15は図1の他の実施例である。吸気弁7は開閉時期が調整できるいわゆる可変バルブ機構31が付いている。可変バルブ機構31を遅く開くことにより、始動時もシリンダ1の圧力が低くなってから吸気弁を開くことにより、タンブル流が強くできる。また、吸気弁を遅く開くと実空気時間が短くなるため、通路9の径を大きくすることができる。   FIG. 15 shows another embodiment of FIG. The intake valve 7 has a so-called variable valve mechanism 31 whose opening and closing timing can be adjusted. By opening the variable valve mechanism 31 slowly, the tumble flow can be increased by opening the intake valve after the pressure of the cylinder 1 becomes low even at the start. Further, when the intake valve is opened late, the actual air time is shortened, so that the diameter of the passage 9 can be increased.

発明の実施態様を以下列挙する。   Embodiments of the invention are listed below.

(実施態様1)
燃料をシリンダ内に直接噴射すると共に、シリンダ内に空気の縦渦(タンブル流)を形成してプラグ近傍に濃い混合気を集めて成層運転を行うものにおいて、シリンダに空気を供給する吸気通路を締め切る開閉弁と、当該開閉弁をバイパスする前記吸気通路断面積より小断面積の迂回通路とを設置け、当該迂回通路の空気の出口をシリンダ入口の吸気弁近くに開口した、筒内噴射型内燃機関。
(Embodiment 1)
In addition to directly injecting fuel into the cylinder, a vertical vortex (tumble flow) of air is formed in the cylinder to collect a rich mixture near the plug and perform stratified operation. An in-cylinder injection type in which an on-off valve to be closed and a bypass passage having a smaller cross-sectional area than the intake passage cross-sectional area that bypasses the on-off valve are installed, and an air outlet of the bypass passage is opened near an intake valve at a cylinder inlet. Internal combustion engine.

(実施態様2)
前記迂回通路の空気の出口部を前記吸気弁の点火プラグ側のシリンダ中央近くに開口したことを特徴とした実施態様1記載の筒内噴射型内燃機関。
(Embodiment 2)
An in-cylinder injection type internal combustion engine according to claim 1, wherein the air outlet of the bypass passage is opened near the center of the cylinder on the ignition plug side of the intake valve.

(実施態様3)
前記開閉弁が3位置(全閉,中間開,全開)を有するロータリー弁であることを特徴とした実施態様1または2記載の筒内噴射型内燃機関。
(Embodiment 3)
3. The direct injection internal combustion engine according to claim 1, wherein the on-off valve is a rotary valve having three positions (fully closed, intermediately opened, fully opened).

(実施態様4)
前記開閉弁が2個の半円弁の組み合わせである実施態様1または2記載の筒内噴射型内燃機関。
(Embodiment 4)
3. The direct injection internal combustion engine according to claim 1, wherein the on-off valve is a combination of two semicircular valves.

(実施態様5)
燃料をシリンダ内に直接噴射する筒内噴射型内燃機関において、シリンダに空気を導入すべくシリンダ入口に設けられた吸気弁と、この吸気弁の開閉時期を制御する電磁ソレノイド機構と、シリンダ内に空気の縦渦(タンブル流)を形成して濃混合気をプラグ近傍に集める装着と更に前記吸気通路を締め切る開閉弁とこの開閉弁をバイパスする、前記吸気通路の断面積より小断面積の迂回通路を設置し、この迂回通路の空気の出口を前記吸気弁近くに開口した筒内噴射型内燃機関。
(Embodiment 5)
In an in-cylinder injection type internal combustion engine that injects fuel directly into a cylinder, an intake valve provided at the cylinder inlet to introduce air into the cylinder, an electromagnetic solenoid mechanism that controls the opening and closing timing of this intake valve, Installation for forming a vertical vortex (tumble flow) of air to collect a rich mixture in the vicinity of the plug, and an opening / closing valve for closing the intake passage and bypassing the opening / closing valve, with a bypass having a smaller sectional area than the sectional area of the intake passage An in-cylinder injection internal combustion engine in which a passage is provided and an air outlet of the bypass passage is opened near the intake valve.

本発明の構成図。FIG. 本発明の動作図。The operation | movement figure of this invention. 本発明の上面から見た構成図。FIG. 2 is a configuration diagram of the present invention as viewed from above. 本発明の動作図。The operation | movement figure of this invention. 本発明の動作図。The operation | movement figure of this invention. 他の実施例の構成図。FIG. 9 is a configuration diagram of another embodiment. 他の実施例の構成図。FIG. 9 is a configuration diagram of another embodiment. 他の実施例の構成図。FIG. 9 is a configuration diagram of another embodiment. 他の実施例の上面から見た構成図。FIG. 9 is a configuration diagram of another embodiment viewed from the top. 4気筒エンジンの動作図。FIG. 4 is an operation diagram of a four-cylinder engine. 他の実施例の動作図。FIG. 11 is an operation diagram of another embodiment. 他の実施例の動作図。FIG. 11 is an operation diagram of another embodiment. 他の実施例の構成図。FIG. 9 is a configuration diagram of another embodiment. 他の実施例の動作図。FIG. 11 is an operation diagram of another embodiment. 他の実施例の構成図。FIG. 9 is a configuration diagram of another embodiment.

