JP2004213774A - Write-once type optical recording medium and its recording method - Google Patents

Write-once type optical recording medium and its recording method Download PDF

Info

Publication number
JP2004213774A
JP2004213774A JP2002382438A JP2002382438A JP2004213774A JP 2004213774 A JP2004213774 A JP 2004213774A JP 2002382438 A JP2002382438 A JP 2002382438A JP 2002382438 A JP2002382438 A JP 2002382438A JP 2004213774 A JP2004213774 A JP 2004213774A
Authority
JP
Japan
Prior art keywords
recording
layer
substrate
write
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002382438A
Other languages
Japanese (ja)
Other versions
JP4117878B2 (en
Inventor
Noboru Sasa
登 笹
Atsuyuki Watada
篤行 和多田
Kaori Otaka
かをり 大高
Kokei Komoda
弘敬 薦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002382438A priority Critical patent/JP4117878B2/en
Publication of JP2004213774A publication Critical patent/JP2004213774A/en
Application granted granted Critical
Publication of JP4117878B2 publication Critical patent/JP4117878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a write-once type optical recording medium, which deters voids making recording and reproduction characteristic worse from being formed in a substrate or a cover layer and has excellent recording and reproduction characteristics and excellent tracking characteristics and is adaptive to a short-wavelength laser, and to provide its recording method. <P>SOLUTION: (1) A light absorption layer is provided adjacently to the substrate or a light absorption layer, a recording layer formed of an organic compound, and a reflecting layer are provided on the substrate to obtain a write once read many optical recording medium which can have its recording part formed without forming any gap part in the substrate nor cover layer. (2) A write once read many optical recording medium is formed by providing a gap deterring layer for deterring a gap part from being formed in a substrate or cover layer and a light absorbing layer in order adjacently to the substrate or cover layer. (3) The write-once type optical recording medium is is provided on a substrate with a gap deterring layer for deterring a gap part from being formed in the substrate owing to recording, a light absorbing layer, a recording layer made of an organic compound, and a reflecting layer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、追記型(WORM:Write Once Read Many)光記録媒体に係わり、特に青色レーザ波長でも高密度の記録が可能な追記型光記録媒体に関する。
【0002】
【従来の技術】
超高密度の記録が可能となる青色レーザの開発は急速に進んでおり、それに対応した追記型光記録媒体の開発が行われている。
従来の追記型光記録媒体では、有機材料からなる記録層にレーザ光を照射し、主に有機材料の分解・変質による屈折率変化を生じさせることで記録ピットを形成させており、記録層に用いられる有機材料の光学定数や分解挙動が、良好な記録ピットを形成させるための重要な要素となっている。
従って、記録層に用いる有機材料としては、青色レーザ波長に対する光学的性質や分解挙動の適切な材料を選択する必要がある。即ち、未記録時の反射率を高め、またレーザの照射によって有機材料が分解し大きな屈折率変化が生じるようにするため(これによって大きな変調度が得られる)、記録再生波長は大きな吸収帯の長波長側の裾に位置するように選択される。
何故ならば、有機材料の大きな吸収帯の長波長側の裾は、適度な吸収係数を有し且つ大きな屈折率が得られる波長領域となるためである。
しかしながら、青色レーザ波長に対する光学的性質が従来並みの値を有する有機材料は未だ見出されていない。これは、青色レーザ波長近傍に吸収帯を持つ有機材料を得るためには、分子骨格を小さくするか又は共役系を短くする必要があるが、そうすると吸収係数の低下、即ち屈折率の低下を招くためである。
つまり、青色レーザ波長近傍に吸収帯を持つ有機材料は多数存在し、吸収係数を制御することは可能となるが、大きな屈折率を持たないため、大きな変調度を得ることができなくなる。
【0003】
青色レーザ対応の有機材料としては、例えば、特許文献1〜5に記載がある。しかし、これらの文献では、実施例を見ても溶液と薄膜のスペクトルを測定しているのみで、記録再生に関する記載はない。
特許文献6〜8には、実施例に記録の記載があるものの、記録波長は488nmであり、また記録条件や記録密度に関する記載はなく、良好な記録ピットが形成できた旨の記載があるのみである。
特許文献9には、実施例に記録の記載があるものの、記録波長は430nmであり、また記録条件や記録密度に関する記載はなく、良好な変調度が得られた旨の記載があるのみである。
特許文献10〜19には、実施例に記録波長430nm、NA0.65での記録例があるが、最短ピットが0.4μmという低記録密度条件(DVDと同等の記録密度)である。
特許文献20には、記録再生波長405〜408nmでの記録があるが、記録密度に関する具体的な記載がなく、14T−EFM信号の記録という低記録密度条件である。
【0004】
また、従来のCD、DVD系光記録媒体と異なる層構成及び記録方法に関して、以下のような技術が公開されている。
特許文献21には、基板/可飽和吸収色素含有層/反射層という層構成で、可飽和吸収色素の消衰係数(本発明でいう吸収係数)の変化により記録を行う技術が開示されている。
特許文献22には、基板/金属蒸着層/光吸収層/保護シートという層構成で、光吸収層によって発生した熱によって、金属蒸着層を変色又は変形させることで記録を行う技術が開示されている。
特許文献23には、基板/誘電体層/光吸収体を含む記録層/反射層という層構成で、記録層の膜厚を変えることにより溝部の深さを変えて記録を行う技術が開示されている。
特許文献24には、基板/光吸収体を含む記録層/金属反射層という層構成で、記録層の膜厚を10〜30%変化させることにより記録を行う技術が開示されている。
【0005】
特許文献25には、基板/有機色素を含有する記録層/金属反射層/保護層という層構成で、基板の溝幅を未記録部に対して20〜40%広くすることにより記録を行う技術が開示されている。
特許文献26には、基板/中間層/金属薄膜という層構成で、金属薄膜が変形しバブルを形成することにより記録を行う技術が開示されている。
特許文献27には、基板/光吸収層/記録補助層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献28には、基板/光吸収層/多孔質な記録補助層/光反射層、或いは、基板/多孔質な記録補助層/光吸収層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献29には、基板/多孔質な光吸収層/光反射層という層構成で、光吸収層を凹状に変形させると共に、光吸収層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
【0006】
特許文献30には、基板/有機色素を含む記録層/記録補助層という層構成で、記録補助層と有機色素が相溶して、有機色素の吸収スペクトルを短波長側へシフトさせることで記録を行う技術が開示されている。
特許文献31には、基板上に反射層と記録層の機能を有する複合機能層、保護層を順次形成した層構成で、基板と複合機能層がバンプを形成することで記録を行う技術が開示されている。なお、複合機能層には、ニッケル、クロム、チタン等の金属、又はそれらの合金を用いるという規定がある。
特許文献32には、基板上に金属薄膜層、変形可能な緩衝層、反射層、保護層を順次形成した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚を薄くさせることで記録を行う技術が開示されている。なお、金属薄膜層には、ニッケル、クロム、チタン等の金属、又はそれらの合金を用いるという規定がある。また、緩衝層としては、変形し易く適当な流動性を持つ樹脂が用いられ、変形を促進させるために色素を含有させても良いとの記載がある。
【0007】
特許文献33には、基板上に金属薄膜層、緩衝層、反射層を順次積層した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、緩衝層は色素と有機高分子の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
特許文献34には、基板上に金属記録層、バッファ層、反射層を順次積層した層構成で、基板と金属記録層を変形させ、同時にこの変形部でのバッファ層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属記録層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、バッファ層は色素と樹脂の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
【0008】
以上のように、上記諸々の従来技術は、青色レーザ波長領域での追記型光記録媒体の実現を狙ったものではなく、青色レーザ波長領域で有効となる層構成や記録方法ではない。特に現在実用化されている青色半導体レーザの発振波長の中心である405nm近傍においては、従来の追記型光記録媒体の記録層に要求される光学定数と同程度の光学定数を有する有機材料が殆んど存在しない。
また、405nm近傍で記録条件を明確にし、DVDよりも高記録密度で記録された例はない。
更に、上記従来技術における実施例の多くは、従来のディスク構成(図1参照)での実験であり、また、従来のディスク構成と異なる構成も提案されてはいるが、そこに用いられる色素は従来と同じ光学特性と機能が要求されており、青色レーザ波長領域で、有機材料からなる追記型光記録媒体を容易に実現できる層構成や記録原理、記録方式についての有効な提案はない。
【0009】
また、従来の有機材料を用いた追記型光記録媒体では、変調度と反射率の確保の点から、記録再生波長に対し大きな屈折率と比較的小さな吸収係数(0.05〜0.07程度)を持つ有機材料しか使用することができない。
即ち、有機材料は記録光に対して十分な吸収能を持たないため、有機材料の膜厚を薄膜化することが不可能であり、従って、深い溝を持った基板を使用する必要があった(有機材料は通常スピンコート法によって形成されるため、有機材料を深い溝に埋めて厚膜化していた)。そのため、深い溝を有する基板の形成が非常に難しくなり、追記型光記録媒体としての品質を低下させる要因になっていた。更に、従来の有機材料を用いた追記型光記録媒体では、記録再生波長近傍に有機材料の主吸収帯が存在するため、有機材料の光学定数の波長依存性が大きくなり(波長によって光学定数が大きく変動する)、レーザの個体差や環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという問題があった。
【0010】
上記のような問題点を解決するために、本発明者は、例えば、特願2002−144415号(以下、先願という)において、従来、有機化合物からなる記録層に要求された光吸収機能と記録機能という2つの機能を分離することを考え、有機化合物からなる記録層から光吸収機能を除き、光吸収機能を担う層として、新たに光吸収層を導入するという追記型光記録媒体構造を提案した。
この追記型光記録媒体構造では、有機化合物から光吸収機能を除いたため、また、光吸収層の変形等を記録に用いることができるため、有機化合物への規制が大幅に緩和でき、CD−RやDVD−R等で用いられている色素をも利用できるというメリットを有する。
本発明者が提案した上記先願の追記型光記録媒体の一構成例では、即ち、基板上又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有する追記型光記録媒体では、例えば、記録によって光吸収層を変形させたり、或いは光吸収層の光吸収機能によって、基板又はカバー層とは反対側の光吸収層の隣接層に物理的、化学的、光学的変化等を与えることで記録が行われる。
しかしながら、この追記型光記録媒体では、低記録パワーでの記録時は、良好なジッタ特性(記録再生特性)を得ることができるが、高記録パワーでの記録時には急激にジッタが悪化する場合があり、ジッタのパワーマージンを狭めることにつながっている。また、どのような種類の光記録媒体でも同様な傾向はあるが、高記録パワーで記録した部分ではトラッキングが外れ易いという現象も発生する場合がある。
【0011】
【特許文献1】
特開2001−181524号公報
【特許文献2】
特開2001−158865号公報
【特許文献3】
特開2000−343824号公報
【特許文献4】
特開2000−343825号公報
【特許文献5】
特開2000−335110号公報
【特許文献6】
特開平11−221964号公報
【特許文献7】
特開平11−334206号公報
【特許文献8】
特開2000−43423号公報
【特許文献9】
特開平11−58955号公報
【特許文献10】
特開2001−39034号公報
【特許文献11】
特開2000−149320号公報
【特許文献12】
特開2000−113504号公報
【特許文献13】
特開2000−108513号公報
【特許文献14】
特開2000−222772号公報
【特許文献15】
特開2000−218940号公報
【特許文献16】
特開2000−222771号公報
【特許文献17】
特開2000−158818号公報
【特許文献18】
特開2000−280621号公報
【特許文献19】
特開2000−280620号公報
【特許文献20】
特開2001−146074号公報
【特許文献21】
特開平7−304258号公報
【特許文献22】
特開平8−83439号公報
【特許文献23】
特開平8−138245号公報
【特許文献24】
特開平8−297838号公報
【特許文献25】
特開平9−198714号公報
【特許文献26】
特許第2506374号公報
【特許文献27】
特許第2591939号公報
【特許文献28】
特許第2591940号公報
【特許文献29】
特許第2591941号公報
【特許文献30】
特許第2982925号公報
【特許文献31】
特開平9−265660号公報
【特許文献32】
特開平10−134415号公報
【特許文献33】
特開平11−306591号公報
【特許文献34】
特開平10−124926号公報
【0012】
【発明が解決しようとする課題】
本発明は、上記先願発明を更に発展させることにより、基板又はカバー層に隣接して記録光に対して光吸収機能を有する光吸収層が設けられた構造を有する追記型光記録媒体について、次の(1)〜(3)の実現を目的とする。
(1)記録再生特性やトラッキング性能を低下させる原因をなくした追記型光記録媒体の提供。
(2)記録再生特性やトラッキング性能の悪化を抑制した層構成の提供。
(3)記録再生特性やトラッキング性能の悪化を抑制した記録方法の提供。
【0013】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、基板上又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有する追記型光記録媒体においては、一般的に大きな吸収係数を持つ光吸収層が基板又はカバー層と接するため、記録パワーを増大させて行くと、光吸収層の変形や、基板又はカバー層とは反対側の光吸収層に隣接する層の物理的、化学的、光学的等の変化に加えて、基板内又はカバー層内に空隙部が発生することがあることを見出した。
そして、この基板内又はカバー層内の空隙は、大きな変調度を発生させるという効果はあるものの、設定可能なレ−ザの記録パワ−範囲において、記録極性を変化させたり、再生信号波形を微分波形化させたり、短マークと長マークの変調度のアンバランス等を引き起こし、記録再生特性を悪化させる場合があることを見出した。特に、設定可能なレ−ザの記録パワ−範囲において、記録極性が変化すると(記録極性が混在すると)、ジッタや、ジッタのパワーマージンを悪化させ、また変調度を減少させることを見出した。
そこで本発明では、記録再生特性、及びトラッキング性能を悪化させる場合の多い、基板内又はカバー層内の空隙発生を抑制するような追記型光記録媒体、層構成、記録方法を提供する。
なお、一般的にマーク長記録では、記録マークを再生した場合の再生信号(RF信号)は、図2(a)のようになる。これに対し、図2(b)や(c)のように、記録マークの前後エッジ近傍と記録マークの中心近傍で変極点を持つような信号を、本発明では微分波形(微分波形化)と言う。
【0014】
即ち、上記課題は、次の1)〜9)の発明によって解決される。
1) 基板又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有し、基板内又はカバー層内に空隙部を形成させることなく記録部を形成できることを特徴とする追記型光記録媒体。
2) 基板上に、記録光に対して光吸収機能を有する光吸収層、有機化合物からなる記録層、及び反射層が設けられた構造を有し、基板内に空隙部を形成させることなく記録部を形成できることを特徴とする追記型光記録媒体。
3) 基板又はカバー層に隣接して、記録による基板内又はカバー層内の空隙部発生を抑制するための空隙抑制層、記録光に対して光吸収機能を有する光吸収層が順次設けられた構造を有することを特徴とする追記型光記録媒体。
4) 基板上に、記録による基板内の空隙部発生を抑制するための空隙抑制層、記録光に対して光吸収機能を有する光吸収層、有機化合物からなる記録層、及び反射層が順次設けられた構造を有することを特徴とする追記型光記録媒体。
5) 空隙抑制層が、SiO、ZnS−SiO、ZrOの何れかを主成分とすることを特徴とする3)又は4)記載の追記型光記録媒体。
6) 空隙抑制層が、ZnS、ZrO、Y及びSiOからなる酸化物であることを特徴とする3)又は4)記載の追記型光記録媒体。
7) 空隙抑制層が、ZrO、TiO、SiO、及びXからなり、XがAl、MgO、CaO、NbO、Y、CeOから選ばれた少なくとも1つであることを特徴とする3)又は4)記載の追記型光記録媒体。
8) 1)〜7)の何れかに記載の追記型光記録媒体に対し、基板内又はカバー層内に空隙部が形成されない記録パワーの範囲で記録を行うことを特徴とする追記型光記録媒体の記録方法。
9) 1)〜7)の何れかに記載の追記型光記録媒体に対し、基板内又はカバー層内に空隙部が形成されない記録ストラテジで記録を行うことを特徴とする追記型光記録媒体の記録方法。
