JP2004214222A - Substrate treatment apparatus and method therefor - Google Patents

Substrate treatment apparatus and method therefor Download PDF

Info

Publication number
JP2004214222A
JP2004214222A JP2002373859A JP2002373859A JP2004214222A JP 2004214222 A JP2004214222 A JP 2004214222A JP 2002373859 A JP2002373859 A JP 2002373859A JP 2002373859 A JP2002373859 A JP 2002373859A JP 2004214222 A JP2004214222 A JP 2004214222A
Authority
JP
Japan
Prior art keywords
substrate
processing
cover
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002373859A
Other languages
Japanese (ja)
Other versions
JP4060700B2 (en
Inventor
Seiji Katsuoka
誠司 勝岡
Masahiko Sekimoto
雅彦 関本
Toshio Yokoyama
俊夫 横山
Teruyuki Watanabe
輝行 渡邉
Takahiro Ogawa
貴弘 小川
Kenichi Kobayashi
賢一 小林
Mitsuru Miyazaki
充 宮崎
Yasuyuki Motojima
靖之 本島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002373859A priority Critical patent/JP4060700B2/en
Publication of JP2004214222A publication Critical patent/JP2004214222A/en
Application granted granted Critical
Publication of JP4060700B2 publication Critical patent/JP4060700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate treatment apparatus and a substrate treatment method by which the mixing of treatment liquids can be avoided even when a substrate is treated by a plurality of the treatment liquids in one apparatus. <P>SOLUTION: The substrate treatment apparatus has a treatment tank (a first treatment means) 10 in which a plating solution (a treatment liquid) Q is collected on the inside and the substrate W is plated and treated (a dipping treatment), a cover 40 opening and closing the opening section 11 of the tank 10, a spray nozzle (a second treatment means ) 60 installed on the top face of the cover 40, and a substrate holding means 80 adsorbing and holding the rear of the substrate W. The means 80 is lowered under the state in which the cover 40 is removed from the opening section 11 of the tank 10, the substrate W is dipped in the plating solution Q, and the substrate W is plated and treated. The substrate W is washed and treated by the nozzle 60 under the state in which the means 80 is elevated and the opening section 11 of the tank 10 is closed by the cover 40. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の液体によって基板を処理するのに好適な基板処理装置及び基板処理方法に関するものである。
【0002】
【従来の技術】
半導体基板の配線形成プロセスとして、配線溝及びコンタクトホールに金属(導電体)を埋め込むようにしたプロセス(いわゆる、ダマシンプロセス)が使用されつつある。これは、層間絶縁膜に予め形成した配線溝やコンタクトホールに、アルミニウム、近年では銅や銀等の金属をめっきによって埋め込んだ後、余分な金属を化学機械的研磨(CMP)によって除去し平坦化するプロセス技術である。即ち例えば図15に示すように、半導体ウエハ等の基板Wの表面に堆積したSiO等からなる絶縁膜210の内部に、配線用の微細な凹部212を形成し、表面にTaN等からなるバリア層214を形成した後、例えば、銅めっきを施して、基板Wの表面に銅膜を成膜して凹部212の内部に埋め込む(ダマシンプロセス)。しかる後、基板Wの表面にCMP(化学機械的研磨)を施して平坦化することで絶縁膜210の内部に銅膜からなる配線216を形成し、この配線(銅膜)216の表面に、例えば無電解めっきによって得られるCo−W−P合金膜からなる配線保護層(蓋材)218を選択的に形成して配線216を保護する(蓋めっきプロセス)。
【0003】
一方めっき装置は従来、前記各種めっき工程を行うユニットやめっきに付帯する各種前処理工程を行うユニットや洗浄工程を行うユニット等、複数のユニットを設置して構成されていたが、その代わりに、これらの各処理工程を一つのユニットで行うめっき装置が提案されている。
【0004】
しかしながら複数の処理工程(例えばめっき液等による薬液処理工程と純水等による洗浄処理工程、或いは複数の薬液処理工程)を一つのユニットで行うと、各処理で使用した処理液が混合(或いは希釈)してしまい、各処理液の再利用が出来なくなってしまうという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、一つの装置内で複数の処理液による基板処理を行っても、処理液の混合を回避することができる基板処理装置及び基板処理方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、処理槽内部に基板保持手段に保持した基板を挿入した状態で基板の被処理面に処理液による接液処理を行う第一処理手段と、基板保持手段に保持した基板を上下動させる基板昇降手段と、処理槽の開口部を開閉するカバーと、前記処理槽の開口部を塞いだカバーの上部で前記基板保持手段に保持した基板の被処理面に処理液による接液処理を行う第二処理手段とを具備することを特徴とする基板処理装置である。
第一処理手段の処理槽の開口部をカバーによって塞いだ状態で、第二処理手段によって基板の別の接液処理を行うので、第二処理手段による接液処理時に第二処理手段で用いる処理液が処理槽内に入り込むことはなく、処理槽内の処理液と混合することを防止できる。また複数の基板処理工程を処理槽の内部とその上部とで行うので、装置のコンパクト化が図れる。
【0007】
請求項2記載の発明は、前記第一処理手段は、処理槽内部に処理液を溜め、この処理液に基板の被処理面をディップして接液させる構造であることを特徴とする請求項1記載の基板処理装置である。
【0008】
請求項3に記載の発明は、前記処理槽内部に気体を噴出し封じ込める手段を具備したことを特徴とする請求項2に記載の基板処理装置である。
【0009】
請求項4記載の発明は、前記第一処理手段は、処理槽内部に設置した処理液噴射手段から噴射される処理液を基板の被処理面に接液させる構造であることを特徴とする請求項1記載の基板処理装置である。
【0010】
請求項5記載の発明は、前記処理槽には、処理槽内部に供給した処理液を回収して再び処理槽内部に供給する処理液循環手段を設置したことを特徴とする請求項1又は2又は3又は4記載の基板処理装置である。処理槽内に第二処理手段に用いる液体が入り込まないので、処理槽内の処理液を容易に循環して再使用することができる。
【0011】
請求項6記載の発明は、前記基板保持手段は、基板の裏面を吸着して保持することで基板の被処理面全域を接液させる構造であることを特徴とする請求項1又は2又は3又は4又は5記載の基板処理装置である。これによってエッジ部分を含む基板の被処理面全体を容易に処理することができる。
【0012】
請求項7に記載の発明は、前記基板保持手段は、基板の裏面をリング状に真空吸着するとともに基板の裏面の真空吸着した部分の内側への処理液の進入を防止するシール機構を持つリング状の基板吸着部を具備することを特徴とする請求項6に記載の基板処理装置である。
【0013】
請求項8に記載の発明は、前記基板吸着部はゴム材料からなることを特徴とする請求項7に記載の基板処理装置である。
【0014】
請求項9に記載の発明は、前記基板吸着部の基板に接触する部分には、基板吸着用の真空力を発生させる基板吸着溝を設けたことを特徴とする請求項7又は請求項8に記載の基板処理装置である。
【0015】
請求項10に記載の発明は、前記基板吸着部は、前記基板裏面の外周部のみを吸着することを特徴とする請求項7又は請求項8又は請求項9に記載の基板処理装置である。
【0016】
請求項11に記載の発明は、前記基板吸着部が、前記基板の裏面に接触するのは前記基板の外周からその内側5mmまでの間の部分であることを特徴とする請求項7又は請求項8又は請求項9又は請求項10に記載の基板処理装置である。
【0017】
請求項12に記載の発明は、前記基板保持手段は、基板の裏面のみを吸着して保持することで、基板の被処理面上に接液する処理液に均一な流れを形成させ、基板のエッジ部を含む被処理面全域を均一に接液させる構造であることを特徴とする請求項1乃至11の内の何れか一項記載の基板処理装置である。これによってエッジ部分を含む基板の被処理面全体を均一に処理することができる。
【0018】
請求項13記載の発明は、前記基板保持手段は、保持した基板を水平位置から所定角度傾斜させた状態で処理槽内部の処理液に浸す揺動機構を有していることを特徴とする請求項2又は3記載の基板処理装置である。基板を水平位置から所定角度傾斜させた状態で処理液に浸すので、基板の被処理面上に空気等の気体が残ることを防止でき、被処理面の均一な処理が行える。
【0019】
請求項14記載の発明は、前記カバーを処理槽の側部に位置する待避位置と、処理槽の上部に位置して処理槽の開口部を塞ぐ閉止位置の二つの位置に移動する駆動機構を設置したことを特徴とする請求項1乃至13の内の何れか一項記載の基板処理装置である。カバーを処理槽の上部と側部に位置させるだけなので、基板処理装置全体のコンパクト化が図れる。
【0020】
請求項15記載の発明は、前記カバー上面には、このカバーが処理槽の開口部を塞いだ状態で基板の被処理面に処理液を接液させる処理液噴射手段を設けたことを特徴とする請求項1乃至14の内の何れか一項記載の基板処理装置である。第二処理手段である処理液噴射手段(噴霧ノズル)をカバー上面に一体に取り付けたので、装置の簡素化を図ることができる。
【0021】
請求項16記載の発明は、前記カバー上面には、このカバーが処理槽の開口部を塞いだ状態から開く際にカバー上面に溜まった処理液が処理槽内に落ちるのを防止する土手を設けたことを特徴とする請求項1乃至15の内の何れか一項記載の基板処理装置である。これによって第二処理手段による基板処理に用いた液体が処理槽内に流れ込むのをより確実に防止できる。
【0022】
請求項17記載の発明は、前記カバー上面の形状を、このカバーが処理槽の開口部を塞いだ状態でカバー上面に付着した処理液が流れ落ちる傾斜面形状或いは円錐形状に形成したことを特徴とする請求項1乃至15の内の何れか一項記載の基板処理装置である。これによって第二処理手段による基板処理に用いた液体が処理槽内に流れ込むのをより確実に防止できる。
【0023】
請求項18記載の発明は、前記カバー上面に残留する処理液を除去するワイパー又はバイブレータ又はカバー回転機構を設置したことを特徴とする請求項1乃至15の内の何れか一項記載の基板処理装置である。これによって第二処理手段による基板処理に用いた液体が処理槽内に流れ込むのをより確実に防止できる。
【0024】
請求項19記載の発明は、前記処理槽上部に上方向に向かって外径を小さくする傾斜部を設けることで、前記処理槽の開口部上端の外壁をその上を覆うカバーの内壁よりも内側に位置させたことを特徴とする請求項1乃至18の内の何れか一項記載の基板処理装置である。これによって第二処理手段による基板処理に用いた液体が処理槽内に流れ込むのをより確実に防止できる。
【0025】
請求項20記載の発明は、上下動可能な基板保持手段に基板を保持する工程と、処理槽内で基板を処理する工程と、基板保持手段を処理槽上方へ移動し、処理槽開口部をカバーで塞ぐ工程と、処理槽開口部を塞いだカバーの上部で基板を接液処理する工程とを具備することを特徴とする基板処理方法である。
【0026】
請求項21記載の発明は、処理槽内部に基板保持手段に保持した基板を挿入した状態で基板の被処理面に処理液による接液処理を行う工程と、前記処理槽の上部に基板保持手段に保持した基板を上昇させた状態で処理槽の開口部をカバーで塞ぐ工程と、前記処理槽の開口部を塞いだカバーの上部で前記基板保持手段に保持した基板の被処理面に処理液による接液処理を行う工程とを具備することを特徴とする基板処理方法である。
【0027】
請求項22記載の発明は、前記処理槽内部での基板の被処理面への処理液による接液処理は、処理槽内部に処理液を溜め、この処理液に基板の被処理面をディップして行う接液処理であることを特徴とする請求項21記載の基板処理方法である。
【0028】
請求項23記載の発明は、前記処理槽の開口部をカバーで塞いだ時に処理槽内部を不活性ガスで充填することにより、処理槽内の処理液を保護することを特徴とする請求項22に記載の基板処理方法である。
【0029】
請求項24記載の発明は、前記処理槽内部での基板の被処理面への処理液による接液処理は、処理槽内部に設置した処理液噴射手段から噴射された処理液を基板の被処理面に接液させる接液処理であることを特徴とする請求項21記載の基板処理方法である。
【0030】
請求項25記載の発明は、前記処理槽内部に供給した処理液を回収して再び処理槽内部に循環することを特徴とする請求項21又は22又は23又は24記載の基板処理方法である。
【0031】
請求項26記載の発明は、前記基板保持手段は基板の裏面を吸着して保持することを特徴とする請求項21又は22又は23又は24又は25記載の基板処理方法である。
【0032】
請求項27記載の発明は、前記基板保持手段は、基板の裏面のみを吸着して保持することで、基板の被処理面上に接液する処理液の均一な流れを形成し、基板のエッジ部を含む被処理面全域に均一な接液処理を行うことを特徴とする請求項21又は22又は23又は24又は25又は26記載の基板処理方法である。
【0033】
請求項28に記載の発明は、前記処理液の均一な流れが、基板の被処理面上に巻き込まれた気泡あるいは接液処理により発生した気泡を、被処理面上から排出させることを特徴とする請求項27に記載の基板処理方法である。
【0034】
請求項29記載の発明は、前記基板のディップ処理は、前記基板を斜めに傾斜させた状態で処理槽内部の処理液に浸して行うことを特徴とする請求項22又は23記載の基板処理方法である。
【0035】
請求項30記載の発明は、前記カバーによる処理槽の開口部の開閉は、前記カバーを処理槽の側部に位置する待避位置と、処理槽の上部に位置して処理槽の開口部を塞ぐ閉止位置の二つの位置にカバーを移動することで行うことを特徴とする請求項21乃至29の内の何れか一項記載の基板処理方法である。
【0036】
請求項31記載の発明は、前記カバーの上部での基板の被処理面への処理液による接液処理は、前記カバー上面に取り付けた処理液噴射手段から基板に向けて処理液を噴射して接液することで行うことを特徴とする請求項21乃至30の内の何れか一項記載の基板処理方法である。
【0037】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明を無電解めっき装置に用いた基板処理装置1を示す図であり、図1(a)は側面図、図1(b)は概略側断面図である。図1(a),(b)に示すように基板処理装置1は、内部にめっき液(処理液)Qを溜めて基板Wのディップ処理を行う処理槽(第一処理手段)10と、前記処理槽10の開口部11を塞ぐカバー40と、カバー40の上面に取り付けられる噴霧ノズル(処理液噴射手段、第二処理手段)60と、カバー40を駆動(旋回)する駆動機構70と、基板Wを保持する基板保持手段80と、基板保持手段80全体を駆動する基板保持手段駆動機構110と、処理槽10内のめっき液Qを循環する処理液循環手段150とを具備して構成されている。以下各構成部分について説明する。
【0038】
処理槽10は、めっき液Qを溜める容器形状の処理槽本体13と、処理槽本体13の上端外周部分に設置され処理槽本体13からオーバーフローするめっき液Qを回収する外周溝15と、外周溝15の外周側を囲んで筒状に上方に突出する覆い部17とを有して構成されている。覆い部17の上部には上方向に向かってその外径を小さく絞る傾斜部19が設けられている。処理槽本体13の底面中央にはめっき液供給口21が設けられている。処理槽10の覆い部17には、覆い部17の内側壁から開口部11に向けて洗浄液(純水)をワンショットで噴射するリンス用ノズル23が取り付けられている。
【0039】
処理液循環手段150は、前記処理槽10の外周溝15にオーバーフローしためっき液を配管によって供給タンク151に戻し、供給タンク151内に溜まっためっき液をポンプPによって処理槽本体13のめっき液供給口21に供給してめっき液を循環させる。供給タンク151には処理槽10内に供給するめっき液Qの温度を所定温度に保つためのヒーター153が設置されている。
【0040】
カバー40は、前記処理槽10の開口部11を塞ぐ大きさの板材によって構成されており、略円板状の上面部41と、上面部41の外周を囲む側面部43と、上面部41と側面部43間をつなぐ傾斜面42とを具備している。カバー40の両側面には板状のアーム部45が取り付けられており、その先端近傍部分が処理槽10の略中央両側部分に設置した軸支部47に回動自在に軸支されている。アーム部45先端は駆動機構70の連結アーム75の先端に固定されている。
【0041】
ここで図2は前記カバー40が処理槽10の上部に移動した際の、カバー40と処理槽10の外周部分における寸法関係を示す要部拡大断面図である。前述のように、処理槽10の覆い部17の上部には上方向に向かってその外径を小さく絞る傾斜部19が設けられ、これによって処理槽10の開口部11上端の外壁(外径L1)を、その上を覆うカバー40の内壁(内径L2)よりも内側に位置させる(L1<L2)ように構成している。
【0042】
噴霧ノズル(処理液噴射手段)60は、カバー40の上面中央に取り付けた一本の棒状の取付ブロック61に、一列に複数個(5個)のノズル63を上向きに取り付けて構成されている。ノズル63からはこの実施形態においては洗浄液(純水)が真上方向に向けて噴霧される。なお取付ブロック61の角部(各辺及び各頂点)は何れも丸くすることで、カバー40旋回時に純水或いは他の液体がこの噴霧ノズル60に残留してしまうことを防止している。
【0043】
図1に戻って駆動機構70は、カバー旋回用シリンダ71と、カバー旋回用シリンダ71内のピストンに連結されるロッド73と、ロッド73の先端に回動自在に連結される連結アーム75とを具備して構成されている。カバー旋回用シリンダ71の下端部は固定側部材に回動自在に固定されている。
【0044】
図3(a)は基板保持手段80の概略断面図、図3(b)は図3(a)のB部分拡大図である。図3(a)に示すように基板保持手段80は、基板保持部81と基板保持部駆動部100とを具備している。基板保持部81は、下面が開放された略円筒状の基板受け83の内部に、略円形の吸着ヘッド89を収納して構成されている。基板受け83はその下端面から内側に向けて基板Wを仮置きする仮置き部85を突出して設け、またその外周側面に基板挿入口87を設けている。吸着ヘッド89は内部に真空兼気体供給ライン93を設けた略円板状の基部91と、基部91の下面にリング状に取り付けられる基板吸着部95とを具備して構成されている。基板吸着部95はシール材(例えばゴム材料等)で構成され、その先端を基部91の下面から突出することでこれに当接する下記する基板Wの裏面を吸着するとともに、基板Wの裏面へのめっき液の侵入を防止するシールの役目を果たす。なお、この基板吸着部95の形状については、図3に示す形状のみならず円周幅にて吸着するものであればどのような形状でも構わない。また基板吸着部95の基板Wに接触する部分には基板吸着溝(吸着兼引離し用孔)97を設け、これに前記真空兼気体供給ライン93を接続することで、この基板吸着溝97に基板Wの吸着・引離しを行わせるように構成している。
【0045】
一方基板保持部駆動部100はその内部に、前記吸着ヘッド89を回転駆動する基板回転用モータ101と、前記基板受け83を上下の所定位置(少なくとも三ヶ所)に駆動する基板受け駆動用シリンダ103とを具備している。そして前記吸着ヘッド89は基板回転用モータ101によって回転駆動され、前記基板受け83は基板受け駆動用シリンダ103によって上下動される。つまり吸着ヘッド89は回転のみで上下動せず、基板受け83は上下動のみで回転しない。
【0046】