符号の説明Explanation of reference numerals

1…シリンダ、2…ピストン、3…噴射弁、4…点火プラグ、5…吸気ポート、6…排気ポート、7…吸気弁、8…排気弁、9…通路、10…隔壁、11…ロータリー弁、12…締め切り部、13…バルブ駆動機構、14…噴流、15…タンブル流、16…噴霧、
17…上部通路、20,21…空気、22…半円弁、28…EMV機構、31…可変バルブ機構。
DESCRIPTION OF SYMBOLS 1 ... Cylinder, 2 ... Piston, 3 ... Injection valve, 4 ... Spark plug, 5 ... Intake port, 6 ... Exhaust port, 7 ... Intake valve, 8 ... Exhaust valve, 9 ... Passage, 10 ... Partition wall, 11 ... Rotary valve , 12: Deadline, 13: Valve drive mechanism, 14: Jet flow, 15: Tumble flow, 16: Spray,
17 ... upper passage, 20, 21 ... air, 22 ... semicircular valve, 28 ... EMV mechanism, 31 ... variable valve mechanism.

Claims (5)

シリンダに空気を導く吸気通路を上下2段に仕切る隔壁を有する内燃機関において、前記隔壁をバイメタルで構成し、機関の低温時に前記吸気通路の下側通路を閉じる弁を設け、且つ前記バイメタルが上側通路を狭くする位置に変形するよう構成された内燃機関。   In an internal combustion engine having a partition partitioning an intake passage for introducing air into a cylinder into two upper and lower stages, the partition is made of bimetal, a valve for closing a lower passage of the intake passage when the engine is cold is provided, and An internal combustion engine configured to deform to a position that narrows a passage. 吸気弁と排気弁の開閉タイミングをエンジンの回転に無関係に制御可能な電磁式の可変バルブ機構を有し、シリンダに空気を導く吸気通路を締め切る開閉弁を有し、且つ隣り合ったシリンダの吸気通路を連通する連通路を設置し、一つの気筒の吸気行程時に前記連通路の一つを介して隣り合ったシリンダの圧縮空気を流入させることを特徴とする内燃機関。   It has an electromagnetic variable valve mechanism that can control the opening and closing timing of the intake valve and the exhaust valve independently of the rotation of the engine, has an on-off valve that shuts off the intake passage that guides air to the cylinder, and intakes air from adjacent cylinders. An internal combustion engine having a communication passage connecting the passages, wherein compressed air of adjacent cylinders flows through one of the communication passages during an intake stroke of one cylinder. 請求項7記載のものにおいて、始動時に特定の気筒を燃焼させることを特徴とする内燃機関。   The internal combustion engine according to claim 7, wherein a specific cylinder is burned at the time of starting. 機関の始動時には断面積の小さい小断面吸気通路より吸気弁を介してシリンダ内へ空気を供給し、当該シリンダ内へタンブル流を招起せしめ、機関暖気後は、吸気通路の断面積を始動時の断面積より増加させる内燃機関の吸気通路制御方法。   At the start of the engine, air is supplied into the cylinder from the small-section intake passage having a small cross-section through the intake valve through the intake valve, causing a tumble flow into the cylinder. A method for controlling the intake passage of an internal combustion engine, wherein the intake passage is increased from the sectional area of the internal combustion engine. 機関の始動時には、断面積の小さい第1吸気通路より吸気弁を介してシリンダ内へ空気を供給し、当該シリンダ内へタンブル流を招起せしめ、機関暖気後は、上下2段に分割された主吸気通路より吸気弁を介してシリンダ内へ空気を供給し、その際成層運転領域では前記主吸気通路の下側通路を閉じて前記シリンダ内にタンブル流を招起する内燃機関の空気供給方法。
When the engine is started, air is supplied into the cylinder from the first intake passage having a small cross-sectional area via the intake valve to cause a tumble flow into the cylinder. After the engine is warmed up, the cylinder is divided into upper and lower stages. An air supply method for an internal combustion engine in which air is supplied from a main intake passage into a cylinder via an intake valve, and in a stratified operation region, a lower passage of the main intake passage is closed to cause a tumble flow in the cylinder. .
JP2004082351A 2004-03-22 2004-03-22 Direct injection type internal combustion engine Withdrawn JP2004218646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082351A JP2004218646A (en) 2004-03-22 2004-03-22 Direct injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082351A JP2004218646A (en) 2004-03-22 2004-03-22 Direct injection type internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000055958A Division JP2001241329A (en) 2000-02-28 2000-02-28 Cylinder fuel injection type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004218646A true JP2004218646A (en) 2004-08-05
JP2004218646A5 JP2004218646A5 (en) 2005-09-15

Family

ID=32906272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082351A Withdrawn JP2004218646A (en) 2004-03-22 2004-03-22 Direct injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004218646A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009700A (en) * 2005-06-28 2007-01-18 Daikyoo Nishikawa Kk Intake device of multi-cylinder engine
JP2007016657A (en) * 2005-07-06 2007-01-25 Toyota Motor Corp Intake device for internal combustion engine
JP2016017467A (en) * 2014-07-09 2016-02-01 三菱自動車工業株式会社 Internal combustion engine recirculated exhaust gas introduction device
JP2020051364A (en) * 2018-09-27 2020-04-02 株式会社Subaru Intake device for internal combustion engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637253B2 (en) * 1984-01-23 1988-02-16 Kawasaki Heavy Ind Ltd
JPS6357819A (en) * 1986-08-28 1988-03-12 Mazda Motor Corp Suction device for engine
JPH02144623U (en) * 1989-05-10 1990-12-07
JPH0442220U (en) * 1990-08-06 1992-04-09
JPH0693866A (en) * 1992-09-11 1994-04-05 Suzuki Motor Corp Intake system for engine
JPH09112283A (en) * 1995-10-13 1997-04-28 Fuji Heavy Ind Ltd Opening/closing control method of intake control valve for engine
JPH112133A (en) * 1997-06-12 1999-01-06 Hitachi Ltd Air flow control method and device for cylinder injection of fuel engine
JPH11257078A (en) * 1998-01-06 1999-09-21 Nissan Motor Co Ltd Direct injection spark type internal combustion engine
JPH11324623A (en) * 1998-05-20 1999-11-26 Isuzu Ceramics Res Inst Co Ltd Engine provided with intake valve operation control device
JPH11343855A (en) * 1998-05-29 1999-12-14 Nissan Motor Co Ltd Intake controller for in-cylinder injection type spark ignition engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637253B2 (en) * 1984-01-23 1988-02-16 Kawasaki Heavy Ind Ltd
JPS6357819A (en) * 1986-08-28 1988-03-12 Mazda Motor Corp Suction device for engine
JPH02144623U (en) * 1989-05-10 1990-12-07
JPH0442220U (en) * 1990-08-06 1992-04-09
JPH0693866A (en) * 1992-09-11 1994-04-05 Suzuki Motor Corp Intake system for engine
JPH09112283A (en) * 1995-10-13 1997-04-28 Fuji Heavy Ind Ltd Opening/closing control method of intake control valve for engine
JPH112133A (en) * 1997-06-12 1999-01-06 Hitachi Ltd Air flow control method and device for cylinder injection of fuel engine
JPH11257078A (en) * 1998-01-06 1999-09-21 Nissan Motor Co Ltd Direct injection spark type internal combustion engine
JPH11324623A (en) * 1998-05-20 1999-11-26 Isuzu Ceramics Res Inst Co Ltd Engine provided with intake valve operation control device
JPH11343855A (en) * 1998-05-29 1999-12-14 Nissan Motor Co Ltd Intake controller for in-cylinder injection type spark ignition engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009700A (en) * 2005-06-28 2007-01-18 Daikyoo Nishikawa Kk Intake device of multi-cylinder engine
JP2007016657A (en) * 2005-07-06 2007-01-25 Toyota Motor Corp Intake device for internal combustion engine
JP2016017467A (en) * 2014-07-09 2016-02-01 三菱自動車工業株式会社 Internal combustion engine recirculated exhaust gas introduction device
JP2020051364A (en) * 2018-09-27 2020-04-02 株式会社Subaru Intake device for internal combustion engine
JP7163122B2 (en) 2018-09-27 2022-10-31 株式会社Subaru Intake system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2001241329A (en) Cylinder fuel injection type internal combustion engine
JP3852363B2 (en) Engine control device
US9534530B2 (en) Dedicated-EGR cylinder with variable charge motion
JP4045844B2 (en) Engine control device
WO2007116627A1 (en) Premix compression ignition engine and intake air control method for premix compression ignition engine
JPH03281915A (en) Multiple suction valve type engine
WO2017134822A1 (en) Method and device for controlling internal combustion engine
JP4140271B2 (en) Multi-cylinder engine controller
JP2004218646A (en) Direct injection type internal combustion engine
JP2007051549A (en) Fuel injection valve and direct injection engine provided with it
JP3890749B2 (en) In-cylinder direct injection internal combustion engine
JPH1136959A (en) Direct injection spark ignition type internal combustion engine
JP2001107809A (en) Gas fuel internal combustion engine
JP2010121550A (en) Engine control device, and engine control method
JP2001182586A (en) Exhaust-temperature raising device
JP4036021B2 (en) Engine control device
JP4045743B2 (en) Control device for internal combustion engine
JP2882265B2 (en) Intake device for internal combustion engine
JP4029737B2 (en) Direct-injection spark ignition internal combustion engine
JPH0791322A (en) Swirl system internal combustion engine
JP6548571B2 (en) Internal combustion engine
JPH0544501A (en) Internal combustion engine
JP2003065055A (en) Intake method for internal combustion engine and internal combustion engine
JP5766042B2 (en) Internal combustion engine
JPS62131916A (en) Spark ignition type two cycle engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070612