【0015】
【発明の実施の形態】
以下、上記本発明について詳細に説明する。
基板又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有する追記型光記録媒体においては、記録パワーを増大させて行くと、光吸収層の変形や、基板又はカバー層とは反対側の光吸収層に隣接する層の物理的、化学的、光学的等の変化が生ずる。
例えば、具体的に例を示すと、基板/光吸収層/色素層/反射層という構成からなる追記型光記録媒体では、光吸収層の光吸収機能により、次のイ)〜チ)のような変化を生じ、記録部が形成される。
イ)光吸収層が変形する
ロ)光吸収層の複素屈折率が変化する
ハ)光吸収層の体積が変化する
ニ)光吸収層内に空隙等の低屈折率部が発生する
ホ)色素層の複素屈折率変化が変化する
ヘ)色素層が体積変化する
ト)色素層内に空隙等の低屈折率部が発生する
チ)基板が変形する
【0016】
この追記型光記録媒体では、従来のように色素層に光吸収機能を要求しないため、色素選択の自由度が格段に広がり、青色レーザ波長以下のレーザ波長に対応した追記型光記録媒体が容易に提供できるというメリットがある。
しかし、光吸収層が変形し難い場合、光吸収層の光学的変化が生じ難い場合、色素層の光学的変化が生じ難い場合等には、記録を行うために、光吸収層や色素層に光学的、化学的、或いは物理的変化を生じるまで記録パワーを高める必要があり、この時、基板やカバー層等が光吸収層と接する構造では、基板が必要以上に加熱されてしまう。そして、この必要以上の加熱によって、基板内に空隙が発生する場合がある。
即ち、低記録パワー時には光吸収層の光吸収機能によって、光吸収層や色素層に光学的、化学的、或いは物理的変化が生じ、これによって記録部が形成されるが、高記録パワー時には、光吸収層や色素層の光学的、化学的、或いは物理的変化が生じる以外に、基板が必要以上に加熱されるため、基板内の空隙発生によっても記録部が形成される。
【0017】
この基板内の空隙発生は、その発生する記録パワー範囲が光吸収層や色素層の光学的、化学的、或いは物理的変化を起す記録パワー範囲と大きく異なる場合が一般的であるため(基板内空隙は、一般的に光吸収層や色素層の変化よりも高い記録パワーで発生する)、ジッタの悪化や、ジッタの記録パワーマージンの悪化を誘発する。
また、基板内の空隙発生は、一般的に閾値を持って発生するため、急激な変調度の変化や記録極性の変化等を引き起こす場合が多く、これによって、ジッタの悪化や、ジッタの記録パワーマージンの悪化を誘発する。
更に、この基板内空隙の発生によって、光吸収層の変形が非常に大きくなったり、光吸収層の変形形状を乱したり、基板自身の溝形状をも大きく変形させる場合があるため、クロストークが大きくなったり、トラッキング性能が悪化する。そこで、本発明では、トラッキング性能の悪化、記録極性の変化、ジッタの悪化、或いは、ジッタの記録パワーマージンを狭くする可能性の高い、基板内又はカバー層内の空隙発生を抑制する。
【0018】
基板内又はカバー層内の空隙は、上述のように、記録パワーが高くなった場合、或いは、長マークにおいて発生し易い。
従って、高記録パワー側で急激にジッタが悪化したり(ジッタの記録パワーマージンが急激に悪化する)、記録マーク長によって記録極性が変わったり、記録マーク長によって振幅が大きく変化するという現象が発生する。
この記録マーク長によって記録極性が変わったり、記録マーク長によって振幅が大きく変化するという現象のため、単一周期の記録マークでは、良好な記録再生特性が得られるが、ランダムパターンを記録すると記録再生特性が劣悪となる場合がある。
基板内又はカバー層内の空隙発生を抑制する方法としては、次のイ)〜ホ)が挙げられる。
イ)基板又はカバー層と光吸収層の間に、断熱層(空隙抑制層)を設ける。
ロ)基板又はカバー層と光吸収層の間に、放熱層(空隙抑制層)を設ける。
ハ)記録パワーを制御する(空隙が発生しない記録パワー範囲で記録を行う)。
ニ)記録ストラテジを制御し最適化する(長マークにおいて必要以上に蓄熱されないようにする)。
ホ)基板の分解特性を制御する(空隙が発生しない材料を選択する)。
【0019】
基板又はカバー層と光吸収層の間に、空隙抑制層を設ける場合、空隙抑制層をいわゆる断熱層とするか放熱層とするかは、光吸収層の光吸収機能の大小と、光吸収層の熱伝導率等の熱物性に依存する。
即ち、光吸収層の光吸収機能が比較的低い場合は、記録感度を損なわないために(低記録パワーで記録するために)、光吸収層で発生した熱を放熱層で逃がして基板内空隙の発生を抑制するよりも、断熱層で基板へ伝わる熱量を制限して基板内空隙の発生を抑制する方が有利である。
逆に、光吸収層の光吸収機能が比較的高い場合は、光吸収層で発生した熱を放熱層で逃がして基板内空隙の発生を抑制することも効果的である。
記録パワーを制御することは、光吸収層で発生する熱量を制御することであるため、基板内空隙の発生を直接的に制御することができる。
記録ストラテジを制御することも、記録パワー同様、光吸収層で発生する熱量を制御することであるため、基板内空隙の発生を直接的に制御することができる。更に記録ストラテジを制御する場合は、記録マーク長ごとに光吸収層で発生する熱量を制御できるため、記録マーク長によって基板内空隙の発生有無が異なるという現象を抑制することが可能である。
基板の分解特性を制御するとは、例えば、基板材料の分解温度を高めることを意味し、高分子材料の場合は、高分解の高分子材料を用いることや、分子量を高めること(重合度を高めること)で、空隙発生を抑制することができる。また、基板をガラス材料とすることも効果的である。
【0020】
本発明の追記型光記録媒体及びその記録方法は、例えば次の(i)(ii)のような構成の追記型光記録媒体、或いはそれらを二つ貼り合わせた二層構造の追記型光記録媒体に対して有効である。
(i)基板側から記録再生を行う追記型光記録媒体
・基板/光吸収層
・基板/光吸収層/記録層
・基板/光吸収層/下引層/記録層
・基板/光吸収層/記録層/上引層
・基板/光吸収層/記録層/反射層
・基板/光吸収層/下引層/記録層/反射層
・基板/光吸収層/記録層/上引層/反射層
・基板/光吸収層/記録層/反射層/保護層
(ii)カバー層側から記録再生を行う追記型光記録媒体
・基板/光吸収層/カバー層
・基板/光吸収層/記録層/カバー層
・基板/光吸収層/記録層/下引層/カバー層
・基板/光吸収層/上引層/記録層/カバー層
・基板/反射層/記録層/光吸収層/カバー層
・基板/反射層/記録層/光吸収層/下引層/カバー層
・基板/反射層/上引層/記録層/光吸収層/カバー層
好ましい態様としては、上記の構造を有する追記型光記録媒体において、基板と光吸収層、或いはカバー層と光吸収層の間に空隙抑制層を設ける。
【0021】
上記構成例にも示したように、本発明の追記型光記録媒体は、基本的には基板又はカバー層と光吸収層を必須の構成層とするものであるが、空隙抑制層を設けることが好ましく、必要に応じて基板上に有機化合物等の記録層、下引層、上引層、金属反射層、保護層等を設けても良い。
なお、本発明において記録層とは、光学定数変化、化学的変化又は物理的変化を起す層を指す。具体的には、記録によって複素屈折率変化、位相差変化、分解、昇華、凝集等の状態変化、結晶状態変化、溶解性変化、構造変化、体積変化、空隙部の形成等を起す層である。
同じく、下引層や上引層は、記録再生特性の改善を図るための干渉層、膜形成時の保護層(例えば、塗布溶剤に溶解性を持つ膜上にスピンコート法で膜を形成させる場合の保護層)、隣接層の膜状態を保持する保護層等(保存性を改善する等)を指す。
【0022】
本発明の追記型光記録媒体における基板の材質としては、基本的には記録光及び再生光の波長において透明であればよい。
このような材質の材料としては、例えばアクリル系樹脂、メタクリル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂(特に非晶質ポリオレフィン)、ポリエステル系樹脂、ポリスチレン樹脂、エポキシ樹脂等の各種樹脂、ガラス、ガラス上に光硬化性樹脂等の放射線硬化性樹脂からなる樹脂層を設けたもの等を使用することができるが、高生産性、コスト、耐吸湿性などの点からは、射出成型したポリカーボネートが好ましく、耐薬品性、耐吸湿性などの点からは、非晶質ポリオレフィンが好ましく、高速応答、或いは空隙が発生しないなどの点からは、ガラス基板が好ましい。
更に、記録層に接して樹脂基板又は樹脂層を設け、その樹脂基板又は樹脂層上に記録再生光の案内溝やピットを有していてもよい。
【0023】
記録層材料としては、例えば有機材料が挙げられ、色素も好ましい。
色素としては含金属アゾ系色素、フタロシアニン系色素、ナフタロシアニン系色素、シアニン系色素、アゾ系色素、スクアリリウム系色素、含金属インドアニリン系色素、トリアリールメタン系色素、メロシアニン系色素、アズレニウム系色素、ナフトキノン系色素、アントラキノン系色素、インドフェノール系色素、キサンテン系色素、オキサジン系色素、ピリリウム系色素等が挙げられる。
また、記録層は、記録層の安定や耐光性向上のために、一重項酸素クエンチャーとして遷移金属キレート化合物(例えば、アセチルアセトナートキレート、ビスフェニルジチオール、サリチルアルデヒドオキシム、ビスジチオ−α−ジケトン)等を含有してもよく、記録感度向上のために金属系化合物等の記録感度向上剤を含有していても良い。
ここで金属系化合物とは、遷移金属等の金属が原子、イオン、クラスター等の形で化合物に含まれるものを言い、例えばエチレンジアミン系錯体、アゾメチン系錯体、フェニルヒドロキシアミン系錯体、フェナントロリン系錯体、ジヒドロキシアゾベンゼン系錯体、ジオキシム系錯体、ニトロソアミノフェノール系錯体、ピリジルトリアジン系錯体、アセチルアセトナート系錯体、メタロセン系錯体、ポルフィリン系錯体のような有機金属化合物が挙げられる。金属原子としては特に限定されないが、遷移金属が好ましい。
【0024】
また、必要に応じて他系統の色素を併用することもできる。
更に、必要に応じて、バインダー、レベリング剤、消泡剤等を併用することもできる。
好ましいバインダーとしては、ポリビニルアルコール、ポリビニルピロリドン、ニトロセルロース、酢酸セルロース、ケトン系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ウレタン系樹脂、ポリビニルブチラール、ポリカーボネート、ポリオレフィン等が挙げられる。
記録層の膜厚は、記録方法などにより適した膜厚が異なるため、特に限定するものではないが、通常50〜300nmである。
【0025】
記録層の成膜方法としては、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等の一般に行われている薄膜形成法が挙げられる。
中でも、量産性、コスト面からはスピンコート法が好ましく、厚みの均一な記録層が得られるという点からは、塗布法よりも真空蒸着法等の方が好ましい。
スピンコート法による成膜の場合、回転数は500〜15000rpmが好ましく、スピンコートの後、場合によっては加熱又は溶媒蒸気にあてる等の処理を行っても良い。
ドクターブレード法、キャスト法、スピンコート法、浸漬法等の塗布方法により記録層を形成する場合の塗布溶媒としては、基板を侵さない溶媒であればよく、特に限定されない。
【0026】
例えば、ジアセトンアルコール、3−ヒドロキシ−3−メチル−2−ブタノン等のケトンアルコール系溶媒;メチルセロソルブ、エチルセロソルブ等のセロソルブ系溶媒;n−ヘキサン、n−オクタン等の鎖状炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、n−ブチルシクロヘキサン、tert−ブチルシクロヘキサン、シクロオクタン等の環状炭化水素系溶媒;テトラフルオロプロパノール、オクタフルオロペンタノール、ヘキサフルオロブタノール等のパーフルオロアルキルアルコール系溶媒;乳酸メチル、乳酸エチル、イソ酪酸メチル等のヒドロキシカルボン酸エステル系溶媒等が挙げられる。
記録層材料としては上記の他に、高分子材料、相変化材料、フォトークロミック材料、サーモクロミック材料等も好ましく用いることができる。
【0027】
光吸収層の材料としては、十分な記録感度を確保するという点で、記録波長に対する吸収係数がある程度大きいものを用いることが好ましく、SiC、BC、TiC、WCなどの炭化物系の非酸化物、アモルファス炭素、黒鉛、ダイアモンド等の炭素系の非酸化物、フェライト等に代表されるセラミックス、或いはTe−TeO、Te−TeO−Pd、SbSe/BiTe、Ge−Te−Sb−S、Te−TeO−Ge−Sn、Te−Ge−Sn−Au、Ge−Te−Sn、Sn−Se−Te、Sb−Se−Te、Sb−Se、Ga−Se−Te、Ga−Se−Te−Ge、In−Se、In−Se−Tl−Co、Ge−Sb−Te、In−Se−Te、Ag−In−Sb−Te、Ag−Zn、Cu−Al−Ni、In−Sb、In−Sb−Se、In−Sb−Te等の相変化記録材料、ニッケル、クロム、チタン、タンタル等の純粋金属、又は銅/アルミニウム、ニッケル/鉄等の合金、シリコン等の半金属、Ge等の半導体等を用いることが可能である。
中でも、Si又はGeを含有する材料を用いることが好ましく、例えば、Si、Ge、或いはSiC等が好ましい例として挙げられる。
光吸収層の膜厚は、通常5〜150nmである。
【0028】
空隙抑制層の材料としては、例えば、Al、MgO、BeO、ZrO、TiO、UO、ThO、CaO、NbO、Y、CeOなどの単純酸化物系の酸化物;SiO、2MgO・SiO、MgO・SiO、CaO・SiO、ZrO・SiO、3Al・2SiO、2MgO・2Al・5SiO、LiO・Al・4SiOなどのケイ酸塩系の酸化物;AlTiO、MgAl、Ca10(PO(OH)、BaTiO、LiNbO、PZT〔Pb(Zr,Ti)O〕、PLZT〔(Pb,La)(Zr,Ti)O〕、フェライトなどの複酸化物系の酸化物;或いは、Si、Si6−ZAl8−Z、AlN、BN、TiNなどの窒化物系の非酸化物;SiC、BC、TiC、WCなどの炭化物系の非酸化物;LaB、TiB、ZrBなどのホウ化物系の非酸化物;ZnS、CdS、MoSなどの硫化物系の非酸化物;MoSiなどのケイ化物系の非酸化物;アモルファス炭素、黒鉛、ダイアモンド等の炭素系の非酸化物、或いはそれらの混合物を用いることができる。
記録再生光に対する透明性や、生産性の観点からは、SiOを主体(主成分)とする材料、或いはZnS・SiOを主体(主成分)とする材料が好ましい。
また、断熱効果を十分得るためには、ZrOを主体(主成分)とすることも好ましい。
また、ZnS、ZrO、Y及びSiOからなる酸化物、或いはZrO、TiO、SiO、及びXからなり、Xが、Al、MgO、CaO、NbO、Y、CeOから選ばれた少なくとも1種である材料が好ましい。
【0029】
記録層の上には、直接又は上引層等を介して、反射層を形成してもよく、その膜厚は、好ましくは、50〜300nmである。
反射層の材料としては、再生光の波長で反射率の十分高いもの、例えば、Au、Al、Ag、Cu、Ti、Cr、Ni、Pt、Ta、Cr、Pdから選ばれる金属を単独で或いは合金にして用いることができる。中でもAu、Al、Agは、反射率が高く反射層の材料として適している。
また、上記の材料を主成分とし、Mg、Se、Hf、V、Nb、Ru、W、Mn、Re、Fe、Co、Rh、Ir、Cu、Zn、Cd、Ga、In、Si、Ge、Te、Pb、Po、Sn、Biなどの金属及び半金属を含む材料でもよい。
中でもAgを主成分とするものは、コストが安いこと、高反射率が出易いことから特に好ましい。
金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多層膜を形成し、反射層として用いることも可能である。
反射層を形成する方法としては、例えば、スパッタ法、イオンプレーティング法、化学蒸着法、真空蒸着法等が挙げられる。
【0030】
また、基板の上や反射層の下に、反射率の向上、記録特性の改善、密着性の向上等のため、公知の無機系又は有機系の上引層、下引層、或いは接着層を設けることもできる。
上引層又は下引層に光吸収機能を付与する場合は、前述の光吸収層材料と同様の材料を使用することができる。また、機械的な保護、保存安定性の向上、耐溶剤性の向上、或いは干渉層として上引層又は下引層を使用する場合は、前述の空隙抑制層材料と同様の材料を使用することができる。
反射層の上に形成する保護層の材料としては、反射層を外力から保護するものであれば特に限定されないが、有機材料としては、熱可塑性樹脂、熱硬化性樹脂、電子線硬化性樹脂、UV硬化性樹脂等を挙げることができる。また、無機材料としては、SiO、SiN、MgF、SnO等が挙げられる。
熱可塑性樹脂、熱硬化性樹脂などは適当な溶剤に溶解して塗布液を塗布し、乾燥することによって形成することができる。
UV硬化性樹脂は、そのまま又は適当な溶剤に溶解して塗布液を調製した後にこの塗布液を塗布し、UV光を照射して硬化させることによって形成することができる。UV硬化性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートなどのアクリレート系樹脂を用いることができる。
【0031】
これらの材料は単独で或いは混合して用いても良いし、1層だけではなく多層膜にして用いても良い。
保護層の形成方法としては、記録層と同様にスピンコート法やキャスト法等の塗布法やスパッタ法や化学蒸着法等の方法が用いられるが、この中でもスピンコート法が好ましい。
保護層の膜厚は、一般に0.1〜100μmの範囲であるが、本発明においては、3〜30μmが好ましい。
また、反射層面に更に基板を貼り合わせてもよく、また、反射層面相互を内面として対向させ追記型光記録媒体2枚を貼り合わせた構造としても良い。
基板鏡面側に、表面保護やゴミ等の付着防止のため、紫外線硬化樹脂層や無機系薄膜等を成膜してもよい。
【0032】
カバー層は、高密度化を図るため高NAのレンズを用いる場合に必要となる。
例えば高NA化すると、再生光が透過する部分の厚さを薄くする必要がある。
これは、高NA化に伴い、光学ピックアップの光軸に対してディスク面が垂直からズレる角度(いわゆるチルト角、光源の波長の逆数と対物レンズの開口数の積の2乗に比例する)により発生する収差の許容量が小さくなるためであり、このチルト角が基板の厚さによる収差の影響を受け易いためである。
従って、基板の厚さを薄くしてチルト角に対する収差の影響をなるべく小さくするようにしている。
そこで、例えば基板上に凹凸を形成して記録層とし、その上に反射膜を設け、更にその上に光を透過する薄膜である光透過性のカバー層を設けて、カバー層側から再生光を照射して記録層の情報を再生するような追記型光記録媒体や、基板上に反射膜を設け、その上に記録膜を形成して記録層とし、更にこの上に光透過性を有するカバー層を設けて、カバー層側から再生光を照射して記録層の情報を再生するような追記型光記録媒体が提案されている。
【0033】
このようにすれば、カバー層を薄型化していくことで対物レンズの高NA化に対応可能である。つまり、薄いカバー層を設け、このカバー層側から記録再生することで、更なる高記録密度化を図ることができる。
なお、このようなカバー層は、ポリカーボネートシートや、紫外線硬化型樹脂により形成されるのが一般的である。
また、本発明で言うカバー層には、カバー層を接着するための層を含めてもよい。
本発明の追記型光記録媒体に使用されるレーザ光の波長は、高密度記録を行うため短いほど好ましいが、特に350〜530nmの範囲が好ましい。このようなレーザ光の代表例としては、中心波長405nmのレーザ光が挙げられる。
【0034】
【実施例】
以下、本発明を実施例及び参考例により更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0035】
参考例1
まず初めに、基板上に光吸収層としてSiCを厚さ10nm設けた追記型光記録媒体を作成し、基板側からの記録再生特性を評価した。
図3〜図6に、参考例1−A〜1−Dの記録結果を示す。
図3(a)〜図6(a)は、参考例1−A〜1−Dの再生信号(RFレベル)の記録マーク長(Mark Length)依存性の測定結果を示す図であり、各図中の、Unrecは未記録時の再生信号(RFレベル)を、Topはマーク列を記録した時の最大再生信号レベル(一般的にはスペース部)を、Bottomはマーク列を記録した時の最小再生信号レベルを、MAは(Top−Bottom)/Topで計算される変調度を示す。
また、図3(b)〜図6(b)には、3Tマークを連続して記録した場合の再生信号、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを、図3(c)〜図6(c)には、6Tマークを連続して記録した場合の再生信号、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを、図3(d)〜図6(d)には、3Tマークを連続して記録した場合の再生信号、14Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示した。
【0036】
<参考例1−A>
