JP2004214394A - Method for mounting quality - Google Patents

Method for mounting quality Download PDF

Info

Publication number
JP2004214394A
JP2004214394A JP2002381844A JP2002381844A JP2004214394A JP 2004214394 A JP2004214394 A JP 2004214394A JP 2002381844 A JP2002381844 A JP 2002381844A JP 2002381844 A JP2002381844 A JP 2002381844A JP 2004214394 A JP2004214394 A JP 2004214394A
Authority
JP
Japan
Prior art keywords
inspection
information
result
server
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002381844A
Other languages
Japanese (ja)
Inventor
Riichi Shimoda
利一 下田
Koichi Kanematsu
宏一 兼松
Yoichi Hisatake
陽一 久武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002381844A priority Critical patent/JP2004214394A/en
Publication of JP2004214394A publication Critical patent/JP2004214394A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a quality and productivity by speedily specifying a defective factor and optimizing inspection reference. <P>SOLUTION: Component array data and CAD data are stored in a data server in advance. In a mounting process, equipment information is stored. In an appearance and electrical inspection process, an inspection result is registered, the inspection result and the CAD data are corded with a circuit number, the cause of occurrence of a defect is confirmed, a countermeasure is carried out, and the carried out countermeasure is registered as equipment maintenance information, component replacement information or a manufacture condition. In an appearance and electrical inspection repairing process, whether defectiveness judgment in the inspection process is right or wrong is judged, a defective place is repaired, a repair result is registered in the case of right judgment, the inspection reference is looked over again, the inspection process is calibrated, and the result is registered as equipment maintenance information. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、実装工程で発生する実装不良を効率よく削減するために用いられる品質分析方法に関するものである。
【0002】
【従来の技術】
従来より電子部品実装装置において、電子部品の実装品質や稼動情報を用いて、設備に起因する品質不良原因と設備のメンテナンス情報を関連してデータベース化し、この情報を用いて製品不良の原因を分析する品質分析方法はすでに公知である。(例えば、特許文献1参照)
このような従来の実装工程における品質分析方法の一具体例について図3を用いて説明する。
【0003】
図3は従来の品質分析方法の一具体例を示す構成図である。
【0004】
図において、1は印刷機、2a,2bは実装機、3は外観検査機、4は外観検査修理ステーション、11は検査号機、検査日時、機種名、回路番号、検査結果、不良内容を格納する検査結果、13は回路番号、部品を実装する設備、設備の部品供給位置を格納する部品配列データ、14は回路番号、部品の基板上の座標、角度、形状及びその寸法を格納するCADデータ、15はデータサーバー、16はデータサーバとネットワークで接続された端末、17は修理後の不良内容を記録する不良集計用紙である。
【0005】
以上のように構成された従来の技術について、図3と図4の処理フローを用いてその動作を説明する。
【0006】
予め、CAMシステムより部品配列データ13を、CADシステムよりCADデータ14を取得し、データサーバ15に格納しておく。
【0007】
印刷機1で生基板に半田を塗布した後、実装機2a,2bで部品が実装される。外観検査機3では、部品が正しく実装されているか否かを検査する。この検査結果をデータサーバー15に送信し、検査結果11として格納する(手順1)。次に、検査結果11、部品配列データ13を取得し、設備、回路番号毎の不良内容と度数を端末16で表示する(手順2)。
【0008】
検査において、NGが発生した基板はNG用のマガジンに格納される。このマガジンが一杯になった時点で、マガジンを外観検査修理ステーション4に移動する。マガジンに格納された基板の出力情報を元に、端末16を使用して、CADデータ14、検査結果11を回路番号で紐付けし、不良が発生した部品の基板上の位置を図面上で表示する。次に、基板を取り出し、不良箇所と画面表示結果を確認して、必要に応じて修理を実施する(手順3)。担当者は判定した不良内容に基づき、不良集計用紙17の該当不良項目欄に度数を追加記入する(手順4)。
【0009】
翌日、1日分の不良集計用紙17を集め、ライン毎に集計する(手順5)。集計結果を確認し、不良が多発しているライン、度数の多い不良項目を抽出する(手順6)。この結果を元に、該当ラインで実施したメンテナンスや発生した問題点の情報を連絡ノートの確認や担当者のヒアリングで収集する(手順7)。これらの情報から、品質を悪化させた要因を検討する(手順8)。