ここで基板保持手段80の動作を説明すると、まず図3(a)に示すように吸着ヘッド89を回転しない状態で基板受け83を最も下の位置(基板受渡し位置)に移動し、基板挿入口87を介して基板搬送ハンド107に吸着された基板Wを基板受け83内部に挿入し、基板搬送ハンド107の吸着を解除することで基板Wを仮置き部85の上に載置する。このとき基板Wの被処理面は下を向いている。そして基板搬送ハンド107を基板挿入口87から抜き出す。次に図4に示すように、基板受け83を上昇して基板Wの外周裏面(上面)に基板吸着部95の先端を当接して押し付け、基板吸着溝97から真空引きすることで基板Wを基板吸着部95に吸着する。この際、真空力は基板吸着部95の基板に接触する部分の内部の基板吸着溝97内に発生する。このときの基板受け83の位置を基板固定位置とする。これによって基板Wの裏側の部分(被処理面と反対側の面)は基板吸着部95によるシールによって被処理面側から遮断される。一般的に真空にて基板Wを吸着する場合は、従来吸着パッドが使用されていた。しかしながら、基板Wのエッジぎりぎりにて吸着且つ処理液の進入を防止するためには、吸着パッドのようにパッドの内側全体が真空状態になる吸着手段では中心から外周部にかけて基板Wが大きくたわみ、均一なめっき処理ができない等の悪影響ばかりか、基板W破損の事態も招きかねない。そこで本発明では、基板Wの外周をリング状の小さな幅(径方向)のシールにて吸着することにより、吸着幅を極力小さく抑えることで、基板Wへの影響(たわみ等)をなくすこととした。具体的には、この基板吸着部95の幅は非常に薄く、基板吸着部95が基板Wに接触する部分は基板Wの外周からその内側5mmまでの間の部分である。基板W裏面の外周部のみが基板吸着部95と接触するので、基板処理時に薬液の温度が不必要に基板吸着部95との接触面を伝達して逃げる恐れがない。次に図5に示すように、基板受け83を少し(例えば数mm)下降して基板Wを仮置き部85から引き離す。このときの基板受け83の位置を基板処理位置とする。この状態で基板保持手段80全体を下降して図1に示す処理槽10のめっき液Q中に浸漬すると、基板Wはその裏面が吸着・保持されているだけなので、基板Wの被処理面全域及びエッジ部分についても全てめっき液にディップしてその処理を行うことが可能となる。更に、基板受け83が下降して基板から離れ、基板Wはその裏面のみが吸着して保持されているだけなので、めっき液Qに浸漬しても基板Wに対するめっき液Qの流れL(図5(b)参照)が阻害されることがなく、被処理面全域において均一なめっき液Qの流れが形成される。また、このめっき液Qの流れと共に基板Wの被処理面上に巻き込まれた気泡や、めっきによって発生した気泡を基板Wの被処理面上から処理槽10内の他の部分へ排出することができる。これによって、めっきに悪影響を及ぼす不均一な流れあるいは気泡の影響を解決し、エッジを含んだ被処理面全域に均一なめっきを行うことが可能となる。また、基板Wの裏面のリング状に真空吸着した部分の内側は基板吸着部95によるシールによって被処理面側から遮断されるので、処理液が基板Wの裏面の基板吸着部95の内側へ侵入するのを防ぐことができる。基板Wの処理が終了した後、基板受け83を図4に示す基板固定位置まで上昇して基板Wを仮置き部85の上に載置し、基板吸着溝97から気体(不活性ガス、例えば窒素ガス)を噴出して基板Wを基板吸着部95から引き離し、同時に基板受け83を図3に示す基板受け渡し位置まで下降し、基板挿入口87から基板搬送ハンド107を挿入して基板Wを外部に引き出す。
【0047】
図6は基板保持手段駆動機構(基板昇降手段)110の内部構造の概略側面図である。同図に示すように基板保持手段駆動機構110は、前記基板保持手段80全体を揺動させる揺動機構111と、基板保持手段80及び揺動機構111全体を旋回させる旋回機構121と、基板保持手段80及び揺動機構111及び旋回機構121全体を昇降させる昇降機構131とを具備して構成されている。揺動機構111は基板保持手段80に固定されたブラケット113を固定する軸115と、この軸115を回動する軸回動用シリンダ117とを具備して構成され、軸回動用シリンダ117を駆動することで軸115を所定角度回動して基板保持手段80を揺動し、これによって基板保持手段80に保持した基板Wを水平位置と水平位置から所定角度傾斜させた傾斜位置とに変更できるようにしている。旋回機構121はヘッド旋回用サーボモータ123とこのヘッド旋回用サーボモータ123によって回動される旋回軸125とを具備して構成されており、旋回軸125の上端に前記揺動機構111を固定している。昇降機構131はヘッド昇降用シリンダ133とヘッド昇降用シリンダ133によって昇降されるロッド135とを具備して構成され、ロッド135の先端に取り付けたステー137に前記旋回機構121を固定している。
【0048】
次にこの基板処理装置1全体の動作を説明する。図1に示す状態は、カバー40を旋回して処理槽10の開口部11を開き、且つ基板保持手段80を上昇した状態を示している。即ちカバー40は処理槽10の側部に位置する待避位置に移動している。カバー40の旋回動作は基板保持手段80が上昇してできる基板保持手段80と処理槽10の間の空間を利用する。このとき処理液循環手段150は駆動されており、めっき液Qは処理槽10と供給タンク151間を所定温度に維持されながら循環されている。この状態においてまず未処理の基板Wを前記図3乃至図5に示す方法で吸着ヘッド89に吸着する。次に揺動機構111によって基板保持手段80全体を揺動させて基板Wを水平位置から所定角度傾斜し、その状態のまま昇降機構131(図6参照)を駆動して基板保持手段80を図7に示す位置まで下降してめっき液Qにディップする。基板Wをディップした後、揺動機構111によって基板保持手段80全体を元の位置に揺動させて基板Wを水平位置にし、この状態で無電解めっきを行う。このとき図3に示す基板回転用モータ101を駆動することで基板Wを回転しておく。本基板処理装置1においては、基板Wを水平位置から所定角度傾斜した状態でめっき液Q中にディップするので、基板Wの被処理面上に空気等の気体が混入することを防止できる。即ち基板Wを水平な状態にてめっき液Qに浸すと、空気等の気体が基板Wとめっき液Qの間に滞在し、均一なめっきが達成されない。そこで本基板処理装置1においては、基板Wをめっき液Qに浸す際、基板Wを傾斜させることで空気等の気体の進入を防止して均一なめっきを達成するようにしたのである。
【0049】
以上のようにして基板Wの被処理面(下面)の無電解めっき(第一処理)を所定時間行った後、昇降機構131(図6参照)を駆動して基板保持手段80を図1に示す位置まで上昇する。基板Wを上昇させている途中、前記処理槽10に設けたリンス用ノズル23から上昇中の基板Wの被処理面に向けて洗浄液(純水)をワンショットで噴射する。無電解めっき処理が終了したら直ちに冷却しなければ、基板Wに残っためっき液Qにより無電解めっきが進行してしまうので、ワンショットで洗浄液を基板Wの被処理面に噴射して冷却し、無電解めっきの進行を防止するのである。
【0050】
次に駆動機構70を駆動することでカバー40を旋回して図8に示すように処理槽10の開口部11をカバー40で塞ぐ。即ちカバー40は処理槽10の上部に位置して処理槽10の開口部11を塞ぐ閉止位置に移動する。次にカバー40上面に固定した噴霧ノズル60の各ノズル63から真上に向けて洗浄液(純水)を噴霧して基板Wの被処理面に接液して洗浄する。このとき処理槽10の開口部11はカバー40によって覆われているので、洗浄液が処理槽10内に入り込むことはなく、処理槽10内部のめっき液Qが希釈されることはなく、めっき液Qの循環使用が可能になる。特にこの実施形態においては図2に示すように、開口部11上端の外壁(外径L1)を、その上を覆うカバー40の内壁(内径L2)よりも内側に位置させる(L1<L2)ように構成したので、カバー40の外周を伝って落ちる洗浄液が必ず開口部11上端の外壁側に落ち、開口部11内に入り込むことはない。なお基板Wを洗浄した後の洗浄液は、図示しない排水口から排水される。以上のようにして洗浄が終了した基板Wは、前述のように基板保持手段80から外部に取り出され、次の未処理の基板Wが基板保持手段80に装着され、再び前記めっき及び洗浄工程が行われていく。
【0051】
ところで上記実施形態にかかるカバー40は図2に示すように、噴霧ノズル60を取り付けた平面状の上面部41と円筒状の側面部43との間をテーパー状の傾斜面42によって連結する形状とし、また前述のように噴霧ノズル60の取付ブロック61の角部(各辺及び各頂点)を何れも丸くすることで、カバー40上に噴霧ノズル60が噴霧した液体が残留しないようにし、これによって開口部11を塞いだカバー40が旋回する際に開口部11内にカバー40上の液体が落ち込まないようにしている。図9乃至図14は開口部11を塞いだカバー40が旋回する際にカバー40上の液体が開口部11内に落ち込まないように、さらに工夫を凝らした各種の例を示している。
【0052】
即ち図9に示すカバー40−2の場合は、カバー40−2の上面部41の噴霧ノズル60を囲む位置に半円弧状の土手50を設けている。土手50は高さ数mmであってカバー40−2旋回時に上方向に持ち上がる部分(カバー40−2の中心位置より半分程度の部分)に設ける。これによってカバー40−2旋回時にカバー40−2上に滞留している液体がカバー40−2から落ちようとするのを土手50が堰き止め、確実にカバー40−2が傾斜した方向に落とすことができ、処理槽10内に流れ込む危険性を回避できる。
【0053】
図10に示すカバー40−3の場合は、カバー40−3の上面部(ノズル取付面)41全体を傾斜(勾配)面としている。傾斜(勾配)はカバー40−3旋回時に下方を向く方向に対して下降するように設ける。これにより洗浄時(噴霧ノズル60からの噴霧時)にカバー40−3上面に落ちた洗浄液(純水或いは他の液体)はこの傾斜(勾配)面に沿って流れ落ち、上面部41に溜まることを防止でき、これによってカバー40−3の旋回時に上面部41に溜まった液体が処理槽10内に流れ込むのを防止できる。
【0054】
図11に示すカバー40−4の場合は、カバー40−4の上面にシリンダ等の駆動機器53によって駆動されるワイパー51を設置し、駆動機器53によってワイパー51をカバー40−4上面で水平に動作させてカバー40−4上面の残液を排除する。この例においては、ワイパー51はカバー40−4の端(図11(a)の実線で示す位置)からカバー40−4の中心位置(図11(a)の点線位置)まで動作する。またカバー40−4の上面部41のワイパー51が摺接する半分の面41aは水平な面に、ワイパー51が摺接しない他の半分の面41bは傾斜面としている。また噴霧ノズル60(ノズル63)は、ワイパー51の動作を妨害しないようにカバー40−4内に埋め込む等の対策を行っている。そして噴霧ノズル60による洗浄(又は他の薬液処理)が終了した後、ワイパー51を動作させてカバー40−4の端からカバー40−4の中心位置まで移動させれば、面41a上の残液は面41bに送られて面41b上を流れ落ちる。このカバー40−4によればワイパー51のストロークが短く省スペースとなる。一方カバー40−4の上面部41全体を水平な平面とし、その代わりにワイパー51をカバー40−4の一方の端から他方の端まで動作させるように構成しても良い。この場合はワイパー51のストロークは長くなるが、カバー40−4上面全域にワイパー51が作用する。
【0055】
図12に示すカバー40−5の場合は、カバー40−5に二つのバイブレータ53を取り付けると共に、カバー40−5の上面部41全体を傾斜面としている。そして噴霧ノズル60による洗浄(或いは他の薬液処理)が終了した後、バイブレータ53を作動させることにより、カバー40−5を振動させカバー40−5上の残液を強制的に落下させる。このカバー40−5の場合、上面部41全体を傾斜面としているので、前記落下が効率良く行える。
【0056】
図13に示すカバー40−6の場合は、カバー40−6の形状を円錐形状にしている。これによってカバー40−6上面に落下してきた洗浄液(或いは他の薬液)は、円錐形状に沿って流れ落ち、処理槽10の外側へと落ちていく。
【0057】
図14に示すカバー40−7の場合は、カバー40−7にカバー回転機構55を設置している。カバー回転機構55は、アーム部45にプレート551を固定し、このプレート551にモータ553を固定し、モータ553の軸に固定したプーリー555とその上を覆うように設置したカバー40−7中央の回転軸に固定したプーリー557との間にベルト559を巻き掛けて構成されている。そして噴霧ノズル60による洗浄液或いは他の薬液処理終了後にモータ553を駆動してカバー40−7を回転駆動し、その上面に残っている液体を遠心力にて強制的に排出させる。なおカバー回転機構55の構造に種々の変形が可能であることは言うまでもなく、要はカバー40−7を回転駆動できる構造であればどのような機構であっても良い。
【0058】
なお上記実施形態では処理槽10にめっき液Qを溜めて無電解めっき処理を行ったが、処理槽10内にアノードを設置し、また基板Wにカソード電極を接続するように構成することで、基板Wの被処理面を電解メッキすることもできる。またこの基板処理装置1をめっき装置として利用するのではなく、他の薬液処理(例えばめっきの前処理や後処理)を行う基板処理装置として利用することもできる。 また噴霧ノズル(処理液噴射手段、第二処理手段)60によって行う基板Wの処理も、洗浄液による洗浄処理工程に限定されず、その他の各種薬液処理であっても良い。
【0059】
〔上記基板処理装置1を用いた基板処理機構〕
図16は上記実施形態にかかる基板処理装置1を備えた基板処理機構(蓋めっき装置)の平面配置図である。同図に示すようにこの基板処理機構は、基板Wを収容した基板カセットを収納するロードユニット400a及びアンロードユニット400bと、基板Wの搬送を行なう三台の搬送部(搬送ロボット)401,403,405と、二台の反転機407,409と、一台の仮置き台410と、二台の乾燥部411,413と、二台の洗浄部415,417と、薬液(例えば希硫酸)を用いてなる一台の基板前処理装置419と、薬液(例えば酢酸パラジウム)を用いてなる二台の基板前処理装置421,423と、薬液(例えばクエン酸塩)を用いてなる二台の基板前処理装置425,427と、二台の無電解めっき装置429,431とを具備して構成されている。そして各無電解めっき装置429,431として、上記実施形態にかかる基板処理装置1が用いられている。
【0060】
まず搬送部401がロードユニット400a内の基板Wを取り出して反転機407に移送して基板Wを反転し、反転した基板Wを搬送部401によって仮置き台410に載置する。仮置き台410に載せた基板Wは搬送部403によって基板前処理装置419に搬送される。基板前処理装置419では薬液(例えば希硫酸)によって基板Wの被処理面Sが処理された後に洗浄液で洗浄される。
【0061】
前記洗浄が完了した基板Wは搬送部405によって次の基板前処理装置421(又は423)に搬送され、薬液(例えば酢酸パラジウム)によって基板Wの被処理面Sが処理された後に洗浄液で洗浄される。同様に洗浄が完了した基板Wは搬送部405によって次の基板前処理装置425(又は427)に搬送され、薬液(例えばクエン酸塩)によって基板Wの被処理面Sが処理された後に洗浄液で洗浄される。
【0062】
前記洗浄が完了した基板Wは搬送部405によって無電解めっき装置429(又は431)に移送され、無電解めっき処理(蓋めっき処理)と洗浄が行われた後、搬送部405によって反転機409に移送されて反転され、搬送部403によって洗浄部417(又は415)に移送されてロールブラシによる洗浄が行われ、さらに搬送部403によって乾燥部413(又は411)に移送され、洗浄後スピン乾燥され、搬送部401によってアンロードユニット400bに移送される。
【0063】
なお前記基板前処理装置419,421,423,425,427として上記基板処理装置1を用いても良い。
【0064】
図17は、半導体基板配線用の他の基板処理機構の平面構成を示す図である。図示するように、半導体基板配線用の基板処理機構は、半導体基板を搬入する搬入部601、銅めっき(ダマシンプロセス)を行う銅めっき槽(本発明の基板処理装置1を用いる。なお以下の各基板処理機構内の各種めっきを行う装置にも同様に適宜基板処理装置1を用いる)602、水洗浄を行う水洗槽603,604、化学機械研磨(CMP)を行うCMP部605、水洗槽606,607、乾燥槽608及び配線層形成が終了した半導体基板を搬出する搬出部609を具備し、これら各槽に半導体基板を移送する図示しない基板移送手段が1つの装置として配置され、半導体基板配線用の基板処理機構を構成している。
【0065】
上記配置構成の基板処理機構において、基板移送手段により、搬入部601に載置された基板カセット601−1から、配線層が形成されていない半導体基板を取り出し、銅めっき槽602に移送する。該銅めっき槽602において、配線溝や配線孔(コンタクトホール)からなる配線部を含む半導体基板Wの表面上に銅めっき層を形成する。
【0066】
前記銅めっき槽602で銅めっき層の形成が終了した半導体基板Wを、基板移送手段で水洗槽603及び水洗槽604に移送し、水洗を行う。続いて該水洗浄の終了した半導体基板Wを基板移送手段でCMP部605に移送し、該CMP部605で、銅めっき層から配線溝や配線孔に形成した銅めっき層を残して半導体基板Wの表面上の銅めっき層を除去する。
【0067】
続いて上記のように銅めっき層から配線溝や配線孔からなる配線部に形成した銅めっき層を残して半導体基板Wの表面上の不要の銅めっき層の除去が終了した半導体基板Wを、基板移送手段で水洗槽606及び水洗槽607に送り、水洗浄し、更に水洗浄の終了した半導体基板Wは乾燥槽608で乾燥させ、乾燥の終了した半導体基板Wを配線層の形成の終了した半導体基板として、搬出部609の基板カセット609−1に格納する。
【0068】
図18は、基板処理機構の他の平面配置構成を示す図である。この基板処理機構は、バリア層成膜ユニット811、シード層成膜ユニット812、めっきユニット813、アニールユニット814、第1洗浄ユニット815、ベベル・裏面洗浄ユニット816、蓋めっきユニット817、第2洗浄ユニット818、第1アライナ兼膜厚測定器841、第2アライナ兼膜厚測定器842、第1基板反転機843、第2基板反転機844、基板仮置き台845、第3膜厚測定器846、ロード・アンロード部820、第1ポリッシング装置821、第2ポリッシング装置822、第1ロボット831、第2ロボット832、第3ロボット833、第4ロボット834を配置した構成である。なお、膜厚測定器841,842,846はユニットになっており、他のユニット(めっき、洗浄、アニール等のユニット)の間口寸法と同一サイズにしているため、入れ替え自在である。
【0069】
この例では、バリア層成膜ユニット811は、無電解Ruめっき装置、シード層成膜ユニット812は、無電解銅めっき装置、めっきユニット813は、電解めっき装置を用いることができる。
【0070】
図19は、この基板処理機構内での各工程の流れを示すフローチャートである。このフローチャートにしたがって、この装置内での各工程について説明する。先ず、第1ロボット831によりロード・アンロードユニット820に載置されたカセット820aから取り出された半導体基板は、第1アライナ兼膜厚測定ユニット841内に被めっき面を上にして配置される。ここで、膜厚計測を行うポジションの基準点を定めるために、膜厚計測用のノッチアライメントを行った後、銅膜形成前の半導体基板の膜厚データを得る。
【0071】
次に、半導体基板は、第1ロボット831により、バリア層成膜ユニット811へ搬送される。このバリア層成膜ユニット811は、無電解Ruめっきにより半導体基板上にバリア層を形成する装置で、半導体装置の層間絶縁膜(例えば、SiO)への銅拡散防止膜としてRuを成膜する。洗浄、乾燥工程を経て払い出された半導体基板は、第1ロボット831により第1アライナ兼膜厚測定ユニット841に搬送され、半導体基板の膜厚、即ちバリア層の膜厚を測定される。
【0072】
膜厚測定された半導体基板は、第2ロボット832でシード層成膜ユニット812へ搬入され、前記バリア層上に無電解銅めっきによりシード層が成膜される。洗浄、乾燥工程を経て払い出された半導体基板は、第2ロボット832によりめっきユニット813に搬送される前に、ノッチ位置を定めるために第2アライナ兼膜厚測定器842に搬送され、銅めっき用のノッチのアライメントを行う。ここで、必要に応じて銅膜形成前の半導体基板の膜厚を再計測してもよい。
【0073】
ノッチアライメントが完了した半導体基板は、第3ロボット833によりめっきユニット813へ搬送され、銅めっきが施される。洗浄、乾燥工程を経て払い出された半導体基板は、第3ロボット833により半導体基板端部の不要な銅膜(シード層)を除去するためにベベル・裏面洗浄ユニット816へ搬送される。ベベル・裏面洗浄ユニット816では、予め設定された時間でベベルのエッチングを行うとともに、半導体基板裏面に付着した銅をフッ酸等の薬液により洗浄する。この時、ベベル・裏面洗浄ユニット816へ搬送する前に、第2アライナ兼膜厚測定器842にて半導体基板の膜厚測定を実施して、めっきにより形成された銅膜厚の値を得ておき、その結果により、ベベルのエッチング時間を任意に変えてエッチングを行っても良い。なお、ベベルエッチングによりエッチングされる領域は、基板の周縁部であって回路が形成されない領域、または回路が形成されていても最終的にチップとして利用されない領域である。この領域にはベベル部分が含まれる。
【0074】
ベベル・裏面洗浄ユニット816で洗浄、乾燥工程を経て払い出された半導体基板は、第3ロボット833で基板反転機843に搬送され、該基板反転機843にて反転され、被めっき面を下方に向けた後、第4ロボット834により配線部を安定化させるためにアニールユニット814へ投入される。アニール処理前及び/又は処理後、第2アライナ兼膜厚測定ユニット842に搬入し、半導体基板に形成された、銅膜の膜厚を計測する。この後、半導体基板は、第4ロボット834により第1ポリッシング装置821に搬入され、半導体基板の銅層、シード層の研磨を行う。
【0075】
この際、砥粒等は所望のものが用いられるが、ディッシングを防ぎ、表面の平面度を出すために、固定砥粒を用いることもできる。第1ポリッシング終了後、半導体基板は、第4ロボット834により第1洗浄ユニット815に搬送され、洗浄される。この洗浄は、半導体基板直径とほぼ同じ長さを有するロールを半導体基板の表面と裏面に配置し、半導体基板及びロールを回転させつつ、純水又は脱イオン水を流しながら洗浄するスクラブ洗浄である。
【0076】
第1の洗浄終了後、半導体基板は、第4ロボット834により第2ポリッシング装置822に搬入され、半導体基板上のバリア層が研磨される。この際、砥粒等は所望のものが用いられるが、ディッシングを防ぎ、表面の平面度を出すために、固定砥粒を用いることもできる。第2ポリッシング終了後、半導体基板は、第4ロボット834により、再度第1洗浄ユニット815に搬送され、スクラブ洗浄される。洗浄終了後、半導体基板は、第4ロボット834により第2基板反転機844に搬送され反転されて、被めっき面を上方に向けられ、更に第3ロボット833により基板仮置き台845に置かれる。
【0077】
半導体基板は、第2ロボット832により基板仮置き台845から蓋めっきユニット817に搬送され、銅の大気による酸化防止を目的に銅面上にニッケル・ボロンめっきを行う。蓋めっきが施された半導体基板は、第2ロボット832により蓋めっきユニット817から第3膜厚測定器846に搬入され、銅膜厚が測定される。その後、半導体基板は、第1ロボット831により第2洗浄ユニット818に搬入され、純水又は脱イオン水により洗浄される。洗浄が終了した半導体基板は、第1ロボット831によりロード・アンロード部820に載置されたカセット820a内に戻される。
【0078】
アライナ兼膜厚測定器841及びアライナ兼膜厚測定器842は、基板ノッチ部分の位置決め及び膜厚の測定を行う。
【0079】