溝深さ55nmの案内溝を有するポリカーボネート基板上に、光吸収機能を有する変形層としてSiC層を厚さ10nm設けた追記型光記録媒体を作製した。この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、基板側から5.0mWのレーザ光を照射し、グルーブ部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで3T〜14Tマークをそれぞれ単独で記録した。
なお、SiC層は入射光とは反対側(反基板側)に変形していることをAFM(原子間力顕微鏡)により確認した。
また、図3(a)の結果から、記録マーク長によらずHigh to Low(ハイ・ツー・ロー)記録が行えている可能性があることが確認できる。
更に、図3(b)〜図3(d)の結果から、3T、4T、6T、8T、14Tとも、マーク長記録が可能な再生信号波形を示すことが分る。
【0037】
<参考例1−B>
記録パワーを6.0mWに変えた点以外は、参考例1−Aと全く同様の実験を行った。
なお、SiC層は入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図4(a)の結果から、記録マーク長によって記録極性が変化すること、即ち、短マークではHigh to Low記録であるが、長マークではHigh to Low記録とLow to High記録が混在したような信号が発生し、マーク長記録が困難となることが分る。
更に、図4(b)〜図4(d)の結果から、3T、4Tはマーク長記録が可能な再生信号波形を示すが、6T、8T、14Tはマーク中央部のRFレベルが大きく上昇した再生信号波形を示し〔6T、8Tでは、再生信号の周期が本来の再生信号の倍に見える。このことは図3(c)と比べるとよく分る〕、マーク長記録が困難となることが分る。
【0038】
<参考例1−C>
基板側から6.0mWのレーザ光を照射してランド部(入射レーザ光側から見て奥側にある溝位置)に記録した点以外は、参考例1−Aと全く同様の実験を行った。
なお、SiC層は入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図5(a)の結果から、若干ではあるが、記録マーク長によって記録極性が変化する傾向、即ち、短マークではHigh to Low記録であるが、長マークではHigh to Low記録とLow to High記録が混在したような信号が発生する傾向が見られ、マーク長記録が困難となる可能性があることが分る。
更に、図5(b)〜図5(d)の結果から、3T、4T、6T、8Tは、マーク長記録が可能な再生信号波形を示すが、14Tはマーク中央部のRFレベルが大きく上昇した再生信号波形を示し、マーク長記録が困難となることが分る。
【0039】
<参考例1−D>
基板側から7.0mWのレーザ光を照射してランド部(入射レーザ光側から見て奥側にある溝位置)に記録した点以外は、参考例1−Aと全く同様の実験を行った。
なお、SiC層は入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図6(a)の結果から、記録マーク長によって記録極性が変化すること、即ち、短マークではHigh to Low記録であるが、長マークではHigh to Low記録とLow to High記録が混在したような信号が発生し、マーク長記録が困難となることが分る。
更に、図6(b)〜図6(d)の結果から、3T、4Tは、マーク長記録が可能な再生信号波形を示すが、6T、8T、14Tはマーク中央部のRFレベルが大きく上昇した再生信号波形を示し〔例えば6Tでは再生信号の周期が本来の再生信号の倍に見える。このことは図3(c)と比べるとよく分る〕、マーク長記録が困難となることが分る。
【0040】
以上、参考例1−A〜1−Dの結果から、基板上にSiC層を設けた追記型光記録媒体では、低記録パワー時には、High to Low極性の再生信号が得られているが、記録パワーが高まると、記録マークの中央部が盛り上がったような、いわゆる微分波形化が起こり、更なる高記録パワーによる記録では、記録極性があたかもLow to Highであるかのように見えることが分った。また、この微分波形化の度合いは、記録マーク長によって異なり、長マークでは微分波形化が非常に起り易いことが確認できた。
このように、通常は、記録パワーの増大と伴に記録マーク部の反射率が一方向に変化していくのに対し、この参考例1で用いた追記型光記録媒体では、記録部の再生信号波形が変化するためにジッタ等の記録再生特性が悪化することが容易に理解される。
【0041】
参考例2
次に、参考例1で、再生信号が微分波形化する原因を明らかにするため、下記の条件でシュミレ−ションを行った。
基板/SiC(厚さ10nm)という層構成で、約8T(2.0λ)のマーク長を有する記録マーク(Pitを仮定。図7を参照)を形成し、この記録マークについて
i)記録位置(Land or Groove)
ii)空隙の有り無し([No Bubble] or [Bubble])
を変えて、基板側からレーザ光を走査して再生した場合に、どのような再生信号が得られるかを計算した。
基板の溝形状は、(A,B,C,D,ζ)=(0.2,1.0525,1.2525,1.8525,0.1375)とし、(記録マーク長さ,記録マーク幅,高さ)=(2.0λ,0.8525λ,−0.3λ)とした(数字は波長λを単位としたものである。また記録マークの高さのマイナス表示は、記録部がPitを形成すること、即ち変形が基板側から遠ざかる方向に生じることを意味する)。また、空隙の有り無しは、図8のような状態を指し、図8(a)のような記録状態を空隙なし、図8(b)のような記録状態を空隙ありと定めた。
図9は、ランド部にPitが形成された記録部を基板側から再生した場合の結果を、図10は、グル−ブ部にPitが形成された記録部を基板側から再生した場合の結果を示す図である。
なお、図10の凡例で(N)の表示は、変形領域の幅が0.8525λの場合、(W)の表示は変形領域の幅が1.8525λの場合を示す。
その結果(図9〜図10参照)、光吸収層と基板の間、或いは基板内に空隙が発生すると微分波形化が起こる可能性があることが証明された。
【0042】
参考例3
参考例2のシュミレ−ションによって、記録再生特性の悪化の原因は、基板と光吸収層間、或いは基板内に発生する空隙の可能性があることが証明された。
そこで、本参考例では、実際に空隙が発生する場所とメカニズムを明確にするため、基板/SiC(厚さ15nm)/化1で示される化合物のCo金属錯体/Ag反射層(厚さ150nm)/保護層という追記型光記録媒体を作成し、グル−ブ部に下記の条件で記録を行った。

Figure 2004213774
【化1】
Figure 2004213774
なお、この記録において、6Tは記録極性がLow to Highであり、14Tは記録極性がHigh to Lowであった。
また、記録マークが14Tの場合は、その記録部の信号振幅(変調度に相当)が、6Tの2倍程度あった。
【0043】
次いで、この光記録媒体をFIB(Focused Ion Beam=集束イオンビーム加工装置)でトラック方向、又は半径方向に切断し、記録部をFE−SEM(電界放射型走査電子顕微鏡)又はTEM(透過電子顕微鏡)で観察した。
その結果、図11(FIBでトラック方向に切断しFE−SEMで観察した図)に示すように、記録マーク長が6Tの場合は、記録部がSiC層の基板側への変形、及び色素層の状態変化によって記録部が形成されていることが確認できた。
一方、記録マーク長が14Tの場合には、記録マーク長が6Tの場合と比べて記録極性が反転し、変調度が急増した記録部には、図12〜13に示すように、基板内に空隙が発生していることが確認できた(マーク長が6Tの場合には、基板内に空隙が発生していなかった)。即ち、記録再生特性の悪化の原因は、基板内に発生する空隙であることが確認された。
なお、図12はFIBで半径方向に切断しTEMで観察した(写真)であり、図13は同様の観察を行った(写真)の拡大図である(図13のTEM写真は、それぞれ切断位置が異なる4枚の写真を並べて示してある。)。
更に、上記実験ではマーク長の違いによって記録極性が異なる例を示したが、記録パワーが低い時と高い時でも同様の現象(高記録パワー時には基板内に空隙が発生する)が起ることを確認した。
【0044】
実施例1
溝深さ50nmの案内溝を有するポリカーボネート基板上に、空隙抑制層としてZnS−SiOを厚さ65nm、光吸収機能を有する層としてSiCを厚さ10nm、有機化合物からなる記録層としてDVD−Rに利用できる前記化1で示される化合物のCo金属錯体層(色素層)を厚さ約60nm、Ag反射層を厚さ約100nm、紫外線硬化型樹脂からなる保護層を順次積層して追記型光記録媒体を作成した。
この光記録媒体に対し、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、基板側からレーザ光を照射し、グル−ブ部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、本実施例で使用した評価装置が設定できる記録パワ−範囲内において、記録極性がLow to Highで単一化され、図14に示すような、良好なジッタ特性と変調度を得ることができた。
【0045】
比較例1
基板/SiC(厚さ10nm)/化1で示される化合物のCo金属錯体(厚さ約60nm)/Ag反射層(厚さ150nm)/保護層という構成の追記型光記録媒体を作成し、下記の条件で記録を行った(実施例1において、空隙抑制層がない場合)。
Figure 2004213774
その結果は図15に示す通りで、記録パワー約9.0mWでジッタ11.6%という良好な記録を行うことができたが、本比較例で使用した評価装置が設定できる記録パワーの範囲内において、記録極性の変化が見られ(10.5mw近傍で記録極性がLow to HighからHigh to Lowに変わる)、ジッタの記録パワーマージンが非常に狭くなったことが確認できた。
この光記録媒体に、改めて記録パワー8.0mWで6Tマーク及び14Tマークを記録し、参考例3と同様に、この光記録媒体をFIBで半径方向に切断し、記録部をTEMで観察した。
その結果、記録パワー8.0mWによる記録部では、基板内に空隙が発生していないことが確認できた。また、記録再生時にトラッキングエラ−(トラック外れ)を生じることがなかった。
一方、図12〜13のように基板内に空隙が発生するような記録パワー、即ち記録パワー9.5mW以上による記録では、ジッタが15.0%を下回らなかった。また、9.5mW程度以上の記録パワーでは、記録パワーの増加と伴に、記録再生時のトラッキングエラ−(トラック外れ)を起す割合が増加した。
【0046】
実施例2
溝深さ50nmの案内溝を有するポリカーボネート基板上に、空隙抑制層としてZrOを厚さ35nm、光吸収機能を有する層としてSiを厚さ15nm、有機化合物からなる記録層としてDVD−Rに利用できる前記化1で示される化合物のCo金属錯体層(色素層)を厚さ約60nm、Ag反射層を厚さ約100nm、紫外線硬化型樹脂からなる保護層を順次積層した追記型光記録媒体を作成した。
この光記録媒体に対し、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、基板側からレーザ光を照射し、グル−ブ部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、本実施例で使用した評価装置が設定できる記録パワ−範囲内において、記録極性がLow to Highで単一化され、図16に示すような、良好なジッタ特性と変調度を得ることができた。
【0047】
以上の参考例及び実施例の結果から、本発明の「基板又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有し、基板内又はカバー層内に空隙部を形成させずに記録部を形成した追記型光記録媒体」が、良好な記録再生特性を得る上で、非常に重要であることが裏付けられた。
なお、上記実施例の記録再生特性は一例を示すものであって、例えば記録極性をLow to Highに限定するものではない。
【0048】
実施例3
図11〜13の観察の結果、基板内に空隙が発生し易いのは長マークであり、3T〜4Tのような短い記録マークには空隙が発生し難いことが確認できた。
そこで、図15(a)に示すような記録ストラテジにおいて、長マークになるほどTEMPを0.02(T)ずつ小さくする設定を用い、長マークの温度を必要以上に上昇させない(基板内に空隙が発生しない温度以下にする)ようにし、比較例1で作成したものと同じ構成の追記型光記録媒体に記録を行った。
その結果、通常の記録ストラテジ〔図17(a)において、記録マーク長に拘わらずTEMPを固定〕では、約9.5mW程度で、14Tマークに基板内空隙が観測されたが、本実施例での記録ストラテジを用いることにより、約9.5mW程度で記録を行っても14Tマークに基板内空隙は観測されなかった。
即ち、本実施例で適用した記録ストラテジを用いることで、記録パワーを増加していっても、長マークに発生し易い空隙の発生を抑制できるため、良好なジッタ特性(ジッタの記録パワーマージンの拡大)が得られた。
なお、本実施例で用いた記録ストラテジ以外に、例えば次のイ)〜リ)などの設定でも、同様の効果を発揮する。
・図17(a)において、
イ)長マークほどTELPを小さくする。
ロ)長マークほどTEFPを小さくする。
ハ)長マークほどPw1又はPw2を低くする。
・図17(b)において、
ニ)長マークほどPw1又はPw2を小さくする。
ホ)長マークほどTEFPを小さくする。
・図17(c)において、
ヘ)長マークほどPw1又はPw2を小さくする。
ト)長マークほどTEFPを小さくする。
チ)長マークほどTELPを小さくする。
リ)長マークほどTSLPを大きくする。
なお、本発明で有効な記録ストラテジの設定は、本実施例で説明したものに限定されるものではない。
【0049】
上記参考例及び実施例では、光吸収層が基板と接する場合を取り上げたが、カバー層の場合も、基本的に基板と材料が同一であるため、カバー層と光吸収層が接する場合も同様である。
なお、本発明は、基板又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有する追記型光記録媒体の記録再生特性の改善を図る一つの有効な方法を示したものであって、基板内の空隙の発生がある追記型光記録媒体を否定するものではない。
また、記録極性は、色素層や光吸収層の光学定数や膜厚、光吸収層の変形形態、或いは基板の溝深さ等の形状などに依存するため、実施例における構造の追記型光記録媒体の記録極性を限定するものではない。
【0050】
【発明の効果】
本発明の追記型光記録媒体とその記録方法によって、記録再生特性を悪化させる基板内又はカバー層内の空隙発生を抑制することが可能となるため、良好な記録再生特性、及び良好なトラッキング特性が得られる短波長レーザ対応の追記型光記録媒体とその記録方法を提供できる。
【図面の簡単な説明】
【図1】従来のディスクの層構成を示す図。
【図2】マーク長記録の記録マークを再生した場合の再生信号の波形を説明する図。
(a) 一般的な場合
(b) 記録マークの前後エッジ近傍で変極点を持つ微分波形
(c) 記録マークの中心近傍で変極点を持つ微分波形
【図3】参考例1−Aの記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図4】参考例1−Bの記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図5】参考例1−Cの記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図6】参考例1−Dの記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図7】Pitが形成された状態における溝パラメータの説明図。
【図8】空隙の有り無しの記録状態を説明するための図。
(a) 空隙無しの記録状態
(b) 空隙有りの記録状態
【図9】参考例2において、ランド部にPitが形成された記録部を基板側から再生した場合の結果を示す図。
【図10】参考例2において、グル−ブ部にPitが形成された記録部を基板側から再生した場合の結果を示す図。
【図11】参考例3の記録マーク長が6Tの場合について、光記録媒体をFIBでトラック方向に切断しFE−SEMで観察した図。
(a)記録部を観察した図
(b)未記録部を観察した図
【図12】参考例3の記録マーク長が14Tの場合について、光記録媒体をFIBで半径方向に切断しFE−SEMで観察した図。
【図13】参考例3の記録マーク長が14Tの場合について、光記録媒体をFIBでトラック方向に切断しFE−SEMで観察した図。
【図14】実施例1の光記録媒体に記録を行った場合のジッタ、及びスペース部とマーク部の再生信号レベルを示す図。
【図15】比較例1の光記録媒体に記録を行った場合のジッタ、及びスペース部とマーク部の再生信号レベルを示す図。
【図16】実施例2の光記録媒体に記録を行った場合のジッタ、及びスペース部とマーク部の再生信号レベルを示す図。
【図17】参考例3で用いた記録ストラテジを示す図。
(a) 通常の記録ストラテジ
(b) 他の記録ストラテジ
(c) 更に他の記録ストラテジ
【符号の説明】
Mark Length マーク長
T 基準クロック
RF Lebel(V) RF(再生信号)レベル(ボルト)
Modulated amplitude 変調度
Unrec 未記録時の再生信号(RF)レベル
Top マーク列を記録した時の最大再生信号レベル(即ちスペース部)
Bottom マーク列を記録した時の最小再生信号レベル(即ちマーク部)
MA. (Top−Bottom)/Topで計算される変調度
Time0.5(μs/div) 時間(1メモリ0.5マイクロ秒)
A 基準点から隣接するランド又はグルーブの近い方の端部までの幅
B 基準点から隣接するランド又はグルーブの遠い方の端部までの幅
C 基準点から次のグルーブ又はランドの近い方の端部までの幅
D 基準点から次のグルーブ又はランドの遠い方の端部までの幅
ζ グルーブ底部からランド上面までの高さ
Pit レーザ光の入射方向とは逆に変形した記録マーク
Bump レーザ光の入射方向に変形した記録マーク
Sum 和信号(再生信号)
Beam Position(μm) ビーム位置(マーク中心からのビーム中心のズレ量)
From Sub,Land 基板側からランド記録
From Sub,Groove 基板側からグルーブ記録
No Bubble 空隙無し
Bubble 空隙有り
(N) 変形領域の幅が0.8525λの場合
(W) 変形領域の幅が1.8525λの場合
σ/Tw ジッタ
Pw1 記録パワー
Pw2 ボトムパワー
Pr バイアスパワー
TEFP 基準時間から先頭パルス立下り時間までの時間
TSFP 基準時間から先頭パルス立上り時間までの時間
TEMP 基準時間からマルチパルス立下り時間までの時間
TSMP 基準時間からマルチパルス立上り時間までの時間
TELP 基準時間から最終パルス立下り時間までの時間
TSLP 基準時間から最終パルス立上り時間までの時間[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a write-once read-many (WORM) optical recording medium, and more particularly to a write-once optical recording medium capable of high-density recording even with a blue laser wavelength.
[0002]
[Prior art]
The development of a blue laser capable of recording at a very high density is progressing rapidly, and a write-once optical recording medium corresponding to the development is being developed.
In conventional write-once optical recording media, recording pits are formed by irradiating a laser beam to a recording layer made of an organic material and causing a change in refractive index mainly due to decomposition and alteration of the organic material. The optical constants and decomposition behavior of the organic materials used are important factors for forming good recording pits.