【0010】
【特許文献1】
特開平9−289396号公報(第3〜4頁・第1図)
【0011】
【発明が解決しようとする課題】
上記した従来の技術における処理のフローにおいては、次に記載する問題があった。第1に、基板、紙に出力された検査結果、修理端末上の修理結果を照合する必要があるため、時間を要するのと同時に照合ミスが発生する場合があること。第2に、不良内容は項目毎の度数だけが紙に記録されているため、どの部品で発生しているのか、それはどの設備で実装されたものかがわからず、原因の特定が困難であること。第3に、不良の集計、分析は次の日に数時間かけて行われるものの、原因が特定できないことが多いため、有効な対策を打てずに品質改善が進まないこと。第4に、外観検査機や検査担当者がOKをNGと判定する割合や、NGをOKとする割合がどれだけあるのか把握できておらず、検査機のチューニングや検査基準の適正化が実施できないため、検査の効率が低下すること。第5に、担当者が実施した、製造条件の変更、メンテナンス、検査条件の変更、部品や材料、またそのロットの変更が記録されておらず、品質影響要因が何であるかを把握できないこと。
【0012】
上記した課題を解決するため、本発明は、設備に関わる情報、部品・材料に関わる情報、部品の基板上の位置、部品を実装する設備と検査結果、修理結果との相関関係を算出し、品質に影響を及ぼす要因を導出する方法を構築し、要因の特定や検査基準の適正化を迅速に行うことで、品質向上、不良ロスの削減、生産性の向上を図ることを目的とする。
【0013】
【課題を解決するための手段】
この目的を達成するため、本発明の請求項1に記載の発明は、基板上に半田印刷する印刷工程と、印刷された半田の所定位置に部品を装着する部品実装工程と、部品の実装状態を検査する外観検査工程と、検査結果を参照して不良部分を修理する外観検査修理工程を備え、部品配列データ、CADデータが格納されるデータサーバにより管理される実装品質分析方法であって、実装工程では、前記サーバに、ノズル、カセット装着数、吸着数、及びそれぞれのエラー数を設備情報として登録し、外観検査工程では、実装状態の外観検査結果をサーバに登録し、検査結果、CADデータを部品配列データが持つ回路番号で紐付けし、基板上の不良個所を表示し、不良発生原因の対策として実行した設備メンテナンスの情報、部品交換情報、製造条件をサーバに登録し、外観検査修理工程では、基板IDをキーに、回路番号により確認された個所の不良判定が正判定の場合は、管理基準として決められた不良内容を決定し、修理結果としてサーバに登録し、回路番号毎に求めた過判定率を表示し、過判定率が管理基準を越えた場合に実施した検査基準の見直し、検査機の校正を設備メンテナンス情報としてサーバに登録したことを特徴とし、検査結果と不良個所の修理結果が登録されているため、検査結果と修理結果の照合ミスが発生せず、また、不良の集計が容易で、迅速に対策を講ずることができ、また、外観検査結果を参照して、外観検査における判定が正判定か、過判定かを判断し、過判定が多い場合には、検査基準の見直し、検査機の校正を行うので、検査基準及び検査機のチューニングの適正化を実施でき、さらに、製造条件やメンテナンスの変更、検査基準の変更等が登録されているため、品質影響要因を容易に判断でき、部品実装工程における品質の向上、不良ロスの削減、生産性の向上を図ることができる。
【0014】
請求項2に記載の発明は、請求項1記載の実装品質分析方法と、さらに、部品の機能状態を検査する電気的検査工程と、検査結果を参照して不良部分を修理する電気的検査修理工程を備え、電気的検査工程では、電気的機能の検査結果をサーバに登録し、検査結果、CADデータを回路番号で紐付けし、基板上の不良個所を表示し、不良発生原因の対策として実行した設備メンテナンスの情報、部品交換情報、製造条件をサーバに登録し、電気的検査修理工程では、電気的検査工程における検査結果を参照して、回路番号により確認された不良個所を表示し、管理基準として決められた不良内容を決定し、修理結果としてサーバに登録し、外観検査工程、外観検査修理工程、電気的検査工程、電気的検査修理工程の結果を基板ID、回路番号で紐付けし、検査、修理の基準の適合状態を表示し、各工程における判定が異なる場合は、判定が異なる工程で実施した検査基準等の見直しを設備メンテナンス情報としてサーバに登録し、時系列で、修理結果と設備情報、製造条件、設備メンテナンス情報、部品交換情報を表示し、不良発生要因を判断することを特徴とし、請求項1に記載の発明が有する作用に加えて、外観検査工程から電気的検査修理工程まで、時系列で、修理結果と設備情報、製造条件、設備メンテナンス情報、部品交換情報を比較し、総合的に不良発生要因を判断できるため、品質分析をより適正化することができる。
【0015】
請求項3に記載の発明は、外観検査工程では、検査結果、設備情報、部品配列データより、設備、回路番号、または部品供給位置毎の不要内容と度数等を表示することを特徴とし、不良集計が容易で、迅速に対策を講ずることができる。
【0016】
請求項4に記載の発明は、外観検査修理工程では、基板IDをキーに、検査結果を参照して、不良個所を確認して、正判定/過判定を判断し、回路番号毎に過判定数/検査不良数を計算し、過判定率を求め、過判定率が管理基準を越える場合は、過判定が多いと判断することを特徴とし、検査基準の見直し及び検査機の校正を適正に行うことができる。
【0017】
請求項5に記載の発明は、電気的検査工程では、検査結果、設備情報、部品配列データより、設備、回路番号、または部品供給位置毎の不良内容と度数等を表示することを特徴とし、不良集計が容易で、迅速に対策を講ずることができる。
【0018】
【発明の実施の形態】
以下本発明の実施の形態について、図面を参照しながら説明する。
【0019】
図1は本発明の実施の形態における構成図である。1は印刷機、2a,2bは実装機、3は外観検査機、4は外観検査修理ステーション、5は電気的検査機、6は電気的検査修理ステーション、7は部品カセットやノズルの装着率、吸着率等の設備状態を格納する設備情報、8は設備を動作させるため様々な設定値を格納する製造条件、9は担当者が設備に対して実施したメンテナンスを格納する設備メンテナンス情報、10は部品の品番、ロット、設備にセットされた時刻、供給位置を格納する部品交換情報、11は検査号機、検査日時、機種名、基板ID、回路番号、検査結果、不良内容を格納する検査結果、12は修理日時、基板ID、回路番号、修理結果、不良内容を格納する修理結果、13は回路番号、部品を実装する設備、設備の部品供給位置を格納する部品配列データ、14は回路番号、部品の基板上の座標、角度、形状及びその寸法を格納するCADデータ、15はデータサーバー、16はデータサーバとネットワークで接続された端末である。
【0020】
以上のように構成された品質分析方法について、図1と図2の処理フローを用いて、その動作を説明する。
【0021】
事前に、CAMシステムより部品配列データ13を、CADシステムよりCADデータ14を取得し、データサーバ15に格納しておく。
【0022】
