JP2004216268A - Propylene oxide synthesis catalyst and production method of propylene oxide using the same - Google Patents

Propylene oxide synthesis catalyst and production method of propylene oxide using the same Download PDF

Info

Publication number
JP2004216268A
JP2004216268A JP2003006543A JP2003006543A JP2004216268A JP 2004216268 A JP2004216268 A JP 2004216268A JP 2003006543 A JP2003006543 A JP 2003006543A JP 2003006543 A JP2003006543 A JP 2003006543A JP 2004216268 A JP2004216268 A JP 2004216268A
Authority
JP
Japan
Prior art keywords
propylene
propylene oxide
oxide
catalyst
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006543A
Other languages
Japanese (ja)
Other versions
JP4002971B2 (en
Inventor
Kazuhisa Murata
和久 村田
Naoki Mimura
直樹 三村
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003006543A priority Critical patent/JP4002971B2/en
Publication of JP2004216268A publication Critical patent/JP2004216268A/en
Application granted granted Critical
Publication of JP4002971B2 publication Critical patent/JP4002971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst, using oxygen as a oxidizing agent, for industrially advantageously producing propylene oxide (PO) from propylene at an improved space time yield (STY), a high selectivity and a high conversion efficiency and a method for industrially advantageously producing propylene oxide (PO) using the catalyst. <P>SOLUTION: The propylene oxide synthesis catalyst contains a solid oxide and a palladium type substance to be used for synthesizing propylene oxide by direction oxidation of propylene. Propylene oxide is obtained by oxidizing propylene with oxygen by using the synthesis catalyst. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プロピレンを直接酸化してプロピレンオキシドを合成する際に用いられる新規な触媒に関する。
【0002】
【従来の技術】
プロピレンからのプロピレンオキシドの工業的な製造方法としては、たとえば、プロピレンクロロヒドリンを経由する方法や有機過酸化物を用いてプロピレンを直接酸化する方法等が知られているが、更なる省資源・低環境負荷プロセスとして、過酸化水素、酸素/水素や酸素を酸化剤として用いる方法が最近提案されている。
【0003】
過酸化水素や酸素/水素を酸化剤とする方法としては、触媒としてチタノシリケートを用いる方法(非特許文献1)、金/チタニアを用いる方法(非特許文献2)などが提案されているが、過酸化水素は高価かつ危険、また酸素/水素は危険かつ大量の水素が水として失われる、などの問題点があった。
【0004】
一方、酸素を酸化剤とする方法としては、これまでに、以下のような触媒を用いる方法等が提案されている。
▲1▼CsNO/Ti−MCM−41触媒(150℃);PO収率は高々0.1%程度、STY=0.29mmol/g−cat.h(非特許文献3等)。
▲2▼ NaCl/Ag触媒(350℃);C3’転化率11.2%、PO選択率29.1%,STY=11mmol/cc−cat.h、またVce0.2Cu0.8−NaCl(20)触媒(250℃)でC3’転化率0.19%、PO選択率43.4%、STY=0.29mmol/cc−cat.h(非特許文献4等)。
▲3▼ 無触媒 (290℃)、25気圧;C3’転化率11.3%、PO選択率60%,STY=5.2mmol/g−cat.h(非特許文献5等)。
▲4▼ Cr/SiO2等の触媒存在下、酸素/光/室温の条件;C3’転化率16.7%、PO選択率44%,STY=0.018mmol/g−cat.h(非特許文献6等)。
▲5▼ Ti/HSZ触媒/酸素の条件下300℃;C3’転化率77%、PO選択率26%,STY=6.4mmol/g−cat.h(非特許文献7等)。
しかしながら、上記でみるように、酸素による直接酸化は、反応条件に関わらず空時収率(STY)が低く、またPO選択率やPO転化率などが充分ではなく到底実用に供されるものではなかった。
【0005】
【非特許文献1】佐藤晶他、第22回中部化学関係学協会支部連合秋季大会予稿集、p.144(1991)
【非特許文献2】M.Haruta,Catal.Today, 1997, 36, 153
【非特許文献3】渡辺、上松、辰巳、第82回触媒討論会4D312 (1998,p.93)
【非特許文献4】J.Catal., 211,552−555(2002)
【非特許文献5】European Chemical News, 21−27 May 2001, p. 16