Therefore, it is necessary to select an appropriate material having an optical property and a decomposition behavior with respect to a blue laser wavelength as the organic material used for the recording layer. In other words, the recording / reproducing wavelength is set to a large absorption band in order to increase the reflectance at the time of non-recording and to cause the organic material to be decomposed by laser irradiation to cause a large change in the refractive index (this provides a large degree of modulation). It is selected so as to be located on the long wavelength side skirt.
This is because the bottom of the large absorption band of the organic material on the long wavelength side is a wavelength region having an appropriate absorption coefficient and obtaining a large refractive index.
However, an organic material having optical properties with respect to the wavelength of a blue laser having a value comparable to that of a conventional blue laser has not yet been found. This means that in order to obtain an organic material having an absorption band near the blue laser wavelength, it is necessary to reduce the molecular skeleton or shorten the conjugated system, but this causes a decrease in the absorption coefficient, that is, a decrease in the refractive index. That's why.
That is, there are many organic materials having an absorption band near the blue laser wavelength, and the absorption coefficient can be controlled. However, since the organic material does not have a large refractive index, a large degree of modulation cannot be obtained.
[0003]
Patent Documents 1 to 5 disclose organic materials corresponding to a blue laser, for example. However, these documents only measure the spectra of the solution and the thin film in the examples, but do not describe recording and reproduction.
In Patent Documents 6 to 8, although recording is described in Examples, the recording wavelength is 488 nm, and there is no description on recording conditions or recording density, only that a good recording pit was formed. It is.
In Patent Document 9, although recording is described in Examples, the recording wavelength is 430 nm, and there is no description about recording conditions or recording density, but only a statement that a good degree of modulation was obtained. .
Patent Documents 10 to 19 include examples in which recording is performed at a recording wavelength of 430 nm and an NA of 0.65 in Examples, but the recording density is as low as 0.4 μm (the recording density is equivalent to that of DVD).
Patent Document 20 describes recording at a recording / reproducing wavelength of 405 to 408 nm, but does not specifically describe the recording density, and has a low recording density condition of recording a 14T-EFM signal.
[0004]
Further, regarding the layer configuration and recording method different from those of the conventional CD and DVD optical recording media, the following techniques are disclosed.
Patent Document 21 discloses a technique in which recording is performed by changing the extinction coefficient (absorption coefficient in the present invention) of a saturable absorbing dye with a layer structure of a substrate / a saturable absorbing dye-containing layer / a reflective layer. .
Patent Document 22 discloses a technique of performing recording by discoloring or deforming a metal vapor deposition layer by heat generated by the light absorption layer in a layer configuration of a substrate / metal vapor deposition layer / light absorbing layer / protective sheet. I have.
Patent Document 23 discloses a technique in which recording is performed by changing the depth of a groove portion by changing the film thickness of a recording layer in a layer configuration of a substrate / dielectric layer / recording layer including a light absorber / reflection layer. ing.
Patent Document 24 discloses a technique of performing recording by changing the thickness of the recording layer by 10 to 30% with a layer configuration of a substrate / a recording layer including a light absorber / a metal reflection layer.
[0005]
Patent Document 25 discloses a technique of performing recording by increasing the groove width of a substrate by 20 to 40% with respect to an unrecorded portion with a layer configuration of a substrate / a recording layer containing an organic dye / a metal reflective layer / a protective layer. Is disclosed.
Patent Document 26 discloses a technique in which recording is performed by forming a bubble by deforming a metal thin film in a layer configuration of a substrate / intermediate layer / metal thin film.
In Patent Document 27, the recording auxiliary layer is deformed into a concave shape, and the light reflecting layer is deformed into a concave shape along with the deformation of the recording auxiliary layer, with a layer configuration of a substrate / a light absorbing layer / a recording auxiliary layer / a light reflecting layer. Accordingly, a technique for performing recording is disclosed.
Patent Document 28 discloses that a recording auxiliary layer is composed of a substrate / a light absorbing layer / a porous recording auxiliary layer / a light reflecting layer, or a substrate / a porous recording auxiliary layer / a light absorbing layer / a light reflecting layer. There is disclosed a technique for performing recording by deforming the light reflection layer in a concave shape along with the deformation of the recording auxiliary layer while deforming the recording auxiliary layer in a concave shape.
Patent Document 29 discloses that a light absorbing layer is concavely deformed and a light reflecting layer is concavely deformed along with the deformation of the light absorbing layer with a layer structure of a substrate / a porous light absorbing layer / a light reflecting layer. Discloses a technique for performing recording.
[0006]
Japanese Patent Application Laid-Open No. H11-163,199 discloses a recording medium having a layer structure of a substrate, a recording layer containing an organic dye, and a recording auxiliary layer, in which the recording auxiliary layer and the organic dye are compatible and the absorption spectrum of the organic dye is shifted to a shorter wavelength side. A technique for performing the above is disclosed.
Patent Literature 31 discloses a technology in which recording is performed by forming a bump between the substrate and the composite functional layer in a layer configuration in which a composite functional layer having a function of a reflective layer and a recording layer and a protective layer are sequentially formed on the substrate. Have been. Note that there is a provision that a metal such as nickel, chromium, or titanium, or an alloy thereof is used for the composite functional layer.
Patent Literature 32 discloses a layer configuration in which a metal thin film layer, a deformable buffer layer, a reflective layer, and a protective layer are sequentially formed on a substrate. The substrate and the metal thin film layer are deformed, and at the same time, the buffer layer film in the deformed portion is formed. A technique for performing recording by reducing the thickness is disclosed. Note that there is a provision that a metal such as nickel, chromium, or titanium, or an alloy thereof is used for the metal thin film layer. Further, it is described that a resin which is easily deformed and has an appropriate fluidity is used for the buffer layer, and a dye may be contained in the buffer layer to promote the deformation.
[0007]
Patent Literature 33 discloses a layer configuration in which a metal thin film layer, a buffer layer, and a reflection layer are sequentially laminated on a substrate. The substrate and the metal thin film layer are deformed, and at the same time, the buffer layer thickness and the optical constant in the deformed portion are determined. There is disclosed a technique of performing recording by changing. Note that the metal thin film layer is preferably made of a metal such as nickel, chromium, and titanium, or an alloy thereof. The buffer layer is composed of a mixture of a dye and an organic polymer, and a dye having a large absorption band near the recording / reproducing wavelength is used.
Patent Document 34 discloses a layer configuration in which a metal recording layer, a buffer layer, and a reflective layer are sequentially laminated on a substrate. The substrate and the metal recording layer are deformed, and at the same time, the buffer layer thickness and the optical constant in this deformed portion are determined. There is disclosed a technique for performing recording by changing. It is described that a metal such as nickel, chromium, and titanium, or an alloy thereof is preferable for the metal recording layer. The buffer layer is made of a mixture of a dye and a resin, and a dye having a large absorption band near the recording / reproducing wavelength is used.
[0008]
As described above, the above various prior arts do not aim at realizing a write-once optical recording medium in the blue laser wavelength region, and are not effective layer configurations and recording methods in the blue laser wavelength region. In particular, in the vicinity of 405 nm, which is the center of the oscillation wavelength of a blue semiconductor laser currently in practical use, almost all organic materials having an optical constant similar to the optical constant required for the recording layer of the conventional write-once optical recording medium are almost used. Almost no.