ベベル・裏面洗浄ユニット816は、エッジ(ベベル)銅エッチングと裏面洗浄が同時に行え、また基板表面の回路形成部の銅の自然酸化膜の成長を抑えることが可能である。図20に、ベベル・裏面洗浄ユニット816の概略図を示す。図20に示すように、ベベル・裏面洗浄ユニット816は、有底円筒状の防水カバー920の内部に位置して基板Wをフェイスアップでその周縁部の円周方向に沿った複数箇所でスピンチャック921により水平に保持して高速回転させる基板保持部922と、この基板保持部922で保持された基板Wの表面側のほぼ中央部上方に配置されたセンタノズル924と、基板Wの周縁部の上方に配置されたエッジノズル926とを備えている。センタノズル924及びエッジノズル926は、それぞれ下向きで配置されている。また基板Wの裏面側のほぼ中央部の下方に位置して、バックノズル928が上向きで配置されている。前記エッジノズル926は、基板Wの直径方向及び高さ方向を移動自在に構成されている。
【0080】
このエッジノズル926の移動幅Lは、基板の外周端面から中心部方向に任意の位置決めが可能になっていて、基板Wの大きさや使用目的等に合わせて、設定値の入力を行う。通常、2mmから5mmの範囲でエッジカット幅Cを設定し、裏面から表面への液の回り込み量が問題にならない回転数以上であれば、その設定されたカット幅C内の銅膜を除去することができる。
【0081】
次に、この洗浄装置による洗浄方法について説明する。まず、スピンチャック921を介して基板を基板保持部922で水平に保持した状態で、半導体基板Wを基板保持部922と一体に水平回転させる。この状態で、センタノズル924から基板Wの表面側の中央部に酸溶液を供給する。この酸溶液としては非酸化性の酸であればよく、例えばフッ酸、塩酸、硫酸、クエン酸、蓚酸等を用いる。一方、エッジノズル926から基板Wの周縁部に酸化剤溶液を連続的または間欠的に供給する。この酸化剤溶液としては、オゾン水、過酸化水素水、硝酸水、次亜塩素酸ナトリウム水等のいずれかを用いるか、またはそれらの組み合わせを用いる。
【0082】
これにより、半導体基板Wの周縁部のエッジカット幅Cの領域では上面及び端面に成膜された銅膜等は酸化剤溶液で急速に酸化され、同時にセンタノズル924から供給されて基板の表面全体に拡がる酸溶液によってエッチングされ溶解除去される。このように、基板周縁部で酸溶液と酸化剤溶液を混合させることで、予めそれらの混合水をノズルから供給するのに比べて急峻なエッチングプロフィールを得ることができる。このときそれらの濃度により銅のエッチングレートが決定される。また、基板の表面の回路形成部に銅の自然酸化膜が形成されていた場合、この自然酸化物は基板の回転に伴って基板の表面全体に亘って広がる酸溶液で直ちに除去されて成長することはない。なお、センタノズル924からの酸溶液の供給を停止した後、エッジノズル926からの酸化剤溶液の供給を停止することで、表面に露出しているシリコンを酸化して、銅の付着を抑制することができる。
【0083】
一方、バックノズル928から基板の裏面中央部に酸化剤溶液とシリコン酸化膜エッチング剤とを同時または交互に供給する。これにより半導体基板Wの裏面側に金属状で付着している銅等を基板のシリコンごと酸化剤溶液で酸化しシリコン酸化膜エッチング剤でエッチングして除去することができる。なおこの酸化剤溶液としては表面に供給する酸化剤溶液と同じものにする方が薬品の種類を少なくする上で好ましい。またシリコン酸化膜エッチング剤としては、フッ酸を用いることができ、基板の表面側の酸溶液もフッ酸を用いると薬品の種類を少なくすることができる。これにより、酸化剤供給を先に停止すれば疎水面が得られ、エッチング剤溶液を先に停止すれば飽水面(親水面)が得られて、その後のプロセスの要求に応じた裏面に調整することもできる。
【0084】
このように酸溶液すなわちエッチング液を基板に供給して、基板Wの表面に残留する金属イオンを除去した後、更に純水を供給して、純水置換を行ってエッチング液を除去し、その後、スピン乾燥を行う。このようにして半導体基板表面の周縁部のエッジカット幅C内の銅膜の除去と裏面の銅汚染除去を同時に行って、この処理を、例えば80秒以内に完了させることができる。なお、エッジのエッジカット幅を任意(2mm〜5mm)に設定することが可能であるが、エッチングに要する時間はカット幅に依存しない。
【0085】
めっき後のCMP工程前に、アニール処理を行うことが、この後のCMP処理や配線の電気特性に対して良い効果を示す。アニール無しでCMP処理後に幅の広い配線(数μm単位)の表面を観察するとマイクロボイドのような欠陥が多数見られ、配線全体の電気抵抗を増加させたが、アニールを行うことでこの電気抵抗の増加は改善された。アニール無しの場合に、細い配線にはボイドが見られなかったことより、粒成長の度合いが関わっていることが考えられる。つまり、細い配線では粒成長が起こりにくいが、幅の広い配線では粒成長に伴い、アニール処理に伴うグレン成長の過程で、めっき膜中のSEM(走査型電子顕微鏡)でも見えないほどの超微細ポアが集結しつつ上へ移動することで配線上部にマイクロボイド用の凹みが生じたという推測ができる。アニールユニットのアニール条件としては、ガスの雰囲気は水素を添加(2%以下)、温度は300〜400℃程度で1〜5分間で上記の効果が得られた。
【0086】
図21及び図22は、アニールユニット814を示すものである。このアニールユニット814は、半導体基板Wを出し入れするゲート1000を有するチャンバ1002の内部に位置して、半導体基板Wを、例えば400℃に加熱するホットプレート1004と、例えば冷却水を流して半導体基板Wを冷却するクールプレート1006が上下に配置されている。また、クールプレート1006の内部を貫通して上下方向に延び、上端に半導体基板Wを載置保持する複数の昇降ピン1008が昇降自在に配置されている。更に、アニール時に半導体基板Wとホットプレート1008との間に酸化防止用のガスを導入するガス導入管1010と、該ガス導入管1010から導入され、半導体基板Wとホットプレート1004との間を流れたガスを排気するガス排気管1012がホットプレート1004を挟んで互いに対峙する位置に配置されている。
【0087】
ガス導入管1010は、内部にフィルタ1014aを有するNガス導入路1016内を流れるNガスと、内部にフィルタ1014bを有するHガス導入路1018内を流れるHガスとを混合器1020で混合し、この混合器1020で混合したガスが流れる混合ガス導入路1022に接続されている。
【0088】
これにより、ゲート1000を通じてチャンバ1002の内部に搬入した半導体基板Wを昇降ピン1008で保持し、昇降ピン1008を該昇降ピン1008で保持した半導体基板Wとホットプレート1004との距離が、例えば0.1〜1.0mm程度となるまで上昇させる。この状態で、ホットプレート1004を介して半導体基板Wを、例えば400℃となるように加熱し、同時にガス導入管1010から酸化防止用のガスを導入して半導体基板Wとホットプレート1004との間を流してガス排気管1012から排気する。これによって、酸化を防止しつつ半導体基板Wをアニールし、このアニールを、例えば数十秒〜60秒程度継続してアニールを終了する。基板の加熱温度は100〜600℃が選択される。
【0089】
アニール終了後、昇降ピン1008を該昇降ピン1008で保持した半導体基板Wとクールプレート1006との距離が、例えば0〜0.5mm程度となるまで下降させる。この状態で、クールプレート1006内に冷却水を導入することで、半導体基板Wの温度が100℃以下となるまで、例えば10〜60秒程度、半導体基板を冷却し、この冷却終了後の半導体基板を次工程に搬送する。
【0090】
なお、この例では、酸化防止用のガスとして、Nガスと数%のHガスを混合した混合ガスを流すようにしているが、Nガスのみを流すようにしてもよい。
【0091】
〔他の基板処理装置1−2〕
図23は本発明の他の実施の形態にかかる基板処理装置1−2の概略側断面図であり、前記図7(b)に示す状態と同じ状態を示している。この基板処理装置1−2において前記基板処理装置1と同一又は相当部分には同一符号を付してその詳細な説明は省略する。基板処理装置1−2において前記基板処理装置1と相違する点は、処理槽10内部の構造である。即ち基板処理装置1−2においては、容器形状の処理槽本体13の内部に、めっき液を溜める代わりに、めっき液(無電解めっき液)を噴霧する噴霧ノズル(処理液噴射手段)30を設置している。噴霧ノズル30にはポンプPによって供給タンク151内のめっき液が供給される。そして処理槽本体13内に下降して挿入された基板Wの被処理面に前記噴霧ノズル30から噴射しためっき液を接液させ、めっき処理を行う。基板Wの被処理面に接液した後のめっき液は処理槽本体13の底に落ち、配管31によって供給タンク151に戻され、再びポンプPによって噴霧ノズル30に供給され循環される。このように構成しても基板Wの被めっき面を無電解めっきすることができる。
【0092】
なお前記図1に示す基板処理装置1のめっき液Qを溜める処理槽本体13の内部に、この基板処理装置1−2において設置した噴霧ノズル30を設置することで、1つの処理槽10内部で、めっき液への基板Wのディップ処理と噴霧ノズル30による基板Wへのめっき液噴霧処理の両者が行えるように構成しても良い。このように構成すれば、一つの処理槽10内部で二種類の処理方法が可能になる。
【0093】
なお前記基板処理装置1と同様に、この基板処理装置1−2をめっき装置として利用するのではなく、他の薬液処理(例えばめっきの前処理や後処理)を行う基板処理装置として利用することもでき、また噴霧ノズル60によって行う基板Wの処理も、洗浄液による洗浄処理工程に限定されず、その他の各種薬液処理であってもよい。
【0094】
図24は他の処理槽10−2及びカバー40を示す図である。処理槽10−2において図1における基板処理装置1の処理槽10と異なる点は、処理槽10−2は処理槽10−2の覆い部17に不活性ガス(例えば窒素ガス)等の気体を処理槽10−2内部に噴出させる気体噴出手段18を設けた点である。気体噴出手段18は処理槽10−2の覆い部17を貫通して処理槽10−2内部と外部を連通する通路18aとその先端に取り付けられた継手18bとで構成される。開口部11をカバー40で塞いだ状態において、気体噴出手段18より処理槽10−2内部に不活性ガス等の気体を噴出させ、処理槽10−2内に不活性ガス等の気体を封じ込めることにより処理槽10−2内部の雰囲気を置換することができる。これによりめっき液Qが酸素に接触することなく、めっき液Qの機能低下を防止し常時正常なめっき液Qに基板Wを接触させることが可能となる。なお、気体噴出手段18の構造に種々の変更が可能であることは言うまでもなく、また気体噴出手段18を設けるのは覆い部17に限られず、カバー40に設ける等、他の部分であってもよい。
【0095】
以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。
【0096】
▲1▼例えば上記実施形態ではカバー40を駆動機構70によって旋回させたが、カバー40は処理槽10の開口部11を塞ぐ位置と、それ以外の位置の二ヶ所に移動できる構造であれば良く、例えば旋回以外にも平行移動などする構造であっても良い。
【0097】
▲2▼上記実施形態では第二処理手段としてカバー40の上面に取り付けられる噴霧ノズル60を用いたが、噴霧ノズル60はカバー40の上面以外の他の場所(例えば基板処理装置1を囲む外装カバー)に設置しても良い。もちろんカバー40に噴霧ノズル60を取り付ければ、基板処理装置1の小型化に好適なことは言うまでもない。
【0098】
【発明の効果】
以上詳細に説明したように本発明によれば、一つの装置内で複数の処理液による基板処理を行っても処理液の混合を確実に回避することができると同時に、装置設置面積の小型化と装置コストの低廉化が図れる。
【図面の簡単な説明】
【図1】本発明を無電解めっき装置に用いた基板処理装置1を示す図であり、図1(a)は側面図、図1(b)は概略側断面図である。
【図2】カバー40が処理槽10の上部に移動した際の、カバー40と処理槽10の外周部分における寸法関係を示す要部拡大断面図である。
【図3】図3(a)は基板保持手段80の概略断面図、図3(b)は図3(a)のB部分拡大図である。
【図4】図4(a)は基板保持手段80の概略断面図、図4(b)は図4(a)のB部分拡大図である。
【図5】図5(a)は基板保持手段80の概略断面図、図5(b)は図5(a)のB部分拡大図である。
【図6】基板保持手段駆動機構110の内部構造の概略側面図である。
【図7】図7(a),(b)は基板処理装置1の動作説明図である。
【図8】図8(a),(b)は基板処理装置1の動作説明図である。
【図9】カバー40−2を取り付けた処理槽10を示す図であり、図9(a)は平面図、図9(b)は側面図である。
【図10】カバー40−3を取り付けた処理槽10を示す図であり、図10(a)は平面図、図10(b)は側面図である。
【図11】カバー40−4を取り付けた処理槽10を示す図であり、図11(a)は平面図、図11(b)は側面図である。
【図12】カバー40−5を取り付けた処理槽10を示す図であり、図12(a)は平面図、図12(b)は側面図である。
【図13】カバー40−6を取り付けた処理槽10を示す図であり、図13(a)は平面図、図13(b)は側面図である。
【図14】カバー40−7を取り付けた処理槽10を示す図であり、図14(a)は平面図、図14(b)は一部断側面図、図14(c)は図14(b)のC部分拡大図、図14(d)は図14(b)を右側面から見たときのカバー40−7のみを切断した概略断面図である。
【図15】半導体基板Wの要部拡大断面図である。
【図16】基板処理装置1を備えた基板処理機構の平面配置図である。
【図17】基板処理機構の他の例を示す平面配置図である。
【図18】基板処理機構の更に他の例を示す平面配置図である。
【図19】図18に示す基板処理機構における各工程の流れを示すフローチャートである。
【図20】ベベル・裏面洗浄ユニットを示す概要図である。
【図21】アニールユニットの一例を示す縦断正面図である。
【図22】図21の平断面図である。
【図23】本発明の他の実施の形態にかかる基板処理装置1−2の概略側断面図である。
【図24】本発明の他の実施の形態にかかる処理槽10−2及びカバー40を示す図である。
【符号の説明】
1 基板処理装置
Q めっき液(処理液)
W 基板
L めっき液の流れ
10 処理槽(第一処理手段)
11 開口部
13 処理槽本体
15 外周溝
17 覆い部
18 気体噴出手段
19 傾斜部
21 めっき液供給口
23 リンス用ノズル
40 カバー
41 上面部(ノズル取付面)
45 アーム部
60 噴霧ノズル(処理液噴射手段、第二処理手段)
61 取付ブロック
63 ノズル
70 駆動機構
71 カバー旋回用シリンダ
80 基板保持手段
81 基板保持部
83 基板受け
85 仮置き部
87 基板挿入口
89 吸着ヘッド
91 基部
93 真空兼気体供給ライン
95 基板吸着部
97 吸着兼引離し用孔
100 基板保持部駆動部
110 基板保持手段駆動機構(基板昇降手段)
111 揺動機構
121 旋回機構
131 昇降機構
150 処理液循環手段
151 供給タンク
153 ヒーター
40−2 カバー
50 土手
40−3 カバー
40−4 カバー
51 ワイパー
53 駆動機器
40−5 カバー
53 バイブレータ
40−6 カバー
40−7 カバー
55 カバー回転機構
1−2 基板処理装置
30 噴霧ノズル(処理液噴射手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate processing apparatus and a substrate processing method suitable for processing a substrate with a plurality of liquids.
[0002]
[Prior art]
As a wiring formation process of a semiconductor substrate, a process (so-called damascene process) in which a metal (conductor) is embedded in wiring grooves and contact holes is being used. This is because the wiring trench or contact hole previously formed in the interlayer insulating film is filled with aluminum, such as copper or silver in recent years, by plating, and then the excess metal is removed by chemical mechanical polishing (CMP) for planarization. Process technology. That is, for example, as shown in FIG. 15, SiO deposited on the surface of a substrate W such as a semiconductor wafer. 2 After forming a fine recess 212 for wiring inside the insulating film 210 made of, and the like, and forming a barrier layer 214 made of TaN or the like on the surface, for example, copper plating is performed to form a copper film on the surface of the substrate W Is deposited and embedded in the recess 212 (damascene process). Thereafter, the surface of the substrate W is subjected to CMP (Chemical Mechanical Polishing) and planarized to form a wiring 216 made of a copper film inside the insulating film 210. On the surface of the wiring (copper film) 216, For example, a wiring protective layer (cover material) 218 made of a Co—WP alloy film obtained by electroless plating is selectively formed to protect the wiring 216 (cover plating process).
[0003]
On the other hand, the plating apparatus has been conventionally configured by installing a plurality of units such as a unit for performing the various plating processes, a unit for performing various pretreatment processes incidental to plating, and a unit for performing a cleaning process. A plating apparatus that performs each of these processing steps in one unit has been proposed.
[0004]
However, if a plurality of processing steps (for example, a chemical processing step using a plating solution and a cleaning processing step using pure water, or a plurality of chemical processing steps) are performed in one unit, the processing solutions used in each processing are mixed (or diluted). There is a problem that each processing solution cannot be reused.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and an object of the present invention is to provide a substrate processing apparatus and a substrate capable of avoiding mixing of processing liquids even when substrate processing with a plurality of processing liquids is performed in one apparatus. It is to provide a processing method.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, the first processing means for performing the liquid contact treatment with the processing liquid on the processing surface of the substrate in a state where the substrate held by the substrate holding means is inserted into the processing tank, and the substrate holding means Substrate lifting means for moving the substrate up and down, a cover for opening and closing the opening of the processing tank, and a processing liquid on the surface to be processed of the substrate held by the substrate holding means at the upper part of the cover closing the opening of the processing tank A substrate processing apparatus comprising: a second processing unit that performs liquid contact processing.
