JP2004216712A - Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same - Google Patents

Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same Download PDF

Info

Publication number
JP2004216712A
JP2004216712A JP2003006416A JP2003006416A JP2004216712A JP 2004216712 A JP2004216712 A JP 2004216712A JP 2003006416 A JP2003006416 A JP 2003006416A JP 2003006416 A JP2003006416 A JP 2003006416A JP 2004216712 A JP2004216712 A JP 2004216712A
Authority
JP
Japan
Prior art keywords
resin
die
continuous fiber
impregnated continuous
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006416A
Other languages
Japanese (ja)
Inventor
Takumi Nakatsuji
巧 中辻
Kazuhiko Saeki
和彦 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2003006416A priority Critical patent/JP2004216712A/en
Publication of JP2004216712A publication Critical patent/JP2004216712A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die for molding resin-impregnated continuous fibers which suppresses the occurrence of deteriorated resin during extrusion and enables extrusion operation stable over a long period of time, and a method for manufacturing resin-impregnated continuous fibers using the molding die. <P>SOLUTION: The die for molding the resin-impregnated continuous fibers is constituted so that the resin-impregnated continuous fibers discharge part provided to the leading end part of a flow channel for continuous fibers impregnated with a molten resin is provided at a position of a predetermined depth from the surface of the die, the area of the opening part of a resin discharge part is smaller than that of the opening provided to the surface of the die in communication with the same and the temperature of the die is controlled. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂含浸連続繊維成形用ダイ及びそのダイを使用した樹脂含浸連続繊維の製造方法に関する。更に詳しくは、樹脂を成形するためのダイの形状を改善し、且つ、ダイが温度制御された樹脂含浸連続繊維成形用ダイ及びその成形用ダイを用いた樹脂含浸連続繊維の製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂を含浸した連続繊維成形物は、短繊維で補強されたものに比べてはるかに優れた力学的物性を有するため、近年特に期待されている。成形に供されるペレット状の樹脂含浸連続繊維を製造する工程は、樹脂含浸連続繊維組成物をダイノズルからストランド状に押出すか、又は引出し、更に必要により冷却や引取工程を経て適度な大きさに切断するようなものが含まれる。ダイノズルから樹脂をストランド状に成形する場合、ダイノズル近傍に樹脂屑等、俗に「目やに」と称する付着物が堆積し、樹脂の長期的な安定した製造を維持することは困難であった。対策としては、目やにが製造に支障を来すほどに堆積した段階で、製造を中止してダイノズルを清掃することにより対応している。製造を中止することで、生産性が低下し、また、品質的にも安定したものが得られていない。特許文献1にはノズルの先端をダイのフェースから突出させることが提案されている。特許文献2には、樹脂押し出し穴の本来の径(D1)がダイ表面から所定深さ(L2)にわたって大径(D2)に拡張され、D2/D1=1.1〜2.0、且つL2/D2=1.6〜0.6の関係に選定されたプラスチック押出機用ダイが提案されている。また、特許文献3には、ダイの流路の出口部に半頂角4〜20°のテーパーを形成した押出機用ダイが記載されている。これらの提案は、目やにの発生、及びこれらの現象に伴って派生する成形品の外観、形状不良、変色した目やにの混入、更に不安定な運転等を改善する点において、それなりの効果は認められるものの、未だ十分とは言えない。
【0003】
【特許文献1】
特開平5−77306号公報
【特許文献2】
特開平5−278094号公報(請求項1、図1及び図2)
【特許文献3】
特開平5−253997号公報(請求項1、図1)
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、押出中の目やにの発生を抑え、長期的に安定した押出操作を可能にする樹脂含浸連続繊維成形用ダイ及びその成形ダイを用いた樹脂含浸連続繊維の製造を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、樹脂含浸連続繊維の製造の際に、ダイの樹脂吐出部をダイ表面より深い位置に設け、吐出部の開口部面積をそれに連なるダイ表面の開口部面積より小さくし、且つ、ダイ樹脂吐出部近傍に設けたヒーターにより樹脂吐出部を特定の温度に制御することにより、目やにの発生を抑えられ、長期的に安定した押出が可能であることを見い出し、本発明を完成するに至った。
【0006】
すなわち本発明は、樹脂含浸連続繊維成形用ダイであって、溶融樹脂を含浸した連続繊維の流路の先端部に設けられた樹脂含浸連続繊維吐出部(以下、樹脂吐出部と云うこともある)をダイ表面より深い位置に設け、樹脂吐出部の開口部面積がそれに連なるダイ表面の開口部面積より小さく、且つ、ダイが温度制御されていることを特徴とする樹脂含浸連続繊維成形用ダイを提供する。樹脂吐出部の開口部を樹脂吐出部における樹脂の流れ方向に沿ってダイ表面に延長したときに、樹脂吐出部の開口部がダイ表面の開口部面内に位置する前記発明の樹脂含浸連続繊維成形用ダイを提供する。前記発明において樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点として釣鐘状に連なっている樹脂含浸連続繊維成形用ダイを提供する。前記発明において樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点としてラッパ状に連なっている樹脂含浸連続繊維成形用ダイを提供する。