Further, there is no example in which recording conditions are clarified in the vicinity of 405 nm and recording is performed at a higher recording density than that of DVD.
Further, many of the examples in the above-mentioned conventional technology are experiments with a conventional disk configuration (see FIG. 1), and although a configuration different from the conventional disk configuration has been proposed, the dye used therein is The same optical characteristics and functions as in the past are required, and there is no effective proposal for a layer configuration, a recording principle, and a recording method that can easily realize a write-once optical recording medium made of an organic material in a blue laser wavelength region.
[0009]
In addition, in a conventional write-once optical recording medium using an organic material, a large refractive index and a relatively small absorption coefficient (approximately 0.05 to 0.07) with respect to the recording / reproducing wavelength are obtained from the viewpoint of securing the degree of modulation and reflectance. Only organic materials with a) can be used.
That is, since the organic material does not have a sufficient absorbing ability to the recording light, it is impossible to reduce the thickness of the organic material, and therefore, it is necessary to use a substrate having a deep groove. (Because the organic material is usually formed by spin coating, the organic material is buried in a deep groove to increase the film thickness.) Therefore, it is very difficult to form a substrate having a deep groove, which has been a factor of deteriorating the quality as a write-once optical recording medium. Further, in a conventional write-once optical recording medium using an organic material, the main absorption band of the organic material exists near the recording / reproducing wavelength, so that the wavelength dependence of the optical constant of the organic material increases (the optical constant depends on the wavelength). The problem is that the recording characteristics such as recording sensitivity, modulation degree, jitter, and error rate, and the reflectivity change significantly with respect to fluctuations in the recording / reproducing wavelength due to individual differences in lasers, changes in environmental temperature, etc. was there.
[0010]
In order to solve the above-mentioned problems, the present inventor has proposed, for example, in Japanese Patent Application No. 2002-144415 (hereinafter referred to as a prior application), the light absorption function conventionally required for a recording layer made of an organic compound. Considering the separation of the two functions of the recording function, the write-once type optical recording medium structure in which the light absorption function is removed from the recording layer made of an organic compound and a light absorption layer is newly introduced as a layer having the light absorption function is considered. Proposed.
In this write-once optical recording medium structure, since the light absorbing function is removed from the organic compound, and the deformation of the light absorbing layer can be used for recording, the regulation on the organic compound can be greatly eased, and the CD-R And the advantage that dyes used in DVDs and DVD-Rs can be used.
In one configuration example of the write-once type optical recording medium of the above-mentioned prior application proposed by the present inventors, that is, a light absorption layer having a light absorption function for recording light was provided on a substrate or adjacent to a cover layer. In a write-once optical recording medium having a structure, for example, the light absorption layer is deformed by recording, or the light absorption function of the light absorption layer causes the light absorption layer to physically move to the adjacent layer of the light absorption layer opposite to the substrate or the cover layer. Recording is performed by giving a chemical, optical, or other change.
However, in this write-once optical recording medium, good jitter characteristics (recording / reproducing characteristics) can be obtained at the time of recording at a low recording power, but jitter may suddenly deteriorate at the time of recording at a high recording power. Yes, it leads to narrowing the power margin of jitter. In addition, although there is a similar tendency in any type of optical recording medium, a phenomenon that tracking tends to be lost in a portion recorded with high recording power may occur.
[0011]
[Patent Document 1]
JP 2001-181524 A
[Patent Document 2]
JP 2001-158865 A
[Patent Document 3]
JP 2000-343824 A
[Patent Document 4]
JP 2000-343825 A
[Patent Document 5]
JP 2000-335110 A
[Patent Document 6]
JP-A-11-221964
[Patent Document 7]
JP-A-11-334206
[Patent Document 8]
JP 2000-43423 A
[Patent Document 9]
JP-A-11-58955
[Patent Document 10]
JP 2001-39034 A
[Patent Document 11]
JP-A-2000-149320
[Patent Document 12]
JP 2000-113504 A
[Patent Document 13]
JP 2000-108513 A
[Patent Document 14]
JP 2000-222772 A
[Patent Document 15]
JP 2000-218940 A
[Patent Document 16]
JP-A-2000-222771
[Patent Document 17]
JP 2000-158818 A
[Patent Document 18]
JP 2000-280621 A
[Patent Document 19]
JP 2000-280620 A
[Patent Document 20]
JP 2001-146074 A
[Patent Document 21]
JP-A-7-304258
[Patent Document 22]
JP-A-8-83439
[Patent Document 23]
JP-A-8-138245
[Patent Document 24]
JP-A-8-2977838
[Patent Document 25]
JP-A-9-198714
[Patent Document 26]
Japanese Patent No. 2506374
[Patent Document 27]
Japanese Patent No. 2591939
[Patent Document 28]
Japanese Patent No. 2591940
[Patent Document 29]
Japanese Patent No. 2591941
[Patent Document 30]
Japanese Patent No. 2982925
[Patent Document 31]
JP-A-9-265660
[Patent Document 32]
JP-A-10-134415
[Patent Document 33]
Japanese Patent Application Laid-Open No. H11-306591
[Patent Document 34]
JP-A-10-124926
[0012]
[Problems to be solved by the invention]
The present invention is a write-once optical recording medium having a structure in which a light absorption layer having a light absorption function for recording light is provided adjacent to a substrate or a cover layer by further developing the above-mentioned prior invention. It is intended to realize the following (1) to (3).
(1) To provide a write-once optical recording medium which eliminates a cause of deteriorating recording / reproducing characteristics and tracking performance.
(2) Providing a layer structure that suppresses deterioration of recording / reproducing characteristics and tracking performance.
(3) To provide a recording method in which deterioration of recording / reproducing characteristics and tracking performance is suppressed.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that a write-once optical recording medium having a structure in which a light absorption layer having a light absorption function for recording light is provided on a substrate or adjacent to a cover layer is generally used. Since the light absorbing layer having a large absorption coefficient is in contact with the substrate or the cover layer, as the recording power is increased, the light absorbing layer is deformed or becomes adjacent to the light absorbing layer opposite to the substrate or the cover layer. It has been found that voids may be generated in the substrate or the cover layer in addition to the physical, chemical, optical and other changes in the layer.
Although the air gap in the substrate or the cover layer has the effect of generating a large degree of modulation, it changes the recording polarity or differentiates the reproduction signal waveform within the settable recording power range of the laser. It has been found that the recording / reproducing characteristics may be degraded by causing a waveform or causing an imbalance in the modulation degree between the short mark and the long mark. In particular, it has been found that when the recording polarity is changed (when the recording polarities are mixed) in the settable recording power range of the laser, the jitter, the power margin of the jitter are deteriorated, and the modulation degree is reduced.
Accordingly, the present invention provides a write-once optical recording medium, a layer configuration, and a recording method that suppress generation of a void in a substrate or a cover layer, which often deteriorates recording / reproducing characteristics and tracking performance.
In general, in mark length recording, a reproduced signal (RF signal) when a recorded mark is reproduced is as shown in FIG. On the other hand, as shown in FIGS. 2B and 2C, a signal having an inflection point near the leading and trailing edges of the recording mark and near the center of the recording mark is referred to as a differential waveform (differential waveform) in the present invention. To tell.
[0014]
That is, the above problems are solved by the following inventions 1) to 9).
1) It has a structure in which a light absorbing layer having a light absorbing function for recording light is provided adjacent to a substrate or a cover layer, and the recording portion is formed without forming a void in the substrate or the cover layer. A write-once optical recording medium, which can be formed.
2) It has a structure in which a light absorbing layer having a light absorbing function for recording light, a recording layer made of an organic compound, and a reflective layer are provided on a substrate, and recording is performed without forming a gap in the substrate. A write-once optical recording medium characterized by forming a portion.
3) A gap suppressing layer for suppressing generation of a gap in the substrate or the cover layer due to recording and a light absorbing layer having a light absorbing function for recording light are sequentially provided adjacent to the substrate or the cover layer. A write-once optical recording medium having a structure.
4) On the substrate, a void suppressing layer for suppressing generation of voids in the substrate due to recording, a light absorbing layer having a light absorbing function for recording light, a recording layer made of an organic compound, and a reflective layer are sequentially provided. A write-once optical recording medium characterized by having a given structure.
5) The void suppressing layer is made of SiO 2 , ZnS-SiO 2 , ZrO 2 The write-once optical recording medium according to 3) or 4), wherein any of the above is a main component.
6) The void suppressing layer is made of ZnS, ZrO 2 , Y 2 O 3 And SiO 2 The write-once optical recording medium according to 3) or 4), which is an oxide comprising:
7) The void suppressing layer is made of ZrO 2 , TiO 2 , SiO 2 , And X, where X is Al 2 O 3 , MgO, CaO, NbO, Y 2 O 3 , CeO, or at least one selected from the group consisting of CeO and CeO.
8) A write-once optical recording medium characterized in that recording is performed on the write-once optical recording medium according to any one of 1) to 7) in a range of a recording power in which a void is not formed in a substrate or a cover layer. Media recording method.
9) A write-once optical recording medium according to any one of 1) to 7), wherein recording is performed by a recording strategy in which no void is formed in the substrate or the cover layer. Recording method.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In a write-once optical recording medium having a structure in which a light absorbing layer having a light absorbing function for recording light is provided adjacent to a substrate or a cover layer, when the recording power is increased, the light absorbing layer Deformation or a change in physical, chemical, optical, etc. of the layer adjacent to the light absorbing layer opposite to the substrate or the cover layer occurs.
For example, in a specific example, in a write-once optical recording medium having a configuration of a substrate / light absorbing layer / dye layer / reflective layer, due to the light absorbing function of the light absorbing layer, the following a) to h) are possible. And a recording portion is formed.
B) The light absorption layer is deformed
B) The complex refractive index of the light absorbing layer changes
C) the volume of the light absorbing layer changes
D) Low refractive index portions such as voids are generated in the light absorbing layer
E) The complex refractive index change of the dye layer changes
F) The pigment layer changes in volume
G) Low refractive index parts such as voids are generated in the dye layer
H) The substrate is deformed
[0016]
This write-once optical recording medium does not require the dye layer to have a light absorption function as in the past, so that the degree of freedom in dye selection is greatly expanded, and a write-once optical recording medium corresponding to a laser wavelength equal to or shorter than the blue laser wavelength is easily provided. There is an advantage that can be provided.
However, when the light absorption layer is hardly deformed, when the optical change of the light absorption layer is hardly generated, or when the optical change of the dye layer is hardly generated, the light absorption layer or the dye layer is used for recording. It is necessary to increase the recording power until an optical, chemical, or physical change occurs. At this time, if the substrate and the cover layer are in contact with the light absorbing layer, the substrate is heated more than necessary. In addition, voids may be generated in the substrate due to the excessive heating.
That is, at the time of low recording power, the light absorption function of the light absorption layer causes an optical, chemical, or physical change in the light absorption layer or the dye layer, thereby forming a recording portion. In addition to the optical, chemical, or physical change of the light absorbing layer and the dye layer, the substrate is heated more than necessary, so that the recording portion is formed by the generation of voids in the substrate.
[0017]
The generation of voids in the substrate is generally because the generated recording power range is largely different from the recording power range that causes optical, chemical, or physical changes in the light absorbing layer or the dye layer (in the substrate). The voids are generally generated at a higher recording power than the change in the light absorbing layer or the dye layer), causing deterioration of jitter and deterioration of the recording power margin of jitter.
In addition, since voids in the substrate are generally generated with a threshold value, they often cause a sudden change in the degree of modulation or a change in the recording polarity. Induces margin deterioration.
Furthermore, the formation of the voids in the substrate may cause the deformation of the light absorbing layer to become extremely large, disturb the deformed shape of the light absorbing layer, or significantly deform the groove shape of the substrate itself. And the tracking performance deteriorates. Therefore, in the present invention, the occurrence of voids in the substrate or the cover layer, which has a high possibility of deteriorating the tracking performance, changing the recording polarity, deteriorating the jitter, or narrowing the recording power margin of the jitter, is suppressed.
[0018]
As described above, voids in the substrate or the cover layer are likely to occur when the recording power is increased or in long marks.
Therefore, a phenomenon occurs in which the jitter rapidly deteriorates on the high recording power side (the recording power margin of the jitter rapidly deteriorates), the recording polarity changes depending on the recording mark length, and the amplitude largely changes depending on the recording mark length. I do.
Due to the phenomenon that the recording polarity changes depending on the recording mark length or the amplitude changes greatly depending on the recording mark length, good recording and reproduction characteristics can be obtained with a single-cycle recording mark. The characteristics may be poor.
Methods for suppressing the generation of voids in the substrate or the cover layer include the following a) to e).
B) A heat insulating layer (a gap suppressing layer) is provided between the substrate or the cover layer and the light absorbing layer.
B) A heat radiation layer (gap suppressing layer) is provided between the substrate or the cover layer and the light absorbing layer.
C) Control the recording power (recording is performed in the recording power range where no air gap occurs).
D) Controlling and optimizing the recording strategy (to prevent unnecessarily accumulating heat in long marks).
E) Control the decomposition characteristics of the substrate (select a material that does not generate voids).
[0019]
When a gap suppression layer is provided between the substrate or the cover layer and the light absorption layer, whether the gap suppression layer is a so-called heat insulation layer or a heat dissipation layer depends on the size of the light absorption function of the light absorption layer and the light absorption layer. Depends on the thermophysical properties such as thermal conductivity.
That is, when the light absorption function of the light absorption layer is relatively low, the heat generated in the light absorption layer is released by the heat radiation layer to prevent the recording sensitivity from being impaired (for recording at a low recording power), and the air gap in the substrate is reduced. It is more advantageous to suppress the generation of voids in the substrate by limiting the amount of heat transmitted to the substrate by the heat insulating layer than to suppress the generation of the heat generation.
Conversely, when the light absorption function of the light absorption layer is relatively high, it is also effective to release the heat generated in the light absorption layer by the heat radiation layer to suppress the generation of voids in the substrate.
Since controlling the recording power is controlling the amount of heat generated in the light absorbing layer, it is possible to directly control the generation of voids in the substrate.
Controlling the recording strategy also controls the amount of heat generated in the light absorbing layer, as in the case of the recording power. Therefore, the generation of voids in the substrate can be directly controlled. Further, when controlling the recording strategy, since the amount of heat generated in the light absorbing layer can be controlled for each recording mark length, it is possible to suppress the phenomenon that the presence or absence of voids in the substrate differs depending on the recording mark length.
Controlling the decomposition characteristics of the substrate means, for example, increasing the decomposition temperature of the substrate material. In the case of a polymer material, using a high-resolution polymer material or increasing the molecular weight (enhancing the degree of polymerization) That is, the generation of voids can be suppressed. It is also effective to use a glass material for the substrate.
[0020]
The write-once optical recording medium and the recording method thereof according to the present invention are, for example, a write-once optical recording medium having the following configuration (i) or (ii), or a two-layer write-once optical recording medium obtained by bonding two of them. Valid for media.