Since the second processing means performs another liquid contact processing of the substrate while the opening of the processing tank of the first processing means is closed with a cover, the processing used by the second processing means during the liquid contact processing by the second processing means The liquid does not enter the processing tank and can be prevented from mixing with the processing liquid in the processing tank. In addition, since the plurality of substrate processing steps are performed inside and above the processing tank, the apparatus can be made compact.
[0007]
According to a second aspect of the present invention, the first processing means has a structure in which a processing liquid is stored in a processing tank, and a surface to be processed of the substrate is dipped into the processing liquid to be in contact with the processing liquid. 1. The substrate processing apparatus according to 1.
[0008]
According to a third aspect of the present invention, there is provided the substrate processing apparatus according to the second aspect, further comprising means for ejecting and containing gas inside the processing tank.
[0009]
According to a fourth aspect of the present invention, the first processing means has a structure in which the processing liquid sprayed from the processing liquid spraying means installed inside the processing tank is in contact with the surface to be processed of the substrate. The substrate processing apparatus according to Item 1.
[0010]
According to a fifth aspect of the present invention, the processing tank is provided with a processing liquid circulation means for collecting the processing liquid supplied into the processing tank and supplying it again into the processing tank. Alternatively, the substrate processing apparatus according to 3 or 4. Since the liquid used for the second processing means does not enter the processing tank, the processing liquid in the processing tank can be easily circulated and reused.
[0011]
According to a sixth aspect of the present invention, the substrate holding means has a structure in which the entire surface to be processed of the substrate comes into contact with the substrate by adsorbing and holding the back surface of the substrate. Alternatively, the substrate processing apparatus according to 4 or 5. As a result, the entire surface to be processed of the substrate including the edge portion can be easily processed.
[0012]
According to a seventh aspect of the present invention, the substrate holding means has a ring having a seal mechanism that vacuum-sucks the back surface of the substrate in a ring shape and prevents the processing liquid from entering the vacuum-sucked portion of the back surface of the substrate. The substrate processing apparatus according to claim 6, further comprising a substrate-like substrate adsorption unit.
[0013]
The invention according to claim 8 is the substrate processing apparatus according to claim 7, wherein the substrate suction portion is made of a rubber material.
[0014]
According to a ninth aspect of the present invention, in the portion of the substrate suction portion that contacts the substrate, a substrate suction groove that generates a vacuum force for substrate suction is provided. It is a substrate processing apparatus of description.
[0015]
A tenth aspect of the present invention is the substrate processing apparatus according to the seventh, eighth, or ninth aspect, wherein the substrate adsorbing portion adsorbs only an outer peripheral portion of the back surface of the substrate.
[0016]
According to an eleventh aspect of the present invention, the substrate adsorbing portion contacts the back surface of the substrate at a portion between the outer periphery of the substrate and 5 mm inside thereof. The substrate processing apparatus according to claim 8 or claim 9 or claim 10.
[0017]
According to a twelfth aspect of the present invention, the substrate holding means adsorbs and holds only the back surface of the substrate, thereby forming a uniform flow in the processing liquid in contact with the surface to be processed of the substrate. 12. The substrate processing apparatus according to claim 1, wherein the entire surface to be processed including the edge portion is in contact with the liquid uniformly. As a result, the entire surface to be processed of the substrate including the edge portion can be processed uniformly.
[0018]
According to a thirteenth aspect of the present invention, the substrate holding means includes a swing mechanism that immerses the held substrate in a processing solution inside the processing tank in a state where the held substrate is inclined at a predetermined angle from a horizontal position. Item 4. The substrate processing apparatus according to Item 2 or 3. Since the substrate is immersed in the processing liquid in a state where the substrate is inclined at a predetermined angle from the horizontal position, it is possible to prevent a gas such as air from remaining on the processing surface of the substrate and to perform uniform processing on the processing surface.
[0019]
The invention according to claim 14 is provided with a drive mechanism for moving the cover to two positions: a retracted position located at the side of the processing tank and a closed position positioned above the processing tank to close the opening of the processing tank. 14. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is installed. Since the cover is only positioned on the upper and side portions of the processing tank, the entire substrate processing apparatus can be made compact.
[0020]
The invention according to claim 15 is characterized in that a treatment liquid ejecting means is provided on the upper surface of the cover for bringing the treatment liquid into contact with the treated surface of the substrate in a state where the cover closes the opening of the treatment tank. The substrate processing apparatus according to claim 1. Since the processing liquid ejecting means (spray nozzle) as the second processing means is integrally attached to the upper surface of the cover, the apparatus can be simplified.
[0021]
According to a sixteenth aspect of the present invention, a bank is provided on the upper surface of the cover to prevent the processing liquid collected on the upper surface of the cover from falling into the processing tank when the cover is opened from a state where the opening of the processing tank is closed. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is a substrate processing apparatus. This can more reliably prevent the liquid used for substrate processing by the second processing means from flowing into the processing tank.
[0022]
The invention according to claim 17 is characterized in that the shape of the upper surface of the cover is formed in an inclined surface shape or a conical shape in which the treatment liquid adhering to the upper surface of the cover flows in a state where the cover closes the opening of the treatment tank. The substrate processing apparatus according to claim 1. This can more reliably prevent the liquid used for substrate processing by the second processing means from flowing into the processing tank.
[0023]
The substrate processing according to any one of claims 1 to 15, wherein a wiper, a vibrator or a cover rotating mechanism for removing the processing liquid remaining on the upper surface of the cover is installed. Device. This can more reliably prevent the liquid used for substrate processing by the second processing means from flowing into the processing tank.
[0024]
According to the nineteenth aspect of the present invention, an inclined portion that decreases the outer diameter toward the upper direction is provided at the upper portion of the processing tank, so that the outer wall at the upper end of the opening of the processing tank is located inside the inner wall of the cover that covers the upper wall. The substrate processing apparatus according to any one of claims 1 to 18, wherein the substrate processing apparatus is located at a position. This can more reliably prevent the liquid used for substrate processing by the second processing means from flowing into the processing tank.
[0025]
According to a twentieth aspect of the present invention, a step of holding a substrate on a vertically movable substrate holding means, a step of processing a substrate in a processing tank, a substrate holding means is moved above the processing tank, and a processing tank opening is formed. A substrate processing method comprising: a step of closing with a cover; and a step of subjecting the substrate to a liquid contact process on an upper portion of the cover where the opening of the processing tank is closed.
[0026]
According to a twenty-first aspect of the present invention, there is provided a step of performing a liquid contact process with a processing liquid on a surface to be processed of a substrate in a state where a substrate held by the substrate holding means is inserted into the processing tank; A step of closing the opening of the processing tank with a cover in a state where the substrate held on the substrate is raised, and a processing liquid on the surface to be processed of the substrate held by the substrate holding means on the upper part of the cover closing the opening of the processing tank A substrate processing method characterized by comprising the step of:
[0027]
According to a twenty-second aspect of the present invention, in the liquid contact processing with the processing liquid on the surface to be processed of the substrate inside the processing tank, the processing liquid is stored in the processing tank, and the processing surface of the substrate is dipped in the processing liquid. The substrate processing method according to claim 21, wherein the substrate processing method is a liquid contact process performed in a step.
[0028]
The invention according to claim 23 is characterized in that the treatment liquid in the treatment tank is protected by filling the inside of the treatment tank with an inert gas when the opening of the treatment tank is closed with a cover. The substrate processing method according to claim 1.
