JP2004216275A - Method of producing hydrogen separator - Google Patents

Method of producing hydrogen separator Download PDF

Info

Publication number
JP2004216275A
JP2004216275A JP2003006616A JP2003006616A JP2004216275A JP 2004216275 A JP2004216275 A JP 2004216275A JP 2003006616 A JP2003006616 A JP 2003006616A JP 2003006616 A JP2003006616 A JP 2003006616A JP 2004216275 A JP2004216275 A JP 2004216275A
Authority
JP
Japan
Prior art keywords
hydrogen
palladium
porous
porous substrate
hydrogen separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006616A
Other languages
Japanese (ja)
Inventor
Yusuke Arai
裕介 新居
Shunichi Igami
俊市 伊神
Toshiki Goto
利樹 後藤
Osamu Sakai
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003006616A priority Critical patent/JP2004216275A/en
Publication of JP2004216275A publication Critical patent/JP2004216275A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen separator in which palladium is alloyed with silver, and thereby brittleness at a low temperature is improved and resistance to thermal impact is enhanced, and with which high purity hydrogen can be obtained. <P>SOLUTION: A method for producing the hydrogen separator in which a hydrogen separation membrane is formed on a porous base body comprises supporting a sol of a palladium-silver alloy previously alloyed on the surface of the porous base body and then firing the supported sol at 300-600°C to form the hydrogen separation membrane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、原料ガスたる多成分混合ガスから水素のみを分離する水素分離体の製造方法、及び、炭化水素の水蒸気改質反応、シクロヘキサンの脱水素反応等を行うメンブレンリアクタの製造方法、並びに、水素分離体及びメンブレンリアクタに関する。
【0002】
【従来の技術】高純度の水素ガスを得る一方法として、ガス分離膜によって水素ガスを多成分混合ガスから分離する方法がある。そして、水素ガスを得るガス分離膜としては、ポリイミドやポリスルホン等の有機高分子膜、及び、パラジウム又はパラジウム合金等の無機化合物膜が知られているが、特に、パラジウム又はパラジウム合金のガス分離膜(以下、パラジウム薄膜ともいう)は、パラジウム又はパラジウム合金に水素を固溶して透過させる性質を利用して、極めて高純度の水素を得ることが出来る水素分離膜として知られている。
【0003】このパラジウム薄膜は、水素の透過率を高めるために出来るだけ薄膜化する必要がある。しかし、単独では機械的強度の問題もあり、50μm程度が自立膜の限界であることから、特許文献1に開示されているように、セラミックスの多孔質支持体(基体)の表面にパラジウム又はパラジウム合金を被着させ水素分離体として構成し、機械強度は支持体に持たせる方法がとられる。
【0004】又、パラジウム薄膜は、低温でパラジウムが水素脆化するため、ひび割れ等を発生し易いという問題を有するので、特許文献2に開示されているように、一般に、耐熱性多孔質基体の表面に、化学メッキ法によりパラジウム薄膜を形成し、パラジウム薄膜上に化学メッキ法により銀薄膜を形成し、次いで、熱処理を行う製造方法を用い、パラジウムと銀とが合金化された水素分離膜を有する水素分離体として構成し、低温脆性を改善する方法がとられる。このとき、パラジウムと銀との合金化に必要な温度は600〜1300℃と高温であるため、使用される耐熱性多孔質基体は、そのような高温でもパラジウム及び銀と反応しない材料、例えばアルミナ等のセラミックに限定される。
【0005】以上記した水素分離体は、長期間連続使用する用途、例えば半導体製造工程に用いられる超高純度水素製造の用に供される場合には、問題ないものであった。しかしながら、自動車用、家庭やビル等建物用、携帯電話やパソコン等の電子機器用の電源として実用化が期待される燃料電池用の水素を得るための燃料改質器では、運転・休止が繰り返しが行われ、休止状態から運転状態へ迅速に移行するために、より速く昇温することが求められる。しかし、上記従来の水素分離体では、セラミック製の耐熱性多孔質基体の耐熱衝撃性が低いことから昇温速度向上の要請に応えられない。
【0006】例えば、原料としてメタノールを使用した場合、改質器温度は300℃、メタンガスを使用した場合、改質器温度は500〜600℃であることから、水素分離膜の動作温度は300〜600℃が好ましい。特に燃料電池自動車用の燃料改質器として適用されるためには上記温度まで迅速に昇温する必要があり、使用される水素分離体には、少なくとも150℃/min程度の昇温速度に耐え得る耐熱衝撃性が求められる。ところが、このような条件下では、上記従来の水素分離体を構成する多孔質基体として、上記アルミナの他、シリカ、シリカ−アルミナ、ムライト、完全安定化ジルコニア等のセラミックを用いた場合に、ひび割れ等が発生してしまう。他方、金属多孔質基体を用いると、パラジウムと銀との合金化反応を行う際に、金属多孔質基体とパラジウム及び銀との反応も起こり、十分な水素分離機能を発現しなくなる。
【0007】
【特許文献1】
特開昭62−273030号公報
【特許文献2】
特開平3−146122号公報
【0008】
【発明が解決しようとする課題】本発明は、上記した従来事情に鑑みてなされたものであり、その目的とするところは、パラジウムと銀とが合金化され低温脆性が改善されているとともに、耐熱衝撃性に優れ、且つ、高純度の水素を得ることが出来る水素分離体を提供することにある。尚、水素分離体にかかる上記従来の問題及び課題は、水蒸気改質反応等を行うメンブレンリアクタにおいても同様に存在する。従って、本発明の他の目的は、パラジウムと銀とが合金化され低温脆性が改善されているとともに、耐熱衝撃性に優れ、且つ、例えば水素生成反応において高い転化率を実現するメンブレンリアクタを提供することにある。研究が重ねられた結果、水素分離体の製造にかかり、高温でのパラジウムと銀との合金化反応を省いて、多孔質基材とパラジウム及び銀との反応を抑制することにより、多孔質基材として耐熱衝撃性の高いものが選択可能となるとともに、水素分離機能の低下が防止され、上記目的を達成出来ることが見出された。
【0009】
【課題を解決するための手段】即ち、本発明によれば、多孔質基体上に水素分離膜が形成された水素分離体の製造方法であって、多孔質基体の表面に、予め合金化したパラジウム−銀合金のゾルを担持させた後に、300〜600℃で焼結させて膜化し、水素分離膜を形成することを特徴とする水素分離体の製造方法が提供される。このとき、多孔質基体は、金属又は高耐熱衝撃性セラミックの多孔質体であることが好ましい。
【0010】又、本発明によれば、多孔質基体上に水素分離膜が形成されてなる水素分離体であって、多孔質基体と水素分離膜との間に、反応抑止層として多孔質セラミック膜を有することを特徴とする水素分離体が提供される。
【0011】更に、本発明によれば、多孔質基体上に水素分離膜が形成されたメンブレンリアクタの製造方法であって、多孔質基体の表面に、予め合金化したパラジウム−銀合金のゾルを担持させた後に、300〜600℃で焼結させて膜化し、水素分離膜を形成することを特徴とするメンブレンリアクタの製造方法が提供される。このとき、多孔質基体は、金属又は高耐熱衝撃性セラミックの多孔質体であることが好ましい。
【0012】尚更に、本発明によれば、多孔質基体上に水素分離膜が形成されてなるメンブレンリアクタであって、多孔質基体と水素分離膜との間に、多孔質セラミック膜を有することを特徴とするメンブレンリアクタが提供される。
【0013】
【発明の実施の形態】以下に、本発明について、実施の形態を具体的に説明するが、本発明は、これらに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。
【0014】本発明に係る水素分離体の製造方法は、多孔質基体上に水素分離膜が形成された水素分離体の製造方法であり、水素分離膜の形成方法に特徴を有する方法である。本発明に係る水素分離体の製造方法において、水素分離膜は、多孔質基体の表面に、予め合金化したパラジウム−銀合金のゾルを担持させた後に、300〜600℃で焼結させて膜化することにより形成される。こうして、多孔質基体上に水素分離膜たるパラジウム−銀合金膜が設けられた水素分離体を得ることが出来る。
【0015】予め合金化したパラジウム−銀合金のゾルとは、多孔質基体の表面に担持させるときには既に合金になっているナノメートルサイズのパラジウム−銀超微粒子を分散剤中に分散させたものを意味する。パラジウム−銀合金のゾルは、公知の方法で作製することが出来る。例えば、メカノケミカル法や有機金属化合物のゾル−ゲル反応を用いることが可能である。これらの方法は、セラミックコンデンサ等の電極用のパラジウム−銀合金の製造手段として知られている。
【0016】多孔質基体上に担持させるときには、既にパラジウム−銀合金になっているので、熱処理はそれらを焼結させパラジウム−銀合金のゾルを膜化させるためのより低温の処理でよく600℃以下で行う。合金化のために600℃を超えた高温での熱処理を行う必要はない。従来より低い温度での熱処理により、多孔質基体とパラジウム及び銀との反応は抑制され、水素分離機能の低下を招来することがない。但し、300℃未満の低温では、多孔質基体とパラジウム−銀合金膜との焼結が不十分なため好ましくない。
【0017】本発明に係る水素分離体の製造方法では、多孔質基体は、金属又は高耐熱衝撃性セラミックの多孔質体であることが好ましい。熱処理が低温で行われるので、パラジウム及び銀との反応性に留意して多孔質基体を選定するのではなく、専ら耐熱衝撃性に着目して多孔質基体を構成する材料を決定することが可能である。限定されるものではないが、多孔質基体を構成する金属としては、例えば、ステンレス、ニッケル合金、タングステン等が挙げられる。高耐熱衝撃性セラミックとしては、窒化珪素、炭化ケイ素等を挙げることが出来る。
【0018】又、多孔質基体と水素分離膜との間に、多孔質セラミック膜を有する態様を採用することが出来る。上記した如く、多孔質基体の表面にパラジウム−銀合金のゾルを膜化させるための熱処理は600℃を超える高温では行わないので、多孔質基体に金属材料を用いてもパラジウム及び銀との反応は抑制される。しかし、金属と高耐熱衝撃性セラミックとを比較すれば金属の方がより低廉であるが反応し易い材料である。従って、限定されるものでないが、特に多孔質基体として金属多孔質体を用いる場合には、多孔質基体とパラジウム−銀合金膜(水素分離膜)との間に多孔質セラミック膜を介在させる態様をとることは、更に多孔質基体とパラジウム及び銀との反応を小さくするために望ましい手段である。
【0019】上記多孔質セラミック膜を構成するセラミック材料は、高耐熱衝撃性セラミックに限定されるものではない。従来、多孔質基体として用いられているアルミナ、シリカ、シリカ−アルミナ、ムライト、完全安定化ジルコニア等を採用することが出来る。これは、膜状になっているので、高速で昇温しても亀裂等が生じ難いからである。
【0020】上記した多孔質セラミック膜を有する態様は、本発明により提供される水素分離体を示すものである。即ち、本発明に係る水素分離体は、多孔質基体上に水素分離膜が形成されてなるものであって、多孔質基体と水素分離膜との間に多孔質セラミック膜を有することを特徴としている。多孔質セラミック膜は、10μm以下であることが好ましい。より好ましくは5μmである。これは、上記したように、より速い昇温速度でも亀裂し難く、且つ、多孔質基体とパラジウム及び銀との反応を小さくする機能を発揮し得る厚さである。尚、本発明に係る水素分離体は、本発明に係る水素分離体の製造方法によってのみ得られるものではなく、上記特徴を有していれば何れの製造方法によって作製してよい。
【0021】以上、本発明に係る水素分離体の製造方法及び水素分離体について特徴及び効果等を説明したが、上記記載は、水素分離体のように多成分混合ガスから水素のみを拡散分離する用途ではなく、炭化水素の水蒸気改質反応、シクロヘキサンの脱水素反応等を行うメンブレンリアクタにおいても、同様の特徴を発現し同様の効果を得て同様の問題を解決する。本発明に係るメンブレンリアクタの製造方法及びメンブレンリアクタについては記載を省略する。
【0022】
【実施例】以下、実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0023】(実施例1)
【0024】先ず、ゾルを担持させた多孔質基体を得た。図1に、多孔質基体の表面に合金化したパラジウム−銀合金のゾルを担持させる装置を示す。多孔質基体として、長さ200mm、直径10mm(肉厚0.5mm)のSUS316製の金属多孔体管1(細孔径0.1μm)を粉末冶金法により作製した。そして、メカノケミカル法で合金化したパラジウム78質量%−銀22質量%合金ナノ粒子(粒子径5nm)を分散させたゾル溶液13を用意し、図1に示すように、槽中に入れたゾル溶液13に金属多孔体管1を浸漬した。次いで、金属多孔体管1の一端を栓12で閉じ、他端において栓14で管内を気密に保ちつつポンプ11で真空吸引し、金属多孔体管1の外表面及び金属粒子間隙にゾル溶液13をコーティングした。乾燥させた後、ディップコート法により金属多孔体管1の外表面にゾル溶液13をコーティングし、更に乾燥させ、これらコーティング及び乾燥を繰り返して、金属多孔体管1の外表面に所定の厚さのゾルを担持させた。
【0025】次に、ゾルを担持させた金属多孔体管1を、アルゴンガス雰囲気中で500℃にて8時間焼成し、ゾルを焼結させ膜化して、金属多孔体管1外表面上にパラジウム−銀合金膜が形成された水素分離体を得た。得られた水素分離体のパラジウム−銀合金膜の膜厚は3μmであった。
【0026】そして、得られた水素分離体(水素分離体10とする)について、水素分離試験を行った。試験装置の概略図を図2に示す。水素分離体10はチャンバー17に収まり、水素分離体10の内側と外側とはOリング15で完全にシールされている。原料ガスとして、窒素25質量%−水素75質量%の混合ガス27を用意し、チャンバー17を350℃にまで加熱した。次いで、導入管20から水素分離体10の外側に圧力が800kPaである混合ガス27を1Nリットル/分で導入した。又、導入管18から水素分離体10の内側に、圧力が100kPaのアルゴンをキャリヤーガス28として、0.1Nリットル/分で導入した。得られた精製ガス29についてガスクロマトグラフィにより定量分析を行い、精製ガス29中の水素濃度を調べたところ、99.9%であった。
【0027】更に、得られた水素分離体10について、熱サイクル試験を行った。水素雰囲気中にある水素分離体10を室温から350℃まで昇温速度300℃/minで加熱し、次いで、降温速度300℃/minで室温まで冷却した。この加熱・冷却サイクルを1サイクルとし1000サイクル行った。その後、再び上記水素分離試験を実施したところ、精製ガス中の水素濃度は99.9%であり、性能低下は認められなかった。
【0028】(実施例2)
【0029】先ず、ゾルを担持させた多孔質基体を得た。多孔質基体として、長さ200mm、直径10mm(肉厚0.5mm)のタングステン製の金属多孔体管(細孔径1μm)を粉末冶金法により作製し、更に、0.3〜0.4μmのアルミナ粒子をディップコート法で金属多孔体管の外表面にコーティングし、アルゴンガス雰囲気中で1400℃にて2時間焼成して、焼結させ、金属多孔体管の外表面に多孔質セラミック膜を形成した。このときの細孔径は0.1μmであった。
【0030】次いで、メカノケミカル法で合金化したパラジウム78質量%−銀22質量%合金ナノ粒子(粒子径5nm)を分散させたゾル溶液を用意し、実施例1と同様な方法で、外表面に多孔質セラミック膜が形成された金属多孔体管の更に多孔質セラミック膜の上に、所定の厚さのゾルを担持させた。