(I) Write-once optical recording medium for recording and reproducing from the substrate side
・ Substrate / light absorbing layer
・ Substrate / Light absorbing layer / Recording layer
・ Substrate / Light absorbing layer / Subbing layer / Recording layer
・ Substrate / light absorbing layer / recording layer / coating layer
・ Substrate / Light absorbing layer / Recording layer / Reflective layer
・ Substrate / Light absorbing layer / Subbing layer / Recording layer / Reflective layer
・ Substrate / light absorbing layer / recording layer / coating layer / reflective layer
・ Substrate / Light absorbing layer / Recording layer / Reflective layer / Protective layer
(Ii) Write-once optical recording medium for recording and reproducing from the cover layer side
・ Substrate / light absorbing layer / cover layer
・ Substrate / light absorbing layer / recording layer / cover layer
・ Substrate / light absorbing layer / recording layer / subbing layer / cover layer
・ Substrate / light absorbing layer / coating layer / recording layer / cover layer
・ Substrate / Reflective layer / Recording layer / Light absorbing layer / Cover layer
・ Substrate / reflective layer / recording layer / light absorbing layer / subbing layer / cover layer
・ Substrate / reflective layer / coating layer / recording layer / light absorbing layer / cover layer
As a preferred embodiment, in the write-once optical recording medium having the above structure, a gap suppressing layer is provided between the substrate and the light absorbing layer or between the cover layer and the light absorbing layer.
[0021]
As shown in the above configuration example, the write-once optical recording medium of the present invention basically has a substrate or a cover layer and a light absorption layer as essential constituent layers, but is provided with a void suppression layer. Preferably, a recording layer of an organic compound or the like, an undercoat layer, an overcoat layer, a metal reflective layer, a protective layer, and the like may be provided on the substrate as needed.
In the present invention, the recording layer refers to a layer that causes a change in optical constant, a chemical change, or a physical change. Specifically, it is a layer that causes a change in state such as change in complex refractive index, change in phase difference, decomposition, sublimation, aggregation, crystal state change, solubility change, structural change, volume change, formation of voids, etc., by recording. .
Similarly, an undercoat layer or an overcoat layer is formed by an interference layer for improving recording / reproducing characteristics, a protective layer at the time of film formation (for example, a film is formed on a film having solubility in a coating solvent by a spin coating method). In this case), a protective layer for maintaining the film state of an adjacent layer (improving the storage stability, etc.).
[0022]
The material of the substrate in the write-once optical recording medium of the present invention may be basically any material as long as it is transparent at the wavelength of recording light and reproduction light.
Examples of such materials include various resins such as acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (especially amorphous polyolefin), polyester resin, polystyrene resin, epoxy resin, glass, glass It is possible to use a resin layer formed of a radiation-curable resin such as a photo-curable resin on the top, but from the viewpoint of high productivity, cost, moisture absorption, etc., injection-molded polycarbonate is preferable. Amorphous polyolefin is preferred from the viewpoints of chemical resistance, resistance to moisture absorption, and the like, and a glass substrate is preferred from the viewpoint of high-speed response and no generation of voids.
Furthermore, a resin substrate or a resin layer may be provided in contact with the recording layer, and a guide groove or pit for recording / reproducing light may be provided on the resin substrate or the resin layer.
[0023]
Examples of the recording layer material include an organic material, and a dye is also preferable.
Dyes include metal-containing azo dyes, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium dyes, metal-containing indoaniline dyes, triarylmethane dyes, merocyanine dyes, and azulhenium dyes And naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, and pyrylium dyes.
In addition, the recording layer may be a transition metal chelate compound (eg, acetylacetonate chelate, bisphenyldithiol, salicylaldehyde oxime, bisdithio-α-diketone) as a singlet oxygen quencher to improve the stability and light resistance of the recording layer. And the like, and may contain a recording sensitivity improver such as a metal-based compound for improving the recording sensitivity.
Here, the metal compound refers to a compound in which a metal such as a transition metal is contained in the compound in the form of an atom, an ion, a cluster, or the like.For example, an ethylenediamine-based complex, an azomethine-based complex, a phenylhydroxyamine-based complex, a phenanthroline-based complex, Organometallic compounds such as dihydroxyazobenzene-based complexes, dioxime-based complexes, nitrosoaminophenol-based complexes, pyridyltriazine-based complexes, acetylacetonate-based complexes, metallocene-based complexes, and porphyrin-based complexes are exemplified. The metal atom is not particularly limited, but a transition metal is preferable.
[0024]
Further, if necessary, other types of dyes can be used in combination.
Further, a binder, a leveling agent, an antifoaming agent and the like can be used in combination as needed.
Preferred binders include polyvinyl alcohol, polyvinylpyrrolidone, nitrocellulose, cellulose acetate, ketone resin, acrylic resin, polystyrene resin, urethane resin, polyvinyl butyral, polycarbonate, polyolefin and the like.
The thickness of the recording layer is not particularly limited because the suitable thickness varies depending on the recording method and the like, but is usually 50 to 300 nm.
[0025]
Examples of the method for forming the recording layer include a commonly used thin film forming method such as a vacuum evaporation method, a sputtering method, a doctor blade method, a casting method, a spin coating method, and an immersion method.
Among them, the spin coating method is preferable in terms of mass productivity and cost, and the vacuum evaporation method is more preferable than the coating method in that a recording layer having a uniform thickness can be obtained.
In the case of film formation by spin coating, the number of revolutions is preferably 500 to 15000 rpm, and after spin coating, a treatment such as heating or exposure to a solvent vapor may be performed depending on the case.
When forming the recording layer by a coating method such as a doctor blade method, a casting method, a spin coating method, and a dipping method, the coating solvent is not particularly limited as long as it is a solvent that does not attack the substrate.
[0026]
For example, ketone alcohol solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone; cellosolve solvents such as methyl cellosolve and ethyl cellosolve; chain hydrocarbon solvents such as n-hexane and n-octane A cyclic hydrocarbon solvent such as cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane and cyclooctane; a perfluoroalkyl alcohol such as tetrafluoropropanol, octafluoropentanol and hexafluorobutanol Solvents such as hydroxycarboxylic acid ester solvents such as methyl lactate, ethyl lactate and methyl isobutyrate.
In addition to the above, a polymer material, a phase change material, a photochromic material, a thermochromic material, and the like can be preferably used as the recording layer material.
[0027]
As the material of the light absorbing layer, from the viewpoint of securing sufficient recording sensitivity, it is preferable to use a material having a somewhat large absorption coefficient with respect to the recording wavelength. 4 Carbide-based non-oxides such as C, TiC, WC, etc .; carbon-based non-oxides such as amorphous carbon, graphite, and diamond; ceramics represented by ferrite; or Te-TeO 2 , Te-TeO 2 -Pd, Sb 2 Se 3 / Bi 2 Te 3 , Ge-Te-Sb-S, Te-TeO 2 -Ge-Sn, Te-Ge-Sn-Au, Ge-Te-Sn, Sn-Se-Te, Sb-Se-Te, Sb-Se, Ga-Se-Te, Ga-Se-Te-Ge, In -Se, In-Se-Tl-Co, Ge-Sb-Te, In-Se-Te, Ag-In-Sb-Te, Ag-Zn, Cu-Al-Ni, In-Sb, In-Sb-Se , In-Sb-Te and other phase change recording materials, pure metals such as nickel, chromium, titanium, and tantalum; alloys such as copper / aluminum, nickel / iron; semimetals such as silicon; semiconductors such as Ge; It is possible.
Above all, it is preferable to use a material containing Si or Ge, and for example, Si, Ge, SiC or the like is mentioned as a preferable example.
The thickness of the light absorbing layer is usually from 5 to 150 nm.
[0028]
Examples of the material of the gap suppressing layer include Al 2 O 3 , MgO, BeO, ZrO 2 , TiO 2 , UO 2 , ThO 2 , CaO, NbO, Y 2 O 3 Oxides such as simple oxides and CeO; SiO 2 , 2MgO ・ SiO 2 , MgO / SiO 2 , CaO ・ SiO 3 , ZrO 2 ・ SiO 2 , 3Al 2 O 3 ・ 2SiO 2 2MgO.2Al 2 O 3 ・ 5SiO 2 , Li 2 O ・ Al 2 O 3 ・ 4SiO 2 Silicate-based oxides such as Al; 2 TiO 5 , MgAl 2 O 4 , Ca 10 (PO 4 ) 6 (OH) 2 , BaTiO 3 , LiNbO 3 , PZT [Pb (Zr, Ti) O 3 ], PLZT [(Pb, La) (Zr, Ti) O 3 ], Double oxide-based oxides such as ferrite; or Si 3 N 4 , Si 6-Z Al Z O Z N 8-Z , AlN, BN, TiN and other nitride-based non-oxides; SiC, B 4 Carbide-based non-oxide such as C, TiC, WC; LaB 6 , TiB 2 , ZrB 2 Boride-based non-oxides such as ZnS, CdS, and MoS 2 Sulfide-based non-oxide such as MoSi 2 For example, a silicide-based non-oxide such as amorphous carbon, graphite, and diamond, or a mixture thereof can be used.
From the viewpoint of transparency to recording / reproducing light and productivity, SiO 2 2 With Zn as the main component (main component) or ZnS.SiO 2 Is mainly used as a main component.
In order to obtain a sufficient heat insulating effect, ZrO 2 Is preferably the main component (main component).
Also, ZnS, ZrO 2 , Y 2 O 3 And SiO 2 Oxide or ZrO 2 , TiO 2 , SiO 2 , And X, where X is Al 2 O 3 , MgO, CaO, NbO, Y 2 O 3 , And CeO are preferred.
[0029]
On the recording layer, a reflection layer may be formed directly or via an overcoat layer, and the thickness thereof is preferably 50 to 300 nm.
As the material of the reflection layer, one having a sufficiently high reflectance at the wavelength of the reproduction light, for example, a metal selected from Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, Cr, and Pd alone or It can be used as an alloy. Among them, Au, Al, and Ag have high reflectance and are suitable as a material of the reflection layer.
Further, the above materials are used as main components, and Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Cu, Zn, Cd, Ga, In, Si, Ge, A material containing metal and semimetal such as Te, Pb, Po, Sn, and Bi may be used.
Among them, those containing Ag as a main component are particularly preferable because of their low cost and high reflectivity.
It is also possible to form a multilayer film by alternately stacking low-refractive-index thin films and high-refractive-index thin films with a material other than a metal and use it as a reflective layer.
Examples of the method for forming the reflective layer include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method.
[0030]
On the substrate or under the reflective layer, a known inorganic or organic undercoat layer, undercoat layer, or adhesive layer may be used to improve reflectance, improve recording characteristics, and improve adhesion. It can also be provided.
When imparting a light absorbing function to the upper coating layer or the lower coating layer, the same material as the above-described light absorbing layer material can be used. When using an undercoat layer or an undercoat layer as a mechanical protection, storage stability improvement, solvent resistance, or interference layer, use the same material as the above-described void suppression layer material. Can be.
The material of the protective layer formed on the reflective layer is not particularly limited as long as it protects the reflective layer from an external force.As the organic material, a thermoplastic resin, a thermosetting resin, an electron beam curable resin, UV curable resins and the like can be mentioned. Further, as the inorganic material, SiO 2 2 , SiN 4 , MgF 2 , SnO 2 And the like.
A thermoplastic resin, a thermosetting resin, or the like can be formed by dissolving in a suitable solvent, applying a coating solution, and drying.
The UV-curable resin can be formed by preparing a coating solution as it is or by dissolving it in an appropriate solvent, applying the coating solution, and irradiating with UV light to cure the resin. As the UV-curable resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, and polyester acrylate can be used.
[0031]
These materials may be used alone or as a mixture, or may be used as a multilayer film instead of a single layer.
As a method of forming the protective layer, a coating method such as a spin coating method or a casting method, a sputtering method, a chemical vapor deposition method, or the like is used as in the case of the recording layer. Among them, the spin coating method is preferable.
The thickness of the protective layer is generally in the range of 0.1 to 100 μm, but is preferably 3 to 30 μm in the present invention.
In addition, a substrate may be further bonded to the reflective layer surface, or a structure in which two write-once optical recording media are bonded to each other with the reflective layer surfaces facing each other as inner surfaces.
On the mirror surface of the substrate, an ultraviolet curable resin layer, an inorganic thin film, or the like may be formed to protect the surface and prevent adhesion of dust and the like.
[0032]
The cover layer is required when a high NA lens is used to achieve high density.
For example, when the NA is increased, it is necessary to reduce the thickness of a portion through which the reproduction light is transmitted.
This is due to the angle (the so-called tilt angle, which is proportional to the square of the product of the reciprocal of the wavelength of the light source and the numerical aperture of the objective lens) in which the disk surface deviates from the perpendicular to the optical axis of the optical pickup with the increase in NA. This is because the allowable amount of the generated aberration is small, and the tilt angle is easily affected by the aberration due to the thickness of the substrate.
Therefore, the influence of the aberration on the tilt angle is made as small as possible by reducing the thickness of the substrate.
Therefore, for example, a recording layer is formed by forming irregularities on a substrate, a reflective film is provided thereon, and a light-transmitting cover layer, which is a thin film that transmits light, is further provided thereon. A write-once type optical recording medium such as reproducing information on a recording layer by irradiating a recording medium, a reflective film provided on a substrate, a recording film formed thereon to form a recording layer, and further having a light transmitting property thereon There has been proposed a write-once type optical recording medium in which a cover layer is provided and information on the recording layer is reproduced by irradiating reproduction light from the cover layer side.
[0033]
With this configuration, it is possible to cope with an increase in the NA of the objective lens by reducing the thickness of the cover layer. That is, by providing a thin cover layer and performing recording and reproduction from the cover layer side, it is possible to further increase the recording density.
Note that such a cover layer is generally formed of a polycarbonate sheet or an ultraviolet curable resin.
Further, the cover layer referred to in the present invention may include a layer for bonding the cover layer.
The wavelength of the laser beam used in the write-once optical recording medium of the present invention is preferably as short as possible for performing high-density recording, but is more preferably in the range of 350 to 530 nm. A typical example of such laser light is a laser light having a center wavelength of 405 nm.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Reference Examples, but the present invention is not limited to these Examples.
[0035]
Reference Example 1
First, a write-once optical recording medium in which SiC was provided on the substrate as a light absorbing layer with a thickness of 10 nm was prepared, and recording / reproducing characteristics from the substrate side were evaluated.
3 to 6 show the recording results of Reference Examples 1-A to 1-D.
FIGS. 3A to 6A are diagrams showing the measurement results of the recording mark length (Mark Length) dependence of the reproduction signals (RF levels) in Reference Examples 1-A to 1-D. Among them, Unrec is a reproduction signal (RF level) when recording is not performed, Top is a maximum reproduction signal level (generally a space portion) when recording a mark row, and Bottom is a minimum reproduction signal level when recording a mark row. The reproduction signal level MA indicates a modulation degree calculated by (Top-Bottom) / Top.
FIGS. 3B to 6B show a reproduced signal when a 3T mark is continuously recorded and a reproduced signal when a 4T mark is continuously recorded and a reproduced signal when not recorded. 3 (c) to 6 (c) show the reproduction signal when the 6T mark is continuously recorded, the reproduction signal when the 8T mark is continuously recorded, and the reproduction when the recording is not performed. FIG. 3D to FIG. 6D show the signal levels of the reproduced signal when the 3T mark is continuously recorded, the reproduced signal when the 14T mark is continuously recorded, and the unrecorded signal. The reproduction signal level is shown.
[0036]
<Reference Example 1-A>
A write-once optical recording medium having a 10 nm-thick SiC layer as a deformable layer having a light absorption function was formed on a polycarbonate substrate having a guide groove with a groove depth of 55 nm. The optical recording medium was irradiated with a 5.0 mW laser beam from the substrate side using a DUT-1000 (wavelength: 405 nm, NA: 0.65) optical disk evaluation device manufactured by Pulstec Industrial to produce a groove portion. At a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s, 3T to 14T marks were recorded independently (at the groove position on the near side when viewed from the incident laser beam side).