[0029]
According to a twenty-fourth aspect of the present invention, in the liquid contact processing with the processing liquid on the processing surface of the substrate inside the processing tank, the processing liquid sprayed from the processing liquid spraying means installed inside the processing tank is treated with the processing target of the substrate. The substrate processing method according to claim 21, wherein the substrate processing method is a liquid contact process for contacting the surface.
[0030]
A twenty-fifth aspect of the invention is the substrate processing method according to the twenty-first, twenty-second, twenty-third or twenty-fourth aspect, wherein the processing liquid supplied to the inside of the processing tank is collected and circulated again inside the processing tank.
[0031]
A twenty-sixth aspect of the present invention is the substrate processing method according to the twenty-first, twenty-second, twenty-third, twenty-fourth or twenty-fifth, wherein the substrate holding means sucks and holds the back surface of the substrate.
[0032]
According to a twenty-seventh aspect of the present invention, the substrate holding means adsorbs and holds only the back surface of the substrate, thereby forming a uniform flow of the processing liquid in contact with the surface of the substrate to be processed. 27. The substrate processing method according to claim 21, wherein the uniform liquid contact processing is performed on the entire surface to be processed including the portion.
[0033]
The invention as set forth in claim 28 is characterized in that the uniform flow of the processing liquid discharges bubbles entrained on the surface to be processed of the substrate or bubbles generated by the liquid contact process from the surface to be processed. The substrate processing method according to claim 27.
[0034]
A twenty-ninth aspect of the present invention is the substrate processing method according to the twenty-second or twenty-third aspect, wherein the dipping process of the substrate is performed by immersing the substrate in a processing solution inside a processing tank in a state where the substrate is inclined obliquely. It is.
[0035]
According to a thirty-third aspect of the present invention, the opening and closing of the opening of the processing tank by the cover closes the opening of the processing tank by positioning the cover at a side position of the processing tank and an upper portion of the processing tank. 30. The substrate processing method according to claim 21, wherein the substrate processing method is performed by moving the cover to two positions of the closed position.
[0036]
According to the invention of claim 31, in the liquid contact processing with the processing liquid on the surface to be processed of the substrate at the upper part of the cover, the processing liquid is sprayed toward the substrate from the processing liquid ejecting means attached to the upper surface of the cover. The substrate processing method according to any one of claims 21 to 30, wherein the substrate processing method is performed by contact with liquid.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing a substrate processing apparatus 1 using the present invention in an electroless plating apparatus. FIG. 1 (a) is a side view and FIG. 1 (b) is a schematic side sectional view. As shown in FIGS. 1A and 1B, the substrate processing apparatus 1 includes a processing tank (first processing means) 10 for dipping the substrate W by storing a plating solution (processing solution) Q therein, A cover 40 that closes the opening 11 of the treatment tank 10, a spray nozzle (treatment liquid ejection means, second treatment means) 60 that is attached to the upper surface of the cover 40, a drive mechanism 70 that drives (turns) the cover 40, and a substrate A substrate holding means 80 for holding W, a substrate holding means driving mechanism 110 for driving the entire substrate holding means 80, and a processing liquid circulating means 150 for circulating the plating solution Q in the processing bath 10 are provided. Yes. Each component will be described below.
[0038]
The processing tank 10 includes a container-shaped processing tank main body 13 that stores the plating solution Q, an outer peripheral groove 15 that is installed at an upper peripheral portion of the upper end of the processing tank main body 13 and collects the plating solution Q that overflows from the processing tank main body 13, and an outer peripheral groove 15 and a cover portion 17 that protrudes upward in a cylindrical shape so as to surround the outer peripheral side of 15. An inclined portion 19 is provided on the upper portion of the cover portion 17 to reduce its outer diameter toward the upper direction. A plating solution supply port 21 is provided at the center of the bottom surface of the treatment tank body 13. A rinsing nozzle 23 is attached to the cover portion 17 of the processing tank 10 to inject the cleaning liquid (pure water) from the inner wall of the cover portion 17 toward the opening portion 11 in one shot.
[0039]
The processing liquid circulating means 150 returns the plating solution overflowed to the outer peripheral groove 15 of the processing tank 10 to the supply tank 151 by piping, and supplies the plating liquid accumulated in the supply tank 151 to the processing tank main body 13 by the pump P. The plating solution is circulated by supplying to the port 21. The supply tank 151 is provided with a heater 153 for keeping the temperature of the plating solution Q supplied into the treatment tank 10 at a predetermined temperature.
[0040]
The cover 40 is made of a plate material having a size that closes the opening 11 of the processing tank 10, and includes a substantially disk-shaped upper surface portion 41, a side surface portion 43 that surrounds the outer periphery of the upper surface portion 41, and an upper surface portion 41. And an inclined surface 42 connecting the side portions 43. Plate-like arm portions 45 are attached to both side surfaces of the cover 40, and portions near the tips thereof are pivotally supported by shaft support portions 47 provided at both sides of the substantially central portion of the processing tank 10. The tip of the arm part 45 is fixed to the tip of the connecting arm 75 of the drive mechanism 70.
[0041]
Here, FIG. 2 is an enlarged cross-sectional view of the main part showing the dimensional relationship between the cover 40 and the outer peripheral portion of the processing tank 10 when the cover 40 moves to the upper part of the processing tank 10. As described above, the upper portion of the cover portion 17 of the processing tank 10 is provided with the inclined portion 19 that narrows the outer diameter in the upward direction, whereby the outer wall (outer diameter L1) at the upper end of the opening 11 of the processing tank 10 is provided. ) Is positioned on the inner side (L1 <L2) of the inner wall (inner diameter L2) of the cover 40 covering the upper side.
[0042]
The spray nozzle (treatment liquid ejecting means) 60 is configured by mounting a plurality of (five) nozzles 63 upward in a row on a single bar-shaped mounting block 61 mounted at the center of the upper surface of the cover 40. In this embodiment, the cleaning liquid (pure water) is sprayed from the nozzle 63 in the upward direction. Note that the corners (each side and each vertex) of the mounting block 61 are all rounded to prevent the pure water or other liquid from remaining in the spray nozzle 60 when the cover 40 turns.
[0043]
Returning to FIG. 1, the drive mechanism 70 includes a cover turning cylinder 71, a rod 73 connected to a piston in the cover turning cylinder 71, and a connecting arm 75 rotatably connected to the tip of the rod 73. It is comprised. The lower end of the cover turning cylinder 71 is fixed to the fixed member so as to be rotatable.
[0044]
3A is a schematic cross-sectional view of the substrate holding means 80, and FIG. 3B is an enlarged view of a portion B in FIG. 3A. As shown in FIG. 3A, the substrate holding unit 80 includes a substrate holding unit 81 and a substrate holding unit driving unit 100. The substrate holding portion 81 is configured by housing a substantially circular suction head 89 inside a substantially cylindrical substrate receiver 83 whose bottom surface is open. The substrate receiver 83 is provided with a temporary placement portion 85 for temporarily placing the substrate W inward from the lower end surface thereof, and a substrate insertion port 87 is provided on the outer peripheral side surface thereof. The suction head 89 includes a substantially disc-shaped base 91 provided with a vacuum and gas supply line 93 therein, and a substrate suction portion 95 attached to the lower surface of the base 91 in a ring shape. The substrate adsorbing portion 95 is made of a sealing material (for example, rubber material), and the front end of the substrate adsorbing portion 95 protrudes from the lower surface of the base portion 91 so as to adsorb the back surface of the substrate W to be in contact with the back surface. Serves as a seal to prevent plating solution from entering. The shape of the substrate adsorbing portion 95 may be any shape as long as it adsorbs not only the shape shown in FIG. A portion of the substrate suction portion 95 that contacts the substrate W is provided with a substrate suction groove (adsorption / separation hole) 97, and the vacuum / gas supply line 93 is connected to the substrate suction groove 97. The substrate W is configured to be attracted / separated.
[0045]
On the other hand, the substrate holding unit driving unit 100 includes therein a substrate rotating motor 101 that rotates the suction head 89 and a substrate receiving driving cylinder 103 that drives the substrate receiving 83 to upper and lower predetermined positions (at least three locations). It is equipped with. The suction head 89 is rotationally driven by a substrate rotating motor 101, and the substrate receiver 83 is moved up and down by a substrate receiving driving cylinder 103. That is, the suction head 89 does not move up and down only by rotation, and the substrate receiver 83 does not rotate only by up and down movement.
[0046]
Here, the operation of the substrate holding means 80 will be described. First, as shown in FIG. 3A, the substrate receiver 83 is moved to the lowest position (substrate delivery position) without rotating the suction head 89, and the substrate insertion slot is opened. The substrate W sucked by the substrate transport hand 107 is inserted into the substrate receiver 83 through 87, and the substrate W is placed on the temporary placement unit 85 by releasing the suction of the substrate transport hand 107. At this time, the surface to be processed of the substrate W faces downward. Then, the substrate transfer hand 107 is extracted from the substrate insertion port 87. Next, as shown in FIG. 4, the substrate receiver 83 is lifted, the tip of the substrate suction portion 95 is pressed against the outer peripheral back surface (upper surface) of the substrate W, and the substrate W is evacuated from the substrate suction groove 97. Adsorbed to the substrate adsorption unit 95. At this time, a vacuum force is generated in the substrate suction groove 97 inside the portion of the substrate suction portion 95 that contacts the substrate. The position of the substrate receiver 83 at this time is defined as a substrate fixing position. As a result, the portion on the back side of the substrate W (the surface opposite to the surface to be processed) is blocked from the surface to be processed by the seal by the substrate suction portion 95. In general, when the substrate W is sucked in a vacuum, a suction pad has been conventionally used. However, in order to prevent adsorption and processing liquid from entering the edge of the substrate W, the suction means in which the entire inside of the pad is in a vacuum state, such as a suction pad, the substrate W bends greatly from the center to the outer periphery, In addition to adverse effects such as inability to perform uniform plating, the substrate W may be damaged. Therefore, in the present invention, by adsorbing the outer periphery of the substrate W with a ring-shaped seal having a small width (in the radial direction), the influence on the substrate W (such as deflection) is eliminated by suppressing the adsorption width as much as possible. did. Specifically, the width of the substrate suction portion 95 is very thin, and the portion where the substrate suction portion 95 contacts the substrate W is a portion between the outer periphery of the substrate W and 5 mm inside thereof. Since only the outer peripheral portion of the back surface of the substrate W is in contact with the substrate adsorption portion 95, there is no possibility that the temperature of the chemical solution is unnecessarily transmitted through the contact surface with the substrate adsorption portion 95 during the substrate processing. Next, as shown in FIG. 5, the substrate receiver 83 is slightly lowered (for example, several mm), and the substrate W is pulled away from the temporary placement portion 85. The position of the substrate receiver 83 at this time is defined as a substrate processing position. In this state, when the entire substrate holding means 80 is lowered and immersed in the plating solution Q in the processing bath 10 shown in FIG. 1, the entire surface of the substrate W to be processed is obtained because the back surface of the substrate W is only adsorbed and held. In addition, all of the edge portions can be processed by dipping in the plating solution. Further, since the substrate receiver 83 is lowered and separated from the substrate, and only the back surface of the substrate W is adsorbed and held, the flow L of the plating solution Q with respect to the substrate W even when immersed in the plating solution Q (FIG. 5). (B) is not hindered, and a uniform flow of the plating solution Q is formed over the entire surface to be processed. In addition, bubbles entrained on the surface to be processed of the substrate W along with the flow of the plating solution Q and bubbles generated by plating may be discharged from the surface to be processed of the substrate W to other portions in the processing tank 10. it can. As a result, the influence of the non-uniform flow or bubbles that adversely affect plating can be solved, and uniform plating can be performed over the entire surface to be processed including the edges. Further, the inside of the portion of the back surface of the substrate W vacuum-sucked in a ring shape is blocked from the surface to be processed by the seal by the substrate suction portion 95, so that the processing liquid enters the inside of the substrate suction portion 95 on the back surface of the substrate W. Can be prevented. After the processing of the substrate W is completed, the substrate receiver 83 is raised to the substrate fixing position shown in FIG. 4 and the substrate W is placed on the temporary placement portion 85, and gas (inert gas, for example, Nitrogen gas) is ejected to separate the substrate W from the substrate adsorption portion 95, and the substrate receiver 83 is lowered to the substrate delivery position shown in FIG. 3 at the same time, and the substrate transport hand 107 is inserted from the substrate insertion port 87 to remove the substrate W from the outside. Pull out.
[0047]
FIG. 6 is a schematic side view of the internal structure of the substrate holding means driving mechanism (substrate lifting means) 110. As shown in the figure, the substrate holding means driving mechanism 110 includes a swing mechanism 111 that swings the whole substrate holding means 80, a turning mechanism 121 that turns the whole substrate holding means 80 and the swing mechanism 111, and a substrate holding mechanism. Means 80, swing mechanism 111, and elevating mechanism 131 for elevating the entire turning mechanism 121 are provided. The swing mechanism 111 includes a shaft 115 for fixing the bracket 113 fixed to the substrate holding means 80, and a shaft rotating cylinder 117 that rotates the shaft 115, and drives the shaft rotating cylinder 117. Thus, the shaft 115 is rotated by a predetermined angle to swing the substrate holding means 80, so that the substrate W held on the substrate holding means 80 can be changed between a horizontal position and an inclined position inclined by a predetermined angle from the horizontal position. I have to. The turning mechanism 121 includes a head turning servo motor 123 and a turning shaft 125 rotated by the head turning servo motor 123. The swing mechanism 111 is fixed to the upper end of the turning shaft 125. ing. The elevating mechanism 131 includes a head elevating cylinder 133 and a rod 135 that is raised and lowered by the head elevating cylinder 133, and the turning mechanism 121 is fixed to a stay 137 attached to the tip of the rod 135.
[0048]
Next, the overall operation of the substrate processing apparatus 1 will be described. The state shown in FIG. 1 shows a state where the cover 40 is turned to open the opening 11 of the processing tank 10 and the substrate holding means 80 is raised. That is, the cover 40 has moved to the retracted position located on the side of the processing tank 10. The swiveling operation of the cover 40 uses the space between the substrate holding means 80 and the processing tank 10 that is formed by raising the substrate holding means 80. At this time, the processing liquid circulation means 150 is driven, and the plating liquid Q is circulated between the processing tank 10 and the supply tank 151 while being maintained at a predetermined temperature. In this state, the unprocessed substrate W is first sucked to the suction head 89 by the method shown in FIGS. Next, the entire substrate holding means 80 is swung by the swinging mechanism 111 so that the substrate W is inclined at a predetermined angle from the horizontal position, and the lifting mechanism 131 (see FIG. 6) is driven in this state to move the substrate holding means 80 to the position shown in FIG. 7 is lowered to the position shown in FIG. After dipping the substrate W, the entire substrate holding means 80 is swung to the original position by the swing mechanism 111 to bring the substrate W into a horizontal position, and in this state, electroless plating is performed. At this time, the substrate W is rotated by driving the substrate rotating motor 101 shown in FIG. In this substrate processing apparatus 1, since the substrate W is dipped into the plating solution Q while being inclined at a predetermined angle from the horizontal position, it is possible to prevent a gas such as air from entering the surface of the substrate W to be processed. That is, when the substrate W is immersed in the plating solution Q in a horizontal state, a gas such as air stays between the substrate W and the plating solution Q, and uniform plating is not achieved. Therefore, in the present substrate processing apparatus 1, when the substrate W is immersed in the plating solution Q, the substrate W is tilted to prevent the entry of gas such as air and achieve uniform plating.
[0049]
After the electroless plating (first treatment) of the surface to be processed (lower surface) of the substrate W is performed for a predetermined time as described above, the lifting mechanism 131 (see FIG. 6) is driven to set the substrate holding means 80 in FIG. Ascend to the position shown. While the substrate W is being lifted, cleaning liquid (pure water) is sprayed from the rinsing nozzle 23 provided in the processing bath 10 toward the processing surface of the rising substrate W in one shot. If the electroless plating process is completed and the cooling is not performed immediately, the electroless plating proceeds with the plating solution Q remaining on the substrate W, so that the cleaning liquid is sprayed onto the surface to be processed of the substrate W in one shot and cooled. This prevents the progress of electroless plating.
[0050]
Next, by driving the drive mechanism 70, the cover 40 is turned to close the opening 11 of the processing tank 10 with the cover 40 as shown in FIG. That is, the cover 40 is located at the upper part of the processing tank 10 and moves to a closed position that closes the opening 11 of the processing tank 10. Next, the cleaning liquid (pure water) is sprayed from the nozzles 63 of the spray nozzle 60 fixed on the upper surface of the cover 40 toward the upper side, and is contacted with the surface to be processed of the substrate W for cleaning. At this time, since the opening 11 of the processing tank 10 is covered with the cover 40, the cleaning liquid does not enter the processing tank 10, the plating liquid Q inside the processing tank 10 is not diluted, and the plating liquid Q is not diluted. Can be recycled. In particular, in this embodiment, as shown in FIG. 2, the outer wall (outer diameter L1) at the upper end of the opening 11 is positioned inside the inner wall (inner diameter L2) of the cover 40 that covers the outer wall (L1 <L2). Therefore, the cleaning liquid that falls along the outer periphery of the cover 40 always falls to the outer wall side at the upper end of the opening 11 and does not enter the opening 11. The cleaning liquid after cleaning the substrate W is drained from a drain port (not shown). The substrate W that has been cleaned as described above is taken out from the substrate holding means 80 as described above, the next unprocessed substrate W is mounted on the substrate holding means 80, and the plating and cleaning steps are performed again. It will be done.