【0031】次に、ゾルを担持させた金属多孔体管を、アルゴンガス雰囲気中で、600℃にて8時間焼成しゾルを焼結させ膜化し、金属多孔体管外表面上にパラジウム−銀合金膜が形成され、且つ、中間層として多孔質セラミック膜を有する水素分離体を得た。尚、得られた水素分離体のパラジウム−銀合金膜の膜厚は3μmであった。
【0032】そして、得られた水素分離体について、チャンバーを500℃にまで加熱した以外は実施例1に準じて、水素分離試験を行った。得られた精製ガス中の水素濃度は、99.8%であった。
【0033】更に、得られた水素分離体について、加熱到達温度を500℃とした以外は実施例1に準じて、熱サイクル試験を行った。その後、再び上記水素分離試験を実施したところ、精製ガス中の水素濃度は99.7%であり、性能低下は殆ど認められなかった。
【0034】(比較例1)
【0035】多孔質基体として、長さ200mm、直径10mm(肉厚0.5mm)のSUS316製の金属多孔体管(細孔径0.1μm)を粉末冶金法により作製した。そして、得られた金属多孔体管に洗浄、脱脂処理を施した後に、SnCl・2HOを0.1質量%含有する0.1%塩酸水溶液に1分間浸漬させた。次いで、金属多孔体管の外表面を、PdClを0.01質量%含有する0.1%塩酸水溶液に1分間浸漬させた。各々の塩酸水溶液に10回浸漬させるように、この処理を両塩酸水溶液で繰り返し、活性化処理を行った。
【0036】次に、イオンを除去した水に、[Pd(NH]Cl・HO(5.4g/l)、2Na・EDTA(67.2g/l)、アンモニア濃度28%のアンモニア水(651.3ml/l)、HNNH・HO(0.46ml/l)を加えた水溶液を準備し、図1に示す装置を用いゾル溶液の代わりに50℃に温度制御した上記水溶液を槽中に入れ、活性化処理済みの金属多孔体管を浸漬した。次いで、実施例1に準じ、金属多孔体管の一端を栓で閉じ、他端において栓で管内を気密に保ちつつポンプで真空吸引し無電解(化学)メッキし、金属多孔体管の外表面に2.5μmのパラジウム膜を形成した。更に、銀を電気メッキした後、アルゴンガス雰囲気中で、900℃で2時間、パラジウムと銀の合金化処理を行い、水素分離体を得た。
【0037】そして、得られた水素分離体について、実施例1に準じて、水素分離試験を行った。得られた精製ガス中の水素濃度は75.0%であり、水素分離膜として機能していないことが確認された。又、SEM観察及びEDX分析の結果、パラジウムと銀とを合金化する熱処理により、SUS316製の金属多孔体管とパラジウム及び銀が反応していることが確認された。
【0038】(比較例2)
【0039】多孔質基体として、長さ200mm、直径10mm(肉厚1.0mm)のアルミナ製多孔体管を焼結法により作製した。そして、得られたアルミナ製多孔体管に、比較例1に準じて活性化処理を施し、又、比較例1に準じてパラジウムを無電解(化学)メッキしてアルミナ製多孔体管の外表面に2.5μmのパラジウム膜を形成した。更に、比較例1に準じて銀を電気メッキした後、アルゴンガス雰囲気中で、900℃で2時間、熱処理を行い、パラジウムと銀とを合金化し、水素分離体を得た。尚、得られた水素分離体のパラジウム−銀合金膜の膜厚は3μmであった。
【0040】そして、得られた水素分離体について、チャンバーを窒素中において100℃/Hrで350℃にまで加熱したことを除き、実施例1に準じて、水素分離試験を行った。得られた精製ガス中の水素濃度は99.9%であった。
【0041】更に、得られた水素分離体について、実施例1に準じて熱サイクル試験を行った。しかしながら、1回目の昇温時にアルミナ製多孔体管に大きなクラックが生じ使用不可能になったため、試験は中止された。
【0042】(実施例3)
【0043】実施例1と同様にして、SUS316製の金属多孔体管の外表面上に3μmの厚さでパラジウム−銀合金膜が形成された水素分離体10を得た。そして、この水素分離体10を用いて図3に示すメンブレンリアクタを作製した。
【0044】図3に示すメンブレンリアクタは、反応容器31内に水素生成反応用の触媒38が充填され、触媒38の近傍には図示されるように水素分離体10が配設されている。入口35から供給された原料ガス32は、触媒38で反応して水素33を生成し、生成された水素33は水素分離体10を介して分離され、水素排出管34を通って反応容器31の外部に排出される。一方、排ガス39は、触媒38を経由して出口36から外部に排出される。尚、シール板37は、原料ガス32が水素分離体10の内側に混入しないように設けられたものである。
【0045】このメンブレンリアクタを用いて、メタン(CH)の水蒸気改質反応(CH+HO=CO+3H)を行った。先ず、反応容器31を500℃に加熱した。CHが20体積%、HOが80体積%の原料ガスを入口35から供給し、反応容器31内の圧力を800kPaに保持するように出口36を制御した。
【0046】出口36のCHをガスクロマトグラフイーで分析して転化率を求めたところ、90%であった。一般に、メタンの水蒸気改質反応においては、800℃では平衡転化率が90%超であるが、500℃では平衡転化率は50%程度である。水素分離体10を有するメンブレンリアクタの適用により、上記水蒸気改質反応式の右辺のHが除去され反応が(右辺方向に)進み、より低温の500℃でも90%の転化率を達成出来たと考えられる。
【0047】(比較例3)
【0048】比較例1と同様にして、SUS316製の金属多孔体管の外表面上に3μmの厚さのパラジウム−銀合金膜の作製を実施し、水素分離体を得た。そして、水素分離体10の代わりに得られた水素分離体を用いた以外は図3に示すメンブレンリアクタと同じメンブレンリアクタを作製した。
【0049】そして、作製したメンブレンリアクタを用いて、実施例3に準じてメタンの水蒸気改質反応を行った。出口のCHをガスクロマトグラフイーで分析して転化率を求めたところ、60%であった。水素分離体が水素分離機能を十分に発揮していないためと考えられた。メンブレンリアクタから水素分離体を取り出しSEM観察及びEDX分析を行った結果、水素分離体においてパラジウムと銀とを合金化する熱処理の際に、SUS316製の金属多孔体管とパラジウム及び銀が反応していることが確認された。
【0050】
【発明の効果】以上説明したように、本発明によれば、パラジウムと銀とが合金化され低温脆性が改善されているとともに、耐熱衝撃性に優れ、高純度の水素を得ることが出来る水素分離体が提供される。本発明により得られる水素分離体は、急激な昇温降温に耐えて高純度の水素を得ることが出来るので、自動車用、家庭やビル等建物用、更には携帯電話やパソコン等の電子機器用の電源として実用化が期待される燃料電池用の燃料改質器への適用が可能となり従来の水素分離体より市場が大きく拡がる。
【0051】又、本発明によりパラジウムと銀とが合金化され低温脆性が改善されているとともに、耐熱衝撃性に優れ、低温運転時でも高い転化率を実現したメンブレンリアクタが提供される。
【図面の簡単な説明】
【図1】水素分離体の製造工程で用いられる装置を示す部分断面図である。
【図2】水素分離試験装置を示す断面図である。
【図3】メンブレンリアクタの一例を示す断面図である。
【符号の説明】
1…金属多孔体管、10…水素分離体、11…ポンプ、12…栓、13…ゾル溶液、14…栓、15…Oリング、17…チャンバー、18…導入管、20…導入管、27…混合ガス、28…キャリヤーガス、29…精製ガス、31…反応容器、32…原料ガス、33…水素、34…水素排出管、35…入口、36…出口、37…シール板、38…触媒、39…排ガス。
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen separator for separating only hydrogen from a multi-component mixed gas as a raw material gas, and a membrane for performing a steam reforming reaction of hydrocarbons, a dehydrogenation reaction of cyclohexane, and the like. The present invention relates to a method for manufacturing a reactor, and a hydrogen separator and a membrane reactor.
[0002]
2. Description of the Related Art As one method of obtaining high-purity hydrogen gas, there is a method of separating hydrogen gas from a multi-component mixed gas by a gas separation membrane. As a gas separation membrane for obtaining hydrogen gas, an organic polymer membrane such as polyimide or polysulfone, and an inorganic compound membrane such as palladium or a palladium alloy are known. In particular, a palladium or palladium alloy gas separation membrane is known. (Hereinafter, also referred to as a palladium thin film) is known as a hydrogen separation membrane that can obtain extremely high-purity hydrogen by utilizing the property of dissolving and permeating hydrogen in palladium or a palladium alloy.
[0003] This palladium thin film needs to be made as thin as possible in order to increase the hydrogen permeability. However, there is a problem of mechanical strength by itself, and the limit of a self-supporting film is about 50 μm. Therefore, as disclosed in Patent Document 1, palladium or palladium is applied to the surface of a ceramic porous support (substrate). A method is adopted in which an alloy is applied to form a hydrogen separator and the support has mechanical strength.
[0004] Further, a palladium thin film has a problem that cracks and the like are easily generated due to hydrogen embrittlement of palladium at a low temperature. Therefore, as disclosed in Patent Document 2, a palladium thin film is generally used for heat-resistant porous substrates. On the surface, a palladium thin film is formed by a chemical plating method, a silver thin film is formed on the palladium thin film by a chemical plating method, and then, using a manufacturing method of performing heat treatment, a hydrogen separation membrane in which palladium and silver are alloyed is used. A method is adopted in which the hydrogen separator is configured to have low temperature brittleness. At this time, since the temperature required for alloying palladium and silver is as high as 600 to 1300 ° C., the heat-resistant porous substrate used is made of a material that does not react with palladium and silver even at such a high temperature, for example, alumina. And the like.
[0005] The hydrogen separator described above has no problem when used for long-term continuous use, for example, for production of ultra-high-purity hydrogen used in a semiconductor production process. However, in a fuel reformer for obtaining hydrogen for a fuel cell, which is expected to be put to practical use as a power source for automobiles, homes and buildings, and mobile phones and personal computers, etc. Is performed, and it is required to raise the temperature more quickly in order to quickly shift from the rest state to the operating state. However, in the above-mentioned conventional hydrogen separator, since the heat shock resistance of the ceramic heat-resistant porous substrate is low, it is not possible to meet the demand for the improvement of the heating rate.
For example, when methanol is used as a raw material, the reformer temperature is 300.degree. C., and when methane gas is used, the reformer temperature is 500 to 600.degree. 600 ° C. is preferred. Particularly, in order to be used as a fuel reformer for a fuel cell vehicle, it is necessary to rapidly raise the temperature to the above-mentioned temperature, and the hydrogen separator used withstands a temperature rising rate of at least about 150 ° C./min. The required thermal shock resistance is required. However, under such conditions, when a ceramic such as silica, silica-alumina, mullite, and fully stabilized zirconia is used as the porous substrate constituting the conventional hydrogen separator in addition to the alumina, cracks occur. Etc. will occur. On the other hand, when a metal porous substrate is used, when the alloying reaction of palladium and silver is performed, a reaction of the metal porous substrate with palladium and silver occurs, and a sufficient hydrogen separation function is not exhibited.
[0007]
[Patent Document 1]
JP-A-62-273030 [Patent Document 2]
JP-A-3-146122
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to improve the low-temperature brittleness by alloying palladium with silver. An object of the present invention is to provide a hydrogen separator having excellent thermal shock resistance and capable of obtaining high-purity hydrogen. Incidentally, the above-mentioned conventional problems and problems relating to the hydrogen separator also exist in a membrane reactor that performs a steam reforming reaction or the like. Therefore, another object of the present invention is to provide a membrane reactor in which palladium and silver are alloyed to improve low-temperature brittleness, have excellent thermal shock resistance, and realize high conversion in, for example, a hydrogen generation reaction. Is to do. As a result of repeated research, the production of hydrogen separators was started, and the alloying reaction between palladium and silver at high temperatures was omitted, and the reaction between the porous substrate and palladium and silver was suppressed. It has been found that a material having high thermal shock resistance can be selected as a material, and that the above object can be achieved by preventing a decrease in the hydrogen separation function.
[0009]
That is, according to the present invention, there is provided a method for producing a hydrogen separator in which a hydrogen separation membrane is formed on a porous substrate, wherein the surface of the porous substrate is pre-alloyed. There is provided a method for producing a hydrogen separator, comprising: carrying a sol of a palladium-silver alloy; and sintering the film at 300 to 600 ° C. to form a film to form a hydrogen separation membrane. At this time, the porous substrate is preferably a porous body of a metal or a high thermal shock resistant ceramic.
According to the present invention, there is provided a hydrogen separator having a hydrogen separation membrane formed on a porous substrate, wherein a porous ceramic is provided between the porous substrate and the hydrogen separation membrane as a reaction suppressing layer. A hydrogen separator comprising a membrane is provided.
Further, according to the present invention, there is provided a method for producing a membrane reactor in which a hydrogen separation membrane is formed on a porous substrate, wherein a sol of a pre-alloyed palladium-silver alloy is coated on the surface of the porous substrate. A method for producing a membrane reactor, comprising sintering at 300 to 600 ° C. to form a film after supporting, thereby forming a hydrogen separation membrane. At this time, the porous substrate is preferably a porous body of a metal or a high thermal shock resistant ceramic.
Still further, according to the present invention, there is provided a membrane reactor having a hydrogen separation membrane formed on a porous substrate, wherein a porous ceramic membrane is provided between the porous substrate and the hydrogen separation membrane. A membrane reactor is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be specifically described, but the present invention should not be construed as being limited to these, and is not departed from the scope of the present invention. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art.
The method for producing a hydrogen separator according to the present invention is a method for producing a hydrogen separator having a hydrogen separation film formed on a porous substrate, and is characterized by the method for forming a hydrogen separation film. In the method for producing a hydrogen separator according to the present invention, the hydrogen separation membrane is prepared by supporting a sol of a pre-alloyed palladium-silver alloy on the surface of the porous substrate, and then sintering at 300 to 600 ° C. It is formed by forming Thus, a hydrogen separator in which a palladium-silver alloy film as a hydrogen separation film is provided on the porous substrate can be obtained.
The pre-alloyed sol of a palladium-silver alloy is defined as a dispersion of ultra-fine nanometer-sized palladium-silver particles already dispersed in a dispersant when the sol is supported on the surface of a porous substrate. means. The sol of a palladium-silver alloy can be prepared by a known method. For example, a mechanochemical method or a sol-gel reaction of an organometallic compound can be used. These methods are known as means for producing a palladium-silver alloy for electrodes such as ceramic capacitors.
When supported on a porous substrate, since a palladium-silver alloy is already formed, a heat treatment may be performed at a lower temperature of 600 ° C. to sinter them and form a sol of the palladium-silver alloy. This is done below. It is not necessary to perform heat treatment at a high temperature exceeding 600 ° C. for alloying. By the heat treatment at a lower temperature than before, the reaction between the porous substrate and palladium and silver is suppressed, and the hydrogen separation function is not reduced. However, if the temperature is lower than 300 ° C., the sintering between the porous substrate and the palladium-silver alloy film is insufficient, which is not preferable.
In the method for producing a hydrogen separator according to the present invention, the porous substrate is preferably a porous body of a metal or a high thermal shock resistant ceramic. Since the heat treatment is performed at a low temperature, it is possible to determine the material constituting the porous substrate by focusing solely on the thermal shock resistance, instead of selecting the porous substrate in consideration of the reactivity with palladium and silver. It is. Although not limited, the metal constituting the porous substrate includes, for example, stainless steel, nickel alloy, tungsten, and the like. Examples of the high thermal shock resistant ceramic include silicon nitride and silicon carbide.
Further, an embodiment having a porous ceramic membrane between the porous substrate and the hydrogen separation membrane can be adopted. As described above, since the heat treatment for forming the sol of the palladium-silver alloy on the surface of the porous substrate is not performed at a high temperature exceeding 600 ° C., the reaction with palladium and silver can be performed even if a metal material is used for the porous substrate. Is suppressed. However, when comparing metals with high thermal shock resistant ceramics, metals are cheaper but more reactive materials. Therefore, although not limited, an embodiment in which a porous ceramic membrane is interposed between the porous substrate and the palladium-silver alloy membrane (hydrogen separation membrane), particularly when a porous metal body is used as the porous substrate. Is a desirable measure to further reduce the reaction between the porous substrate and palladium and silver.
The ceramic material constituting the porous ceramic film is not limited to a high thermal shock resistant ceramic. Conventionally, alumina, silica, silica-alumina, mullite, fully stabilized zirconia, and the like, which have been used as a porous substrate, can be employed. This is because cracks and the like are unlikely to occur even when the temperature is raised at a high speed because the film is formed.
The above embodiment having the porous ceramic membrane shows the hydrogen separator provided by the present invention. That is, the hydrogen separator according to the present invention is obtained by forming a hydrogen separation membrane on a porous substrate, and has a porous ceramic membrane between the porous substrate and the hydrogen separation membrane. I have. The porous ceramic membrane preferably has a thickness of 10 μm or less. More preferably, it is 5 μm. As described above, this is a thickness that is hardly cracked even at a higher heating rate and that can exhibit a function of reducing the reaction between the porous substrate and palladium and silver. The hydrogen separator according to the present invention is not only obtained by the method for producing a hydrogen separator according to the present invention, but may be produced by any method having the above characteristics.
The features and effects of the method for producing a hydrogen separator according to the present invention and the hydrogen separator according to the present invention have been described above. However, in the above description, only hydrogen is diffused and separated from a multi-component mixed gas like a hydrogen separator. Instead of using the same, a membrane reactor that performs a steam reforming reaction of hydrocarbons, a dehydrogenation reaction of cyclohexane, and the like also exhibits similar characteristics, obtains similar effects, and solves similar problems. The description of the method for manufacturing the membrane reactor and the membrane reactor according to the present invention is omitted.
[0022]
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(Example 1)
First, a porous substrate carrying a sol was obtained. FIG. 1 shows an apparatus for supporting an alloyed palladium-silver alloy sol on the surface of a porous substrate. As a porous substrate, a SUS316 metal porous tube 1 (pore diameter: 0.1 μm) having a length of 200 mm and a diameter of 10 mm (wall thickness: 0.5 mm) was prepared by a powder metallurgy method. Then, a sol solution 13 in which 78% by mass of palladium alloyed by 22% by mass and 22% by mass of silver alloy nanoparticles (particle size: 5 nm) alloyed by the mechanochemical method were prepared, and as shown in FIG. The porous metal tube 1 was immersed in the solution 13. Next, one end of the porous metal tube 1 is closed with a stopper 12, and the other end of the tube is vacuum-evacuated with a pump 11 while keeping the inside of the tube airtight with a stopper 14. Was coated. After drying, the outer surface of the porous metal tube 1 is coated with the sol solution 13 by a dip coating method, and further dried, and the coating and drying are repeated, so that the outer surface of the porous metal tube 1 has a predetermined thickness. Was carried.
Next, the porous metal tube 1 supporting the sol is baked at 500 ° C. for 8 hours in an argon gas atmosphere, and the sol is sintered to form a film. A hydrogen separator on which a palladium-silver alloy film was formed was obtained. The thickness of the palladium-silver alloy film of the obtained hydrogen separator was 3 μm.
Then, a hydrogen separation test was performed on the obtained hydrogen separator (referred to as hydrogen separator 10). FIG. 2 shows a schematic diagram of the test apparatus. The hydrogen separator 10 is housed in the chamber 17, and the inside and the outside of the hydrogen separator 10 are completely sealed by the O-ring 15. A mixed gas 27 of 25% by mass of nitrogen and 75% by mass of hydrogen was prepared as a source gas, and the chamber 17 was heated to 350 ° C. Next, a mixed gas 27 having a pressure of 800 kPa was introduced from the introduction pipe 20 to the outside of the hydrogen separator 10 at a rate of 1 Nl / min. Further, argon having a pressure of 100 kPa was introduced as a carrier gas 28 into the hydrogen separator 10 from the introduction pipe 18 at a rate of 0.1 Nl / min. The obtained purified gas 29 was quantitatively analyzed by gas chromatography, and the hydrogen concentration in the purified gas 29 was determined to be 99.9%.
Further, the obtained hydrogen separator 10 was subjected to a heat cycle test. The hydrogen separator 10 in the hydrogen atmosphere was heated from room temperature to 350 ° C. at a rate of temperature increase of 300 ° C./min, and then cooled to room temperature at a rate of temperature decrease of 300 ° C./min. This heating / cooling cycle was defined as one cycle, and 1000 cycles were performed. Thereafter, when the above-mentioned hydrogen separation test was performed again, the hydrogen concentration in the purified gas was 99.9%, and no deterioration in performance was observed.
(Example 2)
First, a porous substrate carrying a sol was obtained. As a porous substrate, a tungsten metal porous body tube (pore diameter: 1 μm) having a length of 200 mm and a diameter of 10 mm (wall thickness: 0.5 mm) was prepared by a powder metallurgy method. The particles are coated on the outer surface of the porous metal tube by dip coating, baked in an argon gas atmosphere at 1400 ° C. for 2 hours, and sintered to form a porous ceramic film on the outer surface of the porous metal tube. did. At this time, the pore diameter was 0.1 μm.
Next, a sol solution in which 78% by mass of palladium alloyed by 22% by mass and 22% by mass of silver alloy nanoparticles (particle diameter: 5 nm) alloyed by the mechanochemical method were prepared, and the outer surface was prepared in the same manner as in Example 1. Further, a sol having a predetermined thickness was carried on the porous ceramic film of the porous metal tube in which the porous ceramic film was formed.
Next, the porous metal tube carrying the sol is fired at 600 ° C. for 8 hours in an argon gas atmosphere to sinter the sol to form a film, and palladium-silver is deposited on the outer surface of the porous metal tube. A hydrogen separator having an alloy film formed thereon and having a porous ceramic film as an intermediate layer was obtained. The thickness of the obtained palladium-silver alloy film of the hydrogen separator was 3 μm.
Then, the obtained hydrogen separator was subjected to a hydrogen separation test according to Example 1 except that the chamber was heated to 500 ° C. The hydrogen concentration in the obtained purified gas was 99.8%.
Further, the obtained hydrogen separator was subjected to a heat cycle test in the same manner as in Example 1 except that the temperature attained by heating was 500 ° C. Thereafter, when the above-mentioned hydrogen separation test was performed again, the hydrogen concentration in the purified gas was 99.7%, and almost no decrease in performance was observed.
(Comparative Example 1)
As a porous substrate, a SUS316 metal porous body tube (pore diameter: 0.1 μm) having a length of 200 mm and a diameter of 10 mm (wall thickness: 0.5 mm) was prepared by a powder metallurgy method. After washing and degreasing the obtained porous metal tube, the tube was immersed in a 0.1% hydrochloric acid aqueous solution containing 0.1% by mass of SnCl 2 .2H 2 O for 1 minute. Next, the outer surface of the porous metal tube was immersed in a 0.1% hydrochloric acid aqueous solution containing 0.01% by mass of PdCl 2 for 1 minute. This treatment was repeated with both hydrochloric acid aqueous solutions so as to be immersed 10 times in each hydrochloric acid aqueous solution, and an activation treatment was performed.
Next, [Pd (NH 3 ) 4 ] Cl 2 .H 2 O (5.4 g / l), 2Na.EDTA (67.2 g / l), ammonia concentration 28% An aqueous solution to which ammonia water (651.3 ml / l) and H 2 NNH 2 .H 2 O (0.46 ml / l) were added was prepared, and the temperature was raised to 50 ° C. using the apparatus shown in FIG. 1 instead of the sol solution. The controlled aqueous solution was put in a tank, and the activated porous metal tube was immersed. Then, according to Example 1, one end of the porous metal tube is closed with a stopper, and the other end is subjected to vacuum suction and electroless (chemical) plating with a pump while keeping the inside of the tube airtight with the stopper, and the outer surface of the porous metal tube is stopped. A 2.5 μm palladium film was formed on the substrate. Further, after silver was electroplated, alloying of palladium and silver was performed at 900 ° C. for 2 hours in an argon gas atmosphere to obtain a hydrogen separator.
Then, a hydrogen separation test was performed on the obtained hydrogen separator according to Example 1. The hydrogen concentration in the obtained purified gas was 75.0%, and it was confirmed that it did not function as a hydrogen separation membrane. In addition, as a result of SEM observation and EDX analysis, it was confirmed that palladium and silver were reacted with the SUS316 metal porous tube by heat treatment for alloying palladium and silver.
(Comparative Example 2)
As a porous substrate, a porous alumina tube having a length of 200 mm and a diameter of 10 mm (wall thickness: 1.0 mm) was prepared by a sintering method. Then, the obtained alumina porous tube was subjected to an activation treatment according to Comparative Example 1, and palladium was electrolessly (chemically) plated according to Comparative Example 1 to form an outer surface of the alumina porous tube. A 2.5 μm palladium film was formed on the substrate. Further, after electroplating silver according to Comparative Example 1, heat treatment was performed at 900 ° C. for 2 hours in an argon gas atmosphere to alloy palladium and silver, thereby obtaining a hydrogen separator. The thickness of the obtained palladium-silver alloy film of the hydrogen separator was 3 μm.
The obtained hydrogen separator was subjected to a hydrogen separation test according to Example 1, except that the chamber was heated to 350 ° C. at 100 ° C./Hr in nitrogen. The hydrogen concentration in the obtained purified gas was 99.9%.
Further, the obtained hydrogen separator was subjected to a heat cycle test according to Example 1. However, the test was stopped because a large crack occurred in the alumina porous body tube at the first temperature rise and the tube became unusable.
(Embodiment 3)
In the same manner as in Example 1, a hydrogen separator 10 having a 3 μm-thick palladium-silver alloy film formed on the outer surface of a SUS316 porous metal tube was obtained. Then, using the hydrogen separator 10, a membrane reactor shown in FIG. 3 was produced.
In the membrane reactor shown in FIG. 3, a reaction vessel 31 is filled with a catalyst 38 for a hydrogen generation reaction, and a hydrogen separator 10 is disposed near the catalyst 38 as shown in the figure. The raw material gas 32 supplied from the inlet 35 reacts with the catalyst 38 to generate hydrogen 33, and the generated hydrogen 33 is separated via the hydrogen separator 10 and passes through the hydrogen discharge pipe 34 to the reaction vessel 31. It is discharged outside. On the other hand, the exhaust gas 39 is discharged outside from the outlet 36 via the catalyst 38. The seal plate 37 is provided so that the raw material gas 32 does not enter the inside of the hydrogen separator 10.
Using this membrane reactor, a steam reforming reaction of methane (CH 4 ) (CH 4 + H 2 O = CO + 3H 2 ) was performed. First, the reaction vessel 31 was heated to 500 ° C. A source gas containing 20% by volume of CH 4 and 80% by volume of H 2 O was supplied from the inlet 35, and the outlet 36 was controlled so that the pressure in the reaction vessel 31 was maintained at 800 kPa.
The conversion rate of the CH 4 at the outlet 36 was determined by gas chromatography to be 90%. Generally, in the steam reforming reaction of methane, the equilibrium conversion at 800 ° C. exceeds 90%, but the equilibrium conversion at 500 ° C. is about 50%. The application of membrane reactor having a hydrogen separator 10, (in the right side direction) the steam reforming reaction formula of the right side is the H 2 removal reaction proceeds, and could achieve a more 500 ° C. But 90% conversion of the low temperature Conceivable.
(Comparative Example 3)
In the same manner as in Comparative Example 1, a 3 μm-thick palladium-silver alloy film was formed on the outer surface of a SUS316 porous metal tube to obtain a hydrogen separator. Then, a membrane reactor identical to the membrane reactor shown in FIG. 3 was produced except that the obtained hydrogen separator was used instead of the hydrogen separator 10.
Then, a steam reforming reaction of methane was carried out according to Example 3 using the membrane reactor thus produced. The CH 4 in the outlet was determined the conversion rate was analyzed by gas chromatography, was 60%. It is considered that the hydrogen separator did not sufficiently perform the hydrogen separation function. As a result of taking out the hydrogen separator from the membrane reactor and performing SEM observation and EDX analysis, during the heat treatment for alloying palladium and silver in the hydrogen separator, the metal porous tube made of SUS316 reacts with palladium and silver. Was confirmed.
[0050]
As described above, according to the present invention, palladium and silver are alloyed to improve low-temperature brittleness, and have excellent thermal shock resistance and high purity hydrogen can be obtained. An isolate is provided. The hydrogen separator obtained according to the present invention can withstand rapid temperature rise and fall to obtain high-purity hydrogen, so that it can be used for automobiles, homes, buildings, and other electronic devices such as mobile phones and personal computers. It can be applied to a fuel reformer for a fuel cell, which is expected to be put to practical use as a power source, and the market greatly expands compared to conventional hydrogen separators.
Further, according to the present invention, there is provided a membrane reactor in which palladium and silver are alloyed to improve low-temperature brittleness, have excellent thermal shock resistance, and realize high conversion even at low-temperature operation.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view illustrating an apparatus used in a manufacturing process of a hydrogen separator.
FIG. 2 is a sectional view showing a hydrogen separation test apparatus.
FIG. 3 is a cross-sectional view showing an example of a membrane reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal porous body tube, 10 ... Hydrogen separator, 11 ... Pump, 12 ... Stopper, 13 ... Sol solution, 14 ... Stopper, 15 ... O-ring, 17 ... Chamber, 18 ... Introduction pipe, 20 ... Introduction pipe, 27 ... mixed gas, 28 ... carrier gas, 29 ... purified gas, 31 ... reaction vessel, 32 ... raw material gas, 33 ... hydrogen, 34 ... hydrogen discharge pipe, 35 ... inlet, 36 ... outlet, 37 ... seal plate, 38 ... catalyst , 39 ... exhaust gas.

Claims (6)

多孔質基体上に水素分離膜が形成された水素分離体の製造方法であって、
前記多孔質基体の表面に、予め合金化したパラジウム−銀合金のゾルを担持させた後に、300〜600℃で焼結させて膜化し、前記水素分離膜を形成することを特徴とする水素分離体の製造方法。
A method for producing a hydrogen separator in which a hydrogen separation membrane is formed on a porous substrate,
Hydrogen separation, wherein a sol of a pre-alloyed palladium-silver alloy is supported on the surface of the porous substrate, and then sintered at 300 to 600 ° C. to form a film to form the hydrogen separation membrane. How to make the body.
前記多孔質基体が、金属又は高耐熱衝撃性セラミックの多孔質体である請求項1に記載の水素分離体の製造方法。The method for producing a hydrogen separator according to claim 1, wherein the porous substrate is a porous body of a metal or a high thermal shock resistant ceramic. 多孔質基体上に水素分離膜が形成されてなる水素分離体であって、
前記多孔質基体と前記水素分離膜との間に、多孔質セラミック膜を有することを特徴とする水素分離体。
A hydrogen separator having a hydrogen separation membrane formed on a porous substrate,
A hydrogen separator having a porous ceramic membrane between the porous substrate and the hydrogen separation membrane.
多孔質基体上に水素分離膜が形成されたメンブレンリアクタの製造方法であって、
前記多孔質基体の表面に、予め合金化したパラジウム−銀合金のゾルを担持させた後に、300〜600℃で焼結させて膜化し、前記水素分離膜を形成することを特徴とするメンブレンリアクタの製造方法。
A method for producing a membrane reactor having a hydrogen separation membrane formed on a porous substrate,
A membrane reactor, wherein a sol of a pre-alloyed palladium-silver alloy is supported on the surface of the porous substrate, and then sintered at 300 to 600 ° C to form a film to form the hydrogen separation membrane. Manufacturing method.
前記多孔質基体が、金属又は高耐熱衝撃性セラミックの多孔質体である請求項4に記載のメンブレンリアクタの製造方法。The method for producing a membrane reactor according to claim 4, wherein the porous substrate is a porous body of a metal or a high thermal shock resistant ceramic. 多孔質基体上に水素分離膜が形成されてなるメンブレンリアクタであって、
前記多孔質基体と前記水素分離膜との間に、多孔質セラミック膜を有することを特徴とするメンブレンリアクタ。
A membrane reactor having a hydrogen separation membrane formed on a porous substrate,
A membrane reactor comprising a porous ceramic membrane between the porous substrate and the hydrogen separation membrane.
JP2003006616A 2003-01-15 2003-01-15 Method of producing hydrogen separator Pending JP2004216275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006616A JP2004216275A (en) 2003-01-15 2003-01-15 Method of producing hydrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006616A JP2004216275A (en) 2003-01-15 2003-01-15 Method of producing hydrogen separator

Publications (1)

Publication Number Publication Date
JP2004216275A true JP2004216275A (en) 2004-08-05

Family

ID=32896935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006616A Pending JP2004216275A (en) 2003-01-15 2003-01-15 Method of producing hydrogen separator

Country Status (1)

Country Link
JP (1) JP2004216275A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346621A (en) * 2005-06-17 2006-12-28 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane and hydrogen separation method
JP2007301514A (en) * 2006-05-12 2007-11-22 National Institute Of Advanced Industrial & Technology Hydrogen separation material and its manufacturing method
WO2008133718A2 (en) * 2006-11-08 2008-11-06 Shell Oil Company A gas separation membrane system and method of making thereof using nanoscale metal material
US8048199B2 (en) 2007-02-20 2011-11-01 Shell Oil Company Method of making a leak stable gas separation membrane system
WO2014092333A1 (en) * 2012-12-11 2014-06-19 한국에너지기술연구원 Hydrogen separation membrane, and method for manufacturing same
WO2014098038A1 (en) * 2012-12-17 2014-06-26 日東電工株式会社 Hydrogen-releasing film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346621A (en) * 2005-06-17 2006-12-28 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane and hydrogen separation method
JP2007301514A (en) * 2006-05-12 2007-11-22 National Institute Of Advanced Industrial & Technology Hydrogen separation material and its manufacturing method
KR101444969B1 (en) * 2006-11-08 2014-10-02 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 A gas separation membrane system and method of making thereof using nanoscale metal material
WO2008133718A3 (en) * 2006-11-08 2008-12-11 Shell Oil Co A gas separation membrane system and method of making thereof using nanoscale metal material
JP2010509054A (en) * 2006-11-08 2010-03-25 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Gas separation membrane system and method for making it using nanoscale metallic materials
US7959711B2 (en) 2006-11-08 2011-06-14 Shell Oil Company Gas separation membrane system and method of making thereof using nanoscale metal material
WO2008133718A2 (en) * 2006-11-08 2008-11-06 Shell Oil Company A gas separation membrane system and method of making thereof using nanoscale metal material
US8048199B2 (en) 2007-02-20 2011-11-01 Shell Oil Company Method of making a leak stable gas separation membrane system
WO2014092333A1 (en) * 2012-12-11 2014-06-19 한국에너지기술연구원 Hydrogen separation membrane, and method for manufacturing same
KR101471615B1 (en) * 2012-12-11 2014-12-11 한국에너지기술연구원 Hydrogen separation membrane and manufacturing method thereof
US9751051B2 (en) 2012-12-11 2017-09-05 Korea Institute Of Energy Research Hydrogen separation membrane, and method for manufacturing same
WO2014098038A1 (en) * 2012-12-17 2014-06-26 日東電工株式会社 Hydrogen-releasing film
JPWO2014098038A1 (en) * 2012-12-17 2017-01-12 日東電工株式会社 Hydrogen discharge membrane

Similar Documents

Publication Publication Date Title
Pan et al. Thin dense Pd membranes supported on α-Al 2 O 3 hollow fibers
Zhao et al. Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering
JP5057685B2 (en) Hydrogen separation device and hydrogen production device
TW200835550A (en) A gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use
US20070202023A1 (en) Reactor
JP2008513196A (en) Method for producing palladium alloy composite membrane for hydrogen gas separation
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP4572385B2 (en) Hydrogen purification separation method
JP2006204990A (en) Hydrogen separation membrane and its manufacturing method
US7524361B2 (en) Porous hydrogen separation membrane and method for preparing the same
JP5526387B2 (en) Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
KR100768805B1 (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
JP2004216275A (en) Method of producing hydrogen separator
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
JP3117276B2 (en) Hydrogen separation membrane
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JPH11286785A (en) Hydrogen-permeable membrane and its preparation
JP5825465B2 (en) Hydrogen separation membrane, production method thereof, and hydrogen separation method
CN218175088U (en) Device for plating carbide protective layer on surface of graphite structural member
JP4112856B2 (en) Method for producing gas separator
KR100312069B1 (en) A palladium alloy composite membrane for permeances of hydrogen, and preparation thereof
JP2003183840A (en) Process for manufacturing palladium- or palladium alloy-coated porous body
JP4911916B2 (en) Hydrogen separator
JP2006314876A (en) Hydrogen separator
JP2004122006A (en) Hydrogen separation film, its production method and separation method for hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A02