It was confirmed by AFM (atomic force microscope) that the SiC layer was deformed on the side opposite to the incident light (opposite the substrate).
Also, from the results of FIG. 3A, it can be confirmed that High to Low recording may be performed regardless of the recording mark length.
Furthermore, from the results of FIGS. 3B to 3D, it can be seen that all of the 3T, 4T, 6T, 8T, and 14T show a reproduction signal waveform that allows mark length recording.
[0037]
<Reference Example 1-B>
Except that the recording power was changed to 6.0 mW, the same experiment as in Reference Example 1-A was performed.
It was confirmed by AFM that the SiC layer was deformed on the side opposite to the incident light (opposite the substrate).
Also, from the result of FIG. 4A, the recording polarity changes depending on the recording mark length, that is, high-to-low recording is performed for a short mark, but high-to-low recording and low-to-high recording are mixed for a long mark. It can be seen that such a signal is generated and it becomes difficult to record the mark length.
Further, from the results of FIGS. 4B to 4D, 3T and 4T show the reproduction signal waveforms that can be recorded with the mark length, but the 6T, 8T, and 14T greatly increase the RF level at the center of the mark. 5 shows a reproduction signal waveform [at 6T and 8T, the period of the reproduction signal looks twice as long as the original reproduction signal. This can be clearly understood in comparison with FIG. 3 (c)]. It can be seen that mark length recording becomes difficult.
[0038]
<Reference example 1-C>
The same experiment as in Reference Example 1-A was performed except that the laser beam of 6.0 mW was irradiated from the substrate side and recorded on the land (groove position on the back side as viewed from the incident laser beam side). .
It was confirmed by AFM that the SiC layer was deformed on the side opposite to the incident light (opposite the substrate).
Also, from the results of FIG. 5A, although slightly, the recording polarity tends to change depending on the recording mark length, that is, high-to-low recording is performed for a short mark, but high-to-low recording and low-to-low recording is performed for a long mark. There is a tendency for signals to be generated in which High recording is mixed, which indicates that mark length recording may be difficult.
Further, from the results of FIGS. 5B to 5D, 3T, 4T, 6T, and 8T indicate reproduction signal waveforms that allow recording of a mark length, but 14T significantly increases the RF level at the center of the mark. This shows that the reproduced signal waveform becomes difficult to record the mark length.
[0039]
<Reference Example 1-D>
The same experiment as in Reference Example 1-A was performed except that a 7.0 mW laser beam was irradiated from the substrate side and recording was performed on a land portion (a groove position on the back side as viewed from the incident laser beam side). .
It was confirmed by AFM that the SiC layer was deformed on the side opposite to the incident light (opposite the substrate).
In addition, from the result of FIG. 6A, the recording polarity changes depending on the recording mark length, that is, high-to-low recording is performed for a short mark, but high-to-low recording and low-to-high recording are mixed for a long mark. It can be seen that such a signal is generated and it becomes difficult to record the mark length.
Further, from the results of FIGS. 6B to 6D, 3T and 4T show reproduction signal waveforms that can be recorded with a mark length, but 6T, 8T, and 14T show a large increase in the RF level at the center of the mark. [For example, at 6T, the period of the reproduced signal looks twice as long as the original reproduced signal. This can be clearly understood in comparison with FIG. 3 (c)]. It can be seen that mark length recording becomes difficult.
[0040]
As described above, from the results of Reference Examples 1-A to 1-D, in the write-once optical recording medium provided with the SiC layer on the substrate, a reproduction signal of High to Low polarity is obtained at low recording power. When the power is increased, a so-called differential waveform is formed as if the central portion of the recording mark is raised, and it can be seen that the recording polarity looks as if it were Low to High in the recording with a higher recording power. Was. Further, it was confirmed that the degree of the differential waveform formation was different depending on the recording mark length, and that the differential mark was very easily generated in a long mark.
As described above, the reflectivity of the recording mark portion usually changes in one direction with an increase in the recording power. On the other hand, in the write-once optical recording medium used in Reference Example 1, the reproduction of the recording portion is performed. It is easily understood that the recording / reproducing characteristics such as jitter deteriorate due to the change in the signal waveform.
[0041]
Reference Example 2
Next, in Reference Example 1, a simulation was performed under the following conditions in order to clarify the cause of the differential waveform of the reproduced signal.
A recording mark (assuming Pit; see FIG. 7) having a mark length of about 8T (2.0λ) is formed in a layer configuration of substrate / SiC (thickness: 10 nm).
i) Recording position (Land or Groove)
ii) With or without voids ([No Bubble] or [Bubble])
Was changed, and what kind of reproduced signal was obtained when reproducing by scanning with a laser beam from the substrate side was calculated.
The groove shape of the substrate is (A, B, C, D, ζ) = (0.2, 1.0525, 1.2525, 1.8525, 0.1375), and (recording mark length, recording mark width). , Height) = (2.0λ, 0.8525λ, −0.3λ) (the numbers are in units of wavelength λ. The minus sign of the height of the recording mark indicates that the recording unit indicates the Pit. Forming, that is, deformation occurs in a direction away from the substrate side). The presence or absence of a gap refers to the state as shown in FIG. 8, and the recording state as shown in FIG. 8A is defined as having no gap, and the recording state as shown in FIG. 8B is defined as having a gap.
FIG. 9 shows the result when the recording portion having the pit formed on the land portion is reproduced from the substrate side, and FIG. 10 shows the result when the recording portion having the pit formed on the groove portion is reproduced from the substrate side. FIG.
In the legend of FIG. 10, (N) indicates the case where the width of the deformation region is 0.8525λ, and (W) indicates the case where the width of the deformation region is 1.8525λ.
As a result (see FIGS. 9 and 10), it has been proved that a gap may be generated between the light absorbing layer and the substrate or in the substrate, which may cause a differential waveform.
[0042]
Reference Example 3
According to the simulation of Reference Example 2, it was proved that the cause of the deterioration of the recording / reproducing characteristics was a void generated between the substrate and the light absorbing layer or in the substrate.
Therefore, in this reference example, in order to clarify the location and mechanism of the actual generation of voids, the substrate / SiC (thickness: 15 nm) / Co metal complex of the compound represented by Chemical Formula 1 / Ag reflection layer (thickness: 150 nm) A write-once optical recording medium called a protective layer was formed, and recording was performed in the groove portion under the following conditions.
Figure 2004213774
Embedded image
Figure 2004213774
In this recording, the recording polarity was Low to High for 6T, and the recording polarity was High to Low for 14T.
When the recording mark was 14T, the signal amplitude (corresponding to the modulation factor) of the recording portion was about twice as large as 6T.
[0043]
Next, this optical recording medium is cut in a track direction or a radial direction by an FIB (Focused Ion Beam = focused ion beam processing apparatus), and the recording portion is FE-SEM (field emission scanning electron microscope) or TEM (transmission electron microscope). ).
As a result, as shown in FIG. 11 (a figure cut in the track direction by FIB and observed by FE-SEM), when the recording mark length is 6T, the recording portion is deformed to the substrate side of the SiC layer and the dye layer It was confirmed that the recording portion was formed by the change in the state.
On the other hand, when the recording mark length is 14T, the recording polarity is inverted as compared with the case where the recording mark length is 6T, and the recording portion where the modulation degree has increased sharply is provided on the substrate as shown in FIGS. It was confirmed that a void was generated (when the mark length was 6T, no void was generated in the substrate). That is, it was confirmed that the cause of the deterioration of the recording / reproducing characteristics was a void generated in the substrate.
FIG. 12 is a photograph (photograph) obtained by cutting in the radial direction by FIB and observed by TEM, and FIG. 13 is an enlarged view of the same observation (photograph). Are shown side by side with four different pictures.)
Further, in the above experiment, an example was shown in which the recording polarity differs depending on the mark length, but the same phenomenon (a void occurs in the substrate at high recording power) occurs when the recording power is low and high. confirmed.
[0044]
Example 1
On a polycarbonate substrate having a guide groove with a groove depth of 50 nm, ZnS-SiO 2 A thickness of 65 nm, a thickness of SiC of 10 nm as a layer having a light absorbing function, and a thickness of a Co metal complex layer (dye layer) of the compound represented by the formula 1 which can be used for DVD-R as a recording layer made of an organic compound. A write-once type optical recording medium was prepared by sequentially laminating a protective layer made of an ultraviolet-curable resin having a thickness of about 100 nm, an Ag reflective layer having a thickness of about 100 nm.
The optical recording medium is irradiated with laser light from the substrate side using an optical disk evaluation device manufactured by Pulstec Industrial Co., Ltd., DDU-1000 (wavelength: 405 nm, NA: 0.65). An 8-16 modulation signal was recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at a groove position on the near side as viewed from the light side.
As a result, within the recording power range that can be set by the evaluation apparatus used in the present embodiment, the recording polarity is unified by Low to High, and a good jitter characteristic and modulation degree as shown in FIG. 14 can be obtained. Was completed.
[0045]
Comparative Example 1
A write-once optical recording medium having a structure of substrate / SiC (thickness 10 nm) / Co metal complex of the compound represented by the formula (thickness: about 60 nm) / Ag reflection layer (thickness 150 nm) / protective layer was prepared. The recording was performed under the following conditions (in the case of Example 1, where no void suppressing layer was provided).
Figure 2004213774
As a result, as shown in FIG. 15, good recording with a jitter of 11.6% was performed at a recording power of about 9.0 mW, but within a range of the recording power that can be set by the evaluation apparatus used in this comparative example. In (2), a change in the recording polarity was observed (the recording polarity changed from Low to High near 10.5 mw), and it was confirmed that the recording power margin of jitter was extremely narrow.
The 6T mark and the 14T mark were again recorded on this optical recording medium at a recording power of 8.0 mW, and the optical recording medium was cut in the radial direction with FIB as in Reference Example 3, and the recording portion was observed with a TEM.
As a result, it was confirmed that no void was generated in the substrate in the recording portion where the recording power was 8.0 mW. Further, there was no occurrence of tracking error (off-track) during recording and reproduction.
On the other hand, as shown in FIGS. 12 and 13, when recording was performed at a recording power at which a gap was generated in the substrate, that is, at a recording power of 9.5 mW or more, the jitter did not fall below 15.0%. At a recording power of about 9.5 mW or more, the rate of occurrence of a tracking error (off-track) during recording / reproducing increases as the recording power increases.
[0046]
Example 2
On a polycarbonate substrate having a guide groove with a groove depth of 50 nm, ZrO 2 Is 35 nm in thickness, Si is 15 nm in thickness as a layer having a light absorbing function, and a Co metal complex layer (dye layer) of the compound represented by the above formula (1) which can be used for DVD-R as a recording layer made of an organic compound is formed. A write-once optical recording medium was formed by sequentially laminating a protective layer of about 60 nm, an Ag reflective layer of about 100 nm, and an ultraviolet curable resin.
The optical recording medium is irradiated with laser light from the substrate side using an optical disk evaluation device manufactured by Pulstec Industrial Co., Ltd., DDU-1000 (wavelength: 405 nm, NA: 0.65). An 8-16 modulation signal was recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at a groove position on the near side as viewed from the light side.
As a result, within the recording power range that can be set by the evaluation apparatus used in this embodiment, the recording polarity is unified by Low to High, and a good jitter characteristic and modulation degree as shown in FIG. 16 can be obtained. Was completed.
[0047]
From the results of the above Reference Examples and Examples, the present invention has a structure in which a light absorbing layer having a light absorbing function for recording light is provided adjacent to a substrate or a cover layer, and the inside of the substrate or the cover It is supported that the write-once optical recording medium in which the recording portion is formed without forming the void portion in the layer is very important in obtaining good recording and reproducing characteristics.
Note that the recording / reproducing characteristics of the above embodiment are merely examples, and the recording polarity is not limited to, for example, Low to High.
[0048]
Example 3
As a result of the observation in FIGS. 11 to 13, it was confirmed that a long mark is likely to generate a gap in the substrate, and a gap is unlikely to be formed in a short recording mark such as 3T to 4T.
Therefore, in a recording strategy as shown in FIG. 15A, a setting is used in which the TEMP is reduced by 0.02 (T) for longer marks, so that the temperature of the longer marks is not increased more than necessary (a gap is formed in the substrate). The temperature was set to be below the temperature at which no generation occurs), and recording was performed on a write-once optical recording medium having the same configuration as that prepared in Comparative Example 1.
As a result, in the normal recording strategy (in FIG. 17A, TEMP was fixed regardless of the recording mark length), a gap in the substrate was observed at about 9.5 mW at the 14T mark. With the use of the recording strategy described above, no void in the substrate was observed in the 14T mark even when recording was performed at about 9.5 mW.
In other words, by using the recording strategy applied in the present embodiment, even if the recording power is increased, it is possible to suppress the occurrence of voids that are likely to be generated in the long mark. Expansion) was obtained.
Note that, other than the recording strategy used in the present embodiment, the same effect can be obtained by setting, for example, the following a) to d).
-In FIG. 17 (a),
B) The TELP is made smaller for a longer mark.
B) The longer the mark, the smaller the TEFP.
C) Pw1 or Pw2 is set lower for longer marks.
-In FIG. 17 (b),
D) Pw1 or Pw2 is made smaller for longer marks.
E) Decrease TEFP for longer marks.
-In FIG. 17 (c),
F) Pw1 or Pw2 is made smaller for a longer mark.
G) The TEFP is made smaller for the longer mark.
H) The TELP is made smaller for a longer mark.
I) The TSLP is made larger for a longer mark.
Note that the setting of the recording strategy effective in the present invention is not limited to the setting described in the present embodiment.
[0049]
In the above reference examples and examples, the case where the light absorbing layer is in contact with the substrate is taken up. However, in the case of the cover layer, since the material is basically the same as the substrate, the same applies when the cover layer and the light absorbing layer are in contact. It is.
Note that the present invention is one of the measures to improve the recording / reproducing characteristics of a write-once optical recording medium having a structure in which a light absorbing layer having a light absorbing function for recording light is provided adjacent to a substrate or a cover layer. It shows an effective method, and does not deny a write-once optical recording medium in which voids occur in the substrate.
Further, since the recording polarity depends on the optical constant and thickness of the dye layer and the light absorbing layer, the deformation mode of the light absorbing layer, the shape of the substrate such as the groove depth, etc. It does not limit the recording polarity of the medium.
[0050]
【The invention's effect】
The write-once optical recording medium and the recording method of the present invention can suppress the occurrence of voids in the substrate or the cover layer, which deteriorates the recording / reproducing characteristics. And a write-once optical recording medium compatible with short-wavelength laser and a recording method thereof.
[Brief description of the drawings]
FIG. 1 is a diagram showing a layer configuration of a conventional disk.
FIG. 2 is a view for explaining a waveform of a reproduction signal when a recording mark of mark length recording is reproduced.
(A) General case
(B) Differential waveform with inflection points near the leading and trailing edges of the recording mark
(C) Differential waveform with inflection point near the center of the recording mark
FIG. 3 is a view showing a recording result of Reference Example 1-A.
(A) A relationship between a recording mark length, a reproduction signal (RF level) and a modulation degree is shown.
(B) The reproduction signal level when the 3T mark and the 4T mark are continuously recorded, and the reproduction signal level when not recorded.
(C) The reproduction signal level when the 6T mark and the 8T mark are continuously recorded and the reproduction signal level when the recording is not performed are shown.
(D) A reproduction signal level when a 3T mark and a 14T mark are continuously recorded, and a reproduction signal level when no recording is performed.
FIG. 4 is a diagram showing a recording result of Reference Example 1-B.