[0051]
By the way, as shown in FIG. 2, the cover 40 according to the above embodiment has a shape in which the flat upper surface portion 41 to which the spray nozzle 60 is attached and the cylindrical side surface portion 43 are connected by a tapered inclined surface 42. In addition, as described above, the corners (each side and each vertex) of the mounting block 61 of the spray nozzle 60 are rounded so that the liquid sprayed by the spray nozzle 60 does not remain on the cover 40. The liquid on the cover 40 is prevented from falling into the opening portion 11 when the cover 40 closing the opening portion 11 turns. 9 to 14 show various examples that are further devised so that the liquid on the cover 40 does not fall into the opening 11 when the cover 40 that covers the opening 11 turns.
[0052]
That is, in the case of the cover 40-2 shown in FIG. 9, the semi-arc-shaped bank 50 is provided in the position surrounding the spray nozzle 60 of the upper surface part 41 of the cover 40-2. The bank 50 has a height of several millimeters and is provided at a portion that lifts upward when the cover 40-2 is turned (a portion that is about half of the center position of the cover 40-2). As a result, the bank 50 prevents the liquid staying on the cover 40-2 from dropping from the cover 40-2 when the cover 40-2 is turned, and reliably drops the cover 40-2 in the inclined direction. And the danger of flowing into the treatment tank 10 can be avoided.
[0053]
In the case of the cover 40-3 shown in FIG. 10, the entire upper surface portion (nozzle mounting surface) 41 of the cover 40-3 is an inclined (gradient) surface. The inclination (gradient) is provided so as to descend with respect to the downward direction when the cover 40-3 is turned. As a result, the cleaning liquid (pure water or other liquid) that has fallen on the upper surface of the cover 40-3 during cleaning (spraying from the spray nozzle 60) flows down along this inclined (gradient) surface and accumulates on the upper surface portion 41. This can prevent the liquid accumulated on the upper surface portion 41 from flowing into the processing tank 10 when the cover 40-3 is turned.
[0054]
In the case of the cover 40-4 shown in FIG. 11, a wiper 51 driven by a driving device 53 such as a cylinder is installed on the upper surface of the cover 40-4, and the wiper 51 is horizontally placed on the upper surface of the cover 40-4 by the driving device 53. Operate to remove residual liquid on top of cover 40-4. In this example, the wiper 51 operates from the end of the cover 40-4 (the position indicated by the solid line in FIG. 11A) to the center position of the cover 40-4 (the dotted line position in FIG. 11A). The half surface 41a of the upper surface portion 41 of the cover 40-4, which is in sliding contact with the wiper 51, is a horizontal surface, and the other half surface 41b where the wiper 51 is not in sliding contact is an inclined surface. Further, the spray nozzle 60 (nozzle 63) takes measures such as embedding in the cover 40-4 so as not to disturb the operation of the wiper 51. Then, after the cleaning (or other chemical processing) by the spray nozzle 60 is completed, if the wiper 51 is operated and moved from the end of the cover 40-4 to the center position of the cover 40-4, the remaining liquid on the surface 41a. Is sent to the surface 41b and flows down on the surface 41b. According to this cover 40-4, the wiper 51 has a short stroke and saves space. On the other hand, the entire upper surface portion 41 of the cover 40-4 may be a horizontal plane, and instead, the wiper 51 may be configured to operate from one end to the other end of the cover 40-4. In this case, the stroke of the wiper 51 becomes long, but the wiper 51 acts on the entire upper surface of the cover 40-4.
[0055]
In the case of the cover 40-5 shown in FIG. 12, two vibrators 53 are attached to the cover 40-5, and the entire upper surface portion 41 of the cover 40-5 is an inclined surface. Then, after the cleaning (or other chemical treatment) by the spray nozzle 60 is completed, the vibrator 53 is operated to vibrate the cover 40-5 and forcibly drop the remaining liquid on the cover 40-5. In the case of this cover 40-5, since the entire upper surface portion 41 is an inclined surface, the dropping can be performed efficiently.
[0056]
In the case of the cover 40-6 shown in FIG. 13, the shape of the cover 40-6 is conical. As a result, the cleaning liquid (or other chemical liquid) that has fallen on the upper surface of the cover 40-6 flows down along the conical shape and falls to the outside of the processing tank 10.
[0057]
In the case of the cover 40-7 shown in FIG. 14, the cover rotation mechanism 55 is installed on the cover 40-7. The cover rotation mechanism 55 fixes the plate 551 to the arm portion 45, fixes the motor 553 to the plate 551, the pulley 555 fixed to the shaft of the motor 553, and the center of the cover 40-7 installed to cover the pulley 555. A belt 559 is wound around a pulley 557 fixed to the rotating shaft. Then, after the cleaning liquid or other chemical solution processing by the spray nozzle 60 is completed, the motor 553 is driven to rotate the cover 40-7, and the liquid remaining on the upper surface is forcibly discharged by centrifugal force. Needless to say, various modifications can be made to the structure of the cover rotation mechanism 55. In short, any structure may be used as long as the cover 40-7 can be rotationally driven.
[0058]
In the embodiment described above, the plating solution Q is stored in the treatment tank 10 and the electroless plating process is performed. However, by configuring the anode in the treatment tank 10 and connecting the cathode electrode to the substrate W, The surface to be processed of the substrate W can be electroplated. Further, the substrate processing apparatus 1 is not used as a plating apparatus, but can be used as a substrate processing apparatus for performing other chemical processing (for example, pre-processing and post-processing of plating). Further, the processing of the substrate W performed by the spray nozzle (processing liquid ejecting means, second processing means) 60 is not limited to the cleaning processing step using the cleaning liquid, and may be other various chemical processing.
[0059]
[Substrate Processing Mechanism Using the Substrate Processing Apparatus 1]
FIG. 16 is a plan layout view of a substrate processing mechanism (lid plating apparatus) including the substrate processing apparatus 1 according to the embodiment. As shown in the figure, the substrate processing mechanism includes a load unit 400a and an unload unit 400b that store a substrate cassette that stores a substrate W, and three transfer units (transfer robots) 401 and 403 that transfer the substrate W. , 405, two reversing machines 407, 409, one temporary placing table 410, two drying units 411, 413, two washing units 415, 417, and a chemical (for example, dilute sulfuric acid) One substrate pretreatment device 419 used, two substrate pretreatment devices 421 and 423 using a chemical solution (for example, palladium acetate), and two substrates using a chemical solution (for example, citrate) A pretreatment device 425, 427 and two electroless plating devices 429, 431 are provided. And as each electroless-plating apparatus 429,431, the substrate processing apparatus 1 concerning the said embodiment is used.
[0060]
First, the transport unit 401 takes out the substrate W in the load unit 400 a and transfers it to the reversing machine 407 to reverse the substrate W, and places the reversed substrate W on the temporary placement table 410 by the transport unit 401. The substrate W placed on the temporary placement table 410 is transferred to the substrate pretreatment apparatus 419 by the transfer unit 403. In the substrate pretreatment apparatus 419, the surface to be processed S of the substrate W is treated with a chemical solution (for example, dilute sulfuric acid) and then washed with a cleaning solution.
[0061]
The substrate W that has been cleaned is transferred to the next substrate pretreatment apparatus 421 (or 423) by the transfer unit 405, and the processed surface S of the substrate W is processed with a chemical solution (for example, palladium acetate) and then cleaned with the cleaning solution. The Similarly, the substrate W that has been cleaned is transported to the next substrate pretreatment device 425 (or 427) by the transport unit 405, and the surface to be processed S of the substrate W is treated with a chemical solution (for example, citrate). Washed.
[0062]
The substrate W that has been cleaned is transferred to the electroless plating apparatus 429 (or 431) by the transport unit 405, and after the electroless plating process (lid plating process) and cleaning are performed, the transport unit 405 sends it to the reversing machine 409. It is transferred and inverted, transferred to the cleaning unit 417 (or 415) by the transport unit 403 and cleaned with a roll brush, and further transferred to the drying unit 413 (or 411) by the transport unit 403, and spin-dried after cleaning. Then, it is transferred to the unload unit 400b by the transport unit 401.
[0063]
The substrate processing apparatus 1 may be used as the substrate pretreatment apparatuses 419, 421, 423, 425, and 427.
[0064]
FIG. 17 is a diagram showing a planar configuration of another substrate processing mechanism for semiconductor substrate wiring. As shown in the figure, a substrate processing mechanism for semiconductor substrate wiring uses a carry-in unit 601 for carrying in a semiconductor substrate, and a copper plating tank for performing copper plating (damascene process) (the substrate processing apparatus 1 of the present invention. Similarly, a substrate processing apparatus 1 is used as appropriate for various plating apparatuses in the substrate processing mechanism) 602, water washing tanks 603 and 604 for performing water cleaning, a CMP unit 605 for performing chemical mechanical polishing (CMP), and a water washing tank 606. 607, a drying tank 608, and a carry-out section 609 for carrying out the semiconductor substrate on which the wiring layer has been formed, and a substrate transfer means (not shown) for transferring the semiconductor substrate to each of these tanks is arranged as one device, for semiconductor substrate wiring The substrate processing mechanism is configured.
[0065]
In the substrate processing mechanism having the above arrangement configuration, the substrate transfer means takes out the semiconductor substrate on which the wiring layer is not formed from the substrate cassette 601-1 placed on the carry-in unit 601 and transfers it to the copper plating tank 602. In the copper plating tank 602, a copper plating layer is formed on the surface of the semiconductor substrate W including a wiring portion including wiring grooves and wiring holes (contact holes).
[0066]
The semiconductor substrate W, on which the formation of the copper plating layer in the copper plating tank 602 has been completed, is transferred to the water washing tank 603 and the water washing tank 604 by the substrate transfer means, and is washed with water. Subsequently, the semiconductor substrate W that has been washed with water is transferred to the CMP unit 605 by the substrate transfer means, and the CMP unit 605 leaves the copper plating layer formed in the wiring groove or wiring hole from the copper plating layer. Remove the copper plating layer on the surface.
[0067]
Subsequently, the semiconductor substrate W in which the removal of the unnecessary copper plating layer on the surface of the semiconductor substrate W is completed while leaving the copper plating layer formed in the wiring portion including the wiring groove and the wiring hole from the copper plating layer as described above. The semiconductor substrate W which is sent to the washing tank 606 and the washing tank 607 by the substrate transfer means, washed with water, and further washed with water is dried in the drying tank 608, and the formation of the wiring layer is finished on the dried semiconductor substrate W. The semiconductor substrate is stored in the substrate cassette 609-1 of the carry-out unit 609.
[0068]
FIG. 18 is a diagram showing another planar arrangement configuration of the substrate processing mechanism. The substrate processing mechanism includes a barrier layer film forming unit 811, a seed layer film forming unit 812, a plating unit 813, an annealing unit 814, a first cleaning unit 815, a bevel / back surface cleaning unit 816, a lid plating unit 817, and a second cleaning unit. 818, first aligner / film thickness measuring device 841, second aligner / film thickness measuring device 842, first substrate reversing device 843, second substrate reversing device 844, temporary substrate table 845, third film thickness measuring device 846, A load / unload unit 820, a first polishing apparatus 821, a second polishing apparatus 822, a first robot 831, a second robot 832, a third robot 833, and a fourth robot 834 are arranged. The film thickness measuring instruments 841, 842 and 846 are units and have the same size as the frontage dimension of other units (units for plating, cleaning, annealing, etc.) and can be interchanged.
[0069]
In this example, the barrier layer film forming unit 811 can be an electroless Ru plating apparatus, the seed layer film forming unit 812 can be an electroless copper plating apparatus, and the plating unit 813 can be an electrolytic plating apparatus.
[0070]
FIG. 19 is a flowchart showing the flow of each process in the substrate processing mechanism. Each step in this apparatus will be described according to this flowchart. First, the semiconductor substrate taken out from the cassette 820a placed on the load / unload unit 820 by the first robot 831 is placed in the first aligner / film thickness measurement unit 841 with the surface to be plated facing up. Here, in order to determine a reference point for a position at which film thickness measurement is performed, notch alignment for film thickness measurement is performed, and then film thickness data of the semiconductor substrate before the formation of the copper film is obtained.
[0071]
Next, the semiconductor substrate is transferred to the barrier layer deposition unit 811 by the first robot 831. This barrier layer forming unit 811 is an apparatus for forming a barrier layer on a semiconductor substrate by electroless Ru plating, and is an interlayer insulating film (for example, SiO 2) of a semiconductor device. 2 Ru is deposited as a copper diffusion preventing film on the film. The semiconductor substrate dispensed through the cleaning and drying steps is transferred to the first aligner / film thickness measurement unit 841 by the first robot 831 and the thickness of the semiconductor substrate, that is, the thickness of the barrier layer is measured.
[0072]
The semiconductor substrate whose film thickness has been measured is carried into the seed layer deposition unit 812 by the second robot 832, and a seed layer is deposited on the barrier layer by electroless copper plating. The semiconductor substrate that has been dispensed through the cleaning and drying process is transferred to the second aligner / film thickness measuring instrument 842 to determine the notch position before being transferred to the plating unit 813 by the second robot 832, and is subjected to copper plating. Align the notch for use. Here, if necessary, the film thickness of the semiconductor substrate before forming the copper film may be measured again.
[0073]
The semiconductor substrate on which the notch alignment is completed is transported to the plating unit 813 by the third robot 833 and subjected to copper plating. The semiconductor substrate dispensed through the cleaning and drying processes is transferred to the bevel / back surface cleaning unit 816 by the third robot 833 in order to remove an unnecessary copper film (seed layer) at the end of the semiconductor substrate. The bevel / back surface cleaning unit 816 etches the bevel for a preset time and cleans the copper adhering to the back surface of the semiconductor substrate with a chemical solution such as hydrofluoric acid. At this time, before transporting to the bevel / back surface cleaning unit 816, the thickness of the semiconductor substrate is measured by the second aligner / film thickness measuring instrument 842 to obtain the value of the copper film thickness formed by plating. In addition, depending on the result, the bevel etching time may be arbitrarily changed for etching. Note that a region etched by bevel etching is a region where a circuit is not formed at the peripheral portion of the substrate, or a region which is not finally used as a chip even if a circuit is formed. This region includes a bevel portion.
[0074]
The semiconductor substrate discharged after the cleaning and drying process by the bevel / back surface cleaning unit 816 is transferred to the substrate reversing machine 843 by the third robot 833, reversed by the substrate reversing machine 843, and the surface to be plated is moved downward. After being directed, the fourth robot 834 is put into the annealing unit 814 to stabilize the wiring portion. Before the annealing treatment and / or after the treatment, it is carried into the second aligner / film thickness measuring unit 842, and the film thickness of the copper film formed on the semiconductor substrate is measured. Thereafter, the semiconductor substrate is carried into the first polishing apparatus 821 by the fourth robot 834, and the copper layer and seed layer of the semiconductor substrate are polished.
[0075]
At this time, desired abrasive grains and the like are used, but fixed abrasive grains can also be used in order to prevent dishing and to obtain surface flatness. After completion of the first polishing, the semiconductor substrate is transferred to the first cleaning unit 815 by the fourth robot 834 and cleaned. This cleaning is a scrub cleaning in which rolls having substantially the same length as the semiconductor substrate diameter are disposed on the front and back surfaces of the semiconductor substrate, and the semiconductor substrate and the roll are rotated while flowing pure water or deionized water. .
[0076]
After the first cleaning is completed, the semiconductor substrate is carried into the second polishing apparatus 822 by the fourth robot 834, and the barrier layer on the semiconductor substrate is polished. At this time, desired abrasive grains and the like are used, but fixed abrasive grains can also be used in order to prevent dishing and to obtain surface flatness. After completion of the second polishing, the semiconductor substrate is transferred again to the first cleaning unit 815 by the fourth robot 834 and scrubbed. After completion of the cleaning, the semiconductor substrate is conveyed to the second substrate reversing machine 844 by the fourth robot 834 and reversed, and the surface to be plated is directed upward, and further placed on the temporary substrate placement table 845 by the third robot 833.
[0077]
The semiconductor substrate is transported from the temporary substrate stand 845 to the lid plating unit 817 by the second robot 832, and nickel / boron plating is performed on the copper surface for the purpose of preventing oxidation of copper by the atmosphere. The semiconductor substrate that has been subjected to lid plating is carried into the third film thickness measuring instrument 846 from the lid plating unit 817 by the second robot 832 and the copper film thickness is measured. Thereafter, the semiconductor substrate is carried into the second cleaning unit 818 by the first robot 831 and cleaned with pure water or deionized water. The semiconductor substrate that has been cleaned is returned to the cassette 820a placed on the load / unload unit 820 by the first robot 831.
[0078]
The aligner / film thickness measuring device 841 and the aligner / film thickness measuring device 842 position the substrate notch and measure the film thickness.
[0079]
The bevel / back surface cleaning unit 816 can simultaneously perform edge (bevel) copper etching and back surface cleaning, and can suppress the growth of a natural oxide film of copper in the circuit forming portion on the substrate surface. FIG. 20 shows a schematic diagram of the bevel / back surface cleaning unit 816. As shown in FIG. 20, the bevel / back surface cleaning unit 816 is positioned inside a bottomed cylindrical waterproof cover 920 and spin-chucked at a plurality of locations along the circumferential direction of the peripheral portion of the substrate W face up. A substrate holding unit 922 that is horizontally held by 921 and rotates at high speed, a center nozzle 924 disposed substantially above the center of the surface side of the substrate W held by the substrate holding unit 922, and a peripheral portion of the substrate W An edge nozzle 926 disposed above. The center nozzle 924 and the edge nozzle 926 are disposed downward. In addition, a back nozzle 928 is disposed upward and positioned substantially below the center of the back side of the substrate W. The edge nozzle 926 is configured to be movable in the diameter direction and the height direction of the substrate W.
[0080]
The movement width L of the edge nozzle 926 can be arbitrarily positioned from the outer peripheral end surface of the substrate toward the center, and a set value is input in accordance with the size of the substrate W, the purpose of use, and the like. Usually, the edge cut width C is set in the range of 2 mm to 5 mm, and the copper film within the set cut width C is removed if the amount of liquid flowing from the back surface to the front surface is not a problem. be able to.
[0081]
Next, a cleaning method using this cleaning apparatus will be described. First, the semiconductor substrate W is horizontally rotated integrally with the substrate holding unit 922 while the substrate is held horizontally by the substrate holding unit 922 via the spin chuck 921. In this state, an acid solution is supplied from the center nozzle 924 to the central portion on the surface side of the substrate W. The acid solution may be any non-oxidizing acid such as hydrofluoric acid, hydrochloric acid, sulfuric acid, citric acid, or succinic acid. On the other hand, the oxidant solution is continuously or intermittently supplied from the edge nozzle 926 to the peripheral edge of the substrate W. As the oxidant solution, ozone water, hydrogen peroxide water, nitric acid water, sodium hypochlorite water, or the like is used, or a combination thereof is used.
[0082]
Thereby, in the region of the edge cut width C at the peripheral edge of the semiconductor substrate W, the copper film or the like formed on the upper surface and the end surface is rapidly oxidized with the oxidant solution, and simultaneously supplied from the center nozzle 924 to the entire surface of the substrate. It is etched away by an acid solution that spreads out. In this way, by mixing the acid solution and the oxidant solution at the peripheral edge of the substrate, a steeper etching profile can be obtained as compared to supplying the mixed water from the nozzle in advance. At this time, the etching rate of copper is determined by their concentration. Further, when a copper natural oxide film is formed on the circuit forming portion on the surface of the substrate, the natural oxide is immediately removed by an acid solution spreading over the entire surface of the substrate as the substrate rotates, and grows. There is nothing. Note that after the supply of the acid solution from the center nozzle 924 is stopped, the supply of the oxidant solution from the edge nozzle 926 is stopped to oxidize silicon exposed on the surface and suppress the adhesion of copper. be able to.
[0083]
On the other hand, the oxidizing agent solution and the silicon oxide film etching agent are supplied simultaneously or alternately from the back nozzle 928 to the center of the back surface of the substrate. As a result, copper or the like adhering to the back surface side of the semiconductor substrate W can be removed by oxidizing the silicon on the substrate together with the oxidant solution and etching with the silicon oxide film etchant. It is preferable to use the same oxidant solution as the oxidant solution supplied to the surface in order to reduce the types of chemicals. Also, hydrofluoric acid can be used as the silicon oxide film etchant, and the number of chemicals can be reduced if hydrofluoric acid is used for the acid solution on the surface side of the substrate. As a result, a hydrophobic surface is obtained if the oxidant supply is stopped first, and a saturated surface (hydrophilic surface) is obtained if the etchant solution is stopped first, and the back surface is adjusted according to the requirements of the subsequent process. You can also
[0084]
After supplying the acid solution, that is, the etching solution to the substrate in this way to remove the metal ions remaining on the surface of the substrate W, the pure water is further supplied to perform pure water replacement, and then the etching solution is removed. Spin drying. In this way, the removal of the copper film within the edge cut width C at the peripheral edge portion of the semiconductor substrate surface and the removal of copper contamination on the back surface are simultaneously performed, and this process can be completed within 80 seconds, for example. The edge cut width of the edge can be arbitrarily set (2 mm to 5 mm), but the time required for etching does not depend on the cut width.
[0085]
Performing the annealing process before the CMP process after plating has a good effect on the subsequent CMP process and the electrical characteristics of the wiring. Observing the surface of a wide wiring (unit of several μm) after CMP treatment without annealing showed many defects such as microvoids, which increased the electrical resistance of the entire wiring. The increase in was improved. In the case of no annealing, voids were not seen in the thin wiring, which may be related to the degree of grain growth. In other words, grain growth is unlikely to occur with thin wiring, but with wide wiring, the grain growth is accompanied by grain growth and the ultrafine fineness that cannot be seen with a scanning electron microscope (SEM) in the plating film during the process of grain growth. It can be inferred that a recess for a microvoid has occurred in the upper part of the wiring by moving upward while the pores gather. As the annealing conditions of the annealing unit, hydrogen was added (2% or less) in the gas atmosphere, and the temperature was about 300 to 400 ° C., and the above effect was obtained in 1 to 5 minutes.
[0086]
21 and 22 show the annealing unit 814. FIG. This annealing unit 814 is located inside a chamber 1002 having a gate 1000 for taking in and out the semiconductor substrate W, a hot plate 1004 for heating the semiconductor substrate W to 400 ° C., for example, and a semiconductor substrate W by flowing cooling water, for example. The cool plate 1006 for cooling is arranged vertically. In addition, a plurality of elevating pins 1008 that pass through the inside of the cool plate 1006 and extend in the vertical direction and place and hold the semiconductor substrate W on the upper end are arranged to be movable up and down. Further, a gas introduction pipe 1010 for introducing an antioxidation gas between the semiconductor substrate W and the hot plate 1008 at the time of annealing, and the gas introduction pipe 1010 introduces and flows between the semiconductor substrate W and the hot plate 1004. Gas exhaust pipes 1012 for exhausting the exhausted gas are arranged at positions facing each other across the hot plate 1004.
[0087]
The gas introduction pipe 1010 has an N filter 1014a inside. 2 N flowing in the gas introduction path 1016 2 Gas and H with filter 1014b inside 2 H flowing in the gas introduction path 1018 2 The gas is mixed in a mixer 1020 and connected to a mixed gas introduction path 1022 through which the gas mixed in the mixer 1020 flows.
[0088]
Thus, the semiconductor substrate W carried into the chamber 1002 through the gate 1000 is held by the lift pins 1008, and the distance between the semiconductor substrate W holding the lift pins 1008 by the lift pins 1008 and the hot plate 1004 is, for example, 0. The height is raised to about 1 to 1.0 mm. In this state, the semiconductor substrate W is heated through the hot plate 1004 to 400 ° C., for example, and at the same time, an antioxidation gas is introduced from the gas introduction pipe 1010 so that the gap between the semiconductor substrate W and the hot plate 1004 is increased. To exhaust from the gas exhaust pipe 1012. As a result, the semiconductor substrate W is annealed while preventing oxidation, and this annealing is continued, for example, for several tens of seconds to 60 seconds, thereby terminating the annealing. The heating temperature of the substrate is selected from 100 to 600 ° C.
[0089]
After the annealing, the elevating pins 1008 are lowered until the distance between the semiconductor substrate W holding the elevating pins 1008 and the cool plate 1006 becomes, for example, about 0 to 0.5 mm. In this state, by introducing cooling water into the cool plate 1006, the semiconductor substrate is cooled, for example, for about 10 to 60 seconds until the temperature of the semiconductor substrate W becomes 100 ° C. or lower. To the next process.
[0090]
In this example, N is used as an antioxidant gas. 2 Gas and several percent H 2 The gas mixture is made to flow, but N 2 You may make it flow only gas.
[0091]
[Other substrate processing apparatus 1-2]
FIG. 23 is a schematic sectional side view of a substrate processing apparatus 1-2 according to another embodiment of the present invention, showing the same state as that shown in FIG. In this substrate processing apparatus 1-2, the same or corresponding parts as those in the substrate processing apparatus 1 are denoted by the same reference numerals, and detailed description thereof is omitted. The difference between the substrate processing apparatus 1-2 and the substrate processing apparatus 1 is the structure inside the processing tank 10. That is, in the substrate processing apparatus 1-2, instead of storing the plating solution, a spray nozzle (treatment solution injection means) 30 for spraying the plating solution (electroless plating solution) is installed inside the vessel-shaped treatment tank body 13. doing. A plating solution in the supply tank 151 is supplied to the spray nozzle 30 by a pump P. Then, the plating solution sprayed from the spray nozzle 30 is brought into contact with the surface to be processed of the substrate W which is lowered and inserted into the processing tank body 13 to perform the plating process. The plating solution after coming into contact with the surface to be processed of the substrate W falls to the bottom of the processing tank body 13, is returned to the supply tank 151 by the pipe 31, and is supplied to the spray nozzle 30 by the pump P and circulated again. Even if comprised in this way, the to-be-plated surface of the board | substrate W can be electroless-plated.
[0092]
In addition, in the inside of one processing tank 10 by installing the spray nozzle 30 installed in this substrate processing apparatus 1-2 in the inside of the processing tank main body 13 which accumulates the plating solution Q of the substrate processing apparatus 1 shown in FIG. In addition, both the dipping process of the substrate W to the plating solution and the plating solution spraying process to the substrate W by the spray nozzle 30 may be configured. If comprised in this way, two types of processing methods will become possible in one processing tank 10. FIG.
[0093]
Similar to the substrate processing apparatus 1, the substrate processing apparatus 1-2 is not used as a plating apparatus, but is used as a substrate processing apparatus for performing other chemical processing (for example, pre-processing and post-processing of plating). In addition, the processing of the substrate W performed by the spray nozzle 60 is not limited to the cleaning processing step by the cleaning liquid, and may be other various chemical processing.
[0094]
FIG. 24 is a diagram showing another treatment tank 10-2 and a cover 40. The processing tank 10-2 is different from the processing tank 10 of the substrate processing apparatus 1 in FIG. 1 in that the processing tank 10-2 applies a gas such as an inert gas (for example, nitrogen gas) to the cover portion 17 of the processing tank 10-2. It is the point which provided the gas ejection means 18 to be ejected inside the processing tank 10-2. The gas ejection means 18 includes a passage 18a that penetrates the cover portion 17 of the processing tank 10-2 and communicates the inside and outside of the processing tank 10-2, and a joint 18b attached to the tip thereof. In a state where the opening 11 is closed with the cover 40, a gas such as an inert gas is ejected from the gas ejection means 18 into the treatment tank 10-2, and a gas such as an inert gas is contained in the treatment tank 10-2. The atmosphere inside the processing tank 10-2 can be replaced. This prevents the plating solution Q from coming into contact with oxygen, prevents the plating solution Q from deteriorating in function, and allows the substrate W to always be in contact with the normal plating solution Q. Needless to say, various changes can be made to the structure of the gas jetting means 18, and the gas jetting means 18 is not limited to the cover portion 17, and may be provided in other parts such as the cover 40. Good.
[0095]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited.
[0096]
(1) For example, in the above embodiment, the cover 40 is swung by the drive mechanism 70. However, the cover 40 may be any structure as long as it can move to two positions, the position where the opening 11 of the processing tank 10 is closed and the other position. For example, a structure that performs parallel movement other than turning may be used.
[0097]
(2) In the above embodiment, the spray nozzle 60 attached to the upper surface of the cover 40 is used as the second processing means. However, the spray nozzle 60 is located at a location other than the upper surface of the cover 40 (for example, an exterior cover surrounding the substrate processing apparatus 1). ) May be installed. Of course, if the spray nozzle 60 is attached to the cover 40, it goes without saying that it is suitable for downsizing the substrate processing apparatus 1.
[0098]
【The invention's effect】
As described above in detail, according to the present invention, even when substrate processing is performed with a plurality of processing liquids in one apparatus, mixing of processing liquids can be reliably avoided, and at the same time, the apparatus installation area can be reduced. And the device cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a view showing a substrate processing apparatus 1 using the present invention in an electroless plating apparatus, FIG. 1 (a) is a side view, and FIG. 1 (b) is a schematic side sectional view.
FIG. 2 is an enlarged cross-sectional view of a main part showing a dimensional relationship between the cover 40 and the outer peripheral portion of the processing tank 10 when the cover 40 is moved to the upper part of the processing tank 10;
3A is a schematic cross-sectional view of a substrate holding means 80, and FIG. 3B is an enlarged view of a portion B in FIG. 3A.
4A is a schematic sectional view of a substrate holding means 80, and FIG. 4B is an enlarged view of a portion B in FIG. 4A.
5A is a schematic cross-sectional view of the substrate holding means 80, and FIG. 5B is an enlarged view of part B of FIG. 5A.
6 is a schematic side view of an internal structure of a substrate holding unit driving mechanism 110. FIG.
FIGS. 7A and 7B are explanatory views of the operation of the substrate processing apparatus 1. FIGS.
FIGS. 8A and 8B are explanatory diagrams of the operation of the substrate processing apparatus 1. FIGS.
FIGS. 9A and 9B are views showing the processing tank 10 to which a cover 40-2 is attached, in which FIG. 9A is a plan view and FIG. 9B is a side view.
10A and 10B are views showing the processing tank 10 to which a cover 40-3 is attached, in which FIG. 10A is a plan view and FIG. 10B is a side view.
11A and 11B are views showing the processing tank 10 to which a cover 40-4 is attached. FIG. 11A is a plan view and FIG. 11B is a side view.
FIGS. 12A and 12B are views showing the processing tank 10 to which a cover 40-5 is attached, in which FIG. 12A is a plan view and FIG. 12B is a side view.
FIGS. 13A and 13B are views showing the processing tank 10 to which a cover 40-6 is attached, in which FIG. 13A is a plan view and FIG. 13B is a side view.
14A and 14B are views showing the processing tank 10 to which a cover 40-7 is attached. FIG. 14A is a plan view, FIG. 14B is a partially cutaway side view, and FIG. FIG. 14 (d) is a schematic cross-sectional view of only the cover 40-7 when FIG. 14 (b) is viewed from the right side surface.
15 is an enlarged cross-sectional view of a main part of a semiconductor substrate W. FIG.
FIG. 16 is a plan layout view of a substrate processing mechanism including the substrate processing apparatus 1;
FIG. 17 is a plan view showing another example of the substrate processing mechanism.
FIG. 18 is a plan layout view showing still another example of the substrate processing mechanism.
FIG. 19 is a flowchart showing the flow of each process in the substrate processing mechanism shown in FIG. 18;
FIG. 20 is a schematic view showing a bevel / back surface cleaning unit.
FIG. 21 is a longitudinal front view showing an example of an annealing unit.
22 is a plan sectional view of FIG. 21. FIG.
FIG. 23 is a schematic cross-sectional side view of a substrate processing apparatus 1-2 according to another embodiment of the present invention.
FIG. 24 is a diagram showing a processing tank 10-2 and a cover 40 according to another embodiment of the present invention.
[Explanation of symbols]
1 Substrate processing equipment
Q plating solution (treatment solution)
W substrate
L Flow of plating solution
10 treatment tank (first treatment means)
11 opening
13 Processing tank body
15 peripheral groove
17 Cover
18 Gas ejection means
19 Inclined part
21 Plating solution supply port
23 Rinsing nozzle
40 cover
41 Upper surface (nozzle mounting surface)
45 Arm
60 Spray nozzle (treatment liquid injection means, second treatment means)
61 Mounting block
63 nozzles
70 Drive mechanism
71 Cylinder for cover rotation
80 Substrate holding means
81 Substrate holder
83 Substrate holder
85 Temporary placement
87 Substrate insertion slot
89 Suction head
91 Base
93 Vacuum and gas supply line
95 Substrate suction part
97 Hole for adsorption and separation
100 Substrate holder drive unit
110 Substrate holding means driving mechanism (substrate lifting means)
111 Swing mechanism
121 Turning mechanism
131 Lifting mechanism
150 Treatment liquid circulation means
151 Supply tank
153 heater
40-2 Cover
50 Bank
40-3 Cover
40-4 Cover
51 Wiper
53 Drive equipment
40-5 Cover
53 Vibrator
40-6 Cover
40-7 Cover
55 Cover rotation mechanism
1-2 Substrate processing equipment
30 Spray nozzle (treatment liquid injection means)

Claims (31)

処理槽内部に基板保持手段に保持した基板を挿入した状態で基板の被処理面に処理液による接液処理を行う第一処理手段と、
基板保持手段に保持した基板を上下動させる基板昇降手段と、
処理槽の開口部を開閉するカバーと、
前記処理槽の開口部を塞いだカバーの上部で前記基板保持手段に保持した基板の被処理面に処理液による接液処理を行う第二処理手段とを具備することを特徴とする基板処理装置。
A first processing means for performing a liquid contact treatment with a processing liquid on a surface to be processed of the substrate in a state where the substrate held by the substrate holding means is inserted inside the processing tank;
Substrate lifting and lowering means for vertically moving the substrate held by the substrate holding means;
A cover for opening and closing the opening of the treatment tank;
A substrate processing apparatus comprising: a second processing unit that performs a liquid contact process with a processing liquid on a surface to be processed of a substrate held by the substrate holding unit at an upper part of a cover that covers an opening of the processing tank. .
