JP2004218436A - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP2004218436A
JP2004218436A JP2003003102A JP2003003102A JP2004218436A JP 2004218436 A JP2004218436 A JP 2004218436A JP 2003003102 A JP2003003102 A JP 2003003102A JP 2003003102 A JP2003003102 A JP 2003003102A JP 2004218436 A JP2004218436 A JP 2004218436A
Authority
JP
Japan
Prior art keywords
power generator
wind
hydraulic
nacelle
wind power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003102A
Other languages
Japanese (ja)
Inventor
Kiyokazu Yago
清和 矢後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2003003102A priority Critical patent/JP2004218436A/en
Publication of JP2004218436A publication Critical patent/JP2004218436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generator reducible in the whole weight and suitably mounted to a floating body or the like floating at sea. <P>SOLUTION: In this wind power generator 1, a hydraulic pump 43 connected to a main shaft 23a is operated when a wind mill 23 rotates receiving wind energy by blades 23c. Pressure oil generated by the drive of the hydraulic pump 43 is once stored in a pressure accumulator 35 in the floating body 10 through a pipe 41. Each pipe 41 extending from the hydraulic pump 43 in each of three nacelles 15 is collected to a pressure accumulating part 35A of the pressure accumulator 35, and pressure oil from each pipe 41 is stored in the pressure accumulating part 35A and smoothed. The pressure oil flows through a pipe 34 from the pressure accumulator 35 and is led to a hydraulic motor 33 which drives a power generator 31 through a connecting shaft 32. Since the power generator 31 and the hydraulic motor 33 are installed in the floating body 10, the wind power generator 1 can be reduced in the whole weight and is suitable for a floating body type wind power generator. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、風力エネルギーを利用して発電する風力発電装置に関する。特には、装置全体の軽量化を図ることができ、海上に浮かべた浮体等に搭載するのに適した風力発電装置に関する。
【0002】
【従来の技術】
図4を参照しつつ風力発電装置の典型例について説明する。
図4は、従来の風力発電装置の典型例(陸上用の水平軸型風力発電装置)を示す概略構成図である。
図4に示す風力発電装置100は、地盤等に埋め込まれた基礎部101上に配置されている。基礎部101からは、タワー103が立ち上がっている。タワー103の地盤上面からの高さは、一例で約60mである。タワー103の上端には、ナセル(フェアリング)105が搭載されている。
【0003】
ナセル105には風車113が回転可能に軸支されている。この風車113は、ナセル105に図示せぬベアリング等を介して取り付けられた主軸113aと、主軸113aの先端に固定されたハブ113bと、ハブ113bに取り付けられた複数枚(一例で3枚)のブレード113cを有する。風車113は、風のエネルギーをブレード113cで受けて回転する。このナセル105の下面とタワー103の上端との間には、ヨー駆動装置107が設けられている。このヨー駆動装置107は、ナセル105を水平面内で回動して、風車113を風の方向に向けるものである。
【0004】
ナセル105内には、発電機111が収容されている。この発電機111は、連結軸111aを備えている。発電機111の連結軸111aと風車113の主軸113aは、増速歯車装置115を介して連結されている。風車113が風のエネルギーを受けて回転すると、この風車113の回転が増速歯車装置115で増速されて発電機111に伝わる。すなわち、風車113の受けた風力エネルギーは、増速歯車装置115を介して、発電機111によって電気動力に変換される。
【0005】
ナセル105内において、発電機111の図4中左側には、変圧器117が接続されている。この変圧器117からは、ケーブル118が延び出ている。このケーブル118は、ナセル105内からタワー103内を通って図示せぬ電力系統に繋がっている。
【0006】
風力発電装置に関する公知文献として、特許文献1(特開平11−287179号公報)がある。
この特許文献1の発電装置は、風車の軸に直結されたラジアルポンプを備えている。このラジアルポンプの高圧側には、配管や流量調整弁を介して油圧モータが接続されており、この油圧モータに発電機が直結されている。この発電装置においては、ラジアルポンプからの吐出流量に対応して油圧モータが逐次回転し、発電機が駆動するようになっている。
ところが、この特許文献1には、風車やラジアルポンプ、油圧モータ、発電機の各構成要素のそれぞれを、基礎部・タワー・ナセルのどの場所にどのように配置するかについては、具体的に記載されていない。
【0007】
【特許文献1】
特開平11−287179号公報(図1〜図3)
【0008】
【発明が解決しようとする課題】
ところで、図4に示すような陸上用の風力発電装置とは別に、海上に設置される浮体式の風力発電装置の開発が進められている。この浮体式風力発電装置は、海上に浮かぶ浮体を基礎部とし、この浮体からタワーを立ち上げた形態のものである。この浮体式風力発電装置において、タワー上部(浮体上約60m)のナセルに発電機を収める図4の例と同様の構成とすると、相当のトップヘビーとなる。また、浮体の動揺を考慮すれば、重いナセルを支えるタワーの構造も重厚なものとならざるを得ず、なおさらトップヘビーが助長される。その結果、浮体の十分な浮力と復元力を確保するため、浮体が大型となる。さらに、このような状況下では、1隻の浮体上に多くの風車を設置することもできず、発電装置の発電性能が制限される。
【0009】
浮体式風力発電装置においては、製造コストや経済性、発電性能等の観点から、1隻の浮体上にできるだけ多くの風車を集約して搭載することが望ましい。しかしながら、この要請を満たすことのできる発電装置は、現在実現されていない。
【0010】
本発明は、このような現状に鑑みてなされたものであって、装置全体の軽量化を図ることができ、海上に浮かべた浮体等に搭載するのに適した風力発電装置を提供することを目的とする。
【0011】
【解決を課題するための手段】
前記の課題を解決するため、本発明の風力発電装置は、基礎部から立ち上がるタワーと、 該タワーの上部に搭載されたナセルと、 該ナセルに対して回転可能に軸支された風車と、 前記ナセルに配置され、前記風車の回転軸に連結された油圧ポンプと、 前記基礎部に配置された油圧モータ、及び、該油圧モータに連結された発電機と、 該油圧ポンプの発生した圧油を、前記タワーを通って前記油圧モータに供給する油圧配管と、を具備することを特徴とする。