(A) A relationship between a recording mark length, a reproduction signal (RF level) and a modulation degree is shown.
(B) The reproduction signal level when the 3T mark and the 4T mark are continuously recorded, and the reproduction signal level when not recorded.
(C) The reproduction signal level when the 6T mark and the 8T mark are continuously recorded and the reproduction signal level when the recording is not performed are shown.
(D) A reproduction signal level when a 3T mark and a 14T mark are continuously recorded, and a reproduction signal level when no recording is performed.
FIG. 5 is a diagram showing a recording result of Reference Example 1-C.
(A) A relationship between a recording mark length, a reproduction signal (RF level) and a modulation degree is shown.
(B) The reproduction signal level when the 3T mark and the 4T mark are continuously recorded, and the reproduction signal level when not recorded.
(C) The reproduction signal level when the 6T mark and the 8T mark are continuously recorded and the reproduction signal level when the recording is not performed are shown.
(D) A reproduction signal level when a 3T mark and a 14T mark are continuously recorded, and a reproduction signal level when no recording is performed.
FIG. 6 is a diagram showing a recording result of Reference Example 1-D.
(A) A relationship between a recording mark length, a reproduction signal (RF level) and a modulation degree is shown.
(B) The reproduction signal level when the 3T mark and the 4T mark are continuously recorded, and the reproduction signal level when not recorded.
(C) The reproduction signal level when the 6T mark and the 8T mark are continuously recorded and the reproduction signal level when the recording is not performed are shown.
(D) A reproduction signal level when a 3T mark and a 14T mark are continuously recorded, and a reproduction signal level when no recording is performed.
FIG. 7 is an explanatory diagram of groove parameters in a state where a Pit is formed.
FIG. 8 is a diagram for explaining a recording state with and without a gap.
(A) Recording state without gap
(B) Recording state with void
FIG. 9 is a diagram showing a result in the case where a recording portion having a Pit formed in a land portion is reproduced from the substrate side in Reference Example 2.
FIG. 10 is a diagram showing a result in the case where a recording portion having a Pit formed in a groove portion is reproduced from the substrate side in Reference Example 2.
FIG. 11 is a diagram in which the optical recording medium is cut in the track direction by FIB and observed by FE-SEM when the recording mark length of Reference Example 3 is 6T.
(A) View of the recording section
(B) View of unrecorded area
FIG. 12 is a diagram of an optical recording medium cut in a radial direction by FIB and observed by FE-SEM when the recording mark length of Reference Example 3 is 14T.
FIG. 13 is a diagram in which the optical recording medium is cut in the track direction by FIB and observed by FE-SEM when the recording mark length of Reference Example 3 is 14T.
FIG. 14 is a diagram illustrating jitter and a reproduction signal level of a space portion and a mark portion when recording is performed on the optical recording medium according to the first embodiment.
FIG. 15 is a diagram showing jitter and a reproduction signal level of a space portion and a mark portion when recording is performed on the optical recording medium of Comparative Example 1.
FIG. 16 is a view showing jitter and the reproduction signal level of a space portion and a mark portion when recording is performed on the optical recording medium of Example 2.
FIG. 17 is a diagram showing a recording strategy used in Reference Example 3.
(A) Normal recording strategy
(B) Other recording strategies
(C) Still other recording strategies
[Explanation of symbols]
Mark Length Mark length
T reference clock
RF Level (V) RF (reproduction signal) level (volt)
Modulated amplitude modulation degree
Unrec Reproduction signal (RF) level when not recording
Top Reproduced signal level when recording a mark sequence (that is, space part)
Bottom Minimum reproduction signal level when a mark sequence is recorded (that is, mark portion)
MA. Modulation degree calculated by (Top-Bottom) / Top
Time 0.5 (μs / div) Time (1 memory 0.5 microsecond)
A Width from the reference point to the near end of the adjacent land or groove
B Width from reference point to far end of adjacent land or groove
C Width from the reference point to the near end of the next groove or land
D Width from reference point to far end of next groove or land
高 Height from groove bottom to land top
Pit Recording mark deformed in the opposite direction of the laser beam incidence
Bump Recording mark deformed in the direction of laser beam incidence
Sum sum signal (reproduction signal)
Beam Position (μm) Beam position (deviation of beam center from mark center)
From Sub, Land Land recording from the substrate side
Groove recording from From Sub, Groove substrate side
No Bubbles No void
Bubble with air gap
(N) When the width of the deformation region is 0.8525λ
(W) When the width of the deformation region is 1.8525λ
σ / Tw jitter
Pw1 Recording power
Pw2 Bottom power
Pr bias power
Time from TEFP reference time to first pulse fall time
TSFP Time from reference time to first pulse rise time
Time from TEMP reference time to multi-pulse fall time
Time from TSMP reference time to multi-pulse rise time
Time from TELP reference time to final pulse fall time
TSLP Time from reference time to last pulse rise time

Claims (9)

基板又はカバー層に隣接して、記録光に対して光吸収機能を有する光吸収層が設けられた構造を有し、基板内又はカバー層内に空隙部を形成させることなく記録部を形成できることを特徴とする追記型光記録媒体。A structure in which a light absorbing layer having a light absorbing function for recording light is provided adjacent to the substrate or the cover layer, and the recording portion can be formed without forming a gap in the substrate or the cover layer. A write-once optical recording medium characterized by the following. 基板上に、記録光に対して光吸収機能を有する光吸収層、有機化合物からなる記録層、及び反射層が設けられた構造を有し、基板内に空隙部を形成させることなく記録部を形成できることを特徴とする追記型光記録媒体。On a substrate, a light absorbing layer having a light absorbing function for recording light, a recording layer made of an organic compound, and a reflective layer are provided, and the recording part is formed without forming a void in the substrate. A write-once optical recording medium, which can be formed. 基板又はカバー層に隣接して、記録による基板内又はカバー層内の空隙部発生を抑制するための空隙抑制層、記録光に対して光吸収機能を有する光吸収層が順次設けられた構造を有することを特徴とする追記型光記録媒体。Adjacent to the substrate or the cover layer, a gap suppressing layer for suppressing the generation of a gap in the substrate or the cover layer by recording, a structure in which a light absorbing layer having a light absorbing function for recording light is sequentially provided. A write-once optical recording medium, comprising: 基板上に、記録による基板内の空隙部発生を抑制するための空隙抑制層、記録光に対して光吸収機能を有する光吸収層、有機化合物からなる記録層、及び反射層が順次設けられた構造を有することを特徴とする追記型光記録媒体。On the substrate, a void suppressing layer for suppressing the generation of voids in the substrate due to recording, a light absorbing layer having a light absorbing function for recording light, a recording layer made of an organic compound, and a reflective layer were sequentially provided. A write-once optical recording medium having a structure. 空隙抑制層が、SiO、ZnS−SiO、ZrOの何れかを主成分とすることを特徴とする請求項3又は4記載の追記型光記録媒体。The write-once optical recording medium according to claim 3, wherein the void suppression layer contains any one of SiO 2 , ZnS—SiO 2 , and ZrO 2 as a main component. 空隙抑制層が、ZnS、ZrO、Y及びSiOからなる酸化物であることを特徴とする請求項3又は4記載の追記型光記録媒体。Void inhibiting layer, ZnS, ZrO 2, Y 2 O 3 and write-once optical recording medium according to claim 3 or 4, wherein the is an oxide composed of SiO 2. 空隙抑制層が、ZrO、TiO、SiO、及びXからなり、XがAl、MgO、CaO、NbO、Y、CeOから選ばれた少なくとも1つであることを特徴とする請求項3又は4記載の追記型光記録媒体。The void suppressing layer is made of ZrO 2 , TiO 2 , SiO 2 , and X, wherein X is at least one selected from Al 2 O 3 , MgO, CaO, NbO, Y 2 O 3 , and CeO. 5. The write-once optical recording medium according to claim 3, wherein: 請求項1〜7の何れかに記載の追記型光記録媒体に対し、基板内又はカバー層内に空隙部が形成されない記録パワーの範囲で記録を行うことを特徴とする追記型光記録媒体の記録方法。The write-once optical recording medium according to claim 1, wherein recording is performed within a range of a recording power in which a void is not formed in a substrate or a cover layer. Recording method. 請求項1〜7の何れかに記載の追記型光記録媒体に対し、基板内又はカバー層内に空隙部が形成されない記録ストラテジで記録を行うことを特徴とする追記型光記録媒体の記録方法。8. A recording method for a write-once optical recording medium, comprising: performing recording on the write-once optical recording medium according to any one of claims 1 to 7 using a recording strategy in which no void is formed in a substrate or a cover layer. .
JP2002382438A 2002-12-27 2002-12-27 Write-once optical recording medium and recording method thereof Expired - Fee Related JP4117878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382438A JP4117878B2 (en) 2002-12-27 2002-12-27 Write-once optical recording medium and recording method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382438A JP4117878B2 (en) 2002-12-27 2002-12-27 Write-once optical recording medium and recording method thereof

Publications (2)

Publication Number Publication Date
JP2004213774A true JP2004213774A (en) 2004-07-29
JP4117878B2 JP4117878B2 (en) 2008-07-16

Family

ID=32817992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382438A Expired - Fee Related JP4117878B2 (en) 2002-12-27 2002-12-27 Write-once optical recording medium and recording method thereof

Country Status (1)

Country Link
JP (1) JP4117878B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022360A1 (en) * 2004-08-27 2006-03-02 Ricoh Company, Ltd. Optical-recording medium, method for producing the same, and method for recording and reproducing optical-recording medium
US20070037095A1 (en) * 2005-07-28 2007-02-15 Noboru Sasa Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
US20080170484A1 (en) * 2007-01-15 2008-07-17 Tdk Corporation Optical recording medium
US7663997B2 (en) 2003-05-09 2010-02-16 Lg Electronics, Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7668054B2 (en) 2002-12-11 2010-02-23 Lg Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
US7672204B2 (en) 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
US7672208B2 (en) 2003-08-05 2010-03-02 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7684293B2 (en) 2003-05-09 2010-03-23 Lg Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7701823B2 (en) 2002-09-30 2010-04-20 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7778145B2 (en) 2004-07-16 2010-08-17 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium and optical recording method of the same
US7783829B2 (en) 2003-09-08 2010-08-24 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
US7813243B2 (en) 2003-01-11 2010-10-12 Lg Electronics Inc. Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US7911900B2 (en) 2003-09-08 2011-03-22 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US20110141872A1 (en) * 2005-04-14 2011-06-16 Hideo Ando Storage medium, reproducing method, and recording method
US8045430B2 (en) 2002-09-30 2011-10-25 Lg Electronics Inc. Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US8054718B2 (en) 2003-07-15 2011-11-08 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information thereon
US8137894B2 (en) 2005-02-22 2012-03-20 Kabushiki Kaisha Toshiba Storage medium, reproducing method, and recording method
US8296529B2 (en) 2003-09-08 2012-10-23 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045430B2 (en) 2002-09-30 2011-10-25 Lg Electronics Inc. Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US7911904B2 (en) 2002-09-30 2011-03-22 Lg Electronics, Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7701823B2 (en) 2002-09-30 2010-04-20 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7936649B2 (en) 2002-12-11 2011-05-03 Lg Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
US7668054B2 (en) 2002-12-11 2010-02-23 Lg Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
US7813243B2 (en) 2003-01-11 2010-10-12 Lg Electronics Inc. Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US8072853B2 (en) 2003-01-27 2011-12-06 Lg Electronics Inc. Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US7672204B2 (en) 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
US8107336B2 (en) 2003-05-09 2012-01-31 Lg Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7663997B2 (en) 2003-05-09 2010-02-16 Lg Electronics, Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7684293B2 (en) 2003-05-09 2010-03-23 Lg Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US8054718B2 (en) 2003-07-15 2011-11-08 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information thereon
US7672208B2 (en) 2003-08-05 2010-03-02 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7952972B2 (en) 2003-08-05 2011-05-31 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7911900B2 (en) 2003-09-08 2011-03-22 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US8296529B2 (en) 2003-09-08 2012-10-23 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
US7783829B2 (en) 2003-09-08 2010-08-24 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
US7778145B2 (en) 2004-07-16 2010-08-17 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium and optical recording method of the same
WO2006022360A1 (en) * 2004-08-27 2006-03-02 Ricoh Company, Ltd. Optical-recording medium, method for producing the same, and method for recording and reproducing optical-recording medium
US7636289B2 (en) 2004-08-27 2009-12-22 Ricoh Company, Ltd. Optical-recording medium, method for producing the same, and method for recording and reproducing optical-recording
KR100834427B1 (en) * 2004-08-27 2008-06-04 가부시키가이샤 리코 Optical-recording medium, method for producing the same, and method for recording and reproducing optical-recording medium
US8137894B2 (en) 2005-02-22 2012-03-20 Kabushiki Kaisha Toshiba Storage medium, reproducing method, and recording method
US8531936B2 (en) 2005-02-22 2013-09-10 Kabushiki Kaisha Toshiba Storage medium, reproducing method, and recording method
US20110141872A1 (en) * 2005-04-14 2011-06-16 Hideo Ando Storage medium, reproducing method, and recording method
US20070037095A1 (en) * 2005-07-28 2007-02-15 Noboru Sasa Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
US20110116353A1 (en) * 2005-07-28 2011-05-19 Noboru Sasa Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
US8846298B2 (en) * 2005-07-28 2014-09-30 Ricoh Company, Ltd. Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
US8859184B2 (en) * 2005-07-28 2014-10-14 Ricoh Company, Ltd. Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
US20080170484A1 (en) * 2007-01-15 2008-07-17 Tdk Corporation Optical recording medium

Also Published As

Publication number Publication date
JP4117878B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP3897695B2 (en) Write-once optical recording medium with low-to-high recording polarity for short wavelengths
JP4117878B2 (en) Write-once optical recording medium and recording method thereof
KR100734641B1 (en) Optical Recording Medium, Optical Recording/Reproducing Apparatus, Optical Recording Apparatus and Optical Reproducing Apparatus, Data Recording/Reproducing Method for Optical Recording Medium, and Data Recording Method and Data Reproducing Method
TWI298881B (en)
TW200822089A (en) Write-once-read-many optical recording medium and recording method therefor
US20070037095A1 (en) Write-once-read-many optical disk having low-to-high recording property accommodating short wavelength recording
EP1566800B1 (en) Optical recording medium, process for manufacturing the same, and optical recording process using the same
JP3987376B2 (en) Write-once optical recording medium
JP2004296055A (en) Optical recording and reproducing method and optical recording medium
WO2007018263A1 (en) Optical recording medium, azo-type iron chelate coloring matter, and azo-type metal chelate coloring matter additive
JP2004001375A (en) Write once photorecording medium and recording agent for the medium
JP4065719B2 (en) Write-once optical recording medium and recording / reproducing method thereof
JP2003303447A (en) Optical recording medium
JP4117881B2 (en) Write-once optical recording medium
JP5298623B2 (en) Write-once optical recording medium
JP2004171631A (en) Optical recording medium
JP4064967B2 (en) Method for manufacturing recordable optical disc, optical disc obtained by the method, and recording layer
JP3922690B2 (en) Optical recording medium and recording method thereof
JP2004127472A (en) Optical recording medium and its recording method
JP2005131816A (en) Write-once type optical recording medium corresponding to short wavelength
JP2004213745A (en) Write-once type optical recording medium
JP4135361B2 (en) Optical recording method
JP2008254245A (en) Write once-type optical recording medium and sputtering target
JP2006294224A (en) Optical recording medium
JP2004047055A (en) Information recording medium and its analyzing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees