JP2004217981A - High-strength and high-toughness steel sheet with low yield ratio, and manufacturing method therefor - Google Patents

High-strength and high-toughness steel sheet with low yield ratio, and manufacturing method therefor Download PDF

Info

Publication number
JP2004217981A
JP2004217981A JP2003005466A JP2003005466A JP2004217981A JP 2004217981 A JP2004217981 A JP 2004217981A JP 2003005466 A JP2003005466 A JP 2003005466A JP 2003005466 A JP2003005466 A JP 2003005466A JP 2004217981 A JP2004217981 A JP 2004217981A
Authority
JP
Japan
Prior art keywords
strength
steel sheet
toughness
less
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003005466A
Other languages
Japanese (ja)
Other versions
JP3975920B2 (en
Inventor
Ryuji Muraoka
隆二 村岡
Shigeru Endo
茂 遠藤
Nobuyuki Ishikawa
信行 石川
Toyohisa Shingu
豊久 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003005466A priority Critical patent/JP3975920B2/en
Publication of JP2004217981A publication Critical patent/JP2004217981A/en
Application granted granted Critical
Publication of JP3975920B2 publication Critical patent/JP3975920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength and high-toughness steel sheet with a low yield ratio, which is inexpensively manufactured without adding a large quantity of alloying elements, and to provide a manufacturing method therefor. <P>SOLUTION: The high-strength and high-toughness steel sheet with a low yield ratio comprises, by mass%, 0.02% or more but less than 0.07% C, 0.01-0.5% Si, 0.5-2.0% Mn, 0.01-0.08% Al, two or more elements selected among 0.005-0.04% Ti, 0.005-0.05% Nb and 0.005-0.10% V, and the balance substantially Fe, has the ratio of a C content to the total content of Ti, Nb and V, by atom%, C/(Ti+Nb+V) of 0.5 to 3.0, and has a two-phase metal structure substantially consisting of ferrite and bainite, in which carbides containing two or more elements selected from among Ti, Nb and V are dispersingly precipitated in a bainite phase. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の分野で使用される、低降伏比高強度高靱性鋼板とその製造方法に関するものである。
【0002】
【従来の技術】
溶接鋼構造物の大型化、コスト削減の観点から、より高強度、高靭性を有する鋼板の需要が高まっている。通常、高強度高靭性鋼板は、焼入れ焼戻し処理や制御圧延・制御冷却を用いる、いわゆるTMCP法により製造されるが、焼入れ焼戻し処理は時間と手間を要し、製造コスト高である。また、TMCP法を用いて鋼材の高強度化を行なう際には、鋼材への多量の合金元素の添加が必要であり、合金元素添加によるコスト上昇、ならびに溶接熱影響部靭性の劣化が問題となる。さらに、建築、ラインパイプ等の分野においては耐震性の観点から、低降伏比が要求されている。
【0003】
焼入れ焼戻し処理の欠点を補うために、圧延後そのまま焼入れを行う直接焼入れ技術が知られている(例えば、特許文献1、特許文献2参照。)。しかし、焼戻し工程を圧延・冷却ラインと別のラインで行うため従来の形式と大差がなく、製造効率、製造コストの改善には至らない。
【0004】
一方、圧延から焼入れ焼戻し処理までを同一ラインで行い、かつ急速加熱で保持時間無しの焼戻し処理を行う技術が知られている(例えば、特許文献3、特許文献4参照。)。すべての工程を同一ラインで行うことで製造時間が短縮されるので、製造効率、製造コストが大幅に改善される。また、この技術で製造された鋼材は、急冷によってベイナイトまたはマルテンサイト組織とした後に、急速加熱焼戻しを行うことによって、過飽和に固溶した炭素が微細なセメンタイトとして析出し、さらに保持時間無しの焼戻し処理によりセメンタイトが粗大化しないため、強度靱性に優れている。
【0005】
【特許文献1】
特公昭53−6616号公報
【0006】
【特許文献2】
特公昭58−3011号公報
【0007】
【特許文献3】
特許3015923号公報
【0008】
【特許文献4】
特許3015924号公報
【0009】
【発明が解決しようとする課題】
しかし、特許文献3、特許文献4に記載の技術では、製造効率、製造コストを大幅に改善できるが、高強度の鋼を得るためには、その実施例が示すように、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やす必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。また、低降伏比化に関する記述もない。このように従来の技術では、多量の合金元素を添加することなく低降伏比高強度高靱性鋼板を製造することは困難である。
【0010】
したがって本発明の目的は、このような従来技術の課題を解決し、多量の合金元素を添加することなく、低コストで製造できる、低降伏比高強度高靱性鋼板及びその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
(1)、質量%で、C:0.02以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2.0%、Al:0.01〜0.08%を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.05%、V:0.005〜0.10%の中から選ばれる2種以上を含有し、残部が実質的にFeからなり、原子%でのC量とTi、Nb、Vの合計量の比であるC/(Ti+Nb+V)が0.5〜3.0であり、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中にTi、Nb、Vの中から選ばれる2種以上を含む炭化物が分散析出していることを特徴とする、低降伏比高強度高靱性鋼板。
(2)、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、B:0.005%以下、Ca:0.0005〜0.003%の中から選ばれる1種又は2種以上を含有することを特徴とする(1)に記載の低降伏比高強度高靱性鋼板。
(3)、(1)または(2)に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、650〜750℃の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃まで再加熱を行うことを特徴とする低降伏比高強度高靱性鋼板の製造方法。