【0012】
本発明によれば、油圧モータ及び発電機が基礎部に設置されているので、従来の水平軸型風力発電装置のように、発電機や変圧器等をナセルの中に設置しなくて済む。そのため、ナセルの重量が軽くなって、ナセルを支えるタワー、さらに、これらを支える基礎部の構造が簡単になり、装置全体の軽量化を図ることができる。このように、軽量化され、特にトップヘビーの傾向のない風力発電装置は、海上に設置する浮体式の風力発電装置に適する。
【0013】
本発明の風力発電装置においては、複数台の前記風車を具備し、 各風車の回転軸に連結された油圧ポンプからの圧油を集約する圧力蓄積装置を、前記油圧ポンプの手前の油圧回路中に有することが好ましい。
この場合、約10秒〜数分のサイクルで変動する風況の変化(風の息)に伴う各風車の回転数の変化により生じる発生油圧動力の変化を平準化できる。
【0014】
本発明の風力発電装置においては、さらに、前記ナセルに配置された、該ナセルのヨー制御機構及び前記風車のブレードのピッチ角制御機構を具備し、 該機構が前記油圧ポンプから圧油の供給を受けることが好ましい。
この場合、油圧ポンプで変換された圧力の一部を、ピッチ角制御機構及びヨー制御機構の補助動力として利用することができる。
【0015】
本発明の風力発電装置においては、前記油圧配管中に、強風時に閉となって前記風車の回転をロックする遮断弁を有することが好ましい。
この場合、強風時には遮断弁で風車の回転をロックする機能を簡単に実現できる。
【0016】
【発明の実施の形態】
以下、図面を参照しつつ説明する。
なお、以下の例では、本発明に係る風力発電装置を浮体式風力発電装置に適用した場合について述べる。このような浮体式風力発電装置は、例えば、海岸から約6〜10km、水深約30〜50mの海洋上に設置される。
【0017】
図1は、本発明の一実施の形態に係る浮体式風力発電装置の動力系統図である。
図2は、同浮体式風力発電装置の全体の外観を示す斜視図である。
図3は、同浮体式風力発電装置の概略構成図である。
図1〜図3に示すように、この風力発電装置1は、鋼製の艀状の浮体(基礎部)10を備えている。この浮体10の寸法は、一例で縦300m、横60m、深さ(厚さ)7mである。
【0018】
図2及び図3に示すように、浮体10の上面からは、この例では3基のタワー13が立ち上がっている。各タワー13の浮体10上面からの高さは、一例で約60mである。これらタワー13は、浮体10の中央部及び長手方向両端部に互いに離れて1基ずつ配置されている。
【0019】
各タワー13の上端には、ナセル15が搭載されている。このナセル15には風車23が回転可能に軸支されている。図1及び図3に示すように、この風車23は、ナセル15に図示せぬベアリング等を介して取り付けられた主軸23aと、主軸23aの先端に固定されたハブ23bと、ハブ23bに取り付けられた複数枚(この例では3枚:図2参照)のブレード23cを有する。ブレード23cは、後述するピッチ角制御装置25により、ハブ23bに対してピッチ角可変となっている。3基のタワー13上の各風車23は、後述するヨー駆動装置17で自動的に風の方向を向くようになっており、ブレード23cで風のエネルギーを受けて回転する。
【0020】
図1に示すように、風車23の主軸23a周囲には、前述したピッチ角制御装置25が設けられている。このピッチ角制御装置25は、主軸23a・ハブ23bの軸心に対するブレード23cのピッチ角を制御する。一方、ナセル15下面とタワー13上端との間には、前述したヨー駆動装置17が設けられている。このヨー駆動装置17は、ナセル15を水平面内で回動させて風車23を風向に追従させる。
【0021】
浮体10、タワー13及びナセル15内には、図1に示す動力系統が設けられている。以下、主に図1を参照しつつ、この動力系統について説明する。
ナセル15内には、油圧ポンプ43が配置されている。この油圧ポンプ43には、風車23の主軸23aが連結されている。さらに、油圧ポンプ43には、配管(油圧配管)41の一端41aが接続されている。この配管41は、ナセル15内の油圧ポンプ43からタワー13内を通って浮体10内にまで延びている。配管41の他端41bは、浮体10内に配置された圧力蓄積装置(アキュムレータ)35に接続されている。
【0022】
圧力蓄積装置35は、圧力蓄積部35Aと、弁35Bと、制御部35Cを有する。浮体10上の3基のナセル15から延び出る各配管41は、圧力蓄積装置35の圧力蓄積部35Aに集約されて接続されている。圧力蓄積装置35の手前において、配管41にはブレーキ用遮断弁45が組み込まれている。このブレーキ用遮断弁45は、後述する風況センサ53に接続されており、強風発生時には配管41内を流れる圧油を遮断し、油圧ポンプ43に接続された風車23の回転をロックする役割を果たす。なお、圧力蓄積装置35の詳しい作用については後述する。
【0023】
浮体10内において、圧力蓄積装置35には、配管34を介して油圧モータ33が接続されている。この油圧モータ33には、連結軸32を介して発電機31が接続されている。この発電機31は、図示せぬ電力系統へと繋がっている。油圧モータ33と圧力蓄積装置35とを繋ぐ配管34には、油圧モータ制御弁37が組み込まれている。ナセル15内の油圧ポンプ43内の圧油は、配管41→圧力蓄積装置35→配管34を流れて油圧モータ33に導かれる。そして、圧油が供給された油圧モータ33が連結軸32を介して発電機31を駆動する。
【0024】
ナセル15内において、油圧ポンプ43には油圧弁制御器51が接続されている。この油圧弁制御器51には、風況解析器52が接続されている。この風況解析器52には、ナセル15外に設置された風況センサ53からのケーブルが接続されている。さらに、油圧弁制御器51には、2つの配管55、57が接続されている。配管55(図1中左側:ヨー制御用配管)は、前述のヨー駆動装置17を駆動するヨー駆動油圧モータ17Aに繋がっている。配管57(図1中左側:ピッチ角制御用配管)は、前述のピッチ角制御装置25を駆動するピッチ駆動油圧モータ25Aに繋がっている。これらの配管55、57には、それぞれ弁55a、57aが組み込まれている。
【0025】
次に、前述の構成を有する風力発電装置1の総合的な作用について説明する。
風力発電装置1は、風車23がブレード23cで風のエネルギーを受けて回転すると、主軸23aに連結された油圧ポンプ43が作動する。つまり、風車23の受けた風力エネルギーは、油圧ポンプ43の駆動により圧力(油圧)に変換される。
【0026】
油圧ポンプ43の駆動で発生した圧油は、配管41を通って浮体10内の圧力蓄積装置35に一旦貯め込まれる。前述の通り、3基のナセル15内の油圧ポンプ43から延び出る各配管41は、圧力蓄積装置35の圧力蓄積部35Aに集約されており、これら配管41からの圧油は圧力蓄積部35Aに貯め込まれて平滑化される。この圧油は、圧力蓄積装置35から配管34を流れて油圧モータ33に導かれ、この油圧モータ33が連結軸32を介して発電機31を駆動する。
【0027】
このとき、圧力蓄積装置35においては、発電機31が最も効率良く運転できるよう、制御部35Cが弁35Bの開閉度を調整し、圧力蓄積部35Aからの圧油供給量を制御する。この圧力蓄積装置35の作用により、約10秒〜数分のサイクルで変動する風況の変化(風の息)に伴う各風車の回転数の変化により生じる発生油圧動力の変化を平準化できる。なお、より長いサイクルで起こる風況の強弱は、発電機31自体の容量可変調整で対応することができる。
【0028】
一方、油圧ポンプ43で変換された圧力の一部は、ピッチ角制御装置25及びヨー制御装置17の補助動力として用いられる。すなわち、ナセル15外の風況センサ53で計測された風況データが風況解析器52に送出されると、この風況解析器52が風車23の最適ブレードピッチ角及びヨー角を計算する。そして、この風況解析器52の計算結果に基づき、油圧弁制御器51が配管55、57中の弁55a、57aの開度を調整し、ヨー駆動装置17を駆動するヨー駆動油圧モータ17A及びピッチ角制御装置25を駆動するピッチ駆動油圧モータ25Aに圧油を導く。
【0029】
なお、風況センサ53が強風(例えば25m/s以上)の発生を検出した際には、ブレーキ用遮断弁45が配管41内を流れる圧油を遮断し、風車23の回転をロックする。
【0030】
このような風力発電装置1は、発電機31及び油圧モータ33が浮体10内に設置されているので、従来の水平軸型風力発電装置のように発電機等を各タワー上のナセル内に設置しなくて済む。そのため、ナセル15の重量が軽くなって、ナセル15を支えるタワー13、さらに、これらを支える浮体10の構造が簡単になり、装置全体の軽量化を図ることができる。したがって、本発明に係る風力発電装置1は、浮体式風力発電装置に優れた適用性を有する。さらに、各油圧ポンプ43からの圧油を集約して使用することで、3台の各風車23に当たる風の息による圧油発生量の変動を平準化できる。