【0007】
前記発明において樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点として漏斗状に連なっている樹脂含浸連続繊維成形用ダイを提供する。樹脂吐出部のダイ表面からの深さが1〜50mmである前記発明の樹脂含浸連続繊維成形用ダイを提供する。樹脂吐出部のダイ表面からの深さが樹脂吐出部の開口部の直径もしくは開口部最短寸法の1/10以上である樹脂含浸連続繊維成形用ダイを提供する。樹脂吐出部の開口部面積(S1)とダイ表面の開口部面積(S2)の面積比(S2/S1)が1.5〜150である前記発明の樹脂含浸連続繊維成形用ダイを提供する。樹脂含浸連続繊維が連続した繊維束からなり、該繊維を30重量%以上含有する前記発明の樹脂含浸連続繊維成形用ダイを提供する。また、本発明は前記発明の樹脂含浸連続繊維成形用ダイを用いた樹脂含浸連続繊維の製造方法を提供する。ダイの樹脂吐出部の温度を樹脂の融点乃至融点+300℃の範囲に制御する前記発明の樹脂含浸連続繊維の製造方法を提供する。電熱によるダイの加熱を行うこと前記発明の樹脂含浸連続繊維の製造方法を提供する。
【0008】
【発明の実施の形態】
以下に、本発明を具体的に説明する。
本発明の樹脂含浸連続繊維成形用ダイは、連続繊維含浸フィルム、もしくはシート成形用のダイや、連続繊維含浸パイプ成形用ダイにも適用できるが、樹脂含浸連続繊維のペレット成形のためのダイを例として説明する。しかしながら本発明が、これにより限定されるものではない。図1−a、1−b、1−c、及び1−dには、本発明の樹脂含浸連続繊維成形用ダイの実施態様を示す略図を示したが、本発明のダイは、これらの例示により限定されるものではない。これらのダイの樹脂吐出口からダイ表面開口部を含めた形状は、図1−aでは樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点として漏斗状(円錐状)に連なっている。図1−bでは樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点として釣鐘状に連なっている。図1−cでは樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点としてラッパ状に連なっている。これらの混合型をとってもよい。図1−dは、側断面が釣鐘状で、図1−d’のダイ正面の円筒半割図に示す様にシート状の樹脂含浸連続繊維を吐出するダイを例示したものである。
また、一つのダイにおいて樹脂吐出口は、単数であっても、複数であってもよい。ここで、樹脂吐出部の開口部とは、樹脂吐出部からダイ表面の開口部にむかって、開口部の径が変化する場合、径の変化前の吐出部の開口部を云う。
【0009】
本発明のダイは、樹脂吐出部の開口部を樹脂吐出部における樹脂の流れ方向に沿ってダイ表面の方向に延長したときに、樹脂吐出部の開口部延長面がダイ表面の開口部面内に位置する様に配置されていることが好ましい。樹脂吐出部とダイ表面の開口部がこのような位置範囲にあることにより、樹脂を含浸し連続繊維維束が吐出口から引き抜かれるときに吐出口のエッヂ部分に接触し、樹脂分或いは樹脂に含まれていた添加物などが絞り出され目やにの原因になることを防ぐことができる。また、樹脂吐出部の開口部の形状は円形、多角形、楕円形、長方形、或いはそれらの結合した形状が可能であり、樹脂吐出口は単数でも、複数でもよい。樹脂含浸連続繊維成形品の用途により、決められる。
【0010】
また、樹脂吐出部のダイ表面からの深さは、1〜50mm、更に、2〜40mmであることが好ましい。深さがこの範囲にあれば、樹脂吐出部付近の空気による冷却が生じにくいので好ましい。また、樹脂吐出部のダイ表面からの深さが樹脂吐出部の開口部の直径もしくは開口部最短寸法の1/10以上、更に1/5以上、特に1/2以上であることが好ましい。樹脂吐出部の開口部面積(S1)とダイ表面の開口部面積(S2)の面積比(S2/S1)は1.5〜150、更に1.5〜80、特に1.5〜20であることが樹脂吐出部の外気との接触による放熱防止の観点から好ましい。
本発明のダイを用いて成形される樹脂含浸連続繊維には、連続した繊維束が用いられ、該連続繊維を30重量%以上含有することが好ましい。
【0011】
樹脂含浸連続繊維成形用ダイは、温度制御されていることを特徴とする。温度制御は、ダイ内の温度、例えば、樹脂吐出部近辺の温度を検出し、設定温度に対応した加熱を行う。用いる加熱手段については、特に限定するものではないが、例えば、ダイ内に電熱による加熱手段を装着する方法、熱媒体をダイ内に循環させる方法などのダイに装着されるもの、又は、ダイ外から赤外線、熱風などで加熱する方法がある。これらの中、電熱によりダイ内、或いはダイ外から加熱することが実用的で好ましい。図1−eは、温度制御するための温度測定用管穴を設置した複数吐出口を有するダイの正面図であり、図1−e’は、その側断面図であり、ヒーター用の穴を設けた例を示す。ダイの樹脂吐出部の温度を原料樹脂の融点乃至融点+300℃、好ましくは融点+20℃乃至融点+280℃、より好ましくは融点+50℃乃至融点+250℃、特に好ましくは融点+70℃乃至融点+200℃の範囲に制御することが吐出口での溶融樹脂の流動性を維持し、発生する目やにの変色を防止する観点から好ましい。
本発明の前記ダイの装着は、例えば、クロスヘッドダイの吐出側に直接取り付けてもよいし、離して設けてもよい。通常、直接取り付けて使用する方が実用的で好ましい。
ダイの材質は金属製が好ましいが、セラミックでも可能であり、また金属表面にセラミックを被覆又は張り合わせたものも使用できる。また、金属を研磨、コーティング等により、表面処理したものも好ましい。
【0012】
図2は本発明の樹脂含浸連続繊維の製造方法に係わる発明の製造工程の概略を例示したものであり、本発明はこれにより、制限を受けるものではない。図中、連続繊維束1はロールバー2を通りクロスヘッドダイ4で、押出機3から供給される溶融した熱可塑性樹脂とクロスヘッドダイ内の流路で合流し溶融樹脂を含浸し、クロスヘッドダイと連結した樹脂含浸連続繊維成形用ダイ(賦形ダイ)5で任意の形状、例えば断面が円形に成形され、引取ロール6により引き取られ、例えばペレタイザー7でペレット化される。通常、クロスヘッドダイと賦形ダイとは結合している。本発明で特別の断りがない限りダイとは樹脂含浸連続繊維成形用ダイを指すものとする。本発明の樹脂含浸連続繊維の製造方法は、前記の如き特定形状で、温度制御可能なダイを用い樹脂含浸連続繊維の製造を行うことを云う。本発明の製造方法を用いることにより、ダイの樹脂吐出口での目やにの発生が少なく、長期にわたる安定した押出運転が可能になった。
【0013】
本発明に係わる製造方法で使用される樹脂としては、特に限定されるものではない。合成樹脂、天然樹脂等があるが、合成樹脂が好ましい。合成樹脂としては熱可塑性樹脂、熱硬化性樹脂があるが、熱可塑性樹脂が好ましい。熱可塑性樹脂であれば全ての樹脂が使用可能である。例えば、一般用ポリスチレン、耐衝撃性ポリスチレン、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂等のポリスチレン系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル系樹脂、ポリカーボネート系樹脂、塩化ビニル、塩素化ポリプロピレン等のハロゲン含有ポリオレフィン樹脂、6−ナイロン、6,6−ナイロン、4,6−ナイロン、11−ナイロン、12−ナイロン等のポリアミド系樹脂、ポリエチルアクリレート樹脂、ポリメチルメタクリレート樹脂等のポリアクリル系樹脂、ポリスルホン酸系樹脂、ポリフェニルエーテル樹脂、ポリアセタール樹脂、液晶性芳香族ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂等の汎用樹脂からスーパーエンプラまで全ての熱可塑性樹脂及びこれらの2種類以上からなるアロイ樹脂が使用可能である。アロイを形成する樹脂は、ここに挙げた熱可塑性樹脂に限定されるものではなく、周知の他の熱可塑性樹脂及びそれらの2種類以上のアロイ樹脂が使用可能である。特に本発明の適用が好ましい熱可塑性樹脂としては、安価なポリスチレン系樹脂、ポリオレフィン系樹脂、ハロゲン含有ポリオレフィン系樹脂を挙げることができる。