【非特許文献6】Chem.Commun., (2001),2412−2413
【非特許文献7】K.Murata and Y.Kiyozumi, Chem.Commun., (2001)1356−1357
【0006】
【発明が解決しようとする課題】
本発明は、酸素を酸化剤として用い、プロピレンからプロピレンオキシド(PO)を高められた空時収率(STY)、選択率、転化率で合成することのできる新規な触媒、及びこのものを用いたプロピレンオキシドの工業的に有利な製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく種々の触媒群について鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下の発明が提供される。
(1)固体酸化物とパラジウム系物質を含有してなる、プロピレンを直接酸化してプロピレンオキシドを合成する際に用いられるプロピレンオキシド合成用触媒。
(2)固体酸化物が多孔性金属酸化物であることを特徴とする上記(1)に記載のプロピレン合成用触媒。
(3)多孔性金属酸化物がゼオライト類縁体であることを特徴とする上記(1)又は(2)に記載のプロピレン合成用触媒。
(4)ゼオライト類縁体がチタン化合物で修飾されたものであることを特徴とする上記(1)乃至(3)何れかに記載のプロピレン合成用触媒。
(5)上記(1)乃至(4)何れかに記載の触媒及び酸素の存在下で、プロピレンを直接酸化することを特徴とするプロピレンオキシドの製造方法。
【0008】
【発明の実施の形態】
本発明のプロピレンを直接酸化してプロピレンオキシド(PO)を合成する際に用いられるプロピレンオキシド合成用触媒は、固体酸化物とパラジウム系物質を含有していることを特徴としている。
【0009】
固体酸化物としては、パラジウム系物質をその表面に担持できるものであればいかなる酸化物も含まれる。シリカ、アルミナ、ジルコニア、チタニア、セリアなどの通常用いられる金属酸化物やゼオライト化合物などの多孔性酸化物が使用できる。ゼオライト化合物としては、Y−型、L−型、モルデナイト、フェリエライト、ベータ型、H−ZSM−5などを挙げることができる。またゼオライト化合物以外の多孔性酸化物としては、TS−1、MCM−41、MCM−22、MCM−48、ガロシリケート、などの結晶性メタロシリケート、大口径シリカ化合物などを挙げることができる。またこれらの多孔性酸化物にはチタン、アルミニウム、バナジウム、ニオブ、タンタル、ホウ素、ジルコニウムなどの元素を含有するものや非晶質多孔性シリカ化合物も含まれる。これらの固体酸化物は、塩酸、硝酸などにより表面処理してから用いることもできる。
【0010】
本発明で好ましく使用される固体酸化物はMCM−22である。このMCM−22の合成方法は、文献(I.Guray, J.Warzywoda, N.Bac, A.Sacco Jr, Microporous & Mesoporous Materials, 31(1999)241−251)等にしたがって行うことができる。この場合、水熱合成時の反応容器の回転数は、0(静置)〜300rpm、好ましくは60〜100rpmが用いられる。
【0011】
また、本発明で用いる固体酸化物はその使用に当たって、チタン化合物を含有させ、空気中で焼成し、チタン化合物で修飾しておくことが好ましい。固体酸化物にチタン化合物を含有させる方法としては、物理混合法や,含浸法、沈殿法、混練法、インシピエントウェットネス法等の従来公知の方法を採用することが出来る。チタン化合物としては、塩化チタン、臭化チタン、硫酸チタン、硝酸チタン、オキソビス(2,4−ペンタジオナト)チタン、蓚酸チタニルアンモニウム、チタンテトライソプロポキシド、ビス(シクロペンタジエニル)チタン等が挙げられる。これらのチタン化合物は、通常、水溶液として固体酸化物に担持される。またイソプロパノールやベンゼンなどの有機溶媒も用いられる。チタン化合物を含有させたシリカライト系担体酸化物の焼成温度は、300〜900℃,好ましくは500〜700℃程度である。チタン化合物の担持量は、チタン金属として、担体酸化物100g当たり、0.1〜50g、好ましくは1.0〜20gである。
【0012】
本発明の触媒の他方の成分である、パラジウム系物質は、特に制限されず、パラジウムを含有する物質であれば如何なる物質も使用できるが、金属パラジウム、塩化パラジウム、酸化パラジウム、硝酸パラジウム、酢酸パラジウム、硫化パラジウム、シアン化パラジウム、テトラクロロパラジウム酸ナトリウム、ビス(2,4−ペンタジオナト)パラジウム、テトラキストリフェニルフォスフィンパラジウム、テトラアンミン硝酸パラジウム、などを挙げることができる。
【0013】
固体酸化物とパラジウム系物質との使用割合に特に制限はないが、通常、固体酸化物に対するパラジウム原子の重量比で0.0001〜1、好ましくは0.005〜0.05である。
両者は別々に反応器(管)に導入することもできるし、またパラジウム系物質を固体酸化物に担持させて反応に用いることもできる。
後記する比較例に示されるように、パラジウム系物質単独でもPO生成は認められるが、固体酸化物を共存させることにより、PO生成速度も選択率も著しく改善される。
また、固体酸化物と共存させる物質として、パラジウム系物質以外の金属化合物たとえば、白金化合物、ロジウム化合物、ルテニウム化合物などを用いた場合には後記比較例から明らかなように、パラジウム系物質を併用した場合に比し、空時収率が低く、またPO生成速度及び選択率もそれぞれ1/100に低下してしまい、本発明のような優れた触媒効果が発現しない。
【0014】
本発明によるプロピレンオキシドの製造は、前記した触媒と酸素の存在下で、プロピレンに酸素付加させることにより実施される。こうして酸素付加により、プロピレンオキシドが合成される。反応方法は気相及び液相のいずれで行うこともできるが、プロピレンと酸素の滞留時間を長くとりやすいことから、液相がより好ましい。この場合の反応温度は、50〜500℃、好ましくは70〜200℃の条件下であり、また反応圧力は任意であるが加圧が好ましく、0.01Mpa〜100Mpa、好ましくは0.3Mpa〜5Mpaである。酸素の使用割合は、プロピレン1モル当たり、0.05〜10モル、好ましくは1〜0.2モルの割合である。原料プロピレンは、窒素、ヘリウム、アルゴンガス等の不活性ガスで希釈して用いることができる。液相の溶媒としては、通常の有機溶媒を任意に用いることができるが、メタノールが特に好ましい。
【0015】
【実施例】
次に本発明を実施例によりさらに詳細に説明する.
【0016】
実施例1
水酸化ナトリウム0.388g、アルミン酸ナトリウム0.4675g、蒸留水30gをフラスコに入れ、室温で攪拌する。この中にケイ酸5.845gとヘキサメチレンイミン2.969gを入れ、全体を室温で30分攪拌する。得られた溶液をテフロン(登録商標)容器に入れ、さらにこれを金属容器に入れて密封し、150℃で7日間反応させた。この時の反応容器の回転数は60rpmとした。所定の反応後室温に冷却し、上澄みを除去した後、得られた白色固体を100℃で一晩乾燥、さらに538℃で20時間空気酸化して、MCM−22 4.86gを得た(表面積255m/g)。このうち1gを取り、300℃で1時間真空脱気した後、チタンイソプロポキシド0.359g(Ti7.5wt%換算)/イソプロパノール30ml溶液と混合し、30分室温で攪拌後、水15gを導入し、チタンイソプロポキシドを加水分解させて、さらに室温で30分攪拌した後、100℃で水を蒸発させた。得られた白色固体を700℃で3時間空気焼成し、7.5%Ti−MCM−22触媒1.035gを得た(表面積17.1m/g)。パラジウム系物質は、酢酸パラジウムを用い、オートクレーブ内で7.5%Ti−MCM−22及び溶媒であるメタノールと混合することにより、最終触媒とした。
【0017】
実施例2
実施例1の7.5%Ti−MCM−22 0.25g、酢酸パラジウム10.6mg(Pdで5mg)及び メタノール10mlをオートクレーブに入れ、アルゴン,プロピレン,酸素の混合ガス(体積比(Ar/プロピレン/酸素=2/2/1))を全圧2Mpaにて導入して、100℃で2時間反応させた。反応後の生成物をガスクロマトグラフにより分析したところ,プロピレン転化率30.4%,選択率49.9%にてプロピレンオキシド(PO)が生成した。原料プロピレンに対するPOの絶対収率は15.17%であり、空時収率(STY)は293.96mmol/g−Pd.hであった.副生物として,アセトアルデヒド(AA、0.97%)、プロピオンアルデヒド(PA、7.90%)、プロピレングリコールモノメチルエーテル(PGM、2.16%)、炭化水素(選択率37.91%、C4〜C6の和)、COx1.15%が検出された(表1参照)。
【0018】
プロピレン転化率,POおよびその他の選択率,それらの絶対収率、空時収率は便宜的に以下のように計算した。
(1)プロピレン転化率[C(M)] = A / (A+3×B) × 100 (%)
A:生成物量(mmol)
B:未反応プロピレン量(mmol)
この場合、生成物量Aは、[3×PO+3×PA+3×AC+3×AL+2×AA+2×EOH+3×[PGM]+2×C2+4×C4+5×C5+6×C6+COx]として計算した。但しこの計算式において、PO、AC、AL、AA、EOH、C2、C4、C5、C6、COxは、それぞれ、プロピレンオキシド、プロピオンアルデヒド、アセトン、アクロレイン、アセトアルデヒド、エタノール、プロピレングリコールモノメチルエーテル(PGM)、C2炭化水素、C4炭化水素、C5炭化水素、C6炭化水素、COxの合計のモル数(炭素基準)を示す。
(2)プロピレン選択率 [S(PO)] = 3×[PO] / A × 100 (%)
但し、PO及びAは、前記と同じ意味を有する。
(3)プロピレン絶対収率 [Y(PO)] = C(M) × S(PO) / 100 (%)
Org選択率 [S(Org)] = (3×[PA]+3×[AC]+3×[AL]+2×[AA]+2×[EOH]+3×[PGM])/A × 100 (%) (すなわちPO以外の含酸素生成物の合計がOrgである)
(4)炭化水素(HC)選択率[S(HC)] = (2×[C2]+4×[C4]+5×[C5]+6×[C6])/ A × 100 (%)
(5)空時収率(STY)= [PO]mmol /(Pd重量(g)×反応時間(h))
【0019】
比較例1
7.5%Ti−MCM−22及び酢酸パラジウムの両者を用いない以外、実施例2と同様にして15時間反応させたところ、プロピレン転化率は0であった(表1参照)。
【0020】
比較例2
酢酸パラジウムを用いない以外、実施例2と同様にして16時間反応させたところ、プロピレン転化率は0であった(表1参照)。
【0021】
比較例3
7.5%Ti−MCM−22を用いない以外、実施例2と同様にして2時間反応させたところ、プロピレン転化率12.6%,選択率8.27%にてプロピレンオキシド(PO)が生成した。副生物として、他の含酸素化合物が選択率69.9%(Org Sel.)で主として生成した。原料プロピレンに対するPOの絶対収率は1.04%、空時収率(STY)は17.5mmol/g−Pd.hであり、実施例2のそれぞれ1/15及び1/17であった(表1参照)。
【0022】
実施例3
7.5%Ti−MCM−22の代わりに、チタン担持ハイシリカゼオライト(7.5%Ti−HSZ(1900):カッコ内はSi/Al2比)を用いた以外は実施例2と同様にして2時間反応させたところ、プロピレン転化率34.4%,選択率29.6%にてプロピレンオキシド(PO)が生成した。原料プロピレンに対するPOの絶対収率は10.2%であり、空時収率(STY)は234.3mmol/g−Pd.hであった.副生物として,他の含酸素化合物44.7%(Org)、炭化水素24.6%、COx1.08%生成した(表1参照)。
【0023】
実施例4
酢酸パラジウムの代わりに、金属パラジウム5mgを用いた以外は実施例2と同様にして16時間反応させたところ、プロピレン転化率25.0%,選択率45.6%にてプロピレンオキシド(PO)が生成した。原料プロピレンに対するPOの絶対収率は11.4%であり、空時収率(STY)は28.6mmol/g−Pd.hであった.副生物として,他の含酸素化合物4.17%(Org)、炭化水素28.1%、COx22.1%生成した(表1参照)。
【0024】
比較例4〜7
酢酸パラジウムの代わりに、テトラアンミン白金硝酸塩、硝酸ロジウム、塩化金酸、硝酸ニトロシルルテニウムをそれぞれ用いた以外は実施例2と同様にして2時間反応させたところ、白金(比較例4)と金(比較例6)では、プロピレン転化率0%であった。またロジウム(比較例5)とルテニウム(比較例7)では、それぞれプロピレン転化率12.5%、3.27%及びPO選択率2.1%、6.71%にてPOが生成した。原料プロピレンに対するPOの絶対収率はそれぞれ0.26及び0.22%、空時収率(STY)はそれぞれ4.9及び2.2mmol/g−Pd.hであり、パラジウムの場合の1/100程度であった(表1参照)。
【0025】
実施例5
酢酸パラジウムの代わりに金属パラジウム5mg、7.5%Ti−MCM−22(60rpm)の代わりに7.5%Ti−MCM−22(100rpm)を用いた以外は実施例2と同様にして3時間反応させたところ、プロピレン転化率25.0%,選択率52.4%にてプロピレンオキシド(PO)が生成した。原料プロピレンに対するPOの絶対収率は13.1%であり、空時収率(STY)は143.1mmol/g−Pd.hであった.副生物として,他の含酸素化合物7.48%(Org)、炭化水素37.3%、COx 2.74%生成した(表1参照)。
【0026】
実施例6
7.5%Ti−MCM−22(60rpm)の代わりに、あらかじめ700℃で3時間焼成したMCM−22(60rpm)を用いた以外は実施例2と同様にして2時間反応させたところ、プロピレン転化率22.4%,選択率54.7%にてプロピレンオキシド(PO)が生成した。原料プロピレンに対するPOの絶対収率は12.2%であり、空時収率(STY)は209.4mmol/g−Pd.hであった.副生物として,他の含酸素化合物24.5%(Org)、炭化水素19.0%、COx 1.78%生成し(表1参照)、チタンを担持しなくても、MCM−22単独でPO生成能力があった。
【0027】
実施例7
反応温度を80℃で行った以外は実施例2と同様にして3時間反応させたところ、プロピレン転化率22.5%,選択率40.1%にてプロピレンオキシド(PO)が生成し、80℃でも十分な活性が認められた。原料プロピレンに対するPOの絶対収率は9.02%であり、空時収率(STY)は66.7mmol/g−Pd.hであった.副生物として,他の含酸素化合物25.4%(Org)、炭化水素33.4%、COx 1.08%生成した(表1参照)。
【0028】
実施例8
7.5%Ti−MCM−22(60rpm)にテトラアンミン硝酸パラジウムをパラジウムで担持率5wt%となるように担持させ、100℃乾燥、700℃で3時間焼成することにより、5wt%Pd/7.5%Ti−MCM−22(60rpm)触媒を得た。これを500℃で3時間水素還元した触媒を用いた以外は、以外は実施例2と同様にして3時間反応させたところ、プロピレン転化率40.1%,選択率48.74%にてプロピレンオキシド(PO)が生成した。原料プロピレンに対するPOの絶対収率は19.54%であり、空時収率(STY)は457.5mmol/g−Pd.hであった.副生物として,他の含酸素化合物6.29%(Org)、炭化水素42.3%、COx 2.65%生成した(表1参照)。
【0029】
【表1】

Figure 2004216268
【0030】
【発明の効果】
本発明によれば、MCM−22などの固体酸化物とパラジウム系物質から成る新規な触媒系が提供される。このような触媒を用いることにより、プロピレンと気相酸素とからプロピレンオキシドを従来法より高められた空時収率(STY)、選択率、転化率で製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel catalyst used for directly oxidizing propylene to synthesize propylene oxide.
[0002]
[Prior art]
As an industrial production method of propylene oxide from propylene, for example, a method involving propylene chlorohydrin or a method of directly oxidizing propylene using an organic peroxide is known. -As a low environmental load process, a method using hydrogen peroxide, oxygen / hydrogen or oxygen as an oxidizing agent has recently been proposed.
[0003]
As a method using hydrogen peroxide or oxygen / hydrogen as an oxidizing agent, a method using titanosilicate as a catalyst (Non-Patent Document 1), a method using gold / titania (Non-Patent Document 2), and the like have been proposed. However, hydrogen peroxide is expensive and dangerous, and oxygen / hydrogen is dangerous and a large amount of hydrogen is lost as water.
[0004]
On the other hand, as a method using oxygen as an oxidizing agent, a method using the following catalyst has been proposed.
{Circle around (1)} CsNO 3 / Ti-MCM-41 catalyst (150 ° C.); PO yield at most about 0.1%; STY = 0.29 mmol / g-cat. h (Non-Patent Document 3 etc.).
{Circle around (2)} NaCl / Ag catalyst (350 ° C.); C3 ′ conversion 11.2%, PO selectivity 29.1%, STY = 11 mmol / cc-cat. h, and with a Vce0.2Cu0.8-NaCl (20) catalyst (250 ° C.), C3 ′ conversion is 0.19%, PO selectivity is 43.4%, STY = 0.29 mmol / cc-cat. h (Non-Patent Document 4 etc.).
{Circle around (3)} No catalyst (290 ° C.), 25 atm; C3 ′ conversion 11.3%, PO selectivity 60%, STY = 5.2 mmol / g-cat. h (Non-Patent Document 5 etc.).
{Circle around (4)} Oxygen / light / room temperature conditions in the presence of a catalyst such as Cr / SiO2; C3 ′ conversion rate 16.7%, PO selectivity 44%, STY = 0.018 mmol / g-cat. h (Non-Patent Document 6 etc.).
{Circle around (5)} 300 ° C. under the condition of Ti / HSZ catalyst / oxygen; C3 ′ conversion 77%, PO selectivity 26%, STY = 6.4 mmol / g-cat. h (Non-Patent Document 7 etc.).
However, as described above, direct oxidation with oxygen has a low space-time yield (STY) irrespective of the reaction conditions, and does not have sufficient PO selectivity and PO conversion, and is not practically used. Did not.
[0005]
[Non-Patent Document 1] Akira Sato et al., Proceedings of the 22nd Autumn Meeting of Chubu Chemical Association, p. 144 (1991)
[Non-Patent Document 2] Haruta, Catal. Today, 1997, 36 , 153
[Non-Patent Document 3] Watanabe, Agematsu, Tatsumi, 82nd Catalyst Symposium 4D312 (1998, p. 93)
[Non-Patent Document 4] Catal. , 211 , 552-555 (2002).
[Non-Patent Document 5] European Chemical News, 21-27 May 2001, p. 16
[Non-Patent Document 6] Chem. Commun. , (2001), 2412-2413.
[Non-Patent Document 7] K. Murata and Y. Kiyozumi, Chem. Commun. , (2001) 1356-1357.
[0006]
[Problems to be solved by the invention]
The present invention provides a novel catalyst capable of synthesizing propylene oxide (PO) from propylene with enhanced space-time yield (STY), selectivity, and conversion using oxygen as an oxidizing agent, and using the same. It is an object of the present invention to provide an industrially advantageous method for producing propylene oxide.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on various catalyst groups in order to solve the above problems, and as a result, have completed the present invention.
That is, according to the present invention, the following inventions are provided.
(1) A propylene oxide synthesizing catalyst comprising a solid oxide and a palladium-based material, which is used when propylene is directly oxidized to synthesize propylene oxide.
(2) The catalyst for propylene synthesis according to the above (1), wherein the solid oxide is a porous metal oxide.
(3) The catalyst for propylene synthesis according to the above (1) or (2), wherein the porous metal oxide is a zeolite analog.
(4) The catalyst for propylene synthesis according to any of (1) to (3) above, wherein the zeolite analog is modified with a titanium compound.
(5) A method for producing propylene oxide, wherein propylene is directly oxidized in the presence of the catalyst according to any one of (1) to (4) and oxygen.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The propylene oxide synthesis catalyst used when the propylene is directly oxidized to synthesize propylene oxide (PO) according to the present invention is characterized by containing a solid oxide and a palladium-based substance.
[0009]
The solid oxide includes any oxide as long as it can support a palladium-based material on its surface. Generally used metal oxides such as silica, alumina, zirconia, titania, and ceria, and porous oxides such as zeolite compounds can be used. Examples of the zeolite compound include Y-type, L-type, mordenite, ferrierite, beta-type, and H-ZSM-5. Examples of the porous oxide other than the zeolite compound include crystalline metallosilicates such as TS-1, MCM-41, MCM-22, MCM-48, gallosilicate, and large-diameter silica compounds. These porous oxides also include those containing elements such as titanium, aluminum, vanadium, niobium, tantalum, boron, zirconium, and amorphous porous silica compounds. These solid oxides can be used after surface treatment with hydrochloric acid, nitric acid or the like.
[0010]
The solid oxide preferably used in the present invention is MCM-22. This method of synthesizing MCM-22 can be performed according to literatures (I. Guray, J. Warzywoda, N. Bac, A. Sacco Jr., Microporous & Mesoporous Materials, 31 (1999) 241-251). In this case, the rotation speed of the reaction vessel during the hydrothermal synthesis is 0 (stationary) to 300 rpm, preferably 60 to 100 rpm.
[0011]
When the solid oxide used in the present invention is used, it is preferable that the solid oxide contains a titanium compound, is calcined in the air, and is modified with the titanium compound. As a method for incorporating the titanium compound into the solid oxide, a conventionally known method such as a physical mixing method, an impregnation method, a precipitation method, a kneading method, and an incipient wetness method can be employed. Examples of the titanium compound include titanium chloride, titanium bromide, titanium sulfate, titanium nitrate, oxobis (2,4-pentadionato) titanium, titanyl ammonium oxalate, titanium tetraisopropoxide, and bis (cyclopentadienyl) titanium. . These titanium compounds are usually supported on a solid oxide as an aqueous solution. Organic solvents such as isopropanol and benzene are also used. The firing temperature of the silicalite-based carrier oxide containing the titanium compound is 300 to 900 ° C, preferably about 500 to 700 ° C. The loading amount of the titanium compound is 0.1 to 50 g, preferably 1.0 to 20 g, as titanium metal, per 100 g of the carrier oxide.
[0012]
The other component of the catalyst of the present invention, the palladium-based material is not particularly limited, any substance can be used as long as it contains palladium, metal palladium, palladium chloride, palladium oxide, palladium nitrate, palladium acetate , Palladium sulfide, palladium cyanide, sodium tetrachloropalladate, bis (2,4-pentadionato) palladium, tetrakistriphenylphosphine palladium, tetraamminepalladium nitrate, and the like.
[0013]
The ratio of the solid oxide to the palladium-based substance is not particularly limited, but is usually 0.0001 to 1, preferably 0.005 to 0.05 in terms of the weight ratio of palladium atom to the solid oxide.
Both can be separately introduced into a reactor (tube), or a palladium-based substance can be supported on a solid oxide and used for the reaction.
As shown in the comparative examples described later, PO production is observed even with a palladium-based substance alone, but the presence of a solid oxide significantly improves the PO production rate and the selectivity.
Further, as a substance to coexist with the solid oxide, when a metal compound other than a palladium-based substance, for example, a platinum compound, a rhodium compound, a ruthenium compound, or the like was used, a palladium-based substance was used in combination, as is apparent from a comparative example described later. As compared with the case, the space-time yield is low, and the PO generation rate and the selectivity are each reduced to 1/100, so that the excellent catalytic effect as in the present invention is not exhibited.
[0014]
The production of propylene oxide according to the present invention is carried out by adding oxygen to propylene in the presence of the above-mentioned catalyst and oxygen. Thus, propylene oxide is synthesized by oxygen addition. The reaction can be carried out in either the gas phase or the liquid phase, but the liquid phase is more preferable because the residence time of propylene and oxygen is easily increased. In this case, the reaction temperature is 50 to 500 ° C., preferably 70 to 200 ° C., and the reaction pressure is optional, but pressurization is preferable, and 0.01 Mpa to 100 Mpa, preferably 0.3 Mpa to 5 Mpa. It is. The proportion of oxygen used is 0.05 to 10 mol, preferably 1 to 0.2 mol, per 1 mol of propylene. The raw material propylene can be used after being diluted with an inert gas such as nitrogen, helium, or argon gas. As the solvent in the liquid phase, any ordinary organic solvent can be used, but methanol is particularly preferred.
[0015]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0016]
Example 1
0.388 g of sodium hydroxide, 0.4675 g of sodium aluminate and 30 g of distilled water are placed in a flask and stirred at room temperature. 5.845 g of silicic acid and 2.969 g of hexamethylene imine are put therein, and the whole is stirred at room temperature for 30 minutes. The obtained solution was placed in a Teflon (registered trademark) container, which was further placed in a metal container, sealed, and reacted at 150 ° C. for 7 days. The rotation speed of the reaction vessel at this time was 60 rpm. After cooling to room temperature after the predetermined reaction and removing the supernatant, the resulting white solid was dried at 100 ° C. overnight and further air-oxidized at 538 ° C. for 20 hours to obtain 4.86 g of MCM-22 (surface area). 255 m 2 / g). 1 g of the solution was taken out, degassed under vacuum at 300 ° C. for 1 hour, mixed with a solution of titanium isopropoxide 0.359 g (in terms of Ti 7.5 wt%) / isopropanol 30 ml, stirred at room temperature for 30 minutes, and introduced with water 15 g. Then, titanium isopropoxide was hydrolyzed, and further stirred at room temperature for 30 minutes, and then water was evaporated at 100 ° C. The obtained white solid was calcined in air at 700 ° C. for 3 hours to obtain 1.035 g of a 7.5% Ti-MCM-22 catalyst (surface area: 17.1 m 2 / g). The palladium-based material was used as a final catalyst by mixing palladium acetate with 7.5% Ti-MCM-22 and methanol as a solvent in an autoclave.
[0017]
Example 2
0.25 g of 7.5% Ti-MCM-22 of Example 1, 10.6 mg of palladium acetate (5 mg in Pd) and 10 ml of methanol were put in an autoclave, and a mixed gas of argon, propylene and oxygen (volume ratio (Ar / propylene) / Oxygen = 2/2/1)) was introduced at a total pressure of 2 Mpa and reacted at 100 ° C. for 2 hours. When the product after the reaction was analyzed by gas chromatography, propylene oxide (PO) was produced at a propylene conversion of 30.4% and a selectivity of 49.9%. The absolute yield of PO based on the starting propylene was 15.17%, and the space-time yield (STY) was 293.96 mmol / g-Pd. h. As by-products, acetaldehyde (AA, 0.97%), propionaldehyde (PA, 7.90%), propylene glycol monomethyl ether (PGM, 2.16%), hydrocarbons (selectivity 37.91%, C4 ~ C6) and 1.15% of COx were detected (see Table 1).
[0018]
Propylene conversion, PO and other selectivities, their absolute yield, and space-time yield were conveniently calculated as follows.
(1) Propylene conversion [C (M)] = A / (A + 3 × B) × 100 (%)
A: Product amount (mmol)
B: Unreacted propylene amount (mmol)
In this case, the product amount A was calculated as [3 × PO + 3 × PA + 3 × AC + 3 × AL + 2 × AA + 2 × EOH + 3 × [PGM] + 2 × C2 + 4 × C4 + 5 × C5 + 6 × C6 + COx]. However, in this formula, PO, AC, AL, AA, EOH, C2, C4, C5, C6, and COx are propylene oxide, propionaldehyde, acetone, acrolein, acetaldehyde, ethanol, and propylene glycol monomethyl ether (PGM), respectively. , C2 hydrocarbons, C4 hydrocarbons, C5 hydrocarbons, C6 hydrocarbons, and COx are shown as the total number of moles (based on carbon).
(2) Propylene selectivity [S (PO)] = 3 × [PO] / A × 100 (%)
However, PO and A have the same meaning as described above.
(3) Propylene absolute yield [Y (PO)] = C (M) x S (PO) / 100 (%)
Org selectivity [S (Org)] = (3 × [PA] + 3 × [AC] + 3 × [AL] + 2 × [AA] + 2 × [EOH] + 3 × [PGM]) / A × 100 (%) ( That is, the total of oxygen-containing products other than PO is Org.)
(4) Hydrocarbon (HC) selectivity [S (HC)] = (2 × [C2] + 4 × [C4] + 5 × [C5] + 6 × [C6]) / A × 100 (%)
(5) Space-time yield (STY) = [PO] mmol / (Pd weight (g) × reaction time (h))
[0019]
Comparative Example 1
When the reaction was carried out for 15 hours in the same manner as in Example 2 except that neither 7.5% Ti-MCM-22 nor palladium acetate was used, the propylene conversion was 0 (see Table 1).
[0020]
Comparative Example 2
The reaction was carried out for 16 hours in the same manner as in Example 2 except that palladium acetate was not used, and the propylene conversion was 0 (see Table 1).
[0021]
Comparative Example 3
The reaction was conducted for 2 hours in the same manner as in Example 2 except that 7.5% Ti-MCM-22 was not used. As a result, propylene oxide (PO) was converted at a propylene conversion rate of 12.6% and a selectivity of 8.27%. Generated. As by-products, other oxygenates were mainly produced with a selectivity of 69.9% (Org Sel.). The absolute yield of PO based on the starting propylene was 1.04%, and the space-time yield (STY) was 17.5 mmol / g-Pd. h, which were 1/15 and 1/17 of Example 2, respectively (see Table 1).
[0022]
Example 3
In the same manner as in Example 2 except that titanium-supported high silica zeolite (7.5% Ti-HSZ (1900): the ratio of Si / Al2 in parentheses) was used instead of 7.5% Ti-MCM-22. After reacting for 2 hours, propylene oxide (PO) was produced at a propylene conversion of 34.4% and a selectivity of 29.6%. The absolute yield of PO based on the starting propylene was 10.2%, and the space-time yield (STY) was 234.3 mmol / g-Pd. h. As by-products, 44.7% (Org) of other oxygen-containing compounds, 24.6% of hydrocarbons, and 1.08% of COx were produced (see Table 1).
[0023]
Example 4
When the reaction was carried out for 16 hours in the same manner as in Example 2 except that 5 mg of metal palladium was used instead of palladium acetate, propylene oxide (PO) was converted at a propylene conversion rate of 25.0% and a selectivity of 45.6%. Generated. The absolute yield of PO based on the starting propylene was 11.4%, and the space-time yield (STY) was 28.6 mmol / g-Pd. h. As by-products, 4.17% (Org) of other oxygen-containing compounds, 28.1% of hydrocarbons, and 22.1% of COx were produced (see Table 1).
[0024]
Comparative Examples 4 to 7
The reaction was carried out for 2 hours in the same manner as in Example 2 except that tetraammineplatinum nitrate, rhodium nitrate, chloroauric acid, and nitrosylruthenium nitrate were used instead of palladium acetate. Platinum (Comparative Example 4) and gold (comparative) In Example 6), the propylene conversion was 0%. In addition, rhodium (Comparative Example 5) and ruthenium (Comparative Example 7) produced PO at propylene conversion of 12.5%, 3.27%, and PO selectivity of 2.1% and 6.71%, respectively. The absolute yield of PO relative to the starting propylene was 0.26 and 0.22%, respectively, and the space-time yield (STY) was 4.9 and 2.2 mmol / g-Pd. h, which was about 1/100 of that of palladium (see Table 1).
[0025]
Example 5
3 hours in the same manner as in Example 2 except that 5 mg of metal palladium was used instead of palladium acetate, and 7.5% Ti-MCM-22 (100 rpm) was used instead of 7.5% Ti-MCM-22 (60 rpm). As a result of the reaction, propylene oxide (PO) was produced at a propylene conversion of 25.0% and a selectivity of 52.4%. The absolute yield of PO based on the starting propylene was 13.1%, and the space-time yield (STY) was 143.1 mmol / g-Pd. h. As by-products, 7.48% (Org) of other oxygen-containing compounds, 37.3% of hydrocarbons, and 2.74% of COx were produced (see Table 1).
[0026]
Example 6
The reaction was carried out for 2 hours in the same manner as in Example 2 except that 7.5% Ti-MCM-22 (60 rpm) was replaced with MCM-22 (60 rpm) previously calcined at 700 ° C. for 3 hours. Propylene oxide (PO) was produced at a conversion of 22.4% and a selectivity of 54.7%. The absolute yield of PO based on the starting propylene was 12.2%, and the space-time yield (STY) was 209.4 mmol / g-Pd. h. As by-products, other oxygen-containing compounds 24.5% (Org), hydrocarbons 19.0%, COx 1.78% were produced (see Table 1), and MCM-22 alone was used without carrying titanium. It had the ability to generate PO.