【0031】
なお、本実施の形態では風力発電装置1を浮体式風力発電装置に適用した例について述べたが、これに限らず陸上用の水平軸型風力発電装置に適用することも勿論可能である。さらに、本実施の形態では、浮体10上に3基のタワー13を設けたものとして説明したが、タワーは1基や2基、あるいは、4基以上設置することも可能である。但し、より多くのタワーを設置した場合でも、浮体10内の圧力蓄積装置35や油圧モータ33、発電機31等は本実施の形態と同様に1台ずつとしてもよい。
【0032】
なお、具体的な油圧回路は、前掲の特許文献1(特開平11−287179号公報)に開示された技術を参考に、適宜設計変更を行うことにより構成できる。
【0033】
【発明の効果】
以上の説明から明らかなように、本発明によれば、装置全体の軽量化を図ることができ、海上に浮かべた浮体等に搭載するのに適した風力発電装置を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る浮体式風力発電装置の動力系統図である。
【図2】同浮体式風力発電装置の全体の外観を示す斜視図である。
【図3】同浮体式風力発電装置の概略構成図である。
【図4】従来の風力発電装置の典型例(陸上用の水平軸型風力発電装置)を示す概略構成図である。
【符号の説明】
10 浮体(基礎部) 13 タワー
15 ナセル 17 ヨー駆動装置
23 風車 23a 主軸
23b ハブ 23c ブレード
25 ピッチ角制御装置
31 発電機 32 連結軸
33 油圧モータ 34、55、57 配管
35 圧力蓄積装置 35A 圧力蓄積部
35B 弁 35C 制御部
37 油圧モータ制御弁 41 配管(油圧配管)
43 油圧ポンプ 45 ブレーキ用遮断弁
51 油圧弁制御器 52 風況解析器
53 風況センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wind power generator that generates power using wind energy. In particular, the present invention relates to a wind power generator that can reduce the weight of the entire apparatus and is suitable for being mounted on a floating body floating on the sea.
[0002]
[Prior art]
A typical example of the wind turbine generator will be described with reference to FIG.
FIG. 4 is a schematic configuration diagram illustrating a typical example of a conventional wind power generator (horizontal axis wind power generator for land use).
The wind power generator 100 shown in FIG. 4 is arranged on a foundation 101 embedded in the ground or the like. From the base 101, a tower 103 stands up. The height of the tower 103 from the upper surface of the ground is, for example, about 60 m. At the upper end of the tower 103, a nacelle (fairing) 105 is mounted.
[0003]
A windmill 113 is rotatably supported by the nacelle 105. The windmill 113 includes a main shaft 113a attached to the nacelle 105 via a bearing (not shown), a hub 113b fixed to the tip of the main shaft 113a, and a plurality (three in one example) attached to the hub 113b. It has a blade 113c. The windmill 113 receives wind energy by the blade 113c and rotates. A yaw driving device 107 is provided between the lower surface of the nacelle 105 and the upper end of the tower 103. The yaw driving device 107 turns the nacelle 105 in a horizontal plane to turn the windmill 113 in the wind direction.
[0004]
The generator 111 is accommodated in the nacelle 105. The generator 111 includes a connection shaft 111a. The connection shaft 111a of the generator 111 and the main shaft 113a of the windmill 113 are connected via a speed increasing gear device 115. When the windmill 113 rotates by receiving the energy of the wind, the rotation of the windmill 113 is accelerated by the speed increasing gear device 115 and transmitted to the generator 111. That is, the wind energy received by the windmill 113 is converted into electric power by the generator 111 via the speed increasing gear device 115.
[0005]
In the nacelle 105, a transformer 117 is connected to the left side of the generator 111 in FIG. A cable 118 extends from the transformer 117. The cable 118 is connected from the inside of the nacelle 105 to the power system (not shown) through the inside of the tower 103.
[0006]
As a known document relating to a wind power generator, there is Patent Document 1 (Japanese Patent Application Laid-Open No. H11-287179).
The power generator of Patent Document 1 includes a radial pump directly connected to a windmill shaft. A hydraulic motor is connected to the high-pressure side of the radial pump via a pipe or a flow control valve, and a generator is directly connected to the hydraulic motor. In this power generation device, the hydraulic motor rotates sequentially according to the discharge flow rate from the radial pump, and the generator is driven.
However, Patent Document 1 specifically describes how to arrange each of the components of the wind turbine, the radial pump, the hydraulic motor, and the generator in the base, the tower, and the nacelle. It has not been.
[0007]
[Patent Document 1]
JP-A-11-287179 (FIGS. 1 to 3)
[0008]
[Problems to be solved by the invention]
By the way, in addition to a land-based wind power generator as shown in FIG. 4, a floating wind power generator installed on the sea is being developed. This floating-type wind power generator has a form in which a floating body floating on the sea is used as a base and a tower is started from the floating body. In this floating-type wind power generator, if it has the same configuration as the example of FIG. 4 in which the generator is housed in the nacelle at the upper part of the tower (about 60 m above the floating body), it becomes a considerable top heavy. In addition, taking into account the movement of the floating body, the structure of the tower that supports the heavy nacelle must be heavy, further promoting the top heavy. As a result, the floating body becomes large in order to secure sufficient buoyancy and restoring force of the floating body. Further, in such a situation, it is not possible to install many wind turbines on one floating body, and the power generation performance of the power generator is limited.
[0009]
In the case of a floating wind power generator, it is desirable to mount as many wind turbines as possible on a single floating body from the viewpoint of manufacturing cost, economy, power generation performance, and the like. However, a power generator that can satisfy this demand has not been realized at present.
[0010]
The present invention has been made in view of such circumstances, and provides a wind power generation device that can reduce the weight of the entire device and is suitable for mounting on a floating body or the like floating on the sea. Aim.
[0011]
[Means for solving the problem]
In order to solve the above problems, a wind turbine generator of the present invention includes a tower that rises from a foundation, a nacelle mounted on an upper portion of the tower, a windmill rotatably supported with respect to the nacelle, A hydraulic pump disposed on a nacelle and connected to a rotation shaft of the wind turbine, a hydraulic motor disposed on the base, and a generator connected to the hydraulic motor; and a hydraulic oil generated by the hydraulic pump. And a hydraulic pipe for supplying the hydraulic motor through the tower.
[0012]
According to the present invention, since the hydraulic motor and the generator are installed in the foundation, it is not necessary to install a generator, a transformer, and the like in the nacelle as in a conventional horizontal axis wind power generator. Therefore, the weight of the nacelle is reduced, the structure of the tower supporting the nacelle, and the structure of the base supporting these are simplified, and the weight of the entire apparatus can be reduced. As described above, the wind turbine generator that is reduced in weight and is not particularly likely to be top-heavy is suitable for a floating wind turbine generator installed on the sea.
[0013]
In the wind power generator according to the present invention, a pressure accumulation device that includes a plurality of the wind turbines and collects pressure oil from a hydraulic pump connected to a rotation shaft of each wind turbine is provided in a hydraulic circuit in front of the hydraulic pump. Preferably.
In this case, a change in hydraulic power generated due to a change in the number of revolutions of each windmill due to a change in wind conditions (breath of wind) fluctuating in a cycle of about 10 seconds to several minutes can be leveled.
[0014]
The wind turbine generator according to the present invention further includes a yaw control mechanism for the nacelle and a pitch angle control mechanism for the blades of the windmill, which are arranged in the nacelle, and the mechanism controls the supply of pressure oil from the hydraulic pump. It is preferable to receive.
In this case, part of the pressure converted by the hydraulic pump can be used as auxiliary power for the pitch angle control mechanism and the yaw control mechanism.
[0015]
In the wind turbine generator according to the present invention, it is preferable that the hydraulic pipe has a shutoff valve that closes in a strong wind to lock the rotation of the windmill.
In this case, the function of locking the rotation of the windmill with the shut-off valve when the wind is strong can be easily realized.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, description will be made with reference to the drawings.
In the following example, a case where the wind turbine generator according to the present invention is applied to a floating wind turbine generator will be described. Such a floating wind power generator is installed on the ocean, for example, about 6 to 10 km from the shore and about 30 to 50 m in water depth.
[0017]
FIG. 1 is a power system diagram of a floating wind turbine generator according to one embodiment of the present invention.
FIG. 2 is a perspective view showing the overall appearance of the floating wind turbine generator.
FIG. 3 is a schematic configuration diagram of the floating wind turbine generator.
As shown in FIGS. 1 to 3, the wind turbine generator 1 includes a barge-shaped floating body (base portion) 10 made of steel. The dimensions of the floating body 10 are, for example, 300 m in length, 60 m in width, and 7 m in depth (thickness).
[0018]
As shown in FIGS. 2 and 3, in this example, three towers 13 rise from the upper surface of the floating body 10. The height of each tower 13 from the upper surface of the floating body 10 is, for example, about 60 m. The towers 13 are arranged one by one at the center and at both ends in the longitudinal direction of the floating body 10 so as to be separated from each other.
[0019]
A nacelle 15 is mounted on the upper end of each tower 13. A windmill 23 is rotatably supported by the nacelle 15. As shown in FIGS. 1 and 3, the windmill 23 is attached to the nacelle 15 via a bearing (not shown), a hub 23b fixed to the tip of the spindle 23a, and attached to the hub 23b. And three blades 23c in this example (see FIG. 2). The pitch angle of the blade 23c is variable with respect to the hub 23b by a pitch angle control device 25 described later. Each of the windmills 23 on the three towers 13 is automatically turned in the direction of the wind by a yaw drive device 17 described later, and rotates by receiving wind energy by the blades 23c.
[0020]
As shown in FIG. 1, the above-described pitch angle control device 25 is provided around the main shaft 23a of the wind turbine 23. This pitch angle control device 25 controls the pitch angle of the blade 23c with respect to the axes of the main shaft 23a and the hub 23b. On the other hand, the above-described yaw driving device 17 is provided between the lower surface of the nacelle 15 and the upper end of the tower 13. The yaw driving device 17 rotates the nacelle 15 in a horizontal plane to cause the windmill 23 to follow the wind direction.
[0021]
The power system shown in FIG. 1 is provided in the floating body 10, the tower 13, and the nacelle 15. Hereinafter, this power system will be described mainly with reference to FIG.
A hydraulic pump 43 is disposed in the nacelle 15. The main shaft 23a of the wind turbine 23 is connected to the hydraulic pump 43. Further, one end 41 a of a pipe (hydraulic pipe) 41 is connected to the hydraulic pump 43. The pipe 41 extends from the hydraulic pump 43 in the nacelle 15 to the inside of the floating body 10 through the inside of the tower 13. The other end 41 b of the pipe 41 is connected to a pressure accumulator (accumulator) 35 arranged in the floating body 10.
