JP2004217471A - Method of manufacturing gaseous carbon dioxide absorption material - Google Patents

Method of manufacturing gaseous carbon dioxide absorption material Download PDF

Info

Publication number
JP2004217471A
JP2004217471A JP2003006987A JP2003006987A JP2004217471A JP 2004217471 A JP2004217471 A JP 2004217471A JP 2003006987 A JP2003006987 A JP 2003006987A JP 2003006987 A JP2003006987 A JP 2003006987A JP 2004217471 A JP2004217471 A JP 2004217471A
Authority
JP
Japan
Prior art keywords
carbon dioxide
furnace
mixture
gaseous carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006987A
Other languages
Japanese (ja)
Inventor
Kazuhide Kawai
和秀 河合
Hideo Uemoto
英雄 上本
Kazuji Matsuyama
和司 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003006987A priority Critical patent/JP2004217471A/en
Publication of JP2004217471A publication Critical patent/JP2004217471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a gaseous carbon dioxide absorption material capable of efficiently removing gaseous carbon dioxide produced in a synthetic reaction from the reaction system and capable of continuing the removal of gaseous carbon dioxide through a long period of the synthetic treatment even when it takes a long time to increase the inside temperature by the heat transfer with the increase of the volume of a material to be synthesized. <P>SOLUTION: In the method of manufacturing the gaseous carbon dioxide absorption material composed essentially of lithium silicate, the lithium silicate main structural phase of which is Li<SB>4</SB>SiO<SB>4</SB>is synthesized by heat-treating a mixture of lithium carbonate and silica being a raw material under a pressure lower than the atmospheric pressure or replacing the atmosphere of a furnace by air or other gas in which the concentration of gaseous carbon dioxide is the same or lower degree as that in the air at a rate of ≥1 L/sec per 1kg mixture. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、リチウムシリケートを主成分とする炭酸ガス吸収材料(たとえば室温から700℃程度の温度域において炭酸ガスを吸収する材料)の製造方法に関するものである。
【0002】
【従来の技術】
室温から700℃程度の温度域で炭酸ガスを有効に吸収できる材料として、リチウムシリケートを主成分とする吸収材が知られている。
【0003】
LixSiyOz(x+4y−2z=0)で表されるリチウムシリケートからなる群から選ばれる炭酸ガス吸収材が知られている(例えば、特許文献1参照)。
【0004】
炭酸ガスと反応して炭酸リチウムを生成するリチウム複合酸化物の一つとして、リチウムシリケートからなる炭酸ガス吸収材が知られている(例えば、特許文献2参照)。そのリチウムシリケートの粒子径が0.1〜10μmであることが好適であることが示されている。炭酸ガスと化学反応して吸収する上で反応効率が良いからである。
【0005】
リチウムシリケートとしてLiSiOが好適であることが知られている(例えば、特許文献3参照)。さらに、シリカと炭酸リチウムの混合物を大気中1000℃で熱処理してLiSiOを合成する実施例が示されている。
【0006】
リチウムシリケート(LiSiO)が炭酸ガスを吸収するときの化学反応は、以下の式(1)で表される。
【0007】
LiSiO+2CO=SiO+2LiCO…式(1)
式(1)の反応は可逆反応であり、式(1)の逆の反応では、式(2)に示されるように、シリカと炭酸リチウムからリチウムシリケートが合成される。
【0008】
SiO+2LiCO=LiSiO+2CO…式(2)
【0009】
【特許文献1】
特開2000−262890号公報
【0010】
【特許文献2】
特開2001−232184号公報
【0011】
【特許文献3】
特開2001−096122号公報
【0012】
【発明が解決しようとする課題】
リチウムシリケートの製造に際して、シリカと炭酸リチウムからリチウムシリケート(LiSiO)を合成する反応は、前述の式(2)に示すとおりであるが、反応生成物である炭酸ガス(CO)の分圧が反応系の温度によって定まる 平衡分圧以下でないと、反応が進行しない。したがって、反応を効率的に起こさせるためには、反応系から炭酸ガスを除去することが望ましい。
【0013】
さらに、式(2)は総括反応式であり、実際の反応は、以下の2つの反応式で表される。
【0014】
SiO+LiCO=LiSiO+CO…式(3)
LiSiO+LiCO=LiSiO+CO…式(4)
原料の炭酸リチウムが溶融して合成反応が活発化する750℃の温度では、式(3)における平衡炭酸ガス分圧は100気圧以上であるが、式(4)では、2気圧以下程度である。したがって、式(3)の反応の進行による被合成物の固化や炭酸リチウムの溶融により、被合成物の内部が密閉化され、系の炭酸ガス分圧が上昇すると、式(4)の反応が進行しなくなる。この状態で温度がさらに上昇すると、溶融した炭酸リチウムの系からの分離が生じて、最終的に、効率的な合成が不可能になる。特に工業的な製造の場合、被合成物の体積が増すほど、上記現象が顕著になるという問題がある。
【0015】
本発明の目的は、上述した問題を解決するために、合成反応によって生成する炭酸ガスを反応系から効率的に除去することができる炭酸ガス吸収材の製造方法を提供することである。
【0016】
また、本発明の他の目的は、被合成物の体積が増す程、伝熱により内部の温度が上昇するのに長い時間を要する場合であっても、合成処理の長い時間にわたって炭酸ガスを除去し続けることができる炭酸ガス吸収材の製造方法を提供することである。
【0017】
【課題を解決するための手段】
本発明の解決手段を例示すると、次のとおりである。
【0018】
(1)リチウムシリケートを主成分とする炭酸ガス吸収材の製造方法において、原料である炭酸リチウムとシリカの混合物を熱処理して、主な構成相がLi SiOであるリチウムシリケートを合成するに際し、大気圧よりも低い圧力下 で混合物を熱処理することを特徴とする炭酸ガス吸収材料の製造方法。
【0019】
(2)リチウムシリケートを主成分とする炭酸ガス吸収材の製造方法において、原料である炭酸リチウムとシリカの混合物を炉内で熱処理して、主な構成相がLiSiOであるリチウムシリケートを合成するに際し、炉内の雰囲気を、空気または炭酸ガス濃度が空気と同程度以下の他のガスで、混合物1kgあたり毎分1リットル以上置換することを特徴とする炭酸ガス吸収材料の製造方法。
【0020】
【発明の実施の形態】
本発明の好ましい実施の形態においては、シリカと炭酸リチウムの混合物を800℃で熱処理(焼成)して、リチウムシリケートを合成する。その主な構成相は、LiSiOである。この合成反応は、大気中では、前述の式(3)及び(4)に示すように進行するが、炭酸リチウムの溶融する700℃程度の温度域では、反応速度が速い。この時、特に式(4)で示される反応生成物である炭酸ガスを混合物から除去するのである。それにより、効率的な合成が可能となる。
【0021】
混合物の熱処理の際に、合成炉の内部を真空吸引などの方法で減圧すると、混合物から効率的に炭酸ガスを除去することができる。圧力は大気圧未満であれば、炭酸ガスの除去に効果があるが、好ましくは0.99気圧以下である。さらに、圧力がそれよりも低い程、炭酸ガスを除去することが効果的である。
【0022】
また、合成炉内を減圧状態にする代わりに、あるいは、それと同時に、炉内に空気などのガスを供給して、別のガスで雰囲気を置換することも、効率的な合成に効果がある。混合物表面の炭酸ガス分圧を減少させると、混合物内部から炭酸ガスが拡散して、混合物から炭酸ガスが除去されるので、効率的な合成に効果が生じるのである。
【0023】
置換用に供給するガス量は、混合物1kgあたり毎分1リットル以上にするのが効果的である。供給量が少ないと、炉内の炭酸ガス分圧(濃度)が増加するために、混合物の内部と表面との炭酸ガス濃度勾配が小さくなりすぎて、炭酸ガスが混合物から効率的に除去されない。ガス量は、好ましくは混合物1kgあたり毎分2リットル以上である。
【0024】
減圧状態にて製造した炭酸ガス吸収材は、従来の方法で製造したものに比べ、結晶粒子径が小さく、体積あたりの表面積が増加して炭酸ガス吸収能力が向上する効果が得られる。
【0025】
【実施例】
以下、本発明の実施例1〜7と比較例1〜2を説明する。
【0026】
実施例1
シリカ粉末と炭酸リチウム粉末をモル比で1:2の割合で秤取った後、湿式混合・粉砕を行って、平均粒子径3μmの混合物粉末を得た。この混合物粉末1kgを、寸法が150mm×150mmのアルミナ製の「さや」に厚さ70mmに充てんして、密閉された電気炉の中で、800℃で熱処理した。具体的にいえば、800℃までの昇温は毎時100℃とし、800℃で5時間熱処理した。この熱処理により、合成粉末を得た。熱処理を行う間、炉内を真空吸引して、炉内の圧力を0.99気圧に保った。
【0027】
実施例2
炉内の圧力を0.90気圧にした以外は、前述の実施例1と同じ条件で、合成粉末を製造した。
【0028】
実施例3
炉内の圧力を0.50気圧にした以外は、前述の実施例1と同じ条件で、合成粉末を合成した。
【0029】
実施例4
炉内の圧力を0.01気圧にした以外は、前述の実施例1と同じ条件で、合成粉末を合成した。
【0030】
比較例1
炉内の真空吸引を行わず、かつ、炉内圧が大気圧を越したときに炉内のガスを炉外に排出できる小孔を炉に設けた以外は、前述の実施例1と同じ条件で、合成粉末を合成した。
【0031】
実施例5
合成炉にガスの給気口と排気口を設け、給気口から毎分1リットルの空気を供給し、一方、炉内圧により排気口から炉内ガスを排出した以外は、前述の実施例1と同一条件で、合成粉末を合成した。
【0032】
実施例6
合成炉にガスの給気口と排気口を設け、給気口から毎分3リットルの空気を供給し、一方、炉内圧により排気口から炉内ガスを排出した以外は、前述の実施例1と同一条件で、合成粉末を合成した。
【0033】
実施例7
合成炉にガスの給気口と排気口を設け、給気口から毎分1リットルの窒素を供給し、一方、炉内圧により排気口から炉内ガスを排出した以外は、前述の実施例1と同一条件で、合成粉末を合成した。
【0034】
比較例2
合成炉にガスの給気口と排気口を設けたが、給気口からガスの供給は行わず、かつ、排気口は炉内ガスが排出できるよう解放状態にした以外は、前述の実施例1と同じ条件で、合成粉末を合成した。
【0035】
前述のようにして得られた実施例1〜7および比較例1,2の合成粉末を粉末X線回折装置で測定して結晶相を同定した後、同じ合成粉末10gを電気炉中に設置し、炭酸ガス20体積%と窒素ガス80体積%との混合ガスを毎分3リットル流通させながら、500℃で5時間保持し、保持後の重量増加を炭酸ガス吸収量として測定した。その結果を表1に示す。
【0036】
【表1】

Figure 2004217471
なお、合成炉の構造がガスに対して隙間の大きい構造である場合であっても、炉内に空気などのガスを強制的に供給する場合と同等の効果が生じる。
【0037】
また、炉内の雰囲気を空気で置換する場合、炭酸ガスは空気よりも重いので、混合物を入れる「さや」の側面や底面が気密性の高い構造であると、炭酸ガスの逃げ道が「さや」の上部に限られることになり、混合物の充てん深さが深くなるほど、底部からの炭酸ガスの除去が困難になる。その場合、「さや」の側面や底部にガスが通過できる隙間があると、合成がより効果的に行われる。
【0038】
【発明の効果】
本発明によれば、合成反応によって生成する炭酸ガスを反応系から効率的に除去することができる。
【0039】
また、本発明によれば、合成処理の時間が長くても、炭酸ガスを除去し続けることができる。
【0040】
そのため、炭酸ガスの吸収率の高い合成物が得られる。
【0041】
たとえば、表1に示したように、比較例1〜2では、X線回折にて未反応の炭酸リチウムおよび途中生成物であるリチウムシリケート(LiSiO)の存在が認められ、合成反応が不十分であったのに対し、本発明では、炭酸ガスの吸収率が比較例1〜2に比べて3倍以上である。つまり、炭酸ガスの吸収率の3倍以上高い合成物が得られるのである。これは、効率的に合成ができることを示している。
【0042】
とくに、減圧状態にて製造した炭酸ガス吸収材は、従来の方法で製造したものに比べ、結晶粒子径が小さく、体積あたりの表面積が増加して炭酸ガス吸収能力が向上する効果が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a carbon dioxide-absorbing material containing lithium silicate as a main component (for example, a material that absorbs carbon dioxide in a temperature range from room temperature to about 700 ° C.).
[0002]
[Prior art]
As a material that can effectively absorb carbon dioxide in a temperature range from room temperature to about 700 ° C., an absorbent mainly composed of lithium silicate is known.
[0003]
A carbon dioxide absorbent selected from the group consisting of lithium silicate represented by LixSiyOz (x + 4y-2z = 0) is known (for example, see Patent Document 1).
[0004]
As one of lithium composite oxides that generate lithium carbonate by reacting with carbon dioxide, a carbon dioxide absorber made of lithium silicate is known (for example, see Patent Document 2). It is shown that the particle size of the lithium silicate is preferably 0.1 to 10 μm. This is because the reaction efficiency is good in absorbing by reacting with carbon dioxide gas.
[0005]
It is known that Li 4 SiO 4 is suitable as a lithium silicate (for example, see Patent Document 3). Further, there is shown an example in which a mixture of silica and lithium carbonate is heat-treated at 1000 ° C. in the air to synthesize Li 4 SiO 4 .
[0006]
The chemical reaction when lithium silicate (Li 4 SiO 4 ) absorbs carbon dioxide is represented by the following equation (1).
[0007]
Li 4 SiO 4 + 2CO 2 = SiO 2 + 2Li 2 CO 3 Formula (1)
The reaction of formula (1) is a reversible reaction, and in the reverse reaction of formula (1), lithium silicate is synthesized from silica and lithium carbonate as shown in formula (2).
[0008]
SiO 2 + 2Li 2 CO 3 = Li 4 SiO 4 + 2CO 2 Formula (2)
[0009]
[Patent Document 1]
JP 2000-262890 A
[Patent Document 2]
JP 2001-232184 A
[Patent Document 3]
JP 2001-096122 A
[Problems to be solved by the invention]
In the production of lithium silicate, the reaction for synthesizing lithium silicate (Li 4 SiO 4 ) from silica and lithium carbonate is as shown in the above-mentioned formula (2), but the reaction product of carbon dioxide (CO 2 ) The reaction does not proceed unless the partial pressure is less than the equilibrium partial pressure determined by the temperature of the reaction system. Therefore, in order to cause the reaction to occur efficiently, it is desirable to remove carbon dioxide from the reaction system.
[0013]
Further, equation (2) is a general reaction equation, and the actual reaction is represented by the following two reaction equations.
[0014]
SiO 2 + Li 2 CO 3 = Li 2 SiO 3 + CO 2 Formula (3)
Li 2 SiO 3 + Li 2 CO 3 = Li 4 SiO 4 + CO 2 Formula (4)
At a temperature of 750 ° C. at which the raw material lithium carbonate melts and the synthesis reaction is activated, the equilibrium carbon dioxide partial pressure in equation (3) is 100 atm or more, but in equation (4), it is about 2 atm or less. . Therefore, the solidification of the compound to be synthesized or the melting of lithium carbonate due to the progress of the reaction of the formula (3) causes the inside of the compound to be sealed and the partial pressure of carbon dioxide in the system to rise. Will not progress. If the temperature further rises in this state, separation of the molten lithium carbonate from the system occurs, and eventually, efficient synthesis becomes impossible. Particularly, in the case of industrial production, there is a problem that the above phenomenon becomes more remarkable as the volume of the compound increases.
[0015]
An object of the present invention is to provide a method for producing a carbon dioxide absorbent capable of efficiently removing carbon dioxide generated by a synthesis reaction from a reaction system in order to solve the above-mentioned problem.
[0016]
Another object of the present invention is to remove carbon dioxide gas over a long period of time in the synthesis process, even when the internal temperature increases due to heat transfer as the volume of the compound increases. The present invention provides a method for producing a carbon dioxide gas absorbent which can continue to be performed.
[0017]
[Means for Solving the Problems]
An example of the solution of the present invention is as follows.
[0018]
(1) In a method for producing a carbon dioxide gas absorbent containing lithium silicate as a main component, a mixture of lithium carbonate and silica as raw materials is heat-treated to synthesize lithium silicate whose main constituent phase is Li 4 SiO 4. And subjecting the mixture to a heat treatment at a pressure lower than the atmospheric pressure.
[0019]
(2) In the method for producing a carbon dioxide gas absorbent containing lithium silicate as a main component, a mixture of lithium carbonate and silica as raw materials is heat-treated in a furnace to produce lithium silicate whose main constituent phase is Li 4 SiO 4. A method for producing a carbon dioxide-absorbing material, wherein the atmosphere in the furnace is replaced with air or another gas having a carbon dioxide concentration equal to or lower than that of air at a rate of at least 1 liter per minute per 1 kg of the mixture.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
In a preferred embodiment of the present invention, a mixture of silica and lithium carbonate is heat-treated (fired) at 800 ° C. to synthesize lithium silicate. Its main constituent phase is Li 4 SiO 4 . This synthesis reaction proceeds in the atmosphere as shown in the above formulas (3) and (4), but the reaction speed is high in a temperature range of about 700 ° C. where lithium carbonate melts. At this time, carbon dioxide, which is a reaction product represented by the formula (4), is particularly removed from the mixture. Thereby, efficient synthesis becomes possible.
[0021]
During the heat treatment of the mixture, if the pressure inside the synthesis furnace is reduced by a method such as vacuum suction, carbon dioxide gas can be efficiently removed from the mixture. If the pressure is lower than the atmospheric pressure, it is effective for removing carbon dioxide gas, but it is preferably 0.99 atm or less. Further, the lower the pressure, the more effective it is to remove carbon dioxide gas.
[0022]
In addition, instead of or simultaneously with reducing the pressure inside the synthesis furnace, supplying a gas such as air into the furnace and replacing the atmosphere with another gas also has an effect on efficient synthesis. When the partial pressure of carbon dioxide on the surface of the mixture is reduced, the carbon dioxide is diffused from the inside of the mixture, and the carbon dioxide is removed from the mixture, which has an effect on efficient synthesis.
[0023]
It is effective that the amount of gas supplied for replacement is 1 liter per minute or more per 1 kg of the mixture. If the supply amount is small, the carbon dioxide partial pressure (concentration) in the furnace increases, so that the gradient of the carbon dioxide concentration between the inside and the surface of the mixture becomes too small, and the carbon dioxide is not efficiently removed from the mixture. The gas volume is preferably at least 2 liters per minute per kg of mixture.
[0024]
The carbon dioxide absorbent produced under reduced pressure has the effect of improving the carbon dioxide absorption capacity by increasing the surface area per volume and the crystal grain size is smaller than those produced by the conventional method.
[0025]
【Example】
Hereinafter, Examples 1 to 7 and Comparative Examples 1 and 2 of the present invention will be described.
[0026]
Example 1
After weighing silica powder and lithium carbonate powder at a molar ratio of 1: 2, the mixture was wet-mixed and pulverized to obtain a mixture powder having an average particle diameter of 3 μm. 1 kg of this mixture powder was filled into a 70 mm thick alumina sheath having dimensions of 150 mm × 150 mm, and heat-treated at 800 ° C. in a closed electric furnace. Specifically, the temperature was raised to 800 ° C. at 100 ° C./hour, and heat treatment was performed at 800 ° C. for 5 hours. By this heat treatment, a synthetic powder was obtained. During the heat treatment, the inside of the furnace was evacuated, and the pressure in the furnace was maintained at 0.99 atm.
[0027]
Example 2
A synthetic powder was produced under the same conditions as in Example 1 except that the pressure in the furnace was set to 0.90 atm.
[0028]
Example 3
Synthetic powder was synthesized under the same conditions as in Example 1 except that the pressure in the furnace was set to 0.50 atm.
[0029]
Example 4
Synthetic powder was synthesized under the same conditions as in Example 1 except that the pressure in the furnace was set to 0.01 atm.
[0030]
Comparative Example 1
The same conditions as in Example 1 described above were used except that the furnace was not evacuated, and a small hole was provided in the furnace so that gas in the furnace could be discharged outside the furnace when the furnace pressure exceeded atmospheric pressure. A synthetic powder was synthesized.
[0031]
Example 5
Example 1 described above except that a gas supply port and a gas discharge port were provided in the synthesis furnace, and 1 liter of air was supplied per minute from the gas supply port, while the furnace gas was discharged from the gas discharge port by the furnace pressure. Under the same conditions as described above, a synthetic powder was synthesized.
[0032]
Example 6
Example 1 described above, except that a gas inlet and a gas outlet were provided in the synthesis furnace, and air at 3 liters per minute was supplied from the gas inlet, and the furnace gas was discharged from the gas outlet through the furnace pressure. Under the same conditions as described above, a synthetic powder was synthesized.
[0033]
Example 7
Example 1 described above, except that a gas inlet and a gas outlet were provided in the synthesis furnace, and 1 liter of nitrogen per minute was supplied from the gas inlet, while the gas in the furnace was discharged from the gas outlet by the furnace pressure. Under the same conditions as described above, a synthetic powder was synthesized.
[0034]
Comparative Example 2
Although the gas supply port and the gas discharge port were provided in the synthesis furnace, the gas was not supplied from the gas supply port, and the gas discharge port was opened so that the gas in the furnace could be discharged. Under the same conditions as in Example 1, a synthetic powder was synthesized.
[0035]
After the synthesized powders of Examples 1 to 7 and Comparative Examples 1 and 2 obtained as described above were measured with a powder X-ray diffractometer to identify the crystal phase, 10 g of the same synthesized powder was placed in an electric furnace. The mixture was kept at 500 ° C. for 5 hours while flowing a mixed gas of 20% by volume of carbon dioxide and 80% by volume of nitrogen gas at a rate of 3 liters per minute, and the weight increase after the retention was measured as the amount of absorbed carbon dioxide. Table 1 shows the results.
[0036]
[Table 1]
Figure 2004217471
In addition, even when the structure of the synthesis furnace is a structure having a large gap with respect to the gas, the same effect as the case where the gas such as air is forcibly supplied into the furnace occurs.
[0037]
Also, when replacing the atmosphere in the furnace with air, carbon dioxide gas is heavier than air, so if the side or bottom of the pod containing the mixture is highly airtight, the escape path for the carbon dioxide gas will be , The deeper the mixture is filled, the more difficult it is to remove carbon dioxide from the bottom. In that case, if there is a gap through which the gas can pass on the side surface or the bottom portion of the sheath, the synthesis is performed more effectively.
[0038]
【The invention's effect】
According to the present invention, carbon dioxide generated by a synthesis reaction can be efficiently removed from a reaction system.
[0039]
Further, according to the present invention, the carbon dioxide gas can be continuously removed even when the synthesis processing time is long.
[0040]
Therefore, a compound having a high carbon dioxide absorption rate can be obtained.
[0041]
For example, as shown in Table 1, in Comparative Examples 1 and 2, the presence of unreacted lithium carbonate and lithium silicate (Li 2 SiO 3 ) as an intermediate product were recognized by X-ray diffraction, and the synthesis reaction was stopped. On the other hand, in the present invention, the absorption rate of carbon dioxide gas is three times or more as compared with Comparative Examples 1 and 2, although it was insufficient. In other words, a compound that is three times or more the absorption rate of carbon dioxide gas can be obtained. This indicates that the synthesis can be performed efficiently.
[0042]
In particular, the carbon dioxide gas absorbent produced in a reduced pressure state has an effect of improving the carbon dioxide gas absorbing ability by reducing the crystal particle diameter and increasing the surface area per volume as compared with those produced by the conventional method.

Claims (2)

リチウムシリケートを主成分とする炭酸ガス吸収材の製造方法において、原料である炭酸リチウムとシリカの混合物を炉内で熱処理して、主な構成相がLiSiOであるリチウムシリケートを合成するに際し、大気圧よりも低い圧力下で混合物を熱処理することを特徴とする炭酸ガス吸収材料の製造方法。In a method for producing a carbon dioxide gas absorbent containing lithium silicate as a main component, a mixture of lithium carbonate and silica as raw materials is heat-treated in a furnace to synthesize lithium silicate whose main constituent phase is Li 4 SiO 4. Heat-treating the mixture under a pressure lower than the atmospheric pressure. リチウムシリケートを主成分とする炭酸ガス吸収材の製造方法において、原料である炭酸リチウムとシリカの混合物を炉内で熱処理して、主な構成相がLiSiOであるリチウムシリケートを合成するに際し、炉内の雰囲気を、空気または炭酸ガス濃度が空気と同程度以下の他のガスで、混合物1kgあたり毎分1リットル以上置換することを特徴とする炭酸ガス吸収材料の製造方法。In a method for producing a carbon dioxide gas absorbent containing lithium silicate as a main component, a mixture of lithium carbonate and silica as raw materials is heat-treated in a furnace to synthesize lithium silicate whose main constituent phase is Li 4 SiO 4. A method for producing a carbon dioxide-absorbing material, wherein the atmosphere in the furnace is replaced with air or another gas having a carbon dioxide concentration equal to or lower than that of air, at least 1 liter per minute per 1 kg of the mixture.
JP2003006987A 2003-01-15 2003-01-15 Method of manufacturing gaseous carbon dioxide absorption material Pending JP2004217471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006987A JP2004217471A (en) 2003-01-15 2003-01-15 Method of manufacturing gaseous carbon dioxide absorption material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006987A JP2004217471A (en) 2003-01-15 2003-01-15 Method of manufacturing gaseous carbon dioxide absorption material

Publications (1)

Publication Number Publication Date
JP2004217471A true JP2004217471A (en) 2004-08-05

Family

ID=32897210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006987A Pending JP2004217471A (en) 2003-01-15 2003-01-15 Method of manufacturing gaseous carbon dioxide absorption material

Country Status (1)

Country Link
JP (1) JP2004217471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588630B2 (en) 2006-09-27 2009-09-15 Kabushiki Kaisha Toshiba Carbon dioxide absorbent, carbon dioxide separating apparatus, and reformer
JP2018176147A (en) * 2017-04-13 2018-11-15 イーセップ株式会社 Carbon dioxide gas absorbing material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588630B2 (en) 2006-09-27 2009-09-15 Kabushiki Kaisha Toshiba Carbon dioxide absorbent, carbon dioxide separating apparatus, and reformer
JP2018176147A (en) * 2017-04-13 2018-11-15 イーセップ株式会社 Carbon dioxide gas absorbing material and method for producing the same

Similar Documents

Publication Publication Date Title
JP5825145B2 (en) Synthetic amorphous silica powder and method for producing the same
JP5648640B2 (en) Synthetic amorphous silica powder
EP2522629A1 (en) Synthetic amorphous silica powder and method for producing same
KR101668906B1 (en) Synthetic amorphous silica powder and method for producing same
JP2003103141A (en) Carbon dioxide absorbing material and carbon dioxide separating device
JP2012046412A (en) Polycrystalline silicon and method for producing the same
EP0283933B1 (en) Process for producing unsintered cristobalite silica
KR20160113573A (en) Synthetic amorphous silica powder and process for manufacturing same
JP2009073728A (en) Method for producing silicon
CA2461014C (en) Process for production of silicon
CA1251920A (en) Process for the production of porous products made from boron or boron compounds
JPH04219310A (en) Production of non-sintered cristobalite particle
EP2522628A1 (en) Synthetic amorphous silica powder and method for producing same
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
WO2007032494A1 (en) Carbon dioxide absorbing material, method for producing carbon dioxide absorbing material, method for absorbing carbon dioxide, and apparatus for absorbing carbon dioxide
JP2004217471A (en) Method of manufacturing gaseous carbon dioxide absorption material
JPH08290914A (en) Alpha-alumina and its production
JP2003213345A (en) Method for refining metal
JP2004216245A (en) Carbon dioxide absorbent, and its production method
KR101561182B1 (en) Silicon oxide-based sintered body used in the preparation of silicon oxide and method for preparing same
JPS6227316A (en) Production of fine power of high purity silicon carbide
KR900004489B1 (en) Process for producing aluminium nitride powder
JP4590946B2 (en) Porous potassium carbonate having a specific pore structure, method for producing the same, and method for storing the same
JP3246951B2 (en) Method for producing silicon nitride powder
JP2006198550A (en) Carbon dioxide absorbing material