[0027]
Example 7
When the reaction was carried out for 3 hours in the same manner as in Example 2 except that the reaction temperature was 80 ° C., propylene oxide (PO) was produced at a propylene conversion rate of 22.5% and a selectivity of 40.1%. Even at ℃, sufficient activity was observed. The absolute yield of PO based on the starting propylene was 9.02%, and the space-time yield (STY) was 66.7 mmol / g-Pd. h. As by-products, 25.4% (Org) of other oxygen-containing compounds, 33.4% of hydrocarbons, and 1.08% of COx were produced (see Table 1).
[0028]
Example 8
By loading tetraammine palladium nitrate on 7.5% Ti-MCM-22 (60 rpm) with palladium at a loading rate of 5 wt%, drying at 100 ° C., and calcining at 700 ° C. for 3 hours, 5 wt% Pd / 7. A 5% Ti-MCM-22 (60 rpm) catalyst was obtained. The reaction was carried out for 3 hours in the same manner as in Example 2 except that a catalyst reduced with hydrogen for 3 hours at 500 ° C. was used. As a result, propylene conversion was 40.1% and selectivity was 48.74%. Oxide (PO) was formed. The absolute yield of PO based on the starting propylene was 19.54%, and the space-time yield (STY) was 457.5 mmol / g-Pd. h. As by-products, 6.29% (Org) of other oxygen-containing compounds, 42.3% of hydrocarbons, and 2.65% of COx were produced (see Table 1).
[0029]
[Table 1]
Figure 2004216268
[0030]
【The invention's effect】
According to the present invention, a novel catalyst system comprising a solid oxide such as MCM-22 and a palladium-based material is provided. By using such a catalyst, propylene oxide can be produced from propylene and gas-phase oxygen at a higher space-time yield (STY), selectivity, and conversion than conventional methods.

Claims (5)

固体酸化物とパラジウム系物質を含有してなる、プロピレンを直接酸化してプロピレンオキシドを合成する際に用いられるプロピレンオキシド合成用触媒。A propylene oxide synthesis catalyst containing a solid oxide and a palladium-based material and used when propylene is directly oxidized to synthesize propylene oxide. 固体酸化物が多孔性金属酸化物であることを特徴とする請求項1に記載のプロピレン合成用触媒。The propylene synthesis catalyst according to claim 1, wherein the solid oxide is a porous metal oxide. 多孔性金属酸化物がゼオライト類縁体であることを特徴とする請求項1又は2に記載のプロピレン合成用触媒。The catalyst for propylene synthesis according to claim 1 or 2, wherein the porous metal oxide is a zeolite analog. 固体酸化物がチタン化合物で修飾されたものであることを特徴とする請求項1乃至3何れかに記載のプロピレン合成用触媒The propylene synthesis catalyst according to any one of claims 1 to 3, wherein the solid oxide is modified with a titanium compound. 請求項1乃至4何れかに記載の触媒及び酸素の存在下で、プロピレンを直接酸化することを特徴とするプロピレンオキシドの製造方法。A method for producing propylene oxide, comprising directly oxidizing propylene in the presence of the catalyst according to claim 1 and oxygen.
JP2003006543A 2003-01-15 2003-01-15 Propylene oxide production method Expired - Lifetime JP4002971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006543A JP4002971B2 (en) 2003-01-15 2003-01-15 Propylene oxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006543A JP4002971B2 (en) 2003-01-15 2003-01-15 Propylene oxide production method

Publications (2)

Publication Number Publication Date
JP2004216268A true JP2004216268A (en) 2004-08-05
JP4002971B2 JP4002971B2 (en) 2007-11-07

Family

ID=32896875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006543A Expired - Lifetime JP4002971B2 (en) 2003-01-15 2003-01-15 Propylene oxide production method

Country Status (1)

Country Link
JP (1) JP4002971B2 (en)

Also Published As

Publication number Publication date
JP4002971B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US6498259B1 (en) Direct epoxidation process using a mixed catalyst system
US6346555B1 (en) Process and catalyst for preparing C2-oxygenates from synthesis gas
JP4167067B2 (en) Epoxidation catalyst and method for producing the same
EP1444217B8 (en) Direct epoxidation process using carbonate modifiers
TW200535129A (en) Process for preparing carboxylic acids and derivatives thereof
JP4303957B2 (en) Direct epoxidation process using mixed catalyst system
KR20120109603A (en) Process for making titanium-mww zeolite
CA2379563C (en) Catalyst preparation and epoxidation process
US8536374B2 (en) Method for preparation of dicarboxylic acids from saturated hydrocarbons or cycloaliphatic hydrocarbons by catalytic oxidation
JP2007314521A (en) Method for producing epoxy compound
JP2009543863A (en) Direct epoxidation process using improved catalyst composition
JPH08269029A (en) Production of propylene oxide
JP2002506067A (en) Epoxidation method using gold catalyst supported on carrier
JP2009051769A (en) Production of alkylene oxide directly from alkane
JP6168044B2 (en) Method for producing tetrahydrofuran compound
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
JPH105590A (en) Partial oxidation of hydrocarbon and catalyst for partial oxidation
JP2009090283A (en) Catalyst
JP4002971B2 (en) Propylene oxide production method
JPS6019777A (en) Manufacture of oxirane
JP2005511524A (en) Direct epoxidation process using pretreated titanium zeolite
JP3747239B2 (en) Propylene oxide production method
JP3010793B2 (en) Method for oxidizing substituted aromatic compounds
JPH11511176A (en) Method for producing 1,4-butenediol
US6759541B2 (en) Epoxidation process using a supported niobium oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Ref document number: 4002971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term