【0014】
本発明に係わる樹脂含浸連続繊維を構成する繊維は特に限定されるものではなく、周知のいずれの繊維も強化繊維として使用可能である。例えば、E−ガラス、D−ガラス等のガラス繊維;ポリアクリロニトリル系、ピッチ系、レーヨン系等の炭素繊維;ボロン繊維、鉱物繊維等の無機繊維;ステンレス、黄銅等の金属繊維;超高分子量ポリエチレン繊維、ポリオキシメチレン繊維、ポリビニルアルコール繊維、液晶性芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維、ポリp−フェニレンテレフタルアミド繊維、ポリm−フェニレンイソフタルアミド繊維等のアラミド繊維、ポリアクリロニトリル繊維、綿、ジュート等のセルロース繊維等の有機繊維などが挙げられる。
【0015】
溶融樹脂を含浸した連続繊維束をダイに供給して、ストランドとすることもできる。ここで、連続繊維とは、連続した繊維束を云う。また、目的に応じて所望の特性を付与するため、一般に熱可塑性樹脂に添加される公知の物質、例えば酸化防止剤、耐熱安定剤、紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、難燃助剤、染料や顔料等の着色剤、潤滑剤、可塑剤、結晶化促進剤、結晶核剤等を配合することも可能である。また、ガラスフレーク、マイカ、ガラス粉、ガラスビーズ、タルク、クレー、アルミナ、カーボンブラック、ウォラストナイト等の板状、粉粒状、の無機化合物、ウィスカー等を併用してもよい。このようにして製造される樹脂含浸連続繊維は、ペレット、シート、異形押出物等に成形される。
【0016】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1〜5)
図2に示す装置において、図3−a及び図3−b(寸法の単位はmm)に示した円錐型、及び釣鐘型の賦形ダイをクロスヘッドダイの先端に装着し、表−1に示した条件にて、樹脂含浸連続繊維束を引き取り、これをカッティングして長さ11mmのペレット状樹脂含浸連続繊維を製造した。結果として、運転状況を表1に示した。尚、温度制御は賦形ダイに埋め込んだ電気加熱又は熱風吹付により行った。
(比較例1)
賦形ダイが窪みのないフラットな樹脂吐出口を有するものである以外は、実施例4と同様な条件でペレット状樹脂含浸連続繊維束を製造した。運転結果を表1に示した。
(比較例2)
温度制御をしなかったことを除き、実施例4と同様な条件にてペレット状樹脂含浸連続繊維束を製造した。運転結果を表1に示した。なお、ダイの温度は285〜295℃の範囲で変動した。
【0017】
【表1】

Figure 2004216712
【0018】
【発明の効果】
本発明によれば、樹脂成形用ダイは樹脂吐出口であるダイノズルに窪みを設けることにより、且つ、ノズル近傍の加熱手段により温度制御されることにより、ダイノズルに目やにの堆積が防止でき、長期的な安定したストランド状樹脂の製造が可能になった。また、目やにから派生した品質を低下させるような物質の混入の防止も可能となった。
【図面の簡単な説明】
【図1】図1−aは本発明の一実施態様の樹脂吐出部を含むダイの側断面図である。
図1−bは本発明の一実施態様の樹脂吐出部を含むダイの側断面図である。
図1−b’は図1−bの正面図である。
図1−cは本発明の一実施態様の樹脂吐出部を含むダイの側断面図である。
図1−dは本発明の一実施態様の樹脂吐出部を含むダイの側断面図である。
図1−d’は図1−dの正面円筒半割図である。
図1−eは温度制御するための温度測定用管穴を設置した複数吐出口を有するダイの正面図である。
図1−e’はヒーター用の穴を設けたその側断面図である。
【図2】本発明の樹脂含浸連続繊維の製造方法に係わる製造工程の全体の概略を示す。
【図3】図3−aは、実施例5で用いた円錐型ダイの寸法入り側断面図である。
図3−bは、実施例1〜4及び比較例2で用いた釣鐘型ダイの寸法入り側断面図である。
【符号の説明】
1 連続繊維束
2 ロールバー
3 押出機
4 クロスヘッドダイ
5 賦形ダイ
6 引取ロール
7 ペレタイザー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin-impregnated continuous fiber molding die and a method for producing a resin-impregnated continuous fiber using the die. More particularly, the present invention relates to a resin-impregnated continuous fiber molding die in which the shape of a die for molding a resin is improved and the temperature of the die is controlled, and a method for producing a resin-impregnated continuous fiber using the molding die.
[0002]
[Prior art]
Continuous fiber molded articles impregnated with a thermoplastic resin are particularly expected in recent years because they have much better mechanical properties than those reinforced with short fibers. The step of manufacturing the resin-impregnated continuous fiber in the form of pellets to be provided for molding is performed by extruding the resin-impregnated continuous fiber composition into a strand form from a die nozzle, or drawing out the resin-impregnated continuous fiber composition to an appropriate size through a cooling or take-off step as necessary. Includes things like cutting. When resin is formed into a strand shape from a die nozzle, deposits such as resin dust and the like, which are commonly referred to as "eyes", are deposited near the die nozzle, and it has been difficult to maintain long-term stable production of the resin. As a countermeasure, the production is stopped and the die nozzle is cleaned at the stage when the eyes and eyes are accumulated so as to hinder the production. By stopping the production, the productivity is reduced, and a stable product is not obtained. Patent Document 1 proposes that the tip of a nozzle protrudes from the face of a die. Patent Document 2 discloses that the original diameter (D1) of the resin extrusion hole is extended to a large diameter (D2) from the die surface over a predetermined depth (L2), and D2 / D1 = 1.1 to 2.0 and L2 A die for a plastic extruder selected in a relationship of /D2=1.6 to 0.6 has been proposed. Patent Literature 3 discloses an extruder die in which a taper having a half apex angle of 4 to 20 ° is formed at an outlet of a channel of the die. These proposals have a certain effect in terms of improving the appearance of eyes and the appearance and shape defects of molded products derived from these phenomena, the incorporation of discolored eyes and the like, and the further unstable operation. However, it is not enough.
[0003]
[Patent Document 1]
JP-A-5-77306 [Patent Document 2]
JP-A-5-278094 (Claim 1, FIGS. 1 and 2)
[Patent Document 3]
JP-A-5-253997 (Claim 1, FIG. 1)
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a resin-impregnated continuous fiber forming die that suppresses the occurrence of streaks during extrusion and enables a long-term stable extrusion operation, and to provide a resin-impregnated continuous fiber production using the forming die. Is to do.
[0005]
[Means for Solving the Problems]
The present inventors provide a resin discharge portion of the die at a position deeper than the die surface during the production of the resin-impregnated continuous fiber, make the opening area of the discharge portion smaller than the opening area of the die surface connected thereto, and By controlling the resin discharge portion to a specific temperature by a heater provided in the vicinity of the die resin discharge portion, it is possible to suppress the occurrence of blemishes and find that long-term stable extrusion is possible, and complete the present invention. Reached.
[0006]
That is, the present invention relates to a resin-impregnated continuous fiber forming die, which is a resin-impregnated continuous fiber discharge section (hereinafter, also referred to as a resin discharge section) provided at a tip end of a flow path of a continuous fiber impregnated with a molten resin. ) Is provided at a position deeper than the die surface, the area of the opening of the resin discharge section is smaller than the area of the opening of the continuous die surface, and the temperature of the die is controlled. I will provide a. The resin-impregnated continuous fiber according to the invention, wherein the opening of the resin discharge portion is located within the opening surface of the die surface when the opening of the resin discharge portion is extended to the die surface along the flow direction of the resin in the resin discharge portion. A molding die is provided. In the above invention, there is provided a resin-impregnated continuous fiber molding die in which the tip of the resin discharge portion and the opening on the surface of the die are connected in a bell shape with the tip as an apex. In the above invention, there is provided a resin-impregnated continuous fiber molding die in which a tip of a resin discharge portion and an opening on the surface of the die are connected in a trumpet shape with the tip as an apex.
[0007]
In the above invention, there is provided a resin-impregnated continuous fiber molding die in which a tip of a resin discharge portion and an opening of a die surface are connected in a funnel shape with the tip as an apex. A resin-impregnated continuous fiber molding die according to the invention, wherein the depth of the resin discharge portion from the die surface is 1 to 50 mm. Provided is a resin-impregnated continuous fiber molding die in which the depth of the resin discharge section from the die surface is at least 1/10 of the diameter of the opening of the resin discharge section or the shortest dimension of the opening. Provided is a resin-impregnated continuous fiber molding die according to the invention, wherein the area ratio (S2 / S1) of the opening area (S1) of the resin discharge portion to the opening area (S2) of the die surface is 1.5 to 150. Provided is a resin-impregnated continuous fiber molding die according to the above invention, wherein the resin-impregnated continuous fiber is formed of a continuous fiber bundle and contains the fiber in an amount of 30% by weight or more. The present invention also provides a method for producing a resin-impregnated continuous fiber using the resin-impregnated continuous fiber forming die of the invention. The present invention provides a method for producing a resin-impregnated continuous fiber according to the invention, wherein the temperature of the resin discharge portion of the die is controlled within the range from the melting point of the resin to the melting point + 300 ° C. The method for producing a resin-impregnated continuous fiber according to the invention is provided by heating the die by electric heating.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
The resin-impregnated continuous fiber molding die of the present invention can be applied to a continuous fiber-impregnated film, a sheet molding die, or a continuous fiber-impregnated pipe molding die. This will be described as an example. However, the present invention is not limited thereby. FIGS. 1-a, 1-b, 1-c, and 1-d show schematic diagrams illustrating embodiments of the resin-impregnated continuous fiber molding die of the present invention. It is not limited by. In FIG. 1A, the shape of the die including the resin discharge port and the die surface opening is such that the tip of the resin discharge portion and the opening of the die surface are connected in a funnel shape (cone shape) with the tip as the apex. ing. In FIG. 1-b, the tip of the resin discharge portion and the opening on the die surface are connected in a bell shape with the tip as the top. In FIG. 1-c, the tip of the resin discharge portion and the opening on the die surface are connected in a trumpet shape with the tip as the apex. You may take these mixed types. FIG. 1D illustrates a die having a bell-shaped side section and discharging a sheet-like resin-impregnated continuous fiber as shown in a half-cylinder view of the front of the die in FIG. 1-D ′.
In addition, one die may have a single resin outlet or a plurality of resin outlets. Here, when the diameter of the opening changes from the resin discharging unit to the opening on the die surface, the opening of the resin discharging unit refers to the opening of the discharging unit before the diameter changes.
[0009]
In the die of the present invention, when the opening of the resin discharge section is extended in the direction of the die surface along the flow direction of the resin in the resin discharge section, the extension of the opening of the resin discharge section is within the opening plane of the die surface. It is preferable that they are arranged so as to be located at the same position. Since the resin discharge section and the opening on the die surface are in such a position range, the resin impregnated and comes into contact with the edge of the discharge port when the continuous fiber bundle is pulled out from the discharge port, and the resin component or the resin It is possible to prevent the contained additives and the like from being squeezed and causing eyeburn. The shape of the opening of the resin discharge portion can be circular, polygonal, elliptical, rectangular, or a combination thereof, and the number of resin discharge ports may be one or more. It is determined according to the use of the resin-impregnated continuous fiber molded product.
[0010]
The depth of the resin discharge portion from the die surface is preferably 1 to 50 mm, more preferably 2 to 40 mm. When the depth is in this range, cooling by air near the resin discharge portion is unlikely to occur, so that it is preferable. The depth of the resin discharge portion from the die surface is preferably at least 1/10, more preferably at least 1/5, especially at least 1/2 of the diameter or the shortest dimension of the opening of the resin discharge portion. The area ratio (S2 / S1) of the opening area (S1) of the resin discharge section to the opening area (S2) of the die surface is 1.5 to 150, more preferably 1.5 to 80, particularly 1.5 to 20. This is preferable from the viewpoint of preventing heat radiation due to contact of the resin discharge portion with the outside air.
A continuous fiber bundle is used for the resin-impregnated continuous fiber formed by using the die of the present invention, and the continuous fiber bundle preferably contains 30% by weight or more.
[0011]
The resin-impregnated continuous fiber molding die is characterized in that the temperature is controlled. The temperature control detects the temperature in the die, for example, the temperature near the resin discharge unit, and performs heating corresponding to the set temperature. The heating means to be used is not particularly limited. For example, a method in which the heating means by electric heating is mounted in the die, a method in which the heating medium is circulated in the die, or the like, There is a method of heating with infrared rays, hot air or the like. Among these, it is practical and preferable to heat from inside or outside the die by electric heating. Fig. 1-e is a front view of a die having a plurality of discharge ports provided with a temperature measurement tube hole for temperature control, and Fig. 1-e 'is a side sectional view thereof. An example is shown. The temperature of the resin discharge portion of the die is in the range of the melting point of the raw material resin to the melting point + 300 ° C, preferably the melting point + 20 ° C to the melting point + 280 ° C, more preferably the melting point + 50 ° C to the melting point + 250 ° C, particularly preferably the melting point + 70 ° C to the melting point + 200 ° C. It is preferable from the viewpoint of maintaining the fluidity of the molten resin at the discharge port and preventing discoloration of the eyes and the like that occurs.
The mounting of the die of the present invention may be, for example, directly mounted on the discharge side of the crosshead die, or may be provided separately. Usually, it is more practical and preferable to use it directly.
The material of the die is preferably made of metal, but it is also possible to use ceramic, and it is also possible to use a metal whose surface is coated or bonded with ceramic. Further, a metal surface-treated by polishing, coating or the like is also preferable.
[0012]
FIG. 2 illustrates an outline of the production process of the invention relating to the method for producing a resin-impregnated continuous fiber of the present invention, and the present invention is not limited thereby. In the figure, a continuous fiber bundle 1 passes through a roll bar 2 and joins a molten thermoplastic resin supplied from an extruder 3 at a crosshead die 4 in a flow path in the crosshead die, impregnated with the molten resin, and The resin-impregnated continuous fiber forming die (shaping die) 5 connected to the die is shaped into an arbitrary shape, for example, a circular cross section, taken up by a take-up roll 6, and pelletized by a pelletizer 7, for example. Usually, the crosshead die and the shaping die are connected. In the present invention, unless otherwise specified, a die refers to a die for forming a resin-impregnated continuous fiber. The method for producing continuous resin-impregnated fibers according to the present invention refers to the production of continuous resin-impregnated continuous fibers using a die having a specific shape as described above and capable of controlling the temperature. By using the production method of the present invention, the occurrence of a streak at the resin discharge port of the die is small, and a long-term stable extrusion operation is enabled.
[0013]
The resin used in the production method according to the present invention is not particularly limited. There are a synthetic resin and a natural resin, but a synthetic resin is preferable. Examples of the synthetic resin include a thermoplastic resin and a thermosetting resin, and a thermoplastic resin is preferable. All resins can be used as long as they are thermoplastic resins. For example, general-purpose polystyrene, high-impact polystyrene, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer resin and other polystyrene resins, polyethylene, polypropylene and other polyolefin resins, polyethylene terephthalate, polybutylene terephthalate and the like Thermoplastic polyester resins, polycarbonate resins, halogen-containing polyolefin resins such as vinyl chloride and chlorinated polypropylene, and polyamides such as 6-nylon, 6,6-nylon, 4,6-nylon, 11-nylon and 12-nylon Resin, polyethyl acrylate resin, polyacrylic resin such as polymethyl methacrylate resin, polysulfonic acid resin, polyphenyl ether resin, polyacetal resin, liquid crystalline aromatic polyester Le resin, polyphenylene sulfide resin, any thermoplastic resin and alloy resin composed of two or more of these general-purpose resins such as polyether ether ketone resin until super engineering plastics can be used. The resin forming the alloy is not limited to the thermoplastic resins listed here, and other well-known thermoplastic resins and two or more of these alloy resins can be used. Particularly preferred thermoplastic resins to which the present invention is applied include inexpensive polystyrene resins, polyolefin resins, and halogen-containing polyolefin resins.
[0014]
The fibers constituting the resin-impregnated continuous fibers according to the present invention are not particularly limited, and any known fibers can be used as the reinforcing fibers. For example, glass fibers such as E-glass and D-glass; carbon fibers such as polyacrylonitrile, pitch and rayon; inorganic fibers such as boron fiber and mineral fiber; metal fibers such as stainless steel and brass; ultra-high molecular weight polyethylene Fiber, polyoxymethylene fiber, polyvinyl alcohol fiber, liquid crystalline aromatic polyester fiber, polyethylene terephthalate fiber, poly p-phenylene terephthalamide fiber, polym-phenylene isophthalamide fiber, etc., aramid fiber, polyacrylonitrile fiber, cotton, jute, etc. And organic fibers such as cellulose fibers.
[0015]
A continuous fiber bundle impregnated with the molten resin may be supplied to a die to form a strand. Here, the continuous fiber refers to a continuous fiber bundle. Also, in order to impart desired properties according to the purpose, known substances generally added to the thermoplastic resin, for example, antioxidants, heat stabilizers, stabilizers such as ultraviolet absorbers, antistatic agents, flame retardants, It is also possible to add a flame retardant aid, a coloring agent such as a dye or a pigment, a lubricant, a plasticizer, a crystallization accelerator, a nucleating agent, and the like. Further, plate-like, powder-like inorganic compounds such as glass flakes, mica, glass powder, glass beads, talc, clay, alumina, carbon black, and wollastonite, and whiskers may be used in combination. The resin-impregnated continuous fibers produced in this manner are formed into pellets, sheets, deformed extrudates, and the like.