[0022]
The pressure storage device 35 includes a pressure storage unit 35A, a valve 35B, and a control unit 35C. Each of the pipes 41 extending from the three nacelles 15 on the floating body 10 is collectively connected to a pressure storage unit 35A of the pressure storage device 35. A brake shutoff valve 45 is incorporated in the pipe 41 just before the pressure storage device 35. The brake shutoff valve 45 is connected to a wind condition sensor 53 to be described later, and serves to shut off pressure oil flowing in the pipe 41 when a strong wind is generated, and to lock the rotation of the windmill 23 connected to the hydraulic pump 43. Fulfill. The detailed operation of the pressure storage device 35 will be described later.
[0023]
In the floating body 10, a hydraulic motor 33 is connected to the pressure storage device 35 via a pipe 34. The generator 31 is connected to the hydraulic motor 33 via a connection shaft 32. The generator 31 is connected to a power system (not shown). A hydraulic motor control valve 37 is incorporated in a pipe 34 connecting the hydraulic motor 33 and the pressure storage device 35. The pressure oil in the hydraulic pump 43 in the nacelle 15 flows through the pipe 41 → the pressure storage device 35 → the pipe 34 and is guided to the hydraulic motor 33. Then, the hydraulic motor 33 supplied with the pressure oil drives the generator 31 via the connection shaft 32.
[0024]
In the nacelle 15, a hydraulic valve controller 51 is connected to the hydraulic pump 43. A wind condition analyzer 52 is connected to the hydraulic valve controller 51. A cable from a wind condition sensor 53 installed outside the nacelle 15 is connected to the wind condition analyzer 52. Further, two pipes 55 and 57 are connected to the hydraulic valve controller 51. The pipe 55 (left side in FIG. 1: pipe for yaw control) is connected to the yaw drive hydraulic motor 17 </ b> A that drives the yaw drive device 17 described above. A pipe 57 (the left side in FIG. 1: a pitch angle control pipe) is connected to a pitch drive hydraulic motor 25 </ b> A that drives the above-described pitch angle control device 25. These pipes 55 and 57 incorporate valves 55a and 57a, respectively.
[0025]
Next, the overall operation of the wind turbine generator 1 having the above-described configuration will be described.
In the wind turbine generator 1, when the windmill 23 rotates by receiving wind energy with the blades 23c, the hydraulic pump 43 connected to the main shaft 23a operates. That is, the wind energy received by the windmill 23 is converted into pressure (oil pressure) by driving the hydraulic pump 43.
[0026]
The pressure oil generated by driving the hydraulic pump 43 is temporarily stored in the pressure storage device 35 in the floating body 10 through the pipe 41. As described above, the respective pipes 41 extending from the hydraulic pumps 43 in the three nacelles 15 are collected in the pressure storage section 35A of the pressure storage device 35, and the pressure oil from these pipes 41 is stored in the pressure storage section 35A. Stored and smoothed. The pressure oil flows from the pressure storage device 35 through the pipe 34 to the hydraulic motor 33, and the hydraulic motor 33 drives the generator 31 via the connection shaft 32.
[0027]
At this time, in the pressure storage device 35, the control unit 35C adjusts the degree of opening and closing of the valve 35B and controls the amount of pressure oil supplied from the pressure storage unit 35A so that the generator 31 can operate most efficiently. By the operation of the pressure storage device 35, a change in hydraulic power generated by a change in the rotation speed of each windmill accompanying a change in the wind condition (breath of wind) that fluctuates in a cycle of about 10 seconds to several minutes can be leveled. It should be noted that the strength of the wind condition occurring in a longer cycle can be dealt with by adjusting the capacity of the generator 31 itself.
[0028]
On the other hand, part of the pressure converted by the hydraulic pump 43 is used as auxiliary power for the pitch angle control device 25 and the yaw control device 17. That is, when the wind condition data measured by the wind condition sensor 53 outside the nacelle 15 is sent to the wind condition analyzer 52, the wind condition analyzer 52 calculates the optimum blade pitch angle and yaw angle of the wind turbine 23. Then, based on the calculation result of the wind condition analyzer 52, the hydraulic valve controller 51 adjusts the opening of the valves 55a and 57a in the pipes 55 and 57, and drives the yaw drive hydraulic motor 17A and the yaw drive hydraulic motor 17A. Pressure oil is guided to a pitch drive hydraulic motor 25A that drives the pitch angle control device 25.
[0029]
When the wind condition sensor 53 detects the occurrence of a strong wind (for example, 25 m / s or more), the brake shutoff valve 45 shuts off the pressure oil flowing in the pipe 41 and locks the rotation of the windmill 23.
[0030]
In such a wind power generator 1, since the generator 31 and the hydraulic motor 33 are installed in the floating body 10, the generator and the like are installed in the nacelle on each tower like a conventional horizontal axis wind power generator. You don't have to. Therefore, the weight of the nacelle 15 is reduced, the structure of the tower 13 supporting the nacelle 15 and the structure of the floating body 10 supporting them are simplified, and the weight of the entire apparatus can be reduced. Therefore, the wind power generator 1 according to the present invention has excellent applicability to a floating wind power generator. Furthermore, by using the pressure oils from the respective hydraulic pumps 43 collectively, it is possible to equalize fluctuations in the amount of pressure oil generated due to the breath of the wind hitting the three windmills 23.
[0031]
In the present embodiment, an example in which the wind turbine generator 1 is applied to a floating wind turbine generator has been described. Furthermore, in the present embodiment, three towers 13 are provided on the floating body 10, but one, two, or four or more towers can be provided. However, even when more towers are installed, the pressure accumulating device 35, the hydraulic motor 33, the generator 31 and the like in the floating body 10 may be provided one by one as in the present embodiment.
[0032]
It should be noted that a specific hydraulic circuit can be configured by making appropriate design changes with reference to the technology disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 11-287179).
[0033]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to reduce the weight of the entire apparatus, and to provide a wind power generator suitable for mounting on a floating body floating on the sea.
[Brief description of the drawings]
FIG. 1 is a power system diagram of a floating wind turbine generator according to an embodiment of the present invention.
FIG. 2 is a perspective view showing the overall appearance of the floating wind turbine generator.
FIG. 3 is a schematic configuration diagram of the floating wind turbine generator.