【0012】
【発明の実施の形態】
本発明者らは低降伏比高強度鋼板の溶接熱影響部靭性改善を目的に、鋼板の製造方法を鋭意検討し、2相域での制御圧延後の加速冷却とその後の再加熱という製造プロセスにおいて、ベイナイト変態途中で再加熱を行うことによって、加速冷却時のベイナイト変態による強化に加え、再加熱時にベイナイトを主体とする硬質相中に析出する微細析出物による析出強化によって、合金元素が少なく低成分系の鋼においてもフェライトと、ベイナイトを主体とする硬質相の2相組織の高強度化が可能になるという知見を得た。そして、Ti、Nb、Vを含有する微細な複合炭化物を分散析出させることによって2相組織中の硬質相の高強度化が達成できるという知見を得た。
【0013】
本発明は上記のような、2相域圧延時に生成したフェライトと、圧延後の加速冷却ならびにその後の再加熱によって生じるTi、Nb、Vを含有する微細な複合炭化物が分散析出したベイナイトを主体とする硬質相との2相組織を有する高強度鋼板の製造方法に関するものであり、変態強化に加え析出強化を最大限に活用するため、合金元素を多量に添加する必要がなく、溶接熱影響部靭性を損なうことなく高強度化が達成できるものである。さらに、本技術により製造した2相組織鋼は、硬質相の硬さが従来法に比べて高いため軟質相と硬質相の硬度差が大きく、さらなる低降伏比化が達成できる。
【0014】
以下、本発明の低降伏比高強度高靭性鋼板について詳しく説明する。まず、本発明の高強度鋼板の組織について説明する。
【0015】
本発明の鋼板の金属組織は実質的に軟質相と硬質相の2相組織であり、実質的にはフェライトとベイナイトの2相組織である。本発明では、加速冷却時のベイナイト変態による変態強化と、加速冷却後に再加熱してベイナイトを主体とする硬質相中に析出する微細析出物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能である。一方、フェライトは軟質で延性に富んでいるが、より高強度の硬質相との2相組織とすることにより十分な強度を有するものとなる。さらに、軟質層と硬質層の硬度差が大きくなるため降伏比はさらに低いものとなる。2相組織の硬質相中はベイナイトが主体であり、マルテンサイトやパーライトなどの異なる金属組織が1種または2種以上混在する場合があるが、強度が低下するため、フェライト相とベイナイト相以外の組織分率は少ない程良い。しかし、フェライト相とベイナイト相以外の組織の体積分率が低い場合はその影響が無視できるため、トータルの体積分率で5%以下の他の金属組織を、すなわちマルテンサイト、パーライト等を1種または2種以上含有してもよい。また、強度確保の観点からベイナイト分率を10%以上に、母材の靭性確保の観点からフェライト分率を10%以上にする事が望ましい。
【0016】
次に、上記のベイナイト相(硬質相)内に分散析出する析出物について説明する。
本発明の鋼板では、硬質相中のTi、Nb、Vの中から選ばれる2種以上を含有する複合炭化物による析出強化を利用している。Ti、Nb、Vは鋼中で炭化物を形成する元素であり、個々の炭化物の析出により鋼を強化することは従来より行われているが、本発明ではTi、Nb、Vの中から選ばれる2種以上を含有する複合炭化物を微細に析出させることにより、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物が安定でかつ成長速度が遅いので、微細な析出物が得られることによるものである。
【0017】
本発明において鋼板内に分散析出する析出物である、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物は、以下に述べる成分の鋼に本発明の製造方法を用いて鋼板を製造することにより、硬質相中に分散させて得ることができる。
【0018】
次に、本発明の低降伏比高強度高靭性鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。
【0019】
C:0.02%以上、0.07%未満とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、0.07%以上では靭性を劣化させるため、C含有量を0.02以上、0.07%未満に規定する。
【0020】
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
【0021】
Mn:0.5〜2.0%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、2.0%を超えると靱性ならびに溶接性が劣化するため、Mn含有量を0.5〜2.0%に規定する。
【0022】
Al:0.01〜0.08%とする。Alは脱酸剤として添加されるが、0.01%未満では効果がなく、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.01〜0.08%に規定する。
【0023】
本発明の鋼板は、Ti、Nb、Vのの中から選ばれる2種以上を含有する。
【0024】
Ti:0.005〜0.04%とする。Tiは本発明において重要な元素である。0.005%以上添加することで、Nbおよび/またはVと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.04%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。
【0025】
Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させるが、Tiと同様に、Tiおよび/またはVと共に微細な複合炭化物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。
【0026】
V:0.005〜0.10%とする。VもTi、Nbと同様に、Tiおよび/またはNbと共に微細な複合炭化物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.10%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.10%に規定する。
【0027】
本発明の低降伏比高強度高靭性鋼板は上記の成分の鋼を用いることで、Ti、Nb、Vを含有する微細炭化物が得られるが、析出強化を最大限に利用するためには、炭化物を形成する元素の含有量の割合を以下のように制限することが望ましい。すなわち、原子%でのC量とTi、Nb、Vの合計量の比である、C/(Ti+Nb+V)は0.5〜3.0が好ましい。本発明による高強度化はTi、Nb、Vのいずれか2種以上を含む微細な複合炭化物によるものである。この微細な複合炭化物による析出強化を有効に利用するためには、C量と炭化物形成元素であるTi、Nb、V量の関係が重要であり、これらの元素を適正なバランスのもとで添加することによって、熱的に安定かつ非常に微細な複合炭化物を得ることが出来る。ただし、各元素記号は原子%での各元素の含有量である。なお、質量%の含有量を用いる場合には(C/12.01)/(Mo/95.9+Ti/47.9)で表される。
【0028】
本発明では鋼板の強度靱性をさらに改善する目的で、以下に示すCu、Ni、Cr、B、Caの1種又は2種以上を含有してもよい。
【0029】
Cu:0.50%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
【0030】
Ni:0.50%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は0.50%を上限とする。
【0031】
Cr:0.50%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.50%を上限とする。
【0032】
B:0.005%以下とする。Bは強度上昇、HAZ靭性改善に寄与する元素であるが、0.005%を越えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。
【0033】
Ca:0.0005〜0.003%とする。Caは硫化物系介在物の形態を制御して靭性を改善する。0.0005%以上でその効果が現れ、0.003%を越えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合には0.0005〜0.003%とする。
【0034】
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0035】
次に、本発明の低降伏比高強度高靭性鋼板の製造方法について説明する。
【0036】
本発明では、2相域圧延時に生成した軟質なフェライトと、加速冷却時の変態強化ならびに加速冷却後の再加熱時に析出する微細炭化物の析出強化によりさらに高強度化されたベイナイトを主体とする硬質相を組み合わせることにより、合金元素を多量に添加することなく鋼板の高強度化かつ低降伏比化を可能にする。
【0037】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1300℃、圧延終了温度:650〜750℃で熱間圧延を行い、その後5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことで、金属組織を実質的にフェライトとベイナイトの2相組織とし、Ti、Nb、Vを含有する微細炭化物をベイナイト相(ベイナイトを主体とする硬質相)中に分散析出させることができる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
【0038】
加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度ならびに降伏比が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。
【0039】
圧延終了温度:650〜750℃とする。このプロセスは本発明における重要な製造条件である。降伏比を低下させるためには軟質相と硬質相の2相組織化が有効であり軟質相と硬質相の硬度差が大きいほど降伏比は低下する。650〜750℃での圧延終了により軟質の初析フェライトを析出させた後、後述の加速冷却と再加熱処理での析出強化により高硬度のベイナイト相とし、軟質相と硬質相の硬度差が大きい2相組織が得られる。圧延終了温度が650℃未満ではフェライトが過剰に加工されるため軟質の初析フェライトが得られず降伏比の上昇と母材靱性の劣化を招き、750℃を越えるとフェライト変態が十分進行せず降伏比が上昇するため、圧延終了温度を650〜750℃とする。
【0040】
圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にパーライトを生成し、ベイナイトによる変態強化が得られないため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0041】
冷却停止温度:300〜600℃とする。冷却停止温度が300℃未満では、島状マルテンサイト(MA)が生成するため再加熱時の微細炭化物の析出が不十分となり十分な強度が得られないとともに母材靱性が劣化し、600℃を超えると冷却中にパーライトが析出するため微細炭化物の析出が不十分となり十分な強度が得られないため、加速冷却停止温度を300〜600℃に規定する。
【0042】
加速冷却後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。硬質相の強化に寄与する微細析出物は、再加熱時に析出する。このような微細析出物を得るためには、加速冷却後直ちに550〜700℃の温度域まで再加熱する必要がある。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細析出物の分散析出が得られず十分な強度を得ることができない。再加熱温度が550℃未満では十分な析出駆動力が得られず微細析出物の量が少ないため、十分な析出強化が図れず、700℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱の温度域を550〜700℃に規定する。再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分な微細析出物が得られるため高い強度が得られる。しかし、十分な微細析出物を確保するために、30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、析出物の粗大化を生じ強度低下を招く場合がある。また、再加熱後の冷却過程において冷却速度によらず微細析出物は粗大化しないため、再加熱後の冷却速度は基本的には空冷とする。
【0043】
加速冷却後の再加熱を行うための設備として、加速冷却を行なうための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。また複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。
【0044】
また、本発明の製造方法を実施するための設備の一例を図1に示す。図1に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、インライン型誘導加熱装置5、ホットレベラー6が配置されている。インライン型誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。
【0045】
【実施例】
表1に示す化学成分の鋼(鋼種A〜R)を連続鋳造法によりスラブとし、これを用いて板厚18、26mmの厚鋼板(No.1〜35)を製造した。
【0046】
【表1】

Figure 2004217981
【0047】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼板(No.1〜35)の製造条件を表2に示す。
【0048】
以上のようにして製造した鋼板の引張特性を測定した。測定結果を表2に併せて示す。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。引張強度580MPa以上を本発明に必要な強度とし、降伏比80%以下を本発明に必要な低降伏比とした。母材靱性については、圧延方向と直角方向のシャルピー衝撃試験を行い、−10℃でのシャルピー吸収エネルギーが200J以上のものを良好とした。溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。そして、−10℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。
【0049】
【表2】
Figure 2004217981
【0050】
表2において、本発明例であるNo.1〜16はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度580MPa以上の高強度で降伏比80%以下の低降伏比であり、母材ならびに溶接熱影響部の靭性は良好であった。
【0051】
No.17〜27は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、強度、降伏比、靱性のうちいずれかが不十分であった。No.28〜35は化学成分が本発明の範囲外であるので、十分な強度が得られないか、靭性が劣っていた。
【0052】
【発明の効果】
以上述べたように、本発明によれば、低降伏比高強度高靱性鋼板を、多量の合金元素を添加することなく、低コストで製造することができる。このため建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の溶接構造物に使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができる。
【図面の簡単な説明】
【図1】本発明の製造方法を実施するための製造ラインの一例を示す概略図。
【符号の説明】
1:圧延ライン、
2:鋼板、
3:熱間圧延機、
4:加速冷却装置、
5:インライン型誘導加熱装置、
6:ホットレベラー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-yield-ratio, high-strength, high-toughness steel sheet used in the fields of architecture, marine structures, line pipes, shipbuilding, civil engineering, construction machinery, and the like, and a method for producing the same.
[0002]
[Prior art]
From the viewpoint of increasing the size of welded steel structures and reducing costs, there is an increasing demand for steel sheets having higher strength and higher toughness. Usually, a high-strength and toughness steel sheet is manufactured by a so-called TMCP method using quenching and tempering treatment and controlled rolling and controlled cooling. However, quenching and tempering treatment requires time and effort, and is expensive to produce. In addition, when increasing the strength of steel using the TMCP method, it is necessary to add a large amount of alloying elements to the steel, which raises costs due to the addition of alloying elements and deteriorates the toughness of the weld heat affected zone. Become. Further, in the fields of construction, line pipes and the like, a low yield ratio is required from the viewpoint of earthquake resistance.
[0003]
In order to make up for the drawbacks of the quenching and tempering treatment, a direct quenching technique in which quenching is performed as it is after rolling is known (for example, see Patent Documents 1 and 2). However, since the tempering step is performed in a line separate from the rolling / cooling line, there is no great difference from the conventional type, and the production efficiency and production cost cannot be improved.
[0004]
On the other hand, there is known a technique in which the steps from rolling to quenching and tempering are performed on the same line, and tempering is performed by rapid heating without holding time (for example, see Patent Documents 3 and 4). Since all processes are performed on the same line, the manufacturing time is shortened, so that the manufacturing efficiency and the manufacturing cost are greatly improved. In addition, the steel material produced by this technique is rapidly cooled and tempered into a bainite or martensite structure, and then rapidly heated and tempered, whereby supersaturated solid solution carbon is precipitated as fine cementite, and further tempered without holding time. Since the treatment does not coarsen the cementite, it has excellent strength toughness.
[0005]
[Patent Document 1]
JP-B-53-6616 [0006]
[Patent Document 2]
Japanese Patent Publication No. 58-3011
[Patent Document 3]
Japanese Patent No. 3015923
[Patent Document 4]
Japanese Patent No. 3015924
[Problems to be solved by the invention]
However, the technologies described in Patent Literature 3 and Patent Literature 4 can significantly improve the production efficiency and the production cost. However, in order to obtain high-strength steel, as shown in the Examples, the carbon content of the steel material is increased. Therefore, it is necessary to increase the amount of alloying elements or to increase the amount of other alloying elements. This not only raises the cost of the material, but also degrades the toughness of the heat affected zone. Also, there is no description about lowering the yield ratio. As described above, it is difficult to produce a low-yield-ratio, high-strength, high-toughness steel sheet without adding a large amount of alloy elements with the conventional technology.
[0010]
Accordingly, an object of the present invention is to solve the problems of the prior art and to provide a low yield ratio, high strength, and high toughness steel sheet which can be manufactured at low cost without adding a large amount of alloying elements, and a method for manufacturing the same. It is in.
[0011]
[Means for Solving the Problems]
The features of the present invention for solving such a problem are as follows.
(1), by mass%, C: 0.02 or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.01 to 0 0.08%, Ti: 0.005 to 0.04%, Nb: 0.005 to 0.05%, V: 0.005 to 0.10% C / (Ti + Nb + V), which is the ratio of the amount of C in atomic% and the total amount of Ti, Nb and V, is 0.5 to 3.0, and the metal structure is substantially Low-yield-ratio, high-strength and toughness, characterized by having a two-phase structure of ferrite and bainite in which carbides containing two or more selected from Ti, Nb and V are dispersed and precipitated in the bainite phase. steel sheet.
(2) Further, in mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, B: 0.005% or less, Ca: 0.0005 to 0. The low yield ratio, high strength, and high toughness steel sheet according to (1), wherein the steel sheet contains one or more kinds selected from 003%.
(3) After heating the steel having the component composition described in (1) or (2) to a temperature of 1000 to 1300 ° C and hot rolling at a rolling end temperature of 650 to 750 ° C, 5 ° C / s Low yield ratio, high strength, and toughness characterized by performing accelerated cooling to 300 to 600 ° C. at the above cooling rate, and then immediately reheating to 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more. Steel plate manufacturing method.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to improve the toughness of the heat-affected zone of a low-yield-ratio high-strength steel sheet, the present inventors have intensively studied a method of manufacturing the steel sheet, and have conducted a manufacturing process of accelerated cooling after controlled rolling in a two-phase region and subsequent reheating. In addition, by performing reheating during the bainite transformation, in addition to strengthening by bainite transformation during accelerated cooling, precipitation strengthening by fine precipitates that precipitate in the hard phase mainly composed of bainite during reheating, alloy elements are reduced. It has been found that even in low-component steels, it is possible to increase the strength of the two-phase structure of ferrite and a hard phase mainly composed of bainite. And, it was found that by dispersing and precipitating fine composite carbides containing Ti, Nb, and V, it is possible to increase the strength of the hard phase in the two-phase structure.
[0013]
The present invention is mainly composed of bainite in which fine composite carbides containing Ti, Nb and V generated by accelerated cooling after rolling and subsequent reheating as described above are dispersed and precipitated, and ferrite generated during the two-phase region rolling. The present invention relates to a method for producing a high-strength steel sheet having a two-phase structure with a hard phase, which does not require a large amount of alloying elements to maximize the use of precipitation strengthening in addition to transformation strengthening. High strength can be achieved without impairing toughness. Further, in the dual-phase structure steel manufactured by the present technology, the hardness of the hard phase is higher than that of the conventional method, so the difference in hardness between the soft phase and the hard phase is large, and a further lower yield ratio can be achieved.
[0014]
Hereinafter, the low yield ratio, high strength, and high toughness steel sheet of the present invention will be described in detail. First, the structure of the high-strength steel sheet of the present invention will be described.
[0015]
The metal structure of the steel sheet of the present invention is substantially a two-phase structure of a soft phase and a hard phase, and is substantially a two-phase structure of ferrite and bainite. In the present invention, the alloy element is obtained by combining and utilizing transformation strengthening by bainite transformation at the time of accelerated cooling and precipitation strengthening by fine precipitates precipitated in a hard phase mainly composed of bainite by reheating after accelerated cooling. Can be increased without adding a large amount of. On the other hand, ferrite is soft and highly ductile, but has sufficient strength by forming a two-phase structure with a hard phase having higher strength. Further, since the difference in hardness between the soft layer and the hard layer increases, the yield ratio becomes even lower. In the hard phase having the two-phase structure, bainite is mainly contained, and one or two or more different metal structures such as martensite and pearlite may be mixed. However, since the strength is reduced, other than the ferrite phase and the bainite phase. The smaller the tissue fraction, the better. However, when the volume fraction of the structure other than the ferrite phase and the bainite phase is low, the effect is negligible. Therefore, another metal structure of 5% or less in total volume fraction, that is, one kind of martensite, pearlite, etc. Or you may contain 2 or more types. Further, it is desirable that the bainite fraction be 10% or more from the viewpoint of securing strength and the ferrite fraction be 10% or more from the viewpoint of securing toughness of the base material.
[0016]
Next, the precipitates dispersed and precipitated in the bainite phase (hard phase) will be described.
The steel sheet of the present invention utilizes precipitation strengthening by a composite carbide containing two or more selected from Ti, Nb, and V in the hard phase. Ti, Nb, and V are elements that form carbides in the steel, and strengthening the steel by precipitation of individual carbides has been conventionally performed, but in the present invention, it is selected from Ti, Nb, and V. It is a feature that a greater effect of improving strength can be obtained by finely depositing a composite carbide containing two or more types. This unprecedented great strength-improving effect is due to the fact that the composite carbide containing two or more selected from Ti, Nb and V is stable and has a low growth rate, so that fine precipitates can be obtained. .
[0017]
In the present invention, a composite carbide containing two or more selected from Ti, Nb, and V, which is a precipitate dispersed and precipitated in a steel sheet, is produced by using the production method of the present invention for steel having the components described below. Can be obtained by dispersing in a hard phase.
[0018]
Next, the chemical composition of the low-yield-ratio high-strength high-toughness steel sheet of the present invention will be described. In the following description, all units indicated by% are mass%.
[0019]
C: 0.02% or more and less than 0.07%. C is an element that contributes to precipitation strengthening as carbide, but if it is less than 0.02%, sufficient strength cannot be secured, and if it is 0.07% or more, toughness is deteriorated. 0.07%.
[0020]
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidizing effect is not sufficient, and if it exceeds 0.5%, toughness and weldability are deteriorated. Specify 5%.
[0021]
Mn: 0.5 to 2.0%. Mn is added for strength and toughness, but if it is less than 0.5%, its effect is not sufficient, and if it exceeds 2.0%, toughness and weldability are deteriorated. It is defined as 0%.
[0022]
Al: 0.01 to 0.08%. Al is added as a deoxidizing agent, but if it is less than 0.01%, there is no effect, and if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates. It is regulated to 0.08%.
[0023]
The steel sheet of the present invention contains two or more selected from Ti, Nb, and V.
[0024]
Ti: 0.005 to 0.04%. Ti is an important element in the present invention. By adding 0.005% or more, a composite precipitate is formed with Nb and / or V and greatly contributes to an increase in strength. However, the addition of more than 0.04% causes deterioration of the toughness of the weld heat affected zone, so the Ti content is specified to be 0.005 to 0.04%.
[0025]
Nb: 0.005 to 0.07%. Nb improves toughness by making the structure finer, but, like Ti, forms a fine composite carbide with Ti and / or V and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the heat affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.
[0026]
V: 0.005 to 0.10%. V forms a fine composite carbide with Ti and / or Nb similarly to Ti and Nb, and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.10%, the toughness of the heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.10%.
[0027]
The low yield ratio, high strength, and high toughness steel sheet of the present invention can obtain fine carbides containing Ti, Nb, and V by using steels having the above-described components. It is desirable to restrict the proportion of the content of the element forming the following as follows. That is, C / (Ti + Nb + V), which is the ratio of the amount of C in atomic% to the total amount of Ti, Nb, and V, is preferably 0.5 to 3.0. The increase in strength according to the present invention is due to a fine composite carbide containing at least two of Ti, Nb, and V. In order to effectively utilize the precipitation strengthening by this fine composite carbide, the relationship between the amount of C and the amounts of Ti, Nb, and V, which are carbide forming elements, is important, and these elements are added in an appropriate balance. By doing so, a thermally stable and very fine composite carbide can be obtained. Here, each element symbol is the content of each element in atomic%. When the content of mass% is used, it is represented by (C / 12.01) / (Mo / 95.9 + Ti / 47.9).
[0028]
In the present invention, for the purpose of further improving the strength toughness of the steel sheet, one or more of Cu, Ni, Cr, B, and Ca shown below may be contained.
[0029]
Cu: 0.50% or less. Cu is an element effective for improving the toughness and increasing the strength. However, when added in a large amount, the weldability deteriorates. Therefore, when added, the upper limit is 0.50%.
[0030]
Ni: 0.50% or less. Ni is an element effective for improving the toughness and increasing the strength. However, if it is added in a large amount, it is disadvantageous in terms of cost and the toughness of the heat affected zone is deteriorated. I do.
[0031]
Cr: 0.50% or less. Cr is an element effective for obtaining sufficient strength even at a low C like Mn, but when added in a large amount, the weldability is deteriorated. Therefore, when added, the upper limit is 0.50%.
[0032]
B: 0.005% or less. B is an element that contributes to an increase in strength and improvement in HAZ toughness. However, if added in excess of 0.005%, the weldability deteriorates.
[0033]
Ca: 0.0005 to 0.003%. Ca controls the morphology of sulfide inclusions to improve toughness. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is deteriorated. And
[0034]
The balance other than the above substantially consists of Fe. The fact that the balance is substantially made of Fe means that the substance containing other trace elements including unavoidable impurities can be included in the scope of the present invention unless the effects of the present invention are eliminated.
[0035]
Next, a method for producing the low yield ratio, high strength, and high toughness steel sheet of the present invention will be described.
[0036]
In the present invention, a soft ferrite produced during the two-phase rolling, a hardened mainly bainite, which is further strengthened by transformation strengthening during accelerated cooling and precipitation strengthening of fine carbides precipitated during reheating after accelerated cooling. By combining the phases, it is possible to increase the strength and lower the yield ratio of the steel sheet without adding a large amount of alloying elements.
[0037]
The high-strength steel sheet of the present invention uses steel having the above-described composition, and is hot-rolled at a heating temperature of 1000 to 1300 ° C and a rolling end temperature of 650 to 750 ° C, and then at a cooling rate of 5 ° C / s or more. By performing accelerated cooling to 300 to 600 ° C. and immediately thereafter reheating to a temperature of 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more, the metal structure substantially becomes two phases of ferrite and bainite. A fine carbide containing Ti, Nb, and V can be dispersed and precipitated in a bainite phase (a hard phase mainly composed of bainite). Here, the temperature is the average temperature of the steel sheet. Hereinafter, each manufacturing condition will be described in detail.
[0038]
Heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength and yield ratio cannot be obtained. If the heating temperature exceeds 1300 ° C., the base material toughness deteriorates.
[0039]
Rolling end temperature: 650-750 ° C. This process is an important manufacturing condition in the present invention. In order to lower the yield ratio, it is effective to form a two-phase structure of a soft phase and a hard phase. The larger the difference in hardness between the soft phase and the hard phase, the lower the yield ratio. After precipitation of soft pro-eutectoid ferrite by the end of rolling at 650 to 750 ° C., a high hardness bainite phase is formed by accelerated cooling and precipitation strengthening by reheating treatment described later, and the hardness difference between the soft phase and the hard phase is large. A two-phase structure is obtained. If the rolling end temperature is lower than 650 ° C., the ferrite is excessively worked, so that soft pro-eutectoid ferrite cannot be obtained, leading to an increase in the yield ratio and deterioration of the base material toughness. Since the yield ratio increases, the rolling end temperature is set to 650 to 750 ° C.
[0040]
Immediately after the rolling is completed, cooling is performed at a cooling rate of 5 ° C./s or more. If the cooling rate is less than 5 ° C./s, pearlite is generated at the time of cooling, and transformation strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. Therefore, the cooling rate after the completion of rolling is specified to be 5 ° C./s or more. Regarding the cooling method at this time, any cooling equipment can be used depending on the manufacturing process.
[0041]
Cooling stop temperature: 300 to 600 ° C. If the cooling stop temperature is lower than 300 ° C, island-like martensite (MA) is generated, so that precipitation of fine carbides upon reheating is insufficient, sufficient strength cannot be obtained, and the base material toughness deteriorates. If it exceeds, pearlite precipitates during cooling, so that precipitation of fine carbides becomes insufficient and sufficient strength cannot be obtained. Therefore, the accelerated cooling stop temperature is specified to be 300 to 600 ° C.
[0042]
Immediately after the accelerated cooling, reheating is performed to a temperature of 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more. This process is an important manufacturing condition in the present invention. Fine precipitates that contribute to strengthening of the hard phase precipitate during reheating. In order to obtain such fine precipitates, it is necessary to reheat to a temperature range of 550 to 700 ° C. immediately after accelerated cooling. If the heating rate is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated, and pearlite transformation occurs, so that fine precipitates cannot be dispersed and deposited. Sufficient strength cannot be obtained. If the reheating temperature is lower than 550 ° C, sufficient precipitation driving force cannot be obtained and the amount of fine precipitates is small, so that sufficient precipitation strengthening cannot be achieved. If the reheating temperature is higher than 700 ° C, the precipitates are coarsened and sufficient strength is obtained. Therefore, the temperature range for reheating is specified to be 550 to 700 ° C. At the reheating temperature, there is no particular need to set the temperature holding time. If the production method of the present invention is used, even if it is cooled immediately after reheating, a sufficient fine precipitate can be obtained, so that high strength can be obtained. However, in order to secure sufficient fine precipitates, the temperature can be maintained within 30 minutes. If the temperature is maintained for more than 30 minutes, the precipitates may become coarse and the strength may be reduced. Further, in the cooling process after the reheating, the fine precipitates do not become coarse regardless of the cooling speed. Therefore, the cooling speed after the reheating is basically air-cooled.
[0043]
As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or an induction heating device capable of rapidly heating a steel sheet. The induction heating device is particularly preferable because the temperature control is easy and the cost is relatively low as compared with the soaking furnace and the like, and the steel plate after cooling can be quickly heated. In addition, by arranging a plurality of induction heating devices in series, even if the line speed and the type and size of the steel sheet are different, simply setting the number of induction heating devices to be energized arbitrarily, the heating rate, It is possible to freely control the reheating temperature.
[0044]
FIG. 1 shows an example of equipment for carrying out the production method of the present invention. As shown in FIG. 1, a hot rolling mill 3, an accelerating cooling device 4, an in-line induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from upstream to downstream. By installing the in-line induction heating device 5 or another heat treatment device on the same line as the hot rolling mill 3 as a rolling facility and the accelerated cooling device 4 as a subsequent cooling facility, the rolling and cooling can be quickly performed. Since reheating treatment can be performed, heating can be performed without excessively lowering the temperature of the steel sheet after rolling and cooling.
[0045]
【Example】
Steels having the chemical components shown in Table 1 (steel types A to R) were formed into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 35) having a plate thickness of 18, 26 mm were manufactured using the slabs.
[0046]
[Table 1]
Figure 2004217981
[0047]
After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility, and reheated using an induction heating furnace or a gas combustion furnace. The induction heating furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the manufacturing conditions of each steel plate (Nos. 1 to 35).
[0048]
The tensile properties of the steel sheet manufactured as described above were measured. Table 2 also shows the measurement results. The tensile properties were measured by performing a tensile test using a test specimen having a total thickness in the direction perpendicular to the rolling direction as a tensile test specimen. A tensile strength of 580 MPa or more was defined as a strength required for the present invention, and a yield ratio of 80% or less was defined as a low yield ratio required for the present invention. As for the base metal toughness, a Charpy impact test in a direction perpendicular to the rolling direction was performed, and those having a Charpy absorbed energy at −10 ° C. of 200 J or more were evaluated as good. Regarding the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a heat input of 40 kJ / cm was added by a reproducible heat cycle device. Those having a Charpy absorbed energy at -10 ° C of 100 J or more were evaluated as good.
[0049]
[Table 2]
Figure 2004217981
[0050]
In Table 2, in Example No. of the present invention. All of Nos. 1 to 16 have a chemical composition and a production method within the range of the present invention, a high strength of 580 MPa or more, a low yield ratio of 80% or less, and a toughness of a base material and a weld heat affected zone. Was good.
[0051]
No. In Nos. 17 to 27, the chemical components were within the range of the present invention, but any of the strength, the yield ratio, and the toughness were insufficient because the production method was out of the range of the present invention. No. Nos. 28 to 35 did not have sufficient strength or were poor in toughness because the chemical components were outside the range of the present invention.
[0052]
【The invention's effect】
As described above, according to the present invention, a low-yield-ratio, high-strength, high-toughness steel sheet can be manufactured at low cost without adding a large amount of alloying elements. For this reason, steel plates used for welding structures such as buildings, marine structures, line pipes, shipbuilding, civil engineering, construction machinery, etc. can be stably manufactured at low cost and in large quantities, and productivity and economic efficiency are significantly increased. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a production line for performing a production method of the present invention.
[Explanation of symbols]
1: rolling line,
2: steel plate,
3: hot rolling mill,
4: accelerated cooling device,
5: In-line induction heating device,
6: Hot leveler

Claims (3)

質量%で、C:0.02以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2.0%、Al:0.01〜0.08%を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.05%、V:0.005〜0.10%の中から選ばれる2種以上を含有し、残部が実質的にFeからなり、原子%でのC量とTi、Nb、Vの合計量の比であるC/(Ti+Nb+V)が0.5〜3.0であり、金属組織が実質的にフェライトとベイナイトの2相組織であり、ベイナイト相中にTi、Nb、Vの中から選ばれる2種以上を含む炭化物が分散析出していることを特徴とする、低降伏比高強度高靱性鋼板。In mass%, C: 0.02 or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.08% Containing two or more selected from Ti: 0.005 to 0.04%, Nb: 0.005 to 0.05%, and V: 0.005 to 0.10%, with the balance being substantially C / (Ti + Nb + V), which is the ratio of the amount of C in atomic% to the total amount of Ti, Nb, and V, is 0.5 to 3.0, and the metal structure is substantially ferrite and bainite. A low yield ratio, high strength and high toughness steel sheet, characterized in that carbides containing two or more selected from Ti, Nb and V are dispersed and precipitated in the bainite phase. さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、B:0.005%以下、Ca:0.0005〜0.003%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載の低降伏比高強度高靱性鋼板。Further, by mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, B: 0.005% or less, and Ca: 0.0005 to 0.003% The low-yield-ratio high-strength high-toughness steel sheet according to claim 1, comprising one or more selected from the group consisting of: 請求項1または請求項2に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、650〜750℃の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃まで再加熱を行うことを特徴とする低降伏比高強度高靱性鋼板の製造方法。The steel having the component composition according to claim 1 or 2 is heated to a temperature of 1000 to 1300 ° C, and hot-rolled at a rolling end temperature of 650 to 750 ° C, and then cooled at a rate of 5 ° C / s or more. A method of producing a low-yield-ratio, high-strength, high-toughness steel sheet, wherein the steel sheet is subjected to accelerated cooling to 300 to 600 ° C. and immediately reheated to 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more. .
JP2003005466A 2003-01-14 2003-01-14 Low yield ratio high strength high toughness steel sheet and method for producing the same Expired - Lifetime JP3975920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005466A JP3975920B2 (en) 2003-01-14 2003-01-14 Low yield ratio high strength high toughness steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005466A JP3975920B2 (en) 2003-01-14 2003-01-14 Low yield ratio high strength high toughness steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004217981A true JP2004217981A (en) 2004-08-05
JP3975920B2 JP3975920B2 (en) 2007-09-12

Family

ID=32896114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005466A Expired - Lifetime JP3975920B2 (en) 2003-01-14 2003-01-14 Low yield ratio high strength high toughness steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3975920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779865A (en) * 2016-05-30 2016-07-20 山东钢铁股份有限公司 Thin gauge steel plate used for marine engineering and preparation method thereof
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
CN114686765A (en) * 2022-03-31 2022-07-01 鞍钢股份有限公司 420 MPa-grade high-toughness extra-thick plate and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
CN105779865A (en) * 2016-05-30 2016-07-20 山东钢铁股份有限公司 Thin gauge steel plate used for marine engineering and preparation method thereof
CN114686765A (en) * 2022-03-31 2022-07-01 鞍钢股份有限公司 420 MPa-grade high-toughness extra-thick plate and manufacturing method thereof
CN114686765B (en) * 2022-03-31 2023-03-03 鞍钢股份有限公司 420 MPa-grade high-toughness extra-thick plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP3975920B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5217413B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2004003015A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP2014198866A (en) Low yield ratio high tensile steel sheet excellent in heat affected zone toughness and method of producing the same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4385622B2 (en) Manufacturing method of high-strength steel sheet
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2004003014A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP2004218081A (en) Method for producing high-tension steel plate
JP3975920B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3891030B2 (en) High strength steel plate and manufacturing method thereof
JP2003321729A (en) High strength steel sheet having excellent weld heat affected zone toughness and production method thereof
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term