印刷機1で生基板に半田を塗布した後、実装機2a,2bで部品が実装される。このとき、部品を基板に装着するノズルと部品を供給するカセットの装着数、吸着数、及びそれぞれのエラー数を設備情報7としてリアルタイムに格納する。外観検査機3では、部品が正しく実装されているか否かを検査する。この結果をデータサーバー15に送信し、検査結果11としてリアルタイムに格納する(手順1)。設備情報7、検査結果11、部品配列データ13を取得し、設備、回路番号毎の不良内容と度数や設備、部品供給位置毎の不良内容と度数、そして、ノズルや、部品供給位置の装着率、吸着率を表示する。また、CADデータ14、検査結果を回路番号で紐付けし、不良が発生した部品の基板上の位置を図面上で表示する。これらの表示は端末16で行う(手順2)。
【0023】
この表示内容を確認し、特定の部品供給位置毎に不良が多く発生している場合は、部品供給カセットを確認する。この結果により、メンテナンスやカセットの交換等を行い、端末16で、設備メンテナンス情報9としてサーバ15に登録する。カセット交換の場合は、携帯端末で情報を取得し、端末16を通じて、部品交換情報10としてサーバ15に登録される。
【0024】
特定の回路番号に不良が多く発生している場合は、印刷工程の印刷版や、半田に問題がある可能性があるので、その状態を確認する。印刷圧や実装時のヘッドスピード等の設定値を変更した場合は、端末16で変更したファイルを指定し、その変化を自動的かつリアルタイムに算出し、製造条件7としてサーバ15に登録する(手順3)。
【0025】
外観検査修理ステーション4では、基板IDを読み込み、それをキーに検査結果11を参照して、不良箇所(回路番号)を確認する。現物を見て、正判定/過判定を見極め、判定が正しい場合は、管理基準として決められた不良内容を決定し、不良個所を修理し、その結果を修理結果12としてリアルタイムにサーバ15に登録する(手順4)。
【0026】
この段階で、回路番号毎に過判定数/検査不良数を計算して過判定率を求め、結果を表示する(手順5)。この率の大きさを確認し、管理基準を超える場合は、検査基準の見直しや、検査機の校正を行い、端末16で、設備メンテナンス情報9としてサーバ15に登録する(手順6)。また、検査結果11、修理結果12から実際の不良数をベースとした、手順2と同様の不良状況の確認を端末16で行う(手順7)。
【0027】
その結果を受け、手順3と同様の対策を実施する(手順8)。
【0028】
電気的検査機5では、部品が電気的に機能しているか否かの検査を行う。この結果をデータサーバー15に送信し、検査結果11としてリアルタイムに格納する(手順9)。この内容を確認し、手順2と同様の不良状況確認を行う(手順10)。この結果を受け、手順3と同様の対策を実施する(手順11)。
【0029】
電気的検査修理ステーション6では、検査結果11を参照して、不良箇所(回路番号)を確認する。現物を見て、管理基準として決められた不良内容を決定し、修理を実行し、修理結果12としてリアルタイムにサーバ15に登録する(手順12)。
【0030】
このとき、外観検査と電気的検査が行われた部品の相関を取る。基板ID、回路番号で外観検査、外観検査修理、電気的検査、電気的検査修理の結果を紐付けし、検査・修理の基準の適合状況を表示する(手順13)。この結果を確認し、外観検査でOKの部品や、外観検査修理で過判定の部品が、電気的検査でNGの判定となった場合は、その検査基準や修理員の判定基準の見直しや、検査機の校正を行い、結果を設備メンテナンス情報としてサーバに登録する(手順14)。
【0031】
また、検査結果11と修理結果12を元に、手順7と同様の不良状況確認を行う(手順15)。この結果を受け、手順8と同様の対策を実施する(手順16)。
【0032】
さらに、時系列で、設備情報7、製造条件8、設備メンテナンス情報9、部品交換情報10と修理結果12を表示し、比較することで、どの要因が品質に影響を与えているのかを把握する。また、このとき、設備状況、製造条件の変化や、設備メンテナンスのタイミングを自動的に抽出し、分析の迅速化が可能となる(手順17)。
【0033】
【発明の効果】
以上のように本発明は、原因系となる設備に関わる情報、部品・材料情報と、結果系となる検査結果及び修理結果から、不良部品と設備、部品・材料との相関関係、及び検査・不良判定適合度合いを算出し、品質に影響を及ぼす要因を迅速に導出できる品質分析方法を提供することができる。
【0034】
また、実装工程に本発明の品質分析方法を適応すると、不良検知、原因究明、対策を迅速に実施でき、品質向上、不良ロス削減、生産性の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例における構成図である。
【図2】本発明の実施例における処理のフロー図である。
【図3】従来の技術における構成図である。
【図4】従来の技術における処理のフロー図である。
【符号の説明】
1 印刷機
2a 実装機A
2b 実装機B
3 外観検査機
4 外観検査修理ステーション
5 電気的検査機
6 電気的検査修理ステーション
7 設備情報
8 製造条件
9 設備メンテナンス情報
10 部品交換情報
11 検査結果
12 修理結果
13 部品配列データ
14 CADデータ
15 データサーバー
16 端末
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a quality analysis method used for efficiently reducing mounting defects generated in a mounting process.
[0002]
[Prior art]
Conventionally, in electronic component mounting equipment, using the mounting quality and operation information of electronic components, a database of the cause of quality failure caused by equipment and maintenance information of equipment is linked and analyzed, and the cause of product failure is analyzed using this information Quality analysis methods are already known. (For example, see Patent Document 1)
A specific example of such a quality analysis method in the conventional mounting process will be described with reference to FIG.
[0003]
FIG. 3 is a configuration diagram showing a specific example of a conventional quality analysis method.
[0004]
In the figure, 1 is a printing machine, 2a and 2b are mounting machines, 3 is a visual inspection machine, 4 is a visual inspection and repair station, 11 is an inspection machine, an inspection date and time, a model name, a circuit number, an inspection result, and a failure content. Inspection results, 13 is a circuit number, equipment for mounting parts, component arrangement data for storing the parts supply position of the equipment, 14 is a circuit number, CAD data for storing coordinates, angles, shapes and dimensions of the parts on the board, Numeral 15 denotes a data server, numeral 16 denotes a terminal connected to the data server via a network, and numeral 17 denotes a defect totaling sheet for recording the contents of defects after repair.
[0005]
The operation of the conventional technique configured as described above will be described with reference to the processing flows of FIGS.
[0006]
The component arrangement data 13 is obtained in advance from the CAM system, the CAD data 14 is obtained from the CAD system, and stored in the data server 15 in advance.
[0007]
After the solder is applied to the raw board by the printing machine 1, the components are mounted by the mounting machines 2a and 2b. The visual inspection machine 3 inspects whether the components are mounted correctly. The inspection result is transmitted to the data server 15 and stored as the inspection result 11 (procedure 1). Next, the inspection result 11 and the component arrangement data 13 are acquired, and the failure content and frequency for each equipment and circuit number are displayed on the terminal 16 (procedure 2).
[0008]
In the inspection, the substrate in which NG has occurred is stored in an NG magazine. When the magazine is full, the magazine is moved to the visual inspection and repair station 4. Based on the output information of the board stored in the magazine, using the terminal 16, the CAD data 14 and the inspection result 11 are linked by the circuit number, and the position of the defective component on the board is displayed on the drawing. I do. Next, the substrate is taken out, the defective portion and the screen display result are confirmed, and repair is performed if necessary (procedure 3). The person in charge additionally writes the frequency in the corresponding defect item column of the defect totalization sheet 17 based on the determined defect content (step 4).
[0009]
On the next day, the defective totaling sheets 17 for one day are collected and totaled for each line (procedure 5). The totaling result is confirmed, and a line in which defects frequently occur and a defect item having a high frequency are extracted (step 6). Based on this result, information on the maintenance performed on the relevant line and the problems that occurred has been collected by confirming the contact note and hearing from the person in charge (step 7). From these pieces of information, factors that deteriorated the quality are examined (procedure 8).
[0010]
[Patent Document 1]
JP-A-9-289396 (pages 3-4, FIG. 1)
[0011]
[Problems to be solved by the invention]
In the processing flow in the above-described conventional technique, there are the following problems. First, since it is necessary to verify the inspection result output on the board and paper and the repair result on the repair terminal, it may take time and a verification error may occur. Second, since only the frequency of each item is recorded on paper, it is difficult to identify which component has occurred and which equipment has implemented it, making it difficult to identify the cause. thing. Third, although the aggregation and analysis of defects takes several hours the next day, the cause cannot often be identified, and quality improvement cannot proceed without effective measures. Fourth, the inspection machine and the person in charge of inspection have not been able to grasp the percentage of OK and NG judgments and the percentage of NG judgments OK. Inability to perform inspections reduces the efficiency of inspections. Fifth, changes in manufacturing conditions, maintenance, changes in inspection conditions, changes in parts and materials, and lots performed by the person in charge are not recorded, and it is not possible to grasp what the quality influencing factors are.
[0012]
In order to solve the above-described problem, the present invention calculates information related to equipment, information related to components and materials, a position of a component on a board, a facility for mounting a component and an inspection result, a correlation between a repair result, The purpose is to establish a method for deriving factors affecting quality, and to quickly identify factors and optimize inspection standards, thereby improving quality, reducing loss of defects, and improving productivity.
[0013]
[Means for Solving the Problems]
In order to achieve this object, the invention according to claim 1 of the present invention includes a printing step of printing solder on a substrate, a component mounting step of mounting a component at a predetermined position of the printed solder, and a mounting state of the component. A mounting quality analysis method comprising a visual inspection step of inspecting a component, and a visual inspection repairing step of repairing a defective portion with reference to the inspection result, and managed by a data server in which component arrangement data and CAD data are stored, In the mounting step, the number of nozzles, the number of cassettes mounted, the number of suctions, and the number of each error are registered as equipment information in the server. In the appearance inspection step, the appearance inspection result of the mounting state is registered in the server, and the inspection result, CAD The data is linked with the circuit number of the component array data, the defective part on the board is displayed, and information on equipment maintenance, component replacement information, and manufacturing performed as a countermeasure for the cause of the defect The case is registered in the server, and in the visual inspection and repair process, if the failure determination of the location confirmed by the circuit number is correct using the board ID as a key, the failure content determined as a management standard is determined, and the repair result is determined. The over-judgment rate calculated for each circuit number was displayed on the server, and the inspection criteria that were implemented when the over-judgment rate exceeded the management criteria were reviewed, and the calibration of the inspection machine was registered as equipment maintenance information in the server. It is characterized by the fact that the inspection result and the repair result of the defective part are registered, so that there is no error in comparing the inspection result and the repair result, and the counting of the defect is easy, and the countermeasure can be taken promptly. Also, referring to the results of the appearance inspection, it is determined whether the judgment in the appearance inspection is a correct judgment or an over-judgment. If there are many over-judgments, the inspection standards are reviewed and the inspection machine is calibrated. And inspection machine Tuning, and changes in manufacturing conditions and maintenance, changes in inspection standards, etc. are registered, making it easy to determine the quality influencing factors, improving quality in the component mounting process, and reducing defect losses. Thus, productivity can be improved.
[0014]
According to a second aspect of the present invention, there is provided the mounting quality analysis method according to the first aspect, an electrical inspection process for inspecting a functional state of a component, and an electrical inspection repair for repairing a defective portion with reference to the inspection result. In the electrical inspection process, the inspection result of the electrical function is registered in the server, the inspection result and the CAD data are linked by the circuit number, the defective part on the board is displayed, and as a countermeasure for the cause of the failure occurrence Register the information on the executed equipment maintenance, parts replacement information, and manufacturing conditions in the server, and in the electrical inspection and repair process, refer to the inspection results in the electrical inspection process and display the defective parts confirmed by the circuit number, Determining the content of the defect determined as a management standard, registering it as a repair result in the server, and using the results of the visual inspection process, visual inspection repair process, electrical inspection process, and electrical inspection repair process as the board ID and circuit number Link, display the conformity of the inspection and repair standards, and if the judgment in each process is different, register the review of the inspection standards etc. performed in the process with different judgment as equipment maintenance information on the server, and Displaying the repair result and equipment information, manufacturing conditions, equipment maintenance information, and parts replacement information, and determining the cause of failure. Compare the repair results with the equipment information, manufacturing conditions, equipment maintenance information, and parts replacement information in a time series up to the electrical inspection and repair process, and comprehensively judge the cause of failure, so that quality analysis is more appropriate. Can be.
[0015]
The invention according to claim 3 is characterized in that, in the appearance inspection step, unnecessary contents and frequencies for each equipment, circuit number, or component supply position are displayed from inspection results, equipment information, and component arrangement data. Aggregation is easy and measures can be taken promptly.
[0016]
According to a fourth aspect of the present invention, in the visual inspection and repair step, the defective part is confirmed by referring to the inspection result using the board ID as a key, and a correct / over determination is determined, and an over determination is performed for each circuit number. Calculate the number of inspections / number of inspection failures, obtain the over-judgment rate, and when the over-judgment rate exceeds the management standard, judge that there are many over-judgments. It can be carried out.
[0017]
According to a fifth aspect of the present invention, in the electrical inspection process, the inspection result, the equipment information, and the component arrangement data are used to display a failure content and frequency for each equipment, circuit number, or component supply position, Defect counting is easy and measures can be taken promptly.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a configuration diagram in an embodiment of the present invention. 1 is a printing machine, 2a and 2b are mounting machines, 3 is a visual inspection machine, 4 is a visual inspection and repair station, 5 is an electrical inspection machine, 6 is an electrical inspection and repair station, 7 is the mounting rate of component cassettes and nozzles, Equipment information that stores equipment state such as adsorption rate, 8 is manufacturing condition that stores various set values for operating the equipment, 9 is equipment maintenance information that stores maintenance performed by the person in charge on the equipment, and 10 is equipment maintenance information. Component replacement information storing part number, lot, time set in equipment, supply position, 11 is inspection machine, inspection date and time, model name, board ID, circuit number, inspection result, inspection result storing defect contents, Reference numeral 12 denotes a repair date and time, a board ID, a circuit number, a repair result, and a repair result storing defect contents. Reference numeral 13 denotes a circuit number, equipment for mounting components, and component array data for storing a component supply position of the equipment. Road number, coordinates on the substrate of the component, the angle, shape and CAD data for storing the dimensions, 15 data server 16 is a terminal connected with the data server and the network.
[0020]
The operation of the quality analysis method configured as described above will be described with reference to the processing flows of FIGS.
[0021]
In advance, the component arrangement data 13 is obtained from the CAM system, the CAD data 14 is obtained from the CAD system, and stored in the data server 15.
[0022]
After the solder is applied to the raw board by the printing machine 1, the components are mounted by the mounting machines 2a and 2b. At this time, the number of mounted nozzles for mounting components on the board and the number of mounted cassettes for supplying components, the number of suctions, and the respective error counts are stored as equipment information 7 in real time. The visual inspection machine 3 inspects whether the components are mounted correctly. The result is transmitted to the data server 15 and stored in real time as the inspection result 11 (procedure 1). The equipment information 7, the inspection result 11, and the component arrangement data 13 are acquired, and the failure content and frequency for each facility and circuit number, the failure content and frequency for each facility and component supply position, and the mounting rate of the nozzle and the component supply position , Display the adsorption rate. Further, the CAD data 14 and the inspection result are linked by a circuit number, and the position of the component on which the defect has occurred on the board is displayed on the drawing. These displays are performed on the terminal 16 (procedure 2).
[0023]
The display contents are checked, and if a lot of defects occur at each specific component supply position, the component supply cassette is checked. Based on the result, maintenance, exchange of cassettes, and the like are performed, and the terminal 16 registers the equipment maintenance information 9 in the server 15. In the case of cassette replacement, information is acquired by a portable terminal, and is registered in the server 15 as part replacement information 10 through the terminal 16.
[0024]
If a large number of defects occur in a specific circuit number, there is a possibility that there is a problem with the printing plate or solder in the printing process. When the set values such as the printing pressure and the head speed at the time of mounting are changed, the changed file is designated by the terminal 16, the change is calculated automatically and in real time, and registered in the server 15 as the manufacturing condition 7 (procedure). 3).
[0025]
The visual inspection and repair station 4 reads the board ID and refers to the inspection result 11 using the board ID as a key to confirm a defective portion (circuit number). By looking at the actual product, it is determined whether the determination is correct or overdetermined. If the determination is correct, the content of the defect determined as a management standard is determined, the defective portion is repaired, and the result is registered in the server 15 in real time as a repair result 12. (Step 4).
[0026]
At this stage, the number of over-determined / inspection failure is calculated for each circuit number to obtain an over-determined rate, and the result is displayed (step 5). The magnitude of this rate is checked, and if it exceeds the management standard, the inspection standard is reviewed and the inspection machine is calibrated, and the terminal 16 registers the equipment maintenance information 9 in the server 15 (procedure 6). In addition, the terminal 16 checks the defect status based on the actual defect count based on the inspection result 11 and the repair result 12 in the same manner as in the procedure 2 (procedure 7).
[0027]
Upon receiving the result, the same countermeasures as in step 3 are implemented (step 8).
[0028]
In the electrical inspection machine 5, an inspection is performed to determine whether or not the component is functioning electrically. The result is transmitted to the data server 15 and stored in real time as the inspection result 11 (procedure 9). After confirming the contents, the same defect status check as in step 2 is performed (step 10). In response to this result, the same countermeasures as in step 3 are implemented (step 11).
[0029]
The electrical inspection and repair station 6 refers to the inspection result 11 to confirm a defective portion (circuit number). While looking at the actual product, the contents of the defect determined as the management standard are determined, the repair is executed, and the result is registered in the server 15 in real time as the repair result 12 (procedure 12).
[0030]
At this time, a correlation is made between the parts subjected to the appearance inspection and the electrical inspection. The results of the visual inspection, visual inspection and repair, electrical inspection, and electrical inspection and repair are linked by the board ID and circuit number, and the conformity of the inspection and repair standards is displayed (step 13). After confirming this result, if the parts that are OK in the visual inspection or the parts that are over-determined in the visual inspection repair are judged to be NG in the electrical inspection, the inspection standards and the criteria for the repair staff are reviewed. The inspection machine is calibrated, and the result is registered in the server as equipment maintenance information (procedure 14).
[0031]
In addition, based on the inspection result 11 and the repair result 12, a failure status check similar to the procedure 7 is performed (procedure 15). In response to this result, the same countermeasures as in step 8 are implemented (step 16).
[0032]
Further, the equipment information 7, the manufacturing conditions 8, the equipment maintenance information 9, the parts replacement information 10, and the repair result 12 are displayed in a time series and compared with each other, thereby grasping which factors influence the quality. . At this time, changes in equipment status, manufacturing conditions, and equipment maintenance timing are automatically extracted, and analysis can be speeded up (step 17).
[0033]
【The invention's effect】
As described above, the present invention provides a correlation between defective parts and equipment, parts and materials, and inspection and It is possible to provide a quality analysis method that can calculate the degree of conformity of the defect determination and quickly derive the factors that affect the quality.
[0034]
In addition, when the quality analysis method of the present invention is applied to the mounting process, defect detection, cause investigation, and countermeasures can be quickly performed, and quality can be improved, defect loss can be reduced, and productivity can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram in an embodiment of the present invention.
FIG. 2 is a flowchart of a process according to the embodiment of the present invention.
FIG. 3 is a configuration diagram according to a conventional technique.
FIG. 4 is a flowchart of a process in a conventional technique.
[Explanation of symbols]
1 Printing machine 2a Mounting machine A
2b Mounting machine B
3 Visual Inspection Machine 4 Visual Inspection and Repair Station 5 Electrical Inspection Machine 6 Electrical Inspection and Repair Station 7 Equipment Information 8 Manufacturing Conditions 9 Equipment Maintenance Information 10 Parts Replacement Information 11 Inspection Results 12 Repair Results 13 Parts Array Data 14 CAD Data 15 Data Server 16 terminals

Claims (5)

基板上に半田印刷する印刷工程と、印刷された半田の所定位置に部品を装着する部品実装工程と、部品の実装状態を検査する外観検査工程と、検査結果を参照して不良部分を修理する外観検査修理工程を備え、部品配列データ、CADデータが格納されるデータサーバにより管理される部品実装装置における品質分析方法であって、実装工程では、前記サーバに、ノズル、カセット装着数、吸着数、及びそれぞれのエラー数を設備情報として登録し、外観検査工程では、実装状態の外観検査結果をサーバに登録し、検査結果、CADデータを部品配列データが持つ回路番号で紐付けし、基板上の不良個所を表示し、不良発生原因の対策として実行した設備メンテナンスの情報、部品交換情報、製造条件をサーバに登録し、外観検査修理工程では、基板IDをキーに、回路番号により確認された個所の不良判定が正判定の場合は、管理基準として決められた不良内容を決定し、修理結果としてサーバに登録し、回路番号毎に求めた過判定率を表示し、過判定率が管理基準を越えた場合に実施した検査基準の見直し、検査機の校正を設備メンテナンス情報としてサーバに登録したことを特徴とする実装品質分析方法。A printing process for solder printing on a substrate, a component mounting process for mounting components at predetermined positions on the printed solder, a visual inspection process for inspecting the mounting status of the components, and repairing a defective portion with reference to the inspection results A quality analysis method for a component mounting apparatus including a visual inspection repair process and managed by a data server in which component array data and CAD data are stored. In the mounting process, the server includes a nozzle, a cassette mounting number, and a suction number. , And the number of each error are registered as equipment information. In the appearance inspection process, the appearance inspection result of the mounted state is registered in the server, and the inspection result and the CAD data are linked with the circuit number of the component arrangement data, and the on-board The information on equipment maintenance, parts replacement information, and manufacturing conditions that were executed as a countermeasure for the cause of the failure are registered in the server, If the failure determination at the location confirmed by the circuit number using the board ID as a key is a correct determination, the failure content determined as a management standard is determined, registered as a repair result in the server, and determined for each circuit number. An implementation quality analysis method characterized by displaying an over-judgment rate, reviewing an inspection standard executed when the over-judgment rate exceeds a management standard, and registering calibration of an inspection machine as equipment maintenance information in a server. 請求項1記載の実装品質分析方法は、さらに、部品の機能状態を検査する電気的検査工程と、検査結果を参照して不良部分を修理する電気的検査修理工程を備え、電気的検査工程では、電気的機能の検査結果をサーバに登録し、検査結果、CADデータを回路番号で紐付けし、基板上の不良個所を表示し、不良発生原因の対策として実行した設備メンテナンスの情報、部品交換情報、製造条件をサーバに登録し、電気的検査修理工程では、電気的検査工程における検査結果を参照して、回路番号により確認された不良個所を表示し、管理基準として決められた不良内容を決定し、修理結果としてサーバに登録し、外観検査工程、外観検査修理工程、電気的検査工程、電気的検査修理工程の結果を基板ID、回路番号で紐付けし、検査、修理の基準の適合状態を表示し、各工程における判定が異なる場合は、判定が異なる工程で実施した検査基準等の見直しを設備メンテナンス情報としてサーバに登録し、時系列で、修理結果と設備情報、製造条件、設備メンテナンス情報、部品交換情報を表示し、不良発生要因を判断することを特徴とする請求項1記載の実装品質分析方法。The mounting quality analysis method according to claim 1, further comprising: an electrical inspection step of inspecting a functional state of the component; and an electrical inspection repair step of repairing a defective portion with reference to the inspection result. , Register the inspection result of the electrical function in the server, link the inspection result and CAD data with the circuit number, display the defective part on the board, information on the equipment maintenance performed as a countermeasure for the cause of failure, parts replacement Register the information and manufacturing conditions in the server, and in the electrical inspection and repair process, refer to the inspection results in the electrical inspection process, display the defective locations confirmed by the circuit number, and display the failure content determined as a management standard. Determined and registered in the server as a repair result, and linked the results of the visual inspection process, visual inspection repair process, electrical inspection process, and electrical inspection repair process with the board ID and circuit number. If the conformity status of each process is different and the judgment in each process is different, the review of the inspection standards etc. performed in the process with different judgment is registered as equipment maintenance information in the server, and the repair results and equipment information and manufacturing 2. The mounting quality analysis method according to claim 1, wherein conditions, equipment maintenance information, and component replacement information are displayed, and a cause of failure is determined. 外観検査工程では、検査結果、設備情報、部品配列データより、設備、回路番号、または部品供給位置毎の不良内容と度数等を表示することを特徴とする請求項1記載の実装品質分析方法。2. The mounting quality analysis method according to claim 1, wherein, in the appearance inspection step, a failure content and a frequency for each equipment, circuit number, or component supply position are displayed based on the inspection result, equipment information, and component arrangement data. 外観検査修理工程では、基板IDをキーに、検査結果を参照して、不良個所を確認して、正判定/過判定を判断し、回路番号毎に過判定数/検査不良数を計算し、過判定率を求め、過判定率が管理基準を越える場合は、過判定が多いと判断することを特徴とする請求項1記載の実装品質分析方法。In the appearance inspection and repair process, referring to the inspection result using the board ID as a key, confirming a defective portion, determining a correct determination / overdetermination, calculating an overdetermined number / inspection failure number for each circuit number, 2. The mounting quality analysis method according to claim 1, wherein an over-judgment rate is obtained, and when the over-judgment rate exceeds a management standard, it is determined that there are many over-judgments. 電気的検査工程では、検査結果、設備情報、部品配列データより、設備、回路番号、または部品供給位置毎の不良内容と度数等を表示することを特徴とする請求項2記載の実装品質分析方法。3. The mounting quality analysis method according to claim 2, wherein, in the electrical inspection step, a failure content and frequency of each equipment, circuit number, or component supply position are displayed based on the inspection result, equipment information, and component arrangement data. .
JP2002381844A 2002-12-27 2002-12-27 Method for mounting quality Pending JP2004214394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381844A JP2004214394A (en) 2002-12-27 2002-12-27 Method for mounting quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381844A JP2004214394A (en) 2002-12-27 2002-12-27 Method for mounting quality

Publications (1)

Publication Number Publication Date
JP2004214394A true JP2004214394A (en) 2004-07-29

Family

ID=32817644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381844A Pending JP2004214394A (en) 2002-12-27 2002-12-27 Method for mounting quality

Country Status (1)

Country Link
JP (1) JP2004214394A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100332A (en) * 2004-09-28 2006-04-13 Yamaha Motor Co Ltd Surface mounter
JP2007157781A (en) * 2005-11-30 2007-06-21 Omron Corp Apparatus, method, and program of judging part failure and recording medium storing the program
JP2008256424A (en) * 2007-04-03 2008-10-23 Joichiro Tsuboi Automatic/manual egg inspection device in fertilized egg inspection
JP2009032230A (en) * 2007-02-27 2009-02-12 Toshiba Corp Product repair support system, product manufacturing system, and product manufacturing method
CN102348369A (en) * 2010-07-30 2012-02-08 株式会社日立高新技术仪器 Management system of electronic component assembly line
US8224605B2 (en) 2005-05-12 2012-07-17 Omron Corporation Inspection standard setting device, inspection standard setting method and process inspection device
WO2012165277A1 (en) * 2011-05-31 2012-12-06 富士機械製造株式会社 Substrate-processing assistance device
JP2013105897A (en) * 2011-11-14 2013-05-30 Fuji Mach Mfg Co Ltd Substrate-related operation support device