FIG. 4 is a schematic configuration diagram showing a typical example of a conventional wind power generator (horizontal axis wind power generator for land use).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Floating body (base part) 13 Tower 15 Nacelle 17 Yaw drive device 23 Windmill 23a Main shaft 23b Hub 23c Blade 25 Pitch angle control device 31 Generator 32 Connecting shaft 33 Hydraulic motor 34, 55, 57 Pipe 35 Pressure storage device 35A Pressure storage unit 35B valve 35C control unit 37 hydraulic motor control valve 41 piping (hydraulic piping)
43 Hydraulic pump 45 Brake shut-off valve 51 Hydraulic valve controller 52 Wind condition analyzer 53 Wind condition sensor

Claims (4)

基礎部から立ち上がるタワーと、
該タワーの上部に搭載されたナセルと、
該ナセルに対して回転可能に軸支された風車と、
前記ナセルに配置され、前記風車の回転軸に連結された油圧ポンプと、
前記基礎部に配置された油圧モータ、及び、該油圧モータに連結された発電機と、
該油圧ポンプの発生した圧油を、前記タワーを通って前記油圧モータに供給する油圧配管と、
を具備することを特徴とする風力発電装置。
A tower standing up from the foundation,
A nacelle mounted on top of the tower;
A windmill rotatably supported with respect to the nacelle,
A hydraulic pump arranged in the nacelle and connected to a rotation shaft of the windmill,
A hydraulic motor arranged on the base portion, and a generator connected to the hydraulic motor,
A hydraulic pipe for supplying the hydraulic oil generated by the hydraulic pump to the hydraulic motor through the tower,
A wind power generator, comprising:
複数台の前記風車を具備し、
各風車の回転軸に連結された油圧ポンプからの圧油を集約する圧力蓄積装置を、前記油圧ポンプの手前の油圧回路中に有することを特徴とする請求項1記載の風力発電装置。
Comprising a plurality of said windmills,
The wind power generator according to claim 1, further comprising a pressure accumulation device that collects pressure oil from a hydraulic pump connected to a rotation shaft of each windmill, in a hydraulic circuit before the hydraulic pump.
さらに、前記ナセルに配置された、該ナセルのヨー制御機構及び前記風車のブレードのピッチ角制御機構を具備し、
該機構が前記油圧ポンプから圧油の供給を受けることを特徴とする請求項1又は2記載の風力発電装置。
Further, the apparatus includes a yaw control mechanism for the nacelle and a pitch angle control mechanism for the blades of the wind turbine, which are arranged in the nacelle.
3. The wind power generator according to claim 1, wherein the mechanism receives a supply of pressure oil from the hydraulic pump.
前記油圧配管中に、強風時に閉となって前記風車の回転をロックする遮断弁を有することを特徴とする請求項1〜3いずれか1項記載の風力発電装置。The wind power generator according to any one of claims 1 to 3, further comprising a shut-off valve in the hydraulic pipe, the shut-off valve being closed in a strong wind to lock the rotation of the windmill.
JP2003003102A 2003-01-09 2003-01-09 Wind power generator Pending JP2004218436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003102A JP2004218436A (en) 2003-01-09 2003-01-09 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003102A JP2004218436A (en) 2003-01-09 2003-01-09 Wind power generator

Publications (1)

Publication Number Publication Date
JP2004218436A true JP2004218436A (en) 2004-08-05

Family

ID=32894464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003102A Pending JP2004218436A (en) 2003-01-09 2003-01-09 Wind power generator

Country Status (1)

Country Link
JP (1) JP2004218436A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037828A1 (en) * 2004-10-01 2006-04-13 Torres Martinez M Electrical power generation and desalination system on a floating plant
WO2006084748A1 (en) * 2005-02-10 2006-08-17 Westphal Werner Pressure tank
ES2265738A1 (en) * 2004-11-23 2007-02-16 Manuel Torres Martinez Electrical floating wind power generator for desalination has hydraulic pumping mechanism, actuated by operation of wind generator or motors, to pump water from aquatic medium to obtain desalinated water and/or to produce the electricity
WO2007073665A1 (en) * 2005-12-12 2007-07-05 Xiaoping Duan A wind electricity generating device and system
WO2009050547A2 (en) * 2007-09-24 2009-04-23 Blue H Intellectual Properties Cyprus Limited Conversion system of off-shore wind energy suitable for deep water
WO2009088171A2 (en) * 2008-01-10 2009-07-16 Min Sung Lee Aerogenerator
WO2009102134A2 (en) * 2008-02-11 2009-08-20 Jong-Won Park Wind-powered electricity-generation system
NL2001663C2 (en) * 2008-06-10 2009-12-11 Univ Delft Tech Energy extraction system, has water pump attached to rotor, windmill for pumping water from sea, water system connected to water pump, for passing water pumped from sea, and generator connected to water system
JP2009299456A (en) * 2008-05-16 2009-12-24 Yasuo Fushimi Power generating device and power generating method
NL1035907C (en) * 2008-09-09 2010-03-15 Guido Frederik Bakema DEVICE FOR SUPPORTING AN OFFSHORE WIND TURBINE.
JP2011089468A (en) * 2009-10-22 2011-05-06 Mitsubishi Heavy Ind Ltd Wind power generating set
US7973420B2 (en) 2008-04-26 2011-07-05 ViewTek2 LLC Energy storage
CN102126548A (en) * 2011-01-31 2011-07-20 吴速 High-pressure pump device for driving sea water to be desalinated through complementation of wind and power
JP2011521820A (en) * 2008-04-23 2011-07-28 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
EP2434151A2 (en) 2010-09-28 2012-03-28 Fuji Jukogyo Kabushiki Kaisha Wind power generator
JP2012077687A (en) * 2010-10-01 2012-04-19 Sakura Rubber Co Ltd Hydraulic system
US8278773B2 (en) 2011-08-05 2012-10-02 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and surplus energy control method for wind turbine generator
US20130009408A1 (en) * 2010-03-24 2013-01-10 Lightsail Energy Inc. Storage of compressed air in wind turbine support structure
CN102893026A (en) * 2011-11-30 2013-01-23 三菱重工业株式会社 Recovered energy-type generating set and control method thereof
CN103003564A (en) * 2011-09-22 2013-03-27 三菱重工业株式会社 Regnerative energy power generation device and rotor locking method therefor
WO2013042279A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Renewable energy-type electric power generation device and rotor affixation method for same
US8710693B2 (en) 2011-09-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of attaching and detaching blade
US8756928B2 (en) 2009-06-29 2014-06-24 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8756929B2 (en) 2009-06-29 2014-06-24 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
JP5634595B2 (en) * 2011-09-22 2014-12-03 三菱重工業株式会社 Regenerative energy type power generator and rotor fixing method thereof
US8912684B2 (en) 2009-06-29 2014-12-16 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US9109614B1 (en) 2011-03-04 2015-08-18 Lightsail Energy, Inc. Compressed gas energy storage system
JP2015222024A (en) * 2014-05-22 2015-12-10 新日鉄住金エンジニアリング株式会社 Floating power generation device and floating wind power generation device
US9243585B2 (en) 2011-10-18 2016-01-26 Lightsail Energy, Inc. Compressed gas energy storage system
US9810204B2 (en) 2010-10-15 2017-11-07 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
US9965984B2 (en) 2012-12-05 2018-05-08 Braeburn Systems, Llc Climate control panel with non-planar display
US10055323B2 (en) 2014-10-30 2018-08-21 Braeburn Systems Llc System and method for monitoring building environmental data
US10317919B2 (en) 2016-06-15 2019-06-11 Braeburn Systems Llc Tamper resistant thermostat having hidden limit adjustment capabilities
US10317867B2 (en) 2016-02-26 2019-06-11 Braeburn Systems Llc Thermostat update and copy methods and systems
US10356573B2 (en) 2014-10-22 2019-07-16 Braeburn Systems Llc Thermostat synchronization via remote input device
US10423142B2 (en) 2015-02-10 2019-09-24 Braeburn Systems Llc Thermostat configuration duplication system
US10421524B2 (en) 2014-10-27 2019-09-24 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
US10430056B2 (en) 2014-10-30 2019-10-01 Braeburn Systems Llc Quick edit system for programming a thermostat
US10761704B2 (en) 2014-06-16 2020-09-01 Braeburn Systems Llc Graphical highlight for programming a control
US10802513B1 (en) 2019-05-09 2020-10-13 Braeburn Systems Llc Comfort control system with hierarchical switching mechanisms
US10921008B1 (en) 2018-06-11 2021-02-16 Braeburn Systems Llc Indoor comfort control system and method with multi-party access
CN113212677A (en) * 2021-05-08 2021-08-06 清华大学 Offshore platform
CN113212676A (en) * 2021-05-08 2021-08-06 清华大学 Offshore platform
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
US11269364B2 (en) 2016-09-19 2022-03-08 Braeburn Systems Llc Control management system having perpetual calendar with exceptions
US11925260B1 (en) 2021-10-19 2024-03-12 Braeburn Systems Llc Thermostat housing assembly and methods

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037828A1 (en) * 2004-10-01 2006-04-13 Torres Martinez M Electrical power generation and desalination system on a floating plant
ES2265738A1 (en) * 2004-11-23 2007-02-16 Manuel Torres Martinez Electrical floating wind power generator for desalination has hydraulic pumping mechanism, actuated by operation of wind generator or motors, to pump water from aquatic medium to obtain desalinated water and/or to produce the electricity
WO2006084748A1 (en) * 2005-02-10 2006-08-17 Westphal Werner Pressure tank
WO2007073665A1 (en) * 2005-12-12 2007-07-05 Xiaoping Duan A wind electricity generating device and system
WO2009050547A2 (en) * 2007-09-24 2009-04-23 Blue H Intellectual Properties Cyprus Limited Conversion system of off-shore wind energy suitable for deep water
CN101981306A (en) * 2007-09-24 2011-02-23 布鲁H知识产权塞浦路斯有限公司 Conversion system of off-shore wind energy suitable for deep water
WO2009050547A3 (en) * 2007-09-24 2010-08-26 Blue H Intellectual Properties Cyprus Limited Conversion system of off-shore wind energy and assembly method
WO2009088171A2 (en) * 2008-01-10 2009-07-16 Min Sung Lee Aerogenerator
WO2009088171A3 (en) * 2008-01-10 2009-09-03 Min Sung Lee Aerogenerator
WO2009102134A2 (en) * 2008-02-11 2009-08-20 Jong-Won Park Wind-powered electricity-generation system
WO2009102134A3 (en) * 2008-02-11 2009-11-05 Park Jong-Won Wind-powered electricity-generation system
JP2015037935A (en) * 2008-04-23 2015-02-26 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
JP2015016860A (en) * 2008-04-23 2015-01-29 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
US9446822B2 (en) 2008-04-23 2016-09-20 Principle Power, Inc. Floating wind turbine platform with ballast control and water entrapment plate systems
JP2011521820A (en) * 2008-04-23 2011-07-28 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
US7973420B2 (en) 2008-04-26 2011-07-05 ViewTek2 LLC Energy storage
JP2009299456A (en) * 2008-05-16 2009-12-24 Yasuo Fushimi Power generating device and power generating method
JP4681061B2 (en) * 2008-05-16 2011-05-11 康男 伏見 Power generator
NL2001663C2 (en) * 2008-06-10 2009-12-11 Univ Delft Tech Energy extraction system, has water pump attached to rotor, windmill for pumping water from sea, water system connected to water pump, for passing water pumped from sea, and generator connected to water system
NL1035907C (en) * 2008-09-09 2010-03-15 Guido Frederik Bakema DEVICE FOR SUPPORTING AN OFFSHORE WIND TURBINE.
US8844277B2 (en) 2009-06-29 2014-09-30 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8919112B1 (en) 2009-06-29 2014-12-30 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8912684B2 (en) 2009-06-29 2014-12-16 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8893486B2 (en) 2009-06-29 2014-11-25 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8893487B2 (en) 2009-06-29 2014-11-25 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8806861B2 (en) 2009-06-29 2014-08-19 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8769943B2 (en) 2009-06-29 2014-07-08 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8756929B2 (en) 2009-06-29 2014-06-24 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8756928B2 (en) 2009-06-29 2014-06-24 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
JP2011089468A (en) * 2009-10-22 2011-05-06 Mitsubishi Heavy Ind Ltd Wind power generating set
US9024458B2 (en) * 2010-03-24 2015-05-05 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US20130009408A1 (en) * 2010-03-24 2013-01-10 Lightsail Energy Inc. Storage of compressed air in wind turbine support structure
US8723347B2 (en) 2010-03-24 2014-05-13 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
EP2434151A2 (en) 2010-09-28 2012-03-28 Fuji Jukogyo Kabushiki Kaisha Wind power generator
JP2012077687A (en) * 2010-10-01 2012-04-19 Sakura Rubber Co Ltd Hydraulic system
US9810204B2 (en) 2010-10-15 2017-11-07 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
CN102126548A (en) * 2011-01-31 2011-07-20 吴速 High-pressure pump device for driving sea water to be desalinated through complementation of wind and power
US9109614B1 (en) 2011-03-04 2015-08-18 Lightsail Energy, Inc. Compressed gas energy storage system
US8278773B2 (en) 2011-08-05 2012-10-02 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and surplus energy control method for wind turbine generator
WO2013021433A1 (en) * 2011-08-05 2013-02-14 三菱重工業株式会社 Wind power generation device and method for controlling excess energy of wind power generation device
JP5634595B2 (en) * 2011-09-22 2014-12-03 三菱重工業株式会社 Regenerative energy type power generator and rotor fixing method thereof
WO2013042252A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Regnerative energy power generation device and rotor locking method therefor
WO2013042279A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Renewable energy-type electric power generation device and rotor affixation method for same
CN103003564A (en) * 2011-09-22 2013-03-27 三菱重工业株式会社 Regnerative energy power generation device and rotor locking method therefor
US8624413B2 (en) 2011-09-22 2014-01-07 Mitsubishi Heavy Industries, Ltd. Regeneration energy type electric generation apparatus and its rotor fixing method
JP5518180B2 (en) * 2011-09-22 2014-06-11 三菱重工業株式会社 Regenerative energy type power generator and rotor fixing method thereof
US8710693B2 (en) 2011-09-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of attaching and detaching blade
US9243585B2 (en) 2011-10-18 2016-01-26 Lightsail Energy, Inc. Compressed gas energy storage system
WO2013080321A1 (en) * 2011-11-30 2013-06-06 三菱重工業株式会社 Regenerated energy type generating apparatus and method for producing same
CN102893026A (en) * 2011-11-30 2013-01-23 三菱重工业株式会社 Recovered energy-type generating set and control method thereof
US8502402B2 (en) 2011-11-30 2013-08-06 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and control method thereof
JP5364842B1 (en) * 2011-11-30 2013-12-11 三菱重工業株式会社 Regenerative energy power generator and control method thereof
US9965984B2 (en) 2012-12-05 2018-05-08 Braeburn Systems, Llc Climate control panel with non-planar display
US10267293B2 (en) 2013-05-20 2019-04-23 Principle Power, Inc. Methods for controlling floating wind turbine platforms
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
JP2015222024A (en) * 2014-05-22 2015-12-10 新日鉄住金エンジニアリング株式会社 Floating power generation device and floating wind power generation device
US10761704B2 (en) 2014-06-16 2020-09-01 Braeburn Systems Llc Graphical highlight for programming a control
US10931470B1 (en) 2014-10-22 2021-02-23 Braeburn Systems Llc Thermostat synchronization via remote input device
US10356573B2 (en) 2014-10-22 2019-07-16 Braeburn Systems Llc Thermostat synchronization via remote input device
US10421524B2 (en) 2014-10-27 2019-09-24 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
US10858075B2 (en) 2014-10-27 2020-12-08 Principle Power, Inc. Floating electrical connection system for offshore energy devices
US10430056B2 (en) 2014-10-30 2019-10-01 Braeburn Systems Llc Quick edit system for programming a thermostat
US10055323B2 (en) 2014-10-30 2018-08-21 Braeburn Systems Llc System and method for monitoring building environmental data
US10423142B2 (en) 2015-02-10 2019-09-24 Braeburn Systems Llc Thermostat configuration duplication system
US10174744B2 (en) 2015-06-19 2019-01-08 Principle Power, Inc. Semi-submersible floating wind turbine platform structure with water entrapment plates
US10317867B2 (en) 2016-02-26 2019-06-11 Braeburn Systems Llc Thermostat update and copy methods and systems
US10317919B2 (en) 2016-06-15 2019-06-11 Braeburn Systems Llc Tamper resistant thermostat having hidden limit adjustment capabilities
US11269364B2 (en) 2016-09-19 2022-03-08 Braeburn Systems Llc Control management system having perpetual calendar with exceptions
US10921008B1 (en) 2018-06-11 2021-02-16 Braeburn Systems Llc Indoor comfort control system and method with multi-party access
US10802513B1 (en) 2019-05-09 2020-10-13 Braeburn Systems Llc Comfort control system with hierarchical switching mechanisms
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
CN113212677A (en) * 2021-05-08 2021-08-06 清华大学 Offshore platform
CN113212676A (en) * 2021-05-08 2021-08-06 清华大学 Offshore platform
US11925260B1 (en) 2021-10-19 2024-03-12 Braeburn Systems Llc Thermostat housing assembly and methods

Similar Documents

Publication Publication Date Title
JP2004218436A (en) Wind power generator
JP5410636B2 (en) Direct drive wave energy converter
US7612462B2 (en) Floating wind turbine system
CN107407248B (en) Hydropneumatic energy-storage system and hydropneumatic energy storage component for deep-sea water
US8405238B2 (en) Wind turbine with hydraulic swivel
US7737570B2 (en) Water turbine system and method of operation
US7877992B2 (en) Hydraulic power generation system driven by compression air produced by fluid
KR101858656B1 (en) Water turbine with variable buoyancy
US20040070210A1 (en) Apparatus for production of energy from currents in bodies of water, a foundation, and a method for the installation of the apparatus
US8106527B1 (en) Hydraulic power generator
US20080088133A1 (en) Wave Activated Power Generation Device And Wave Activated Power Generation Plant
JP2009513882A (en) Turbine-driven power generation system and control method thereof
US20070132247A1 (en) Electric power generation system
NO327871B1 (en) Liquid wind power device
CN101675243A (en) Device and method for collecting the kinetic energy of a naturally moving fluid
TW200900582A (en) Dynamic fluid energy conversion system and method of use
NO323807B1 (en) Hydraulic transmission method and system
US20100123316A1 (en) Power generator barge
US20170101981A1 (en) Use of Compressed Air to Generate Energy Using Wind Turbines
KR20110031400A (en) Combined operation devices of direct pumping or generation from tidal power with the water turbines
JP2008501084A (en) Underwater power generation system
JP2007009830A (en) Float type hydraulic power generation device
GB2459447A (en) Tidal power generating unit
KR101967148B1 (en) Hydraulic wind power generation device and its method
GB2466477A (en) Floating support for offshore wind turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704