[0016]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
(Examples 1 to 5)
In the apparatus shown in FIG. 2, the conical and bell-shaped shaping dies shown in FIG. 3-a and FIG. Under the conditions shown, a resin-impregnated continuous fiber bundle was taken out and cut to produce a pellet-shaped resin-impregnated continuous fiber having a length of 11 mm. As a result, the driving conditions are shown in Table 1. The temperature control was performed by electric heating or hot air blowing embedded in the shaping die.
(Comparative Example 1)
A pellet-shaped resin-impregnated continuous fiber bundle was manufactured under the same conditions as in Example 4, except that the shaping die had a flat resin discharge port without any depression. The operation results are shown in Table 1.
(Comparative Example 2)
A pellet-shaped resin-impregnated continuous fiber bundle was produced under the same conditions as in Example 4 except that the temperature was not controlled. The operation results are shown in Table 1. In addition, the temperature of the die fluctuated in the range of 285 to 295 ° C.
[0017]
[Table 1]
Figure 2004216712
[0018]
【The invention's effect】
According to the present invention, the resin molding die is provided with a depression in the die nozzle serving as the resin discharge port, and the temperature is controlled by the heating means near the nozzle, so that it is possible to prevent the eye from accumulating on the die nozzle. It has become possible to produce a stable and strand-like resin. In addition, it has become possible to prevent the incorporation of substances that degrade the quality derived from the eyes.
[Brief description of the drawings]
FIG. 1A is a side sectional view of a die including a resin discharge section according to an embodiment of the present invention.
FIG. 1B is a side sectional view of a die including a resin discharge portion according to one embodiment of the present invention.
FIG. 1-b ′ is a front view of FIG. 1-b.
FIG. 1-c is a side sectional view of a die including a resin discharge portion according to one embodiment of the present invention.
FIG. 1D is a side sectional view of a die including a resin discharge section according to one embodiment of the present invention.
Fig. 1-d 'is a front half cylinder view of Fig. 1-d.
FIG. 1E is a front view of a die having a plurality of discharge ports provided with a temperature measurement tube hole for temperature control.
FIG. 1-e 'is a sectional side view of the device provided with a hole for a heater.
FIG. 2 shows an outline of the entire production process according to the method for producing a resin-impregnated continuous fiber of the present invention.
FIG. 3A is a side sectional view with dimensions of a conical die used in Example 5.
FIG. 3B is a cross-sectional side view with dimensions of the bell-shaped die used in Examples 1 to 4 and Comparative Example 2.
[Explanation of symbols]
Reference Signs List 1 continuous fiber bundle 2 roll bar 3 extruder 4 crosshead die 5 shaping die 6 take-up roll 7 pelletizer

Claims (12)

樹脂含浸連続繊維成形用ダイであって、溶融樹脂を含浸した連続繊維の流路の先端部に設けられた樹脂含浸連続繊維吐出部(以下、樹脂吐出部と云うこともある)をダイ表面より深い位置に設け、樹脂吐出部の開口部面積がそれに連なるダイ表面の開口部面積より小さく、且つ、ダイが温度制御されていることを特徴とする樹脂含浸連続繊維成形用ダイ。A resin-impregnated continuous fiber molding die in which a resin-impregnated continuous fiber discharge section (hereinafter, sometimes referred to as a resin discharge section) provided at a tip of a flow path of a continuous fiber impregnated with a molten resin is formed from the die surface. A resin-impregnated continuous fiber molding die, which is provided at a deep position, wherein the area of the opening of the resin discharge part is smaller than the area of the opening of the die surface connected thereto, and the temperature of the die is controlled. 樹脂吐出部の開口部を樹脂吐出部における樹脂の流れ方向に沿ってダイ表面に延長したときに、樹脂吐出部の開口部がダイ表面の開口部面内に位置することを特徴とする請求項1記載の樹脂含浸連続繊維成形用ダイ。When the opening of the resin discharge section is extended to the die surface along the flow direction of the resin in the resin discharge section, the opening of the resin discharge section is located within the opening surface of the die surface. 2. The resin-impregnated continuous fiber molding die according to 1. 樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点として釣鐘状に連なっていることを特徴とする請求項1又は2記載の樹脂含浸連続繊維成形用ダイ。The resin-impregnated continuous fiber molding die according to claim 1 or 2, wherein the tip of the resin discharge portion and the opening on the surface of the die are connected in a bell shape with the tip as an apex. 樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点としてラッパ状に連なっていることを特徴とする請求項1又は2記載の樹脂含浸連続繊維成形用ダイ。3. The resin-impregnated continuous fiber molding die according to claim 1, wherein the tip of the resin discharge portion and the opening on the surface of the die are connected in a trumpet shape with the tip as an apex. 樹脂吐出部の先端とダイ表面の開口部とが該先端部を頂点として漏斗状に連なっていることを特徴とする請求項1又は2記載の樹脂含浸連続繊維成形用ダイ。3. The resin-impregnated continuous fiber molding die according to claim 1, wherein a tip of the resin discharge portion and an opening on the surface of the die are connected in a funnel shape with the tip as an apex. 樹脂吐出部のダイ表面からの深さが1〜50mmである請求項1〜5のいずれかに記載の樹脂含浸連続繊維成形用ダイ。The resin-impregnated continuous fiber molding die according to any one of claims 1 to 5, wherein a depth of the resin discharge portion from the die surface is 1 to 50 mm. 樹脂吐出部のダイ表面からの深さが樹脂吐出部の開口部の直径もしくは開口部最短寸法の1/10以上であることを特徴とする請求項1〜5のいずれかに記載の樹脂含浸連続繊維成形用ダイ。The resin impregnation continuation according to any one of claims 1 to 5, wherein the depth of the resin discharge portion from the die surface is at least 1/10 of the diameter of the opening of the resin discharge portion or the shortest dimension of the opening. Die for fiber molding. 樹脂吐出部の開口部面積(S1)とダイ表面の開口部面積(S2)の面積比(S2/S1)が1.5〜150であることを特徴とする請求項1〜7のいずれかに記載の樹脂含浸連続繊維成形用ダイ。The area ratio (S2 / S1) of the opening area (S1) of the resin discharge portion and the opening area (S2) of the die surface is 1.5 to 150, wherein the area ratio is 1.5 to 150. The resin-impregnated continuous fiber molding die as described in the above. 樹脂含浸連続繊維が連続した繊維束からなり、該繊維を30重量%以上含有することを特徴とする請求項1〜8のいずれかに記載の樹脂含浸連続繊維成形用ダイ。The resin-impregnated continuous fiber forming die according to any one of claims 1 to 8, wherein the resin-impregnated continuous fiber is formed of a continuous fiber bundle and contains the fiber in an amount of 30% by weight or more. 請求項1記載の樹脂含浸連続繊維成形用ダイを用いた樹脂含浸連続繊維の製造方法。A method for producing a resin-impregnated continuous fiber using the resin-impregnated continuous fiber forming die according to claim 1. ダイの樹脂吐出部の温度を樹脂の融点乃至融点+300℃の範囲に制御することを特徴とする請求項10記載の樹脂含浸連続繊維の製造方法。The method for producing a resin-impregnated continuous fiber according to claim 10, wherein the temperature of the resin discharge portion of the die is controlled within a range from the melting point of the resin to the melting point + 300 ° C. 電熱によるダイの加熱を行うことを特徴とする請求項11記載の樹脂含浸連続繊維の製造方法。The method for producing a resin-impregnated continuous fiber according to claim 11, wherein the die is heated by electric heating.
JP2003006416A 2003-01-14 2003-01-14 Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same Pending JP2004216712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006416A JP2004216712A (en) 2003-01-14 2003-01-14 Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006416A JP2004216712A (en) 2003-01-14 2003-01-14 Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same

Publications (1)

Publication Number Publication Date
JP2004216712A true JP2004216712A (en) 2004-08-05

Family

ID=32896790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006416A Pending JP2004216712A (en) 2003-01-14 2003-01-14 Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same

Country Status (1)

Country Link
JP (1) JP2004216712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160759A (en) * 2005-12-15 2007-06-28 Kuraray Co Ltd Manufacturing method for resin coated reinforcing fiber thread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160759A (en) * 2005-12-15 2007-06-28 Kuraray Co Ltd Manufacturing method for resin coated reinforcing fiber thread

Similar Documents

Publication Publication Date Title
US10576662B2 (en) Fiber-reinforced molding compounds and methods of forming and using the same
KR20130112710A (en) Reinforced hollow profiles
KR20130088033A (en) Method for forming reinforced pultruded profiles
GB1592310A (en) Glass fibre reinforced thermoplastic resin moulding material
JP5969714B2 (en) Assembly of molding material for injection molding, extrusion molding, or pultrusion molding, carbon fiber reinforced thermoplastic resin pellet, molded body, and method of manufacturing injection molded body
US20210323220A1 (en) Additive printing filament material
JP3646316B2 (en) Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same
JP4891576B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JP6462330B2 (en) Manufacturing method of prepreg
WO2021198100A1 (en) An extrusion head and a method for continuous fused filament fabrication
JP2004216712A (en) Die for molding resin-impregnated continuous fiber and method for manufacturing resin-impregnated continuous fiber using the same
CN111132805B (en) Method for kneading fiber-reinforced thermoplastic resin, plasticizing device, and extruder
JP2004216713A (en) Die for molding resin and method for manufacturing resin molded product using the same
KR101108893B1 (en) Antenna cover manufacturing apparatus and its manufacturing method
JP2001192466A (en) Fiber-reinforced thermoplastic resin structure
JP2011062880A (en) Sandwich molding
KR102309200B1 (en) Cleaning agent and cleaning method for molding machine cleaning
JPH07304037A (en) Die for impregnating resin and production of long fiber-reinforced thermoplastic resin using the die
JP3638292B2 (en) Fiber reinforced thermoplastic resin molding
WO2005118265A1 (en) Long-fiber-reinforced resin structure-use cooling tank and production method for the structure
JP4332020B2 (en) DIE FOR PRODUCING LONG FIBER REINFORCED THERMOPLASTIC RESIN STRUCTURE AND METHOD FOR PRODUCING THE STRUCTURE
JP2006001116A (en) Splittable shaping die for producing long fiber-reinforced thermoplastic resin structure and method for producing long fiber-reinforced thermoplastic resin structure using the die
JPH10329190A (en) Manufacture of fiber reinforced thermoplastic resin molded body
JPH06254850A (en) Manufacture of filament reinforced synthetic resin strand
JP2007162172A (en) Resin-coated reinforcing fiber yarn and thermoplastic resin molded article comprising the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002