JP2013186575A (en) * 2012-03-06 2013-09-19 Mitsubishi Electric Corp Support device, support method, and support program
WO2015004733A1 (en) * 2013-07-09 2015-01-15 富士機械製造株式会社 Inspection control device, mounting system, and inspection control method
WO2018066107A1 (en) * 2016-10-06 2018-04-12 富士機械製造株式会社 Component mounting device
WO2018220788A1 (en) * 2017-06-01 2018-12-06 ヤマハ発動機株式会社 Inspection result notification method, inspection result notification apparatus, and component mounting system
WO2019021361A1 (en) * 2017-07-25 2019-01-31 株式会社Fuji Substrate processing management system
WO2020194571A1 (en) * 2019-03-27 2020-10-01 株式会社Fuji Analysis device
JP2020173129A (en) * 2019-04-09 2020-10-22 株式会社日立製作所 Electronic component visual inspection system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100332A (en) * 2004-09-28 2006-04-13 Yamaha Motor Co Ltd Surface mounter
US8224605B2 (en) 2005-05-12 2012-07-17 Omron Corporation Inspection standard setting device, inspection standard setting method and process inspection device
JP2007157781A (en) * 2005-11-30 2007-06-21 Omron Corp Apparatus, method, and program of judging part failure and recording medium storing the program
JP2009032230A (en) * 2007-02-27 2009-02-12 Toshiba Corp Product repair support system, product manufacturing system, and product manufacturing method
JP2008256424A (en) * 2007-04-03 2008-10-23 Joichiro Tsuboi Automatic/manual egg inspection device in fertilized egg inspection
KR101772704B1 (en) * 2010-07-30 2017-08-29 야마하하쓰도키 가부시키가이샤 Management system of electronic components mounting line
JP2012033071A (en) * 2010-07-30 2012-02-16 Hitachi High-Tech Instruments Co Ltd Management system for electronic component mounting line
CN102348369B (en) * 2010-07-30 2016-01-20 雅马哈发动机株式会社 The management system of electronic unit assembly line
CN102348369A (en) * 2010-07-30 2012-02-08 株式会社日立高新技术仪器 Management system of electronic component assembly line
WO2012165277A1 (en) * 2011-05-31 2012-12-06 富士機械製造株式会社 Substrate-processing assistance device
JP2013105897A (en) * 2011-11-14 2013-05-30 Fuji Mach Mfg Co Ltd Substrate-related operation support device
JP2013186575A (en) * 2012-03-06 2013-09-19 Mitsubishi Electric Corp Support device, support method, and support program
WO2015004733A1 (en) * 2013-07-09 2015-01-15 富士機械製造株式会社 Inspection control device, mounting system, and inspection control method
CN109792861A (en) * 2016-10-06 2019-05-21 株式会社富士 Component mounting machine
WO2018066107A1 (en) * 2016-10-06 2018-04-12 富士機械製造株式会社 Component mounting device
JPWO2018066107A1 (en) * 2016-10-06 2019-07-25 株式会社Fuji Parts mounting machine
CN109792861B (en) * 2016-10-06 2020-07-31 株式会社富士 Component mounting machine
WO2018220788A1 (en) * 2017-06-01 2018-12-06 ヤマハ発動機株式会社 Inspection result notification method, inspection result notification apparatus, and component mounting system
JPWO2018220788A1 (en) * 2017-06-01 2019-12-26 ヤマハ発動機株式会社 Inspection result notification method, inspection result notification device, and component mounting system
WO2019021361A1 (en) * 2017-07-25 2019-01-31 株式会社Fuji Substrate processing management system
JPWO2019021361A1 (en) * 2017-07-25 2020-03-19 株式会社Fuji Substrate work management system
CN110999567A (en) * 2017-07-25 2020-04-10 株式会社富士 Substrate operation management system
CN110999567B (en) * 2017-07-25 2021-02-26 株式会社富士 Substrate operation management system
WO2020194571A1 (en) * 2019-03-27 2020-10-01 株式会社Fuji Analysis device
JP2020173129A (en) * 2019-04-09 2020-10-22 株式会社日立製作所 Electronic component visual inspection system
JP7088874B2 (en) 2019-04-09 2022-06-21 株式会社日立製作所 Electronic component visual inspection system

Similar Documents

Publication Publication Date Title
JP2004214394A (en) Method for mounting quality
EP3102018B1 (en) Quality management device and method for controlling quality management device
JP5517638B2 (en) Mounting component inspection method, mounting component inspection apparatus for implementing the method, and component mounter equipped with the mounting component inspection device
JPH08297699A (en) System and method for supporting production failure analysis and production system
CN109840572A (en) A kind of SMT producing line management method and manufacture end
JP3994925B2 (en) Display method, quality control device, and quality control system
JP2002031606A (en) Apparatus and method for evaluating quality, apparatus and method for displaying quality, and quality evaluation system
CN107396538A (en) A kind of mainboard production line automation production management method
US20070263862A1 (en) Manufacturing process and apparatus for printing imprint on defective board
JP2007053264A (en) Failure detecting device for packaging quality and failure detecting method of packaging quality
JP3511632B2 (en) Mounting process failure factor analysis method
WO2013001594A1 (en) Method for management of inspection of electronic substrate, apparatus for same, and apparatus for visual inspection of electronic substrate
JP2007058690A (en) Information processor, information processing method, program and computer-readable storage medium with the program stored
JP2006251561A (en) Defective pixel repairing method
JP4249543B2 (en) Circuit board appearance inspection method and circuit board appearance inspection apparatus
JP3724851B2 (en) Inspection methods
CN115546140A (en) Display panel detection method and system and electronic device
TW200842346A (en) Detection method of printed circuit boards and the system thereof
JP3309322B2 (en) Printed circuit board inspection system
JPH11281695A (en) Device and method for inspecting electronic part
JPH07212095A (en) Board deviation analyzing method and component mounting method
JP3870579B2 (en) Solder inspection method and apparatus
JP2019149587A (en) Cream solder printing process inspection system
CN110989422A (en) Management system and management method for AOI (automated optical inspection) over-inspection parameters based on serial number code spraying
JP2003107672A (en) System and method for verifying appearance of photomask