前記第一処理手段は、処理槽内部に処理液を溜め、この処理液に基板の被処理面をディップして接液させる構造であることを特徴とする請求項1記載の基板処理装置。The substrate processing apparatus according to claim 1, wherein the first processing means has a structure in which a processing liquid is stored in a processing tank, and a surface to be processed of the substrate is dipped into the processing liquid to be in contact with the processing liquid. 前記処理槽内部に気体を噴出し封じ込める手段を具備したことを特徴とする請求項2に記載の基板処理装置。The substrate processing apparatus according to claim 2, further comprising means for ejecting and containing gas inside the processing tank. 前記第一処理手段は、処理槽内部に設置した処理液噴射手段から噴射される処理液を基板の被処理面に接液させる構造であることを特徴とする請求項1記載の基板処理装置。The substrate processing apparatus according to claim 1, wherein the first processing unit has a structure in which a processing liquid sprayed from a processing liquid spraying unit installed in a processing tank is in contact with a surface to be processed of the substrate. 前記処理槽には、処理槽内部に供給した処理液を回収して再び処理槽内部に供給する処理液循環手段を設置したことを特徴とする請求項1又は2又は3又は4記載の基板処理装置。5. The substrate processing according to claim 1, 2, 3, or 4, wherein the processing tank is provided with a processing liquid circulation means for collecting the processing liquid supplied to the inside of the processing tank and supplying the processing liquid to the inside of the processing tank again. apparatus. 前記基板保持手段は、基板の裏面を吸着して保持することで基板の被処理面全域を接液させる構造であることを特徴とする請求項1又は2又は3又は4又は5記載の基板処理装置。The substrate processing according to claim 1, 2, 3, 4, or 5, wherein the substrate holding means has a structure in which the entire surface to be processed of the substrate comes into contact with the substrate by adsorbing and holding the back surface of the substrate. apparatus. 前記基板保持手段は、基板の裏面をリング状に真空吸着するとともに基板の裏面の真空吸着した部分の内側への処理液の進入を防止するシール機構を持つリング状の基板吸着部を具備することを特徴とする請求項6に記載の基板処理装置。The substrate holding means includes a ring-shaped substrate suction portion having a seal mechanism that vacuum-sucks the back surface of the substrate in a ring shape and prevents the processing liquid from entering the inside of the vacuum-sucked portion of the back surface of the substrate. The substrate processing apparatus according to claim 6. 前記基板吸着部はゴム材料からなることを特徴とする請求項7に記載の基板処理装置。The substrate processing apparatus according to claim 7, wherein the substrate adsorption unit is made of a rubber material. 前記基板吸着部の基板に接触する部分には、基板吸着用の真空力を発生させる基板吸着溝を設けたことを特徴とする請求項7又は請求項8に記載の基板処理装置。9. The substrate processing apparatus according to claim 7, wherein a substrate suction groove that generates a vacuum force for substrate suction is provided in a portion of the substrate suction portion that contacts the substrate. 前記基板吸着部は、前記基板裏面の外周部のみを吸着することを特徴とする請求項7又は請求項8又は請求項9に記載の基板処理装置。The substrate processing apparatus according to claim 7, wherein the substrate adsorbing unit adsorbs only an outer peripheral portion of the back surface of the substrate. 前記基板吸着部が、前記基板の裏面に接触するのは前記基板の外周からその内側5mmまでの間の部分であることを特徴とする請求項7又は請求項8又は請求項9又は請求項10に記載の基板処理装置。The said board | substrate adsorption | suction part contacts the back surface of the said board | substrate from the outer periphery of the said board | substrate to the inner 5mm, The Claim 7, 8 or 9 or 10 characterized by the above-mentioned. 2. The substrate processing apparatus according to 1. 前記基板保持手段は、基板の裏面のみを吸着して保持することで、基板の被処理面上に接液する処理液に均一な流れを形成させ、基板のエッジ部を含む被処理面全域を均一に接液させる構造であることを特徴とする請求項1乃至11の内の何れか一項記載の基板処理装置。The substrate holding means adsorbs and holds only the back surface of the substrate to form a uniform flow in the processing liquid in contact with the processing surface of the substrate, and covers the entire processing surface including the edge portion of the substrate. 12. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus has a structure in which the liquid is uniformly contacted. 前記基板保持手段は、保持した基板を水平位置から所定角度傾斜させた状態で処理槽内部の処理液に浸す揺動機構を有していることを特徴とする請求項2又は3記載の基板処理装置。4. The substrate processing according to claim 2, wherein the substrate holding means has a swinging mechanism that immerses the held substrate in a processing liquid inside the processing tank in a state where the held substrate is inclined at a predetermined angle from a horizontal position. apparatus. 前記カバーを処理槽の側部に位置する待避位置と、処理槽の上部に位置して処理槽の開口部を塞ぐ閉止位置の二つの位置に移動する駆動機構を設置したことを特徴とする請求項1乃至13の内の何れか一項記載の基板処理装置。The drive mechanism is installed to move the cover to two positions: a retracted position located on the side of the treatment tank and a closed position located above the treatment tank to close the opening of the treatment tank. Item 14. The substrate processing apparatus according to any one of Items 1 to 13. 前記カバー上面には、このカバーが処理槽の開口部を塞いだ状態で基板の被処理面に処理液を接液させる処理液噴射手段を設けたことを特徴とする請求項1乃至14の内の何れか一項項記載の基板処理装置。The processing liquid ejecting means for bringing the processing liquid into contact with the processing surface of the substrate in a state where the cover closes the opening of the processing tank is provided on the upper surface of the cover. The substrate processing apparatus as described in any one of Claims 1-3. 前記カバー上面には、このカバーが処理槽の開口部を塞いだ状態から開く際にカバー上面に溜まった処理液が処理槽内に落ちるのを防止する土手を設けたことを特徴とする請求項1乃至15の内の何れか一項記載の基板処理装置。The bank is provided on the upper surface of the cover to prevent the processing liquid accumulated on the upper surface of the cover from falling into the processing tank when the cover is opened from a state in which the opening of the processing tank is closed. The substrate processing apparatus according to any one of 1 to 15. 前記カバー上面の形状を、このカバーが処理槽の開口部を塞いだ状態でカバー上面に付着した処理液が流れ落ちる傾斜面形状或いは円錐形状に形成したことを特徴とする請求項1乃至15の内の何れか一項記載の基板処理装置。The shape of the upper surface of the cover is formed in an inclined surface shape or a conical shape in which the processing liquid attached to the upper surface of the cover flows in a state where the cover closes the opening of the processing tank. The substrate processing apparatus according to any one of the above. 前記カバー上面に残留する処理液を除去するワイパー又はバイブレータ又はカバー回転機構を設置したことを特徴とする請求項1乃至15の内の何れか一項記載の基板処理装置。16. The substrate processing apparatus according to claim 1, further comprising a wiper, a vibrator, or a cover rotating mechanism that removes the processing liquid remaining on the upper surface of the cover. 前記処理槽上部に上方向に向かって外径を小さくする傾斜部を設けることで、前記処理槽の開口部上端の外壁をその上を覆うカバーの内壁よりも内側に位置させたことを特徴とする請求項1乃至18の内の何れか一項記載の基板処理装置。It is characterized in that the outer wall of the upper end of the opening of the processing tank is positioned on the inner side of the inner wall of the cover that covers the upper edge of the processing tank by providing an inclined portion that reduces the outer diameter upward in the upper part of the processing tank. 19. The substrate processing apparatus according to any one of claims 1 to 18. 上下動可能な基板保持手段に基板を保持する工程と、
処理槽内で基板を処理する工程と、
基板保持手段を処理槽上方へ移動し、処理槽開口部をカバーで塞ぐ工程と、
処理槽開口部を塞いだカバーの上部で基板を接液処理する工程とを具備することを特徴とする基板処理方法。
Holding the substrate on a vertically movable substrate holding means;
A step of processing the substrate in the processing tank;
Moving the substrate holding means upward of the processing tank and closing the processing tank opening with a cover;
And a step of subjecting the substrate to a liquid contact process on an upper portion of a cover that covers the processing tank opening.
処理槽内部に基板保持手段に保持した基板を挿入した状態で基板の被処理面に処理液による接液処理を行う工程と、
前記処理槽の上部に基板保持手段に保持した基板を上昇させた状態で処理槽の開口部をカバーで塞ぐ工程と、
前記処理槽の開口部を塞いだカバーの上部で前記基板保持手段に保持した基板の被処理面に処理液による接液処理を行う工程とを具備することを特徴とする基板処理方法。
Performing a liquid contact treatment with a treatment liquid on a surface to be treated of the substrate in a state where the substrate held by the substrate holding means is inserted into the treatment tank;
A step of closing the opening of the processing tank with a cover in a state where the substrate held by the substrate holding means is raised above the processing tank;
And a step of performing a liquid contact treatment with a treatment liquid on a surface to be treated of the substrate held by the substrate holding means on an upper portion of a cover that covers an opening of the treatment tank.
前記処理槽内部での基板の被処理面への処理液による接液処理は、処理槽内部に処理液を溜め、この処理液に基板の被処理面をディップして行う接液処理であることを特徴とする請求項21記載の基板処理方法。The liquid contact processing with the processing liquid on the surface to be processed of the substrate inside the processing tank is a liquid contact processing performed by storing the processing liquid inside the processing tank and dipping the processing surface of the substrate into the processing liquid. The substrate processing method according to claim 21. 前記処理槽の開口部をカバーで塞いだ時に処理槽内部を不活性ガスで充填することにより、処理槽内の処理液を保護することを特徴とする請求項22に記載の基板処理方法。The substrate processing method according to claim 22, wherein the processing liquid in the processing tank is protected by filling the inside of the processing tank with an inert gas when the opening of the processing tank is closed with a cover. 前記処理槽内部での基板の被処理面への処理液による接液処理は、処理槽内部に設置した処理液噴射手段から噴射された処理液を基板の被処理面に接液させる接液処理であることを特徴とする請求項21記載の基板処理方法。The liquid contact process with the processing liquid on the surface to be processed of the substrate inside the processing tank is a liquid contact process in which the processing liquid sprayed from the processing liquid spraying means installed inside the processing tank is in contact with the surface to be processed of the substrate. The substrate processing method according to claim 21, wherein: 前記処理槽内部に供給した処理液を回収して再び処理槽内部に循環することを特徴とする請求項21又は22又は23又は24記載の基板処理方法。The substrate processing method according to claim 21, 22, 23, or 24, wherein the processing liquid supplied to the inside of the processing tank is collected and circulated again inside the processing tank. 前記基板保持手段は基板の裏面を吸着して保持することを特徴とする請求項21又は22又は23又は24又は25記載の基板処理方法。26. The substrate processing method according to claim 21, wherein the substrate holding means sucks and holds the back surface of the substrate. 前記基板保持手段は、基板の裏面のみを吸着して保持することで、基板の被処理面上に接液する処理液の均一な流れを形成し、基板のエッジ部を含む被処理面全域に均一な接液処理を行うことを特徴とする請求項21又は22又は23又は24又は25又は26記載の基板処理方法。The substrate holding means adsorbs and holds only the back surface of the substrate, thereby forming a uniform flow of the processing liquid in contact with the surface to be processed of the substrate, over the entire surface to be processed including the edge portion of the substrate. 27. The substrate processing method according to claim 21, 22 or 23 or 24 or 25 or 26, wherein uniform liquid contact processing is performed. 前記処理液の均一な流れが、基板の被処理面上に巻き込まれた気泡あるいは接液処理により発生した気泡を、被処理面上から排出させることを特徴とする請求項27記載の基板処理方法。28. The substrate processing method according to claim 27, wherein the uniform flow of the processing liquid causes bubbles entrained on the surface to be processed of the substrate or bubbles generated by the liquid contact processing to be discharged from the surface to be processed. . 前記基板のディップ処理は、前記基板を斜めに傾斜させた状態で処理槽内部の処理液に浸して行うことを特徴とする請求項22又は23記載の基板処理方法。24. The substrate processing method according to claim 22 or 23, wherein the dip processing of the substrate is performed by immersing the substrate in a processing liquid inside a processing tank in a state where the substrate is inclined obliquely. 前記カバーによる処理槽の開口部の開閉は、前記カバーを処理槽の側部に位置する待避位置と、処理槽の上部に位置して処理槽の開口部を塞ぐ閉止位置の二つの位置にカバーを移動することで行うことを特徴とする請求項21乃至29の内の何れか一項記載の基板処理方法。The opening and closing of the opening of the processing tank by the cover covers the cover in two positions: a retracted position where the cover is located on the side of the processing tank and a closed position where the cover is positioned above the processing tank and closes the opening of the processing tank. The substrate processing method according to claim 21, wherein the substrate processing method is performed by moving the substrate. 前記カバーの上部での基板の被処理面への処理液による接液処理は、前記カバー上面に取り付けた処理液噴射手段から基板に向けて処理液を噴射して接液することで行うことを特徴とする請求項21乃至30の内の何れか一項記載の基板処理方法。The liquid contact processing with the processing liquid on the surface to be processed of the substrate at the upper part of the cover is performed by spraying the processing liquid toward the substrate from the processing liquid spraying means attached to the upper surface of the cover. The substrate processing method according to any one of claims 21 to 30, wherein the substrate processing method is any one of claims 21 to 30.
JP2002373859A 2002-06-06 2002-12-25 Substrate processing apparatus and substrate processing method Expired - Fee Related JP4060700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373859A JP4060700B2 (en) 2002-06-06 2002-12-25 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002165213 2002-06-06
JP2002332697 2002-11-15
JP2002373859A JP4060700B2 (en) 2002-06-06 2002-12-25 Substrate processing apparatus and substrate processing method

Publications (2)

Publication Number Publication Date
JP2004214222A true JP2004214222A (en) 2004-07-29
JP4060700B2 JP4060700B2 (en) 2008-03-12

Family

ID=32830540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373859A Expired - Fee Related JP4060700B2 (en) 2002-06-06 2002-12-25 Substrate processing apparatus and substrate processing method

Country Status (1)

Country Link
JP (1) JP4060700B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198883A (en) * 2007-02-15 2008-08-28 Dainippon Screen Mfg Co Ltd Substrate-treating device
KR20130126483A (en) * 2012-05-11 2013-11-20 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method and storage medium
US9050635B2 (en) 2007-02-15 2015-06-09 SCREEN Holdings Co., Ltd. Substrate processing apparatus
CN111627838A (en) * 2020-06-04 2020-09-04 厦门通富微电子有限公司 Spraying device for wet process system, wet process system and semiconductor processing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198883A (en) * 2007-02-15 2008-08-28 Dainippon Screen Mfg Co Ltd Substrate-treating device
US9050635B2 (en) 2007-02-15 2015-06-09 SCREEN Holdings Co., Ltd. Substrate processing apparatus
US9050634B2 (en) 2007-02-15 2015-06-09 SCREEN Holdings Co., Ltd. Substrate processing apparatus
KR20130126483A (en) * 2012-05-11 2013-11-20 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method and storage medium
JP2013239494A (en) * 2012-05-11 2013-11-28 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium
KR101868642B1 (en) * 2012-05-11 2018-06-18 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method and storage medium
CN111627838A (en) * 2020-06-04 2020-09-04 厦门通富微电子有限公司 Spraying device for wet process system, wet process system and semiconductor processing equipment

Also Published As

Publication number Publication date
JP4060700B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP3979464B2 (en) Electroless plating pretreatment apparatus and method
US7083706B2 (en) Substrate processing apparatus
US7141274B2 (en) Substrate processing apparatus and method
KR100804715B1 (en) Semiconductor substate rotation maintaining apparatus and semiconductor substrate processing apparatus
US20040234696A1 (en) Plating device and method
US20030092264A1 (en) Substrate processing apparatus and method
US7166204B2 (en) Plating apparatus and method
US6706422B2 (en) Electroless Ni—B plating liquid, electronic device and method for manufacturing the same
KR100993916B1 (en) Substrate processing apparatus and substrate processing method
JP2005174961A (en) Method and device for treating substrate
US20040170766A1 (en) Electroless plating method and device, and substrate processing method and apparatus
JP4064132B2 (en) Substrate processing apparatus and substrate processing method
US7332198B2 (en) Plating apparatus and plating method
JP3821709B2 (en) Pretreatment method of electroless plating
JP4060700B2 (en) Substrate processing apparatus and substrate processing method
JP4139124B2 (en) Plating apparatus and method
JP2005194613A (en) Method for treating substrate in wet process and treatment apparatus therefor
US20040186008A1 (en) Catalyst-imparting treatment solution and electroless plating method
JP2005163085A (en) Plating apparatus and plating method
JP3886383B2 (en) Plating apparatus and plating method
US20070214620A1 (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071121

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees