JP2004212376A - Leakage detecting device - Google Patents

Leakage detecting device Download PDF

Info

Publication number
JP2004212376A
JP2004212376A JP2003140991A JP2003140991A JP2004212376A JP 2004212376 A JP2004212376 A JP 2004212376A JP 2003140991 A JP2003140991 A JP 2003140991A JP 2003140991 A JP2003140991 A JP 2003140991A JP 2004212376 A JP2004212376 A JP 2004212376A
Authority
JP
Japan
Prior art keywords
leakage
voltage
power supply
detection
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003140991A
Other languages
Japanese (ja)
Other versions
JP2004212376A5 (en
Inventor
Hirotada Higashihama
弘忠 東浜
Hisami Usui
久視 臼井
Koji Soshin
耕児 宗進
Toshiaki Saito
寿昭 齊藤
Hirotsugu Minami
洋次 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003140991A priority Critical patent/JP2004212376A/en
Priority to US10/694,880 priority patent/US6977518B2/en
Priority to CNB2003101138311A priority patent/CN100504412C/en
Publication of JP2004212376A publication Critical patent/JP2004212376A/en
Publication of JP2004212376A5 publication Critical patent/JP2004212376A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to detect not only the presence or absence of an leakage but also the place where the leakage has occurred. <P>SOLUTION: The leakage detecting device 20 comprises two voltage dividing resistors R1, R2 which have the same resistance and are connected in series to each other between output terminals of a rectifier circuit, a detection resistor Rs inserted between a contact point of the voltage dividing resistors R1, R2 and a ground, and first to third determination parts 22 to 24 which determine leakage occurrence at different places by signal-processing of a detection signal Vs. In this manner, the leakage detecting device 20 comprises the first to third determination parts 22 to 24, and can thus detect not only the presence or absence of leakage occurrence but also the place where the leakage has occurred based on the determination results of the determination parts 22 to 24, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電源装置の漏電を検出する漏電検出装置に関するものである。
【0002】
【従来の技術】
従来の漏電検出装置の一例を図18に示す。この従来例は、電気自動車の動力源となる直流電源Eの出力端間に高抵抗値の分圧抵抗R1,R2が直列に接続され、分圧抵抗R1,R2の接続点とグランド(車体)の間に検出抵抗R3が接続され、検出抵抗R3の両端に生じる電圧降下を検出電圧として漏電を検出するものである(特許文献1参照)。
【0003】
次に上記従来例の動作について説明する。電気自動車の動力として使用される直流電源Eは200V〜300V程度の非常に高い電圧を出力するものであるから、人が車体に触れても感電しないように車体から電気的に分離された状態(フローティング状態)となっている。しかしながら、直流電源Eを含む高電圧系とグランドの間で絶縁破壊が起きている場合には、人が車体等に触れると電流の流れる経路が形成されて感電してしまうことになる。ところが、高電圧系がグランドから分離されているため、例え絶縁破壊が起きても人が高電圧系に触れない限りは電流が流れず、漏電を検出することができない。そこで、人が触れる以前に漏電検出を可能としたのが上記従来例である。
【0004】
上記従来例において、高電圧系の負極側とグランドの間で絶縁破壊が生じ且つ人が高電圧系に触れている状態の回路図を図19に示す。但し、抵抗rは絶縁破壊が生じた部位における高電圧系とグランド間の抵抗(絶縁破壊抵抗)、抵抗Rは人体の抵抗とする。直流電源Eの出力電圧をVボルト、分圧抵抗R1,R2、検出抵抗R3、絶縁破壊抵抗r並びに人体抵抗Rの各抵抗値をそれぞれR1,R2,R3,r,Rとし、分圧抵抗R1,R2の抵抗値R1,R2を絶縁破壊抵抗rの抵抗値rよりも十分に大きい値とすれば、人体抵抗Rに流れる漏電電流(地絡電流)Iは下記の式(1)で表される。
【0005】
I=V/(r+R) …(1)
なお、人体抵抗Rは湿度等の環境によって異なることもあるが、R=0とした場合に漏電電流Iは最大となる。
【0006】
一方、人が高電圧系に触れていないとき、すなわち人体抵抗Rの抵抗値Rが無限大のときの検出抵抗R3の両端に生じる検出電圧V1の値を求めると、分圧抵抗R1,R2の抵抗値R1,R2を検出抵抗R3の抵抗値R3よりも大きい値とすれば、グランドを介して分圧抵抗R1、検出抵抗R3並びに絶縁破壊抵抗rに流れる漏電電流iが下記の式(2)で表され、さらに検出抵抗R3の両端に生じる検出電圧V1の値が下記の式(3)で表される。
【0007】
i=V/(R1+R3+r) …(2)
V1=V×R3/(R1+R3+r) …(3)
よって、式(3)に式(1)を代入することで漏電電流Iに対応した検出電圧V1が求められるから、この検出電圧V1から漏電を検出することができる。
【0008】
ところで、図20に示すように一般家庭に供給されている100Vの商用交流電源では、トランスTの2次側が抵抗rで接地されているため、負荷Mに人が触れた場合に人体抵抗Rと上記接地抵抗rによって電流の流れる経路が形成されて漏電が発生することになる。そのため、通常はトランスTの2次側に漏電遮断器が設置されており、漏電が発生したときに漏電遮断器で負荷Mへの給電路を遮断して漏電事故を防止している。この漏電遮断器では、図20に示すようにトランスTから負荷Mへの給電路に挿入された零相変流器ZCTを有し、給電路に流れる不平衡電流に応じた零相変流器ZCTの2次側出力から漏電を検出する漏電検出装置が用いられている。
【0009】
【特許文献1】
特許第3307173号公報(第2−3頁、第1図)
【0010】
【発明が解決しようとする課題】
ところで、上記従来の漏電検出装置では漏電の有無を検出することはできてもその発生箇所を検出することはできず、漏電事故に対する適切な対処を早期に行うことが困難であった。
【0011】
本発明は上記事情に鑑みて為されたものであり、その目的は、漏電の有無だけでなくその発生箇所も検出できる漏電検出装置を提供することにある。
【0012】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、直流電源から供給される直流電圧をチョッピングするとともに絶縁トランスを介して所望のレベルに昇圧した後に整流平滑して出力する直流直流変換回路と、直流直流変換回路から出力される直流電圧を交流電圧に変換する直流交流変換回路と、直流交流変換回路から負荷への給電路を開閉する開閉要素とを有し、グランドと電気的に絶縁された状態で動作して負荷に交流電圧を供給する電源装置の漏電を検出する漏電検出装置であって、互いにインピーダンス値が等しく直流交流変換回路の入力端間又は出力端間に直列接続される2つの分圧素子と、分圧素子の接続点と前記グランドの間に挿入される検出素子と、検出素子の両端電圧を検出信号として取り込み且つ取り込んだ検出信号を信号処理して漏電の有無並びに発生箇所を判定する判定手段とを備え、判定手段は、検出信号に含まれる前記交流電圧の実効値を所定の閾値と比較することで漏電を判定する第1の判定部、検出信号に含まれる直流成分を極性に応じた所定の閾値と比較することで漏電を判定する第2の判定部、検出信号に含まれる前記チョッピング周波数に等しい周波数成分の実効値を所定の閾値と比較することで漏電を判定する第3の判定部、のうちの少なくとも何れか2つの判定部を具備することを特徴とする。
【0013】
この発明によれば、それぞれの判定部にてそれぞれの検出箇所における漏電が検出できるから、漏電の有無だけでなくその発生箇所も同時に検出可能となる。しかも、複数箇所で同時に漏電が発生した場合にはそれらの漏電発生及び漏電発生箇所を同時に検出することができる。
【0014】
請求項2の発明は、上記目的を達成するために、直流電源から供給される直流電圧をチョッピングするとともに絶縁トランスを介して所望のレベルに昇圧した後に整流平滑して出力する直流直流変換回路と、直流直流変換回路から出力される直流電圧を交流電圧に変換する直流交流変換回路と、直流交流変換回路から負荷への給電路を開閉する開閉要素とを有し、グランドと電気的に絶縁された状態で動作して負荷に交流電圧を供給する電源装置の漏電を検出する漏電検出装置であって、互いにインピーダンス値が等しく直流交流変換回路の入力端間又は出力端間に直列接続される2つの分圧素子と、分圧素子の接続点と前記グランドの間に挿入される検出素子と、検出抵抗の両端電圧を検出信号として取り込み且つ取り込んだ検出信号を信号処理して漏電の有無並びに発生箇所を判定する判定手段とを備え、判定手段は、アナログの検出信号をデジタルの検出信号に変換し、デジタルの検出信号から得られる波形データ並びにレベルデータを予め用意された基準データと比較することを特徴とする。
【0015】
この発明によれば、発生箇所ごとに検出信号の波形並びにレベルが異なることを利用して複数箇所の漏電が検出できるから、漏電の有無だけでなくその発生箇所も同時に検出可能となる。しかも、複数箇所で同時に漏電が発生した場合にはそれらの漏電発生及び漏電発生箇所を同時に検出することができる。
【0016】
請求項3の発明は、請求項1又は2の発明において、前記分圧素子並びに検出素子を抵抗としたことを特徴とする。
【0017】
この発明によれば、一般に抵抗素子のインピーダンス値(抵抗値)はばらつきが小さいことから直流直流変換回路の出力電圧を精度良く検出できる。
【0018】
請求項4の発明は、請求項1又は2の発明において、前記分圧素子並びに検出素子をコンデンサとしたことを特徴とする。
【0019】
この発明によれば、抵抗を用いる場合に比較して耐圧が向上するとともに定常時には分圧素子や検出素子に直流電流が流れないために無駄な電力消費を防止することができる。
【0020】
請求項5の発明は、請求項1〜4の何れかの発明において、判定手段による判定結果を通信媒体により外部に伝送する通信手段を備えたことを特徴とする。
【0021】
この発明によれば、例えば、外部の機器において判定結果の情報を映像や文字あるいは音声等で使用者に報知して安全性の向上を図ることができる。
【0022】
請求項6の発明は、請求項1〜5の何れかの発明において、判定手段は、電源装置から負荷への電力供給が開始される前に前記開閉要素を開成して電源装置を無負荷とした状態で漏電の判定を行うことを特徴とする。
【0023】
この発明によれば、無負荷の状態で漏電検出を行うことにより漏電事故の発生を未然に防いで安全性の向上が図れる。
【0024】
【発明の実施の形態】
(実施形態1)
本実施形態の漏電検出装置20が用いられる電源装置10は、図1に示すように自動車に搭載されている低電圧(例えば、12V〜42V)のバッテリ1から100Vの交流電圧を作成して負荷2に供給するものであって、バッテリ1から供給される直流電圧を昇圧回路11のスイッチング素子でチョッピングするとともに絶縁トランス12を介して所望のレベルに昇圧した後に整流回路13(平滑回路を含む)で整流平滑して出力する直流直流変換回路と、直流直流変換回路の直流出力電圧を正弦波の交流電圧に変換する直流交流変換回路14と、直流交流変換回路14から負荷2への給電路を開閉する開閉要素15と、直流交流変換回路14の出力から高調波成分を除去するフィルタ16と、直流直流変換回路並びに直流交流変換回路14の動作を制御する電源制御回路17とを備えている。但し、バッテリ1はグランド(自動車の車体)に接地されている。
【0025】
昇圧回路11は、絶縁トランス12並びに整流回路13とともに従来周知の絶縁型DC−DCコンバータからなる直流直流変換回路を構成しており、電源制御回路17によりスイッチング素子のスイッチング周波数やオンデューティ比を調整することによって入力電圧を所望のレベルにまで昇圧することができる。また、直流交流変換回路14は、例えば従来周知であるフルブリッジ型のインバータ回路からなり、インバータ回路を構成するスイッチング素子のスイッチング周波数やオンデューティ比を調整することで整流回路13から出力される直流電圧を所定周波数(例えば50Hzあるいは60Hz)の正弦波交流電圧に変換することができる。なお、電源制御回路17は、例えばマイクロコンピュータを用いて構成することが可能であるが、具体的な構成については従来周知であるから説明を省略する。
【0026】
一方、本実施形態の漏電検出装置20は、図1に示すように互いに抵抗値が等しく整流回路13の出力端間に直列接続される2つの分圧抵抗R1,R2と、分圧抵抗R1,R2の接続点とグランドの間に挿入される検出抵抗Rsと、検出抵抗Rsにおける電圧降下を検出信号Vsとして取り込んでゲイン調整する増幅器21と、検出信号Vsを信号処理することで互いに異なる箇所での漏電発生を判定する第1〜第3の判定部22〜24とを備えている。
【0027】
第1の判定部22は、図2に示すように検出信号Vsに含まれる正弦波交流電圧の周波数(例えば、50Hzあるいは60Hz)に略等しい周波数成分のみを取り出すためのバンドパスフィルタ22aと、バンドパスフィルタ22aを通過した検出信号Vssの実効値Vssrmsを求める実効値算出部22bと、実効値算出部22bで算出された検出信号Vssの実効値Vssrmsを所定の閾値Vr1と比較するコンパレータ22cとを具備し、検出信号Vssの実効値Vssrmsが閾値Vr1を超えたときに漏電発生と判定して判定信号Vj1を出力する。但し、検出信号Vsを全波整流した後に積分回路により平滑することで上記実効値演算と同様の直流の検出信号Vss2を生成して漏電発生の判定を行うことも可能である。
【0028】
第2の判定部23は、図3に示すように検出信号Vsの直流成分のみを取り出すためのローパスフィルタ23aと、ローパスフィルタ23aを通過した検出信号Vsdをそれぞれ所定の閾値Vr2,Vr3と比較する2つのコンパレータ23b,23cとを具備し、検出信号Vsdが閾値Vr2又はVr3を超えたときに漏電発生と判定して判定信号Vj2又はVj2を出力する。
【0029】
第3の判定部24は、図4に示すように検出信号Vsに含まれるチョッピング周波数(昇圧回路11におけるスイッチング周波数)に等しい周波数成分のみを取り出すためのハイパスフィルタ24aと、ハイパスフィルタ24aを通過した検出信号Vscの実効値Vscrmsを求める実効値算出部24bと、実効値算出部24bで算出された検出信号Vscの実効値Vscrmsを所定の閾値Vr4と比較するコンパレータ24cとを具備し、検出信号Vscの実効値Vscrmsが閾値Vr4を超えたときに漏電発生と判定して判定信号Vj3を出力する。なお、検出信号Vsから取り出す周波数成分は昇圧回路11におけるスイッチング周波数にほぼ等しい周波数であれば漏電発生の判定は可能である。
【0030】
而して、本実施形態においては、電源装置10の絶縁トランス12の2次側がグランドから切り離されてフローティング状態となっているから、漏電事故が発生していなければ検出抵抗Rsには電流(暗電流)が流れず、検出信号Vsも出力されないが、電源装置10とグランドの間で絶縁破壊が生じた場合、絶縁破壊が生じた箇所に応じて第1〜第3の判定部22〜24の何れかで漏電発生と判定されることになる。以下、第1〜第3の判定部22〜24における漏電発生の判定動作をそれぞれ個別に説明する。
【0031】
まず、図5に示すように電源装置10から負荷2への給電路とグランドの間で絶縁破壊が発生した場合を考える。なお、図5における3は前記給電路の正極側で絶縁破壊が発生した場合の絶縁破壊抵抗(又は人体抵抗)、4は前記給電路の負極側で絶縁破壊が発生した場合の絶縁破壊抵抗(又は人体抵抗)をそれぞれ示している。この場合、グランドを介して絶縁破壊抵抗3又は4、検出抵抗R3並びに分圧抵抗R1又はR2に漏洩電流が流れ、検出抵抗R3の両端に検出電圧Vsが発生する。このときの検出電圧Vsは、図6に示すように電源装置10から出力される正弦波交流電圧の周波数と等しい正弦波交流電圧となる。但し、漏洩電流が何れの絶縁破壊抵抗3,4を介して流れるかによって検出電圧Vsの位相と電源装置10の出力電圧の位相とが一致しない場合もある。そして、第1の判定部22では、電源装置10の出力電圧周波数に等しい周波数成分をバンドパスフィルタ22aを利用して取り出し、バンドパスフィルタ22aを通過した検出信号Vssの実効値Vssrmsを実効値算出部22bで算出するとともに、実効値算出部22bで算出された検出信号Vssの実効値Vssrmsをコンパレータ22cにて所定の閾値Vr1と比較し、検出信号Vssの実効値Vssrmsが閾値Vr1を超えたときに漏電発生と判定して判定信号Vj1を出力するのであるが、逆に言うと、第1の判定部22から判定信号Vj1が出力されたということは漏電発生箇所が電源装置10から負荷2への給電路であることを示していることになる。
【0032】
次に、図7に示すように電源装置10内部の整流回路13と直流交流変換回路14の間で絶縁破壊(絶縁不良)による漏電が発生した場合を考える。なお、図7における5,6はそれぞれ正極及び負極の通電経路とグランドの間の絶縁破壊抵抗を示している。この場合、グランドを介して絶縁破壊抵抗5又は6、検出抵抗R3並びに分圧抵抗R1又はR2に漏洩電流が流れ、検出抵抗R3の両端に検出電圧Vsが発生する。このときの検出電圧Vsは、図8(a)(b)に示すように直流電圧となり、漏電発生箇所(前記通電経路の正極側又は負極側)に応じて極性が変化する。そして、第2の判定部23では、検出信号Vsの直流成分のみをローパスフィルタ23aを利用して取り出し、ローパスフィルタ23aを通過した検出信号Vsdをそれぞれコンパレータ23b,23cで所定の閾値Vr2,Vr3と比較し、検出信号Vsdが閾値Vr2又はVr3を超えたときに漏電発生と判定して判定信号Vj2又はVj2を出力する。なお、第2の判定部23から判定信号Vj2又はVj2が出力されたということは漏電発生箇所が電源装置10内部の整流回路13と直流交流変換回路14の間であることを示している。
【0033】
最後に、図9に示すように電源装置10内部の絶縁トランス12の2次側と整流回路13の間で絶縁破壊(絶縁不良)による漏電が発生した場合を考える。なお、図9における7,8はそれぞれ正極及び負極の通電経路とグランドの間の絶縁破壊抵抗を示している。この場合、グランドを介して絶縁破壊抵抗7又は8、検出抵抗R3並びに分圧抵抗R1又はR2に漏洩電流が流れ、検出抵抗R3の両端に検出電圧Vsが発生する。このときの検出電圧Vsは、図10に示すように昇圧回路11のスイッチング素子をスイッチングさせるスイッチング周波数に略等しい周波数の高周波電圧となる。そして、第3の判定部24では、昇圧回路11におけるスイッチング周波数に略等しい周波数成分のみをハイパスフィルタ24aを利用して検出信号Vsから取り出し、ハイパスフィルタ24aを通過した検出信号Vscの実効値Vscrmsを実効値算出部24bで算出するとともに、実効値算出部24bで算出された検出信号Vscの実効値Vscrmsをコンパレータ24cで所定の閾値Vr4と比較し、検出信号Vscの実効値Vscrmsが閾値Vr4を超えたときに漏電発生と判定して判定信号Vj3を出力する。なお、第3の判定部24から判定信号Vj3が出力されたということは漏電発生箇所が電源装置10内部の絶縁トランス12の2次側と整流回路13の間であることを示している。
【0034】
すなわち、本実施形態の漏電検出装置20は第1〜第3の判定部22〜24を備えているため、個々の判定部22〜24の判定結果から漏電発生の有無だけでなく漏電発生箇所も併せて検出することができ、しかも、複数箇所で同時に漏電が発生した場合にはそれらの漏電発生及び漏電発生箇所を同時に検出することができる。但し、本実施形態では第1〜第3の判定部22〜24を全て備える構成を例示したが、必要に応じてこれら3つの判定部22〜24の内の少なくとも何れか2つの判定部を備える構成としても構わない。
【0035】
(実施形態2)
本実施形態の漏電検出装置20は、図11に示すように分圧抵抗R1,R2及び検出抵抗Rs、増幅器21並びに信号処理回路部25で構成される。なお、本実施形態における電源装置10は実施形態1と共通であるから説明は省略する。
【0036】
信号処理回路部25はマイクロコンピュータを主構成要素とし、図12に示すようにレベル判定部25a、波形判定部25b、漏電判定部25c、外部出力部25d並びに通信部25eを具備している。なお、増幅器21で増幅されたアナログの検出信号Vsは、マイクロコンピュータの持つA/D変換機能を用いてデジタルの検出信号データに変換されて一旦メモリ(図示せず)に格納される。レベル判定部25aは、前記メモリから読み出した検出信号データにフィルタ処理及び実効値演算処理を施して検出信号Vsのレベルを求め、そのレベルを所定の閾値(基準データ)と比較することで漏電電流のレベルを判定する。波形判定部25bは、前記メモリから読み出した検出信号データから元の検出信号Vsの波形を求め、その波形が予め設定されている複数の波形パターン(基準データ)、具体的には図6に示した正弦波、図8に示した直線波形、又は図10に示した鋸波形の何れに最も近いかをパターンマッチング等の方法で判定する。
【0037】
漏電判定部25cは、レベル判定部25aのレベル判定結果から漏電発生の有無を判定するとともに波形判定部25bの波形判定結果から漏電発生箇所の判定を行い、漏電発生及び漏電発生箇所を示すデータを外部出力部25d及び通信出力部25eに出力する。外部出力部25dは、漏電判定部25cから前記データが入力されると、漏電発生箇所に適した処置、例えば漏電発生箇所が電源装置10から負荷2への給電路である場合に開閉要素15を開く処置や、漏電発生箇所が電源装置10内部である場合に昇圧回路11や直流交流変換回路14の動作を停止する処置などを行うための制御信号を電源制御回路17等に出力する。また通信部25eは、漏電判定部25cから入力された前記データを通信ケーブルを介して自動車に搭載されている電子制御装置、いわゆるECU(Electric Control Unit)に送信するものであり、通信プロトコルとしては、例えば自動車内のLAN規格であるCAN(Controller Area Network)を利用すればよい。そして、このように漏電の発生及びその発生箇所の情報を電子制御装置に送信し、電子制御装置によってそれらの情報を映像や文字あるいは音声等を用いて自動車の使用者に知らせるようにすれば、安全性のさらなる向上が図れる。
【0038】
而して、本実施形態の漏電検出装置20においても実施形態1と同様に、信号処理回路部25による信号処理結果から漏電発生の有無だけでなく漏電発生箇所も併せて検出することができる。
【0039】
(実施形態3)
本実施形態は、図13に示すように漏電検出装置20の分圧素子及び検出素子として抵抗R1〜R3の代わりにコンデンサC1〜C3を用いた点と、電源装置10が正弦波ではなく矩形波の交流電圧を作成する点とが実施形態1と異なっているが、基本的な構成は実施形態1と共通である。よって、実施形態1と共通の構成要素には同一の符号を付して説明を省略する。
【0040】
まず本実施形態における電源装置10について説明する。この電源装置10では、フルブリッジ型のインバータ回路からなる直流交流変換回路14において直流直流変換回路の出力電圧を周期的に極性反転することにより、図14に示すような矩形波の交流電圧に変換している。ここで、半周期T1における正弦波交流の実効値と矩形波交流の実効値を略同じにするには、図14に示すように正弦波交流の半周期T1内において直流交流変換回路14を構成するインバータ回路のスイッチング素子をオンする期間T2を調整すればよい。すなわち、実施形態1では直流交流変換回路14で正弦波交流に変換するためにインバータ回路のスイッチング素子をPWM制御しなければならないことから、電源制御回路17における制御が非常に複雑であったが、本実施形態のように矩形波交流に変換する場合にはインバータ回路のスイッチング素子のオン期間を調整するだけでよいから、電源制御回路17における制御が非常に簡単になる。なお、直流交流変換回路14の出力を矩形波交流電圧としたことで実施形態1におけるフィルタ16は不要である。
【0041】
一方、本実施形態の漏電検出装置20は、図13に示すように互いに容量値が等しく整流回路13の出力端間に直列接続される2つのコンデンサC1,C2と、コンデンサC1,C2の接続点とグランドの間に挿入される検出用のコンデンサC3とを備えており、増幅器21にて検出用のコンデンサC3の両端電圧を取り込んでゲイン調整することにより、図15に示すように電源装置10から出力される矩形波交流電圧に同期した検出信号Vsが得られ、この検出信号Vsを第1〜第3の判定部22〜24にて各々信号処理することにより互いに異なる箇所での漏電発生を判定するものである。但し、増幅器21並びに第1〜第3の判定部22〜24の構成並びに動作は実施形態1と共通であるから説明は省略する。
【0042】
上述のように本実施形態では分圧素子及び検出素子としてコンデンサC1〜C3を用いているので、漏電検出装置20と直流直流変換回路とが直流的に絶縁されるとともに分圧素子(コンデンサC1,C2)には定常時において直流電流(暗電流)が流れないことから耐圧が向上するとともに暗電流による無駄な電力消費を防止して電源装置10における電力変換効率の低下を防ぐことができるという利点がある。なお、分圧素子及び検出素子としてコンデンサC1〜C3の代わりに抵抗R1〜R3を用いることも勿論可能であり、抵抗R1〜R3を用いた場合には一般に抵抗素子の抵抗値がコンデンサの容量値に比較してばらつきが小さいことから、直流直流変換回路の出力電圧を精度良く検出できるという利点がある。また、本実施形態では電源装置10の出力を矩形波交流電圧としたが、実施形態1と同様に正弦波交流電圧としても同様の効果を奏することは言うまでもない。さらに、図16に示すように実施形態2においても分圧抵抗R1,R2並びに検出抵抗R3の代わりにコンデンサC1〜C3を用いることが可能であり、コンデンサ又は抵抗の何れを用いる場合においても電源装置10の出力が正弦波又は矩形波の何れであっても実施形態2と同様の効果を奏するものである。
【0043】
ところで、上述の実施形態1〜3の漏電検出装置20において、電源装置10から負荷2への電力供給が開始される前に開閉要素15を開成して電源装置10を無負荷とした状態で漏電検出を行うことが望ましい。つまり、図17に示すように開閉要素15を開成した状態で昇圧回路11のみを動作させれば絶縁トランス12から直流交流変換回路14までの電源装置10内部における漏電が検出でき、さらに昇圧回路11及び直流交流変換回路14を動作させれば直流交流変換回路14から開閉要素15までの区間における漏電が検出できる。そして、これらの初期診断で漏電が検出されなければ、一定時間の待機後に開閉要素15を閉成して電源装置10から負荷2への給電路を形成するとともに昇圧回路11及び直流交流変換回路14を動作させて電源装置10を運転させればよい。このように無負荷の状態で漏電検出を行うことにより、漏電事故の発生を未然に防いで安全性の向上が図れるという利点がある。
【0044】
【発明の効果】
請求項1の発明によれば、それぞれの判定部にてそれぞれの検出箇所における漏電が検出できるから、漏電の有無だけでなくその発生箇所も同時に検出可能となる。しかも、複数箇所で同時に漏電が発生した場合にはそれらの漏電発生及び漏電発生箇所を同時に検出することができる。
【0045】
請求項2の発明によれば、発生箇所ごとに検出信号の波形並びにレベルが異なることを利用して複数箇所の漏電が検出できるから、漏電の有無だけでなくその発生箇所も同時に検出可能となる。しかも、複数箇所で同時に漏電が発生した場合にはそれらの漏電発生及び漏電発生箇所を同時に検出することができる。
【0046】
請求項3の発明によれば、一般に抵抗素子のインピーダンス値(抵抗値)はばらつきが小さいことから直流直流変換回路の出力電圧を精度良く検出できる。
【0047】
請求項4の発明によれば、抵抗を用いる場合に比較して耐圧が向上するとともに定常時には分圧素子や検出素子に直流電流が流れないために無駄な電力消費を防止することができる。
【0048】
請求項5の発明によれば、例えば、外部の機器において判定結果の情報を映像や文字あるいは音声等で使用者に報知して安全性の向上を図ることができる。
【0049】
請求項6の発明によれば、無負荷の状態で漏電検出を行うことにより漏電事故の発生を未然に防いで安全性の向上が図れる。
【図面の簡単な説明】
【図1】実施形態1の漏電検出装置並びに電源装置を示す回路ブロック図である。
【図2】同上における第1の判定部を示すブロック図である。
【図3】同上における第2の判定部を示すブロック図である。
【図4】同上における第3の判定部を示すブロック図である。
【図5】第1の判定部の動作説明図である。
【図6】第1の判定部の動作説明用の波形図である。
【図7】第2の判定部の動作説明図である。
【図8】第2の判定部の動作説明用の波形図である。
【図9】第3の判定部の動作説明図である。
【図10】第3の判定部の動作説明用の波形図である。
【図11】実施形態2の漏電検出装置並びに電源装置を示す回路ブロック図である。
【図12】同上における信号処理回路部を示すブロック図である。
【図13】実施形態3の漏電検出装置並びに電源装置を示す回路ブロック図である。
【図14】同上における電源装置の出力電圧の波形図である。
【図15】同上における検出電圧の波形図である。
【図16】同上の漏電検出装置並びに電源装置の他の構成を示す回路ブロック図である。
【図17】同上の動作説明用のタイミングチャートである。
【図18】従来例を示す回路図である。
【図19】同上の動作説明図である。
【図20】他の従来例を示す回路図である。
【符号の説明】
10 電源装置
20 漏電検出装置
21 増幅器
22 第1の判定部
23 第2の判定部
24 第3の判定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a leakage detection device that detects leakage of a power supply device.
[0002]
[Prior art]
FIG. 18 shows an example of a conventional leakage detection device. In this conventional example, voltage dividing resistors R1 and R2 having a high resistance value are connected in series between output terminals of a DC power supply E serving as a power source of an electric vehicle, and a connection point between the voltage dividing resistors R1 and R2 and a ground (vehicle body). A detection resistor R3 is connected between the detection resistors R3 and R3, and a leakage voltage is detected using a voltage drop across the detection resistor R3 as a detection voltage (see Patent Document 1).
[0003]
Next, the operation of the above conventional example will be described. Since the DC power supply E used as power for the electric vehicle outputs a very high voltage of about 200 V to 300 V, the DC power supply E is electrically separated from the vehicle body so as not to receive an electric shock even if a person touches the vehicle body ( Floating state). However, when a dielectric breakdown has occurred between the high voltage system including the DC power supply E and the ground, when a person touches the vehicle body or the like, a path for current flow is formed, resulting in electric shock. However, since the high-voltage system is separated from the ground, even if insulation breakdown occurs, no current flows unless a person touches the high-voltage system, and it is not possible to detect leakage. Therefore, in the above-described conventional example, the leakage detection can be performed before a person touches.
[0004]
FIG. 19 is a circuit diagram showing a state in which dielectric breakdown occurs between the negative electrode side of the high voltage system and the ground and a person is touching the high voltage system in the above conventional example. Here, the resistance r is the resistance between the high voltage system and the ground (dielectric breakdown resistance) at the site where the dielectric breakdown has occurred, and the resistance R is the resistance of the human body. The output voltage of the DC power supply E is V volts, the voltage dividing resistors R1 and R2, the detection resistor R3, the insulation resistance r, and the human body resistance R are R1, R2, R3, r, and R, respectively. , R2, the leakage current (ground fault current) I flowing through the human body resistance R is represented by the following equation (1). You.
[0005]
I = V / (r + R) (1)
Although the human body resistance R may vary depending on the environment such as humidity, the leakage current I becomes maximum when R = 0.
[0006]
On the other hand, when a person does not touch the high-voltage system, that is, when the resistance value R of the human body resistor R is infinite, the value of the detection voltage V1 generated at both ends of the detection resistor R3 is obtained. Assuming that the resistance values R1 and R2 are larger than the resistance value R3 of the detection resistor R3, the leakage current i flowing through the voltage dividing resistor R1, the detection resistor R3, and the insulation breakdown resistor r via the ground is represented by the following equation (2). And the value of the detection voltage V1 generated at both ends of the detection resistor R3 is expressed by the following equation (3).
[0007]
i = V / (R1 + R3 + r) (2)
V1 = V × R3 / (R1 + R3 + r) (3)
Therefore, the detection voltage V1 corresponding to the leakage current I is obtained by substituting the expression (1) into the expression (3), and the leakage can be detected from the detection voltage V1.
[0008]
By the way, as shown in FIG. 20, in a 100 V commercial AC power supply supplied to a general household, the secondary side of the transformer T is grounded by a resistor r. A path through which a current flows is formed by the ground resistance r, and a leakage occurs. For this reason, an earth leakage breaker is usually installed on the secondary side of the transformer T, and when an earth leakage occurs, the earth leakage breaker cuts off a power supply path to the load M to prevent an earth leakage accident. This earth leakage breaker has a zero-phase current transformer ZCT inserted in a power supply line from a transformer T to a load M as shown in FIG. 20, and a zero-phase current transformer corresponding to an unbalanced current flowing in the power supply line. An electric leakage detection device that detects electric leakage from the secondary side output of the ZCT is used.
[0009]
[Patent Document 1]
Japanese Patent No. 3307173 (page 2-3, FIG. 1)
[0010]
[Problems to be solved by the invention]
By the way, the above-mentioned conventional electric leakage detection device can detect the presence or absence of electric leakage, but cannot detect the location where the electric leakage has occurred, and it has been difficult to take appropriate measures against the electric leakage accident at an early stage.
[0011]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a leakage detection device capable of detecting not only the presence / absence of leakage but also the location where the leakage has occurred.
[0012]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a DC / DC conversion circuit for chopping a DC voltage supplied from a DC power supply, boosting the DC voltage to a desired level via an insulating transformer, and then rectifying and smoothing the DC voltage. A DC / AC conversion circuit that converts a DC voltage output from a DC / DC conversion circuit into an AC voltage, and a switching element that opens and closes a power supply path from the DC / AC conversion circuit to a load, and is electrically insulated from ground. A leakage detecting device for detecting a leakage of a power supply device which operates in a state where the AC voltage is supplied to a load, and which is connected in series between input terminals or output terminals of a DC / AC conversion circuit having equal impedance values. Two voltage-dividing elements, a detecting element inserted between the connection point of the voltage-dividing elements and the ground, and a detection signal that captures the voltage across the detection element as a detection signal and transmits the captured detection signal. Determining means for processing to determine the presence / absence and location of the leakage, wherein the determination means compares the effective value of the AC voltage included in the detection signal with a predetermined threshold to determine the leakage. Unit, a second determination unit that determines a leakage by comparing a DC component included in the detection signal with a predetermined threshold value corresponding to the polarity, and sets an effective value of a frequency component equal to the chopping frequency included in the detection signal to a predetermined value. It is characterized by including at least any two of the third determination units that determine leakage by comparing with a threshold value.
[0013]
According to the present invention, since each of the determination units can detect the leakage at each of the detection locations, it is possible to simultaneously detect not only the presence or absence of the leakage but also the location where the leakage occurs. In addition, when electric leakage occurs at a plurality of locations at the same time, it is possible to simultaneously detect the occurrence of the electrical leakage and the location where the electrical leakage occurs.
[0014]
According to a second aspect of the present invention, there is provided a DC / DC conversion circuit for chopping a DC voltage supplied from a DC power supply, boosting the DC voltage to a desired level via an insulating transformer, and then rectifying and smoothing the DC voltage. A DC / AC conversion circuit that converts a DC voltage output from a DC / DC conversion circuit into an AC voltage, and a switching element that opens and closes a power supply path from the DC / AC conversion circuit to a load, and is electrically insulated from ground. A leakage detecting device for detecting a leakage of a power supply device which operates in a state where the AC voltage is supplied to a load, and which is connected in series between input terminals or output terminals of a DC / AC conversion circuit having equal impedance values. Two voltage-dividing elements, a detecting element inserted between the connection point of the voltage-dividing elements and the ground, and a detection signal that captures the voltage across the detection resistor as a detection signal and transmits the captured detection signal. A determination means for processing to determine the presence / absence and location of occurrence of an electric leakage, wherein the determination means converts an analog detection signal into a digital detection signal and prepares in advance waveform data and level data obtained from the digital detection signal It is characterized by comparison with reference data obtained.
[0015]
According to the present invention, it is possible to detect leakage at a plurality of locations by utilizing the fact that the waveform and level of the detection signal are different for each location, so that not only the presence / absence of a leakage but also the location of occurrence can be detected simultaneously. In addition, when electric leakage occurs at a plurality of locations at the same time, it is possible to simultaneously detect the occurrence of the electrical leakage and the location where the electrical leakage occurs.
[0016]
According to a third aspect of the present invention, in the first or second aspect, the voltage dividing element and the detecting element are resistors.
[0017]
According to the present invention, since the impedance value (resistance value) of the resistance element generally has a small variation, the output voltage of the DC / DC converter can be detected with high accuracy.
[0018]
According to a fourth aspect of the present invention, in the first or second aspect, the voltage dividing element and the detecting element are capacitors.
[0019]
According to the present invention, the withstand voltage is improved as compared with the case where a resistor is used, and wasteful power consumption can be prevented because a direct current does not flow through the voltage dividing element or the detecting element in a steady state.
[0020]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, there is provided a communication unit for transmitting a determination result by the determination unit to the outside via a communication medium.
[0021]
According to the present invention, for example, information on the determination result can be notified to the user by video, text, sound, or the like in an external device to improve safety.
[0022]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the judging means opens the switching element before the power supply from the power supply to the load is started to set the power supply to no load. It is characterized in that the judgment of the electric leakage is performed in a state where the electric leakage has occurred.
[0023]
According to the present invention, leakage detection is performed in a no-load state, thereby preventing a leakage accident from occurring and improving safety.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
As shown in FIG. 1, the power supply device 10 using the earth leakage detection device 20 of the present embodiment generates an AC voltage of 100 V from a low-voltage (for example, 12 V to 42 V) battery 1 mounted on an automobile and loads the vehicle. 2, a DC voltage supplied from the battery 1 is chopped by a switching element of a booster circuit 11, and is boosted to a desired level via an insulating transformer 12, and then a rectifier circuit 13 (including a smoothing circuit). A DC / DC conversion circuit for rectifying and smoothing the output, a DC / AC conversion circuit 14 for converting the DC output voltage of the DC / DC conversion circuit into a sine-wave AC voltage, and a power supply path from the DC / AC conversion circuit 14 to the load 2. A switching element 15 for opening and closing, a filter 16 for removing harmonic components from an output of the DC / AC conversion circuit 14, a DC / DC conversion circuit, and a DC / AC conversion circuit 1 And a power supply control circuit 17 for controlling the operation. However, the battery 1 is grounded to the ground (the body of the car).
[0025]
The booster circuit 11 constitutes a DC / DC conversion circuit including a conventionally well-known insulated DC-DC converter together with the insulating transformer 12 and the rectifier circuit 13. The power supply control circuit 17 adjusts the switching frequency and on-duty ratio of the switching element. By doing so, the input voltage can be boosted to a desired level. The DC / AC conversion circuit 14 is, for example, a conventionally known full-bridge type inverter circuit. The DC / AC conversion circuit 14 adjusts the switching frequency and on-duty ratio of a switching element included in the inverter circuit to output DC from the rectifier circuit 13. The voltage can be converted to a sine wave AC voltage having a predetermined frequency (for example, 50 Hz or 60 Hz). Note that the power supply control circuit 17 can be configured using, for example, a microcomputer, but the specific configuration is well known in the related art, and a description thereof will be omitted.
[0026]
On the other hand, as shown in FIG. 1, the leakage detecting device 20 of the present embodiment includes two voltage dividing resistors R1 and R2 having the same resistance value and connected in series between the output terminals of the rectifier circuit 13, and the voltage dividing resistors R1 and R2. A detection resistor Rs inserted between the connection point of R2 and the ground, an amplifier 21 that takes in a voltage drop in the detection resistor Rs as a detection signal Vs and adjusts the gain, and a signal processing of the detection signal Vs at different locations. And first to third determination units 22 to 24 that determine the occurrence of leakage.
[0027]
The first determination unit 22 includes a band-pass filter 22a for extracting only a frequency component substantially equal to the frequency (for example, 50 Hz or 60 Hz) of the sine wave AC voltage included in the detection signal Vs, as shown in FIG. Effective value Vss of detection signal Vss passed through pass filter 22a rms And an effective value Vss of the detection signal Vss calculated by the effective value calculation unit 22b. rms Is compared with a predetermined threshold value Vr1, and the effective value Vss of the detection signal Vss is provided. rms Is greater than the threshold value Vr1, it is determined that an electric leakage has occurred, and a determination signal Vj1 is output. However, the detection signal Vs can be subjected to full-wave rectification and then smoothed by an integration circuit to generate a DC detection signal Vss2 similar to the above-described effective value calculation, thereby determining the occurrence of leakage.
[0028]
The second determination unit 23 compares the low-pass filter 23a for extracting only the DC component of the detection signal Vs and the detection signal Vsd passing through the low-pass filter 23a with predetermined thresholds Vr2 and Vr3, respectively, as shown in FIG. It has two comparators 23b and 23c, and when the detection signal Vsd exceeds the threshold value Vr2 or Vr3, it is determined that leakage has occurred and the determination signal Vj2 1 Or Vj2 2 Is output.
[0029]
The third determination unit 24 passes through the high-pass filter 24a for extracting only a frequency component equal to the chopping frequency (the switching frequency in the booster circuit 11) included in the detection signal Vs, as shown in FIG. 4, and the high-pass filter 24a. Effective value Vsc of detection signal Vsc rms And an effective value Vsc of the detection signal Vsc calculated by the effective value calculation unit 24b. rms Is compared with a predetermined threshold value Vr4, and the effective value Vsc of the detection signal Vsc is provided. rms Is greater than the threshold value Vr4, it is determined that leakage has occurred, and a determination signal Vj3 is output. If the frequency component extracted from the detection signal Vs is substantially equal to the switching frequency in the booster circuit 11, it is possible to determine the occurrence of leakage.
[0030]
Thus, in the present embodiment, since the secondary side of the insulating transformer 12 of the power supply device 10 is disconnected from the ground and is in a floating state, the current (dark) is applied to the detection resistor Rs unless a leakage fault occurs. Current) does not flow, and the detection signal Vs is not output. However, when an insulation breakdown occurs between the power supply device 10 and the ground, the first to third determination units 22 to 24 depend on the location where the insulation breakdown has occurred. Either one will determine that a short circuit has occurred. Hereinafter, the operation of determining the occurrence of electric leakage in the first to third determination units 22 to 24 will be individually described.
[0031]
First, consider a case where insulation breakdown occurs between the power supply path from the power supply device 10 to the load 2 and the ground as shown in FIG. In FIG. 5, reference numeral 3 denotes a dielectric breakdown resistance (or a human body resistance) when an insulation breakdown occurs on the positive electrode side of the power supply path, and reference numeral 4 denotes a dielectric breakdown resistance (when a dielectric breakdown occurs on the negative electrode side of the power supply path). Or human body resistance). In this case, a leakage current flows through the insulation resistance 3 or 4, the detection resistance R3 and the voltage dividing resistance R1 or R2 via the ground, and a detection voltage Vs is generated across the detection resistance R3. The detection voltage Vs at this time is a sine wave AC voltage equal to the frequency of the sine wave AC voltage output from the power supply device 10 as shown in FIG. However, the phase of the detection voltage Vs may not coincide with the phase of the output voltage of the power supply device 10 depending on which of the dielectric breakdown resistances 3 and 4 the leakage current flows through. Then, the first determination unit 22 extracts a frequency component equal to the output voltage frequency of the power supply device 10 using the bandpass filter 22a, and obtains an effective value Vss of the detection signal Vss passing through the bandpass filter 22a. rms Is calculated by the effective value calculation unit 22b, and the effective value Vss of the detection signal Vss calculated by the effective value calculation unit 22b is calculated. rms Is compared with a predetermined threshold value Vr1 by the comparator 22c, and the effective value Vss of the detection signal Vss is compared. rms Is greater than the threshold value Vr1, it is determined that an electric leakage has occurred, and the judgment signal Vj1 is output. Conversely, the fact that the judgment signal Vj1 is output from the first judgment unit 22 means that the electric leakage occurrence location is This indicates that the power supply path is from the power supply device 10 to the load 2.
[0032]
Next, as shown in FIG. 7, a case where a leakage occurs due to insulation breakdown (insulation failure) between the rectifier circuit 13 and the DC / AC converter circuit 14 inside the power supply device 10 will be considered. In FIG. 7, reference numerals 5 and 6 denote dielectric breakdown resistance between the current path of the positive electrode and the negative electrode, respectively, and the ground. In this case, a leakage current flows through the insulation resistance 5 or 6, the detection resistance R3, and the voltage dividing resistance R1 or R2 via the ground, and a detection voltage Vs is generated across the detection resistance R3. The detection voltage Vs at this time is a DC voltage as shown in FIGS. 8A and 8B, and the polarity changes according to the location of the leakage (the positive or negative side of the current path). Then, in the second determination unit 23, only the DC component of the detection signal Vs is extracted using the low-pass filter 23a, and the detection signal Vsd that has passed through the low-pass filter 23a is determined by the comparators 23b and 23c as predetermined thresholds Vr2 and Vr3, respectively. When the detection signal Vsd exceeds the threshold value Vr2 or Vr3, it is determined that leakage has occurred and the determination signal Vj2 is determined. 1 Or Vj2 2 Is output. Note that the determination signal Vj2 is output from the second determination unit 23. 1 Or Vj2 2 Is output indicates that the leakage location is between the rectifier circuit 13 and the DC / AC converter circuit 14 inside the power supply device 10.
[0033]
Finally, let us consider a case where a leakage occurs due to insulation breakdown (insulation failure) between the secondary side of the insulating transformer 12 and the rectifier circuit 13 inside the power supply device 10 as shown in FIG. In addition, 7 and 8 in FIG. 9 indicate the dielectric breakdown resistance between the current path of the positive electrode and the negative electrode, respectively, and the ground. In this case, a leakage current flows through the insulation resistance 7 or 8, the detection resistance R3 and the voltage dividing resistance R1 or R2 via the ground, and a detection voltage Vs is generated across the detection resistance R3. The detection voltage Vs at this time is a high-frequency voltage having a frequency substantially equal to the switching frequency for switching the switching element of the booster circuit 11, as shown in FIG. Then, the third determination unit 24 extracts only the frequency component substantially equal to the switching frequency in the booster circuit 11 from the detection signal Vs using the high-pass filter 24a, and obtains the effective value Vsc of the detection signal Vsc passing through the high-pass filter 24a. rms Is calculated by the effective value calculating unit 24b, and the effective value Vsc of the detection signal Vsc calculated by the effective value calculating unit 24b is calculated. rms Is compared with a predetermined threshold value Vr4 by the comparator 24c, and the effective value Vsc of the detection signal Vsc is compared. rms Is greater than the threshold value Vr4, it is determined that leakage has occurred, and a determination signal Vj3 is output. The output of the determination signal Vj3 from the third determination unit 24 indicates that the leakage location is between the secondary side of the insulating transformer 12 in the power supply device 10 and the rectifier circuit 13.
[0034]
That is, since the leakage detection device 20 of the present embodiment includes the first to third determination units 22 to 24, not only the presence or absence of the leakage but also the location of the leakage is determined from the determination results of the individual determination units 22 to 24. It is also possible to detect the leakage at the same time, and when the leakage occurs at a plurality of locations at the same time, it is possible to simultaneously detect the occurrence of the leakage and the location where the leakage occurs. However, in the present embodiment, the configuration including all of the first to third determination units 22 to 24 is illustrated, but at least two of these three determination units 22 to 24 are provided as necessary. The configuration may be used.
[0035]
(Embodiment 2)
As shown in FIG. 11, the leakage detecting device 20 of the present embodiment includes voltage dividing resistors R1 and R2, a detecting resistor Rs, an amplifier 21, and a signal processing circuit unit 25. Note that the power supply device 10 according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
[0036]
The signal processing circuit unit 25 includes a microcomputer as a main component, and includes a level determination unit 25a, a waveform determination unit 25b, an electric leakage determination unit 25c, an external output unit 25d, and a communication unit 25e as shown in FIG. The analog detection signal Vs amplified by the amplifier 21 is converted into digital detection signal data using an A / D conversion function of the microcomputer, and is temporarily stored in a memory (not shown). The level determination unit 25a performs a filtering process and an effective value calculation process on the detection signal data read from the memory to obtain a level of the detection signal Vs, and compares the level with a predetermined threshold value (reference data) to determine a leakage current. Is determined. The waveform determination unit 25b obtains the waveform of the original detection signal Vs from the detection signal data read from the memory, and the waveform is shown in a plurality of predetermined waveform patterns (reference data), specifically, as shown in FIG. The closest to the sine wave, the linear waveform shown in FIG. 8, or the sawtooth waveform shown in FIG. 10 is determined by a method such as pattern matching.
[0037]
The leakage determining unit 25c determines whether or not a leakage has occurred based on the level determination result of the level determining unit 25a, and determines the location of the leakage from the waveform determination result of the waveform determining unit 25b. It outputs to the external output part 25d and the communication output part 25e. When the data is input from the leakage determining unit 25c, the external output unit 25d switches the switching element 15 when the leakage is detected, for example, when the leakage is a power supply path from the power supply device 10 to the load 2. It outputs a control signal to the power supply control circuit 17 or the like for performing an opening operation or a process of stopping the operation of the booster circuit 11 or the DC / AC converter circuit 14 when the leakage occurrence location is inside the power supply device 10. The communication unit 25e transmits the data input from the earth leakage determination unit 25c to an electronic control unit mounted on the vehicle, a so-called ECU (Electric Control Unit) via a communication cable. For example, CAN (Controller Area Network) which is a LAN standard in a car may be used. If the information on the occurrence of the leakage and the location of the occurrence of the leakage is transmitted to the electronic control device and the electronic control device informs the information of the information to the user of the vehicle using images, characters, sounds, or the like, Safety can be further improved.
[0038]
Thus, similarly to the first embodiment, the leak detection device 20 of the present embodiment can also detect not only the presence or absence of a leak but also the location of the leak from the signal processing result by the signal processing circuit unit 25.
[0039]
(Embodiment 3)
This embodiment is different from the first embodiment in that capacitors C1 to C3 are used in place of the resistors R1 to R3 as the voltage dividing element and the detecting element of the leakage detecting device 20 as shown in FIG. However, the basic configuration is the same as that of the first embodiment. Therefore, the same reference numerals are given to the same components as those in the first embodiment, and the description will be omitted.
[0040]
First, the power supply device 10 according to the present embodiment will be described. In the power supply device 10, the output voltage of the DC / DC conversion circuit is periodically inverted in the DC / AC conversion circuit 14 including a full-bridge type inverter circuit, thereby converting the output voltage to a rectangular wave AC voltage as shown in FIG. are doing. Here, in order to make the effective value of the sine wave AC and the effective value of the rectangular wave AC in the half cycle T1 substantially the same, the DC / AC conversion circuit 14 is configured within the half cycle T1 of the sine wave AC as shown in FIG. The period T2 during which the switching element of the inverter circuit is turned on may be adjusted. That is, in the first embodiment, the control in the power supply control circuit 17 is very complicated because the switching element of the inverter circuit has to be PWM-controlled in order to convert the sine-wave AC into the sine-wave AC in the DC-AC converter 14. In the case of converting into a rectangular wave AC as in the present embodiment, it is only necessary to adjust the ON period of the switching element of the inverter circuit, so that the control in the power supply control circuit 17 becomes very simple. The filter 16 in the first embodiment is unnecessary because the output of the DC / AC conversion circuit 14 is a rectangular wave AC voltage.
[0041]
On the other hand, as shown in FIG. 13, the leakage detection device 20 of the present embodiment has two capacitors C1 and C2 having the same capacitance value and connected in series between the output terminals of the rectifier circuit 13, and a connection point between the capacitors C1 and C2. And a detection capacitor C3 inserted between the power supply device 10 and the ground, and the amplifier 21 captures the voltage between both ends of the detection capacitor C3 and adjusts the gain. A detection signal Vs synchronized with the output rectangular wave AC voltage is obtained, and the detection signal Vs is subjected to signal processing in each of the first to third determination units 22 to 24 to determine the occurrence of leakage in different places. Is what you do. However, since the configuration and operation of the amplifier 21 and the first to third determination units 22 to 24 are common to those of the first embodiment, the description is omitted.
[0042]
As described above, since the capacitors C1 to C3 are used as the voltage dividing element and the detecting element in the present embodiment, the leakage detecting device 20 and the DC / DC conversion circuit are DC-insulated and the voltage dividing elements (the capacitors C1 and C1) are used. C2) has an advantage that the DC voltage (dark current) does not flow in the steady state, so that the withstand voltage is improved, and the power conversion efficiency of the power supply device 10 can be prevented from being reduced by preventing wasteful power consumption due to the dark current. There is. Note that it is of course possible to use the resistors R1 to R3 instead of the capacitors C1 to C3 as the voltage dividing element and the detecting element. In the case where the resistors R1 to R3 are used, the resistance value of the resistor element generally becomes the capacitance value of the capacitor. Therefore, there is an advantage that the output voltage of the DC / DC converter can be detected with high accuracy because the variation is smaller than that of the DC / DC converter. Further, in the present embodiment, the output of the power supply device 10 is a rectangular wave AC voltage. However, it is needless to say that a similar effect can be obtained by using a sine wave AC voltage as in the first embodiment. Further, as shown in FIG. 16, in the second embodiment as well, capacitors C1 to C3 can be used instead of the voltage dividing resistors R1 and R2 and the detection resistor R3. The same effect as in the second embodiment can be obtained regardless of whether the output of the signal 10 is a sine wave or a rectangular wave.
[0043]
By the way, in the earth leakage detecting device 20 of the above-described first to third embodiments, the switching element 15 is opened before the power supply from the power supply device 10 to the load 2 is started, and the earth leakage is performed in a state where the power supply device 10 has no load. It is desirable to perform detection. That is, if only the booster circuit 11 is operated with the switching element 15 opened as shown in FIG. 17, it is possible to detect a leakage in the power supply device 10 from the insulating transformer 12 to the DC / AC converter circuit 14, If the DC / AC conversion circuit 14 is operated, the leakage from the DC / AC conversion circuit 14 to the switching element 15 can be detected. If no leakage is detected in these initial diagnoses, the switching element 15 is closed after waiting for a certain period of time to form a power supply path from the power supply 10 to the load 2 and the booster circuit 11 and the DC / AC converter 14 To operate the power supply device 10. As described above, by performing the leakage detection under no load, there is an advantage that the occurrence of a leakage accident can be prevented beforehand and safety can be improved.
[0044]
【The invention's effect】
According to the first aspect of the present invention, each of the determination units can detect the leakage at each of the detection locations, so that not only the presence or absence of the leakage but also the location of the occurrence can be detected at the same time. In addition, when electric leakage occurs at a plurality of locations at the same time, it is possible to simultaneously detect the occurrence of the electrical leakage and the location where the electrical leakage occurs.
[0045]
According to the second aspect of the present invention, it is possible to detect leakage at a plurality of locations by using the fact that the waveform and level of the detection signal are different for each location. . In addition, when electric leakage occurs at a plurality of locations at the same time, it is possible to simultaneously detect the occurrence of the electrical leakage and the location where the electrical leakage occurs.
[0046]
According to the third aspect of the invention, since the impedance value (resistance value) of the resistance element generally has a small variation, the output voltage of the DC / DC converter can be accurately detected.
[0047]
According to the fourth aspect of the present invention, the withstand voltage is improved as compared with the case where a resistor is used, and wasteful power consumption can be prevented because a direct current does not flow through the voltage dividing element or the detecting element in a steady state.
[0048]
According to the fifth aspect of the present invention, for example, information on the determination result can be notified to the user by a video, a character, a sound, or the like in an external device to improve safety.
[0049]
According to the sixth aspect of the present invention, leakage detection is performed in a no-load state, thereby preventing occurrence of a leakage accident and improving safety.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram illustrating a leakage detection device and a power supply device according to a first embodiment.
FIG. 2 is a block diagram showing a first determination unit in the above.
FIG. 3 is a block diagram showing a second determination unit in the above.
FIG. 4 is a block diagram showing a third determination unit in the above.
FIG. 5 is a diagram illustrating the operation of a first determination unit.
FIG. 6 is a waveform chart for explaining the operation of the first determination unit.
FIG. 7 is a diagram illustrating the operation of a second determination unit.
FIG. 8 is a waveform chart for explaining the operation of the second determination unit.
FIG. 9 is a diagram illustrating the operation of a third determination unit.
FIG. 10 is a waveform chart for explaining the operation of a third determination unit.
FIG. 11 is a circuit block diagram illustrating a leakage detection device and a power supply device according to a second embodiment.
FIG. 12 is a block diagram showing a signal processing circuit unit in the above.
FIG. 13 is a circuit block diagram illustrating a leakage detection device and a power supply device according to a third embodiment.
FIG. 14 is a waveform diagram of an output voltage of the power supply device in the above power supply device;
FIG. 15 is a waveform chart of a detection voltage in the above power supply;
FIG. 16 is a circuit block diagram showing another configuration of the electric leakage detection device and the power supply device according to the above.
FIG. 17 is a timing chart for explaining the above operation.
FIG. 18 is a circuit diagram showing a conventional example.
FIG. 19 is an explanatory diagram of the operation of the above.
FIG. 20 is a circuit diagram showing another conventional example.
[Explanation of symbols]
10 Power supply
20 Electric leakage detection device
21 Amplifier
22 First judgment unit
23 Second determination unit
24 Third Determination Unit

Claims (6)

直流電源から供給される直流電圧をチョッピングするとともに絶縁トランスを介して所望のレベルに昇圧した後に整流平滑して出力する直流直流変換回路と、直流直流変換回路から出力される直流電圧を交流電圧に変換する直流交流変換回路と、直流交流変換回路から負荷への給電路を開閉する開閉要素とを有し、グランドと電気的に絶縁された状態で動作して負荷に交流電圧を供給する電源装置の漏電を検出する漏電検出装置であって、互いにインピーダンス値が等しく直流交流変換回路の入力端間又は出力端間に直列接続される2つの分圧素子と、分圧素子の接続点と前記グランドの間に挿入される検出素子と、検出素子の両端電圧を検出信号として取り込み且つ取り込んだ検出信号を信号処理して漏電の有無並びに発生箇所を判定する判定手段とを備え、判定手段は、検出信号に含まれる前記交流電圧の実効値を所定の閾値と比較することで漏電を判定する第1の判定部、検出信号に含まれる直流成分を極性に応じた所定の閾値と比較することで漏電を判定する第2の判定部、検出信号に含まれる前記チョッピング周波数に等しい周波数成分の実効値を所定の閾値と比較することで漏電を判定する第3の判定部、のうちの少なくとも何れか2つの判定部を具備することを特徴とする漏電検出装置。A DC / DC conversion circuit that chops the DC voltage supplied from the DC power supply and boosts it to a desired level through an insulating transformer, and then rectifies and smoothes the output, and converts the DC voltage output from the DC / DC conversion circuit into an AC voltage. A power supply device having a DC / AC conversion circuit for converting, and an opening / closing element for opening / closing a power supply path from the DC / AC conversion circuit to the load, and operating in a state electrically insulated from the ground to supply an AC voltage to the load A leakage detecting device for detecting a leakage of the voltage, comprising two voltage dividing elements connected in series between the input terminals or the output terminals of the DC / AC conversion circuit having the same impedance value, a connection point of the voltage dividing elements, and the ground. The detection element inserted between the detection element and the voltage between both ends of the detection element is captured as a detection signal, and the captured detection signal is subjected to signal processing to determine the presence / absence of leakage and the location of occurrence. A first determining unit that determines an electric leakage by comparing an effective value of the AC voltage included in the detection signal with a predetermined threshold, and polarizes a DC component included in the detection signal. A second determining unit that determines an electric leakage by comparing with a predetermined threshold value corresponding thereto, and a third determining unit that determines an electric leakage by comparing an effective value of a frequency component equal to the chopping frequency included in the detection signal with a predetermined threshold value. A leakage detection device comprising at least any two of the determination units. 直流電源から供給される直流電圧をチョッピングするとともに絶縁トランスを介して所望のレベルに昇圧した後に整流平滑して出力する直流直流変換回路と、直流直流変換回路から出力される直流電圧を交流電圧に変換する直流交流変換回路と、直流交流変換回路から負荷への給電路を開閉する開閉要素とを有し、グランドと電気的に絶縁された状態で動作して負荷に交流電圧を供給する電源装置の漏電を検出する漏電検出装置であって、互いにインピーダンス値が等しく直流交流変換回路の入力端間又は出力端間に直列接続される2つの分圧素子と、分圧素子の接続点と前記グランドの間に挿入される検出素子と、検出抵抗の両端電圧を検出信号として取り込み且つ取り込んだ検出信号を信号処理して漏電の有無並びに発生箇所を判定する判定手段とを備え、判定手段は、アナログの検出信号をデジタルの検出信号に変換し、デジタルの検出信号から得られる波形データ並びにレベルデータを予め用意された基準データと比較することを特徴とする漏電検出装置。A DC / DC conversion circuit that chops the DC voltage supplied from the DC power supply and boosts it to a desired level through an insulating transformer, and then rectifies and smoothes the output, and converts the DC voltage output from the DC / DC conversion circuit into an AC voltage. A power supply device having a DC / AC conversion circuit for converting, and an opening / closing element for opening / closing a power supply path from the DC / AC conversion circuit to the load, and operating in a state electrically insulated from the ground to supply an AC voltage to the load A leakage detecting device for detecting a leakage of the voltage, comprising two voltage dividing elements connected in series between the input terminals or the output terminals of the DC / AC conversion circuit having the same impedance value, a connection point of the voltage dividing elements, and the ground. The detection element inserted between the detection element and the voltage across the detection resistor is fetched as a detection signal, and the fetched detection signal is subjected to signal processing to determine the presence / absence of leakage and the location of occurrence. Determining means for converting an analog detection signal into a digital detection signal, and comparing waveform data and level data obtained from the digital detection signal with reference data prepared in advance. Electric leakage detection device. 前記分圧素子並びに検出素子を抵抗としたことを特徴とする請求項1又は2記載の漏電検出装置。3. The leakage detecting device according to claim 1, wherein the voltage dividing element and the detecting element are resistors. 前記分圧素子並びに検出素子をコンデンサとしたことを特徴とする請求項1又は2記載の漏電検出装置。3. The leakage detecting device according to claim 1, wherein the voltage dividing element and the detecting element are capacitors. 判定手段による判定結果を通信媒体により外部に伝送する通信手段を備えたことを特徴とする請求項1〜4の何れかに記載の漏電検出装置。The earth leakage detecting device according to any one of claims 1 to 4, further comprising a communication unit configured to transmit a determination result by the determination unit to the outside via a communication medium. 判定手段は、電源装置から負荷への電力供給が開始される前に前記開閉要素を開成して電源装置を無負荷とした状態で漏電の判定を行うことを特徴とする請求項1〜5の何れかに記載の漏電検出装置。The power supply device according to claim 1, wherein the determination unit performs the leakage determination in a state where the power supply device is not loaded by opening the switching element before the power supply from the power supply device to the load is started. The leakage detection device according to any one of the above.
JP2003140991A 2002-11-11 2003-05-19 Leakage detecting device Pending JP2004212376A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003140991A JP2004212376A (en) 2002-11-11 2003-05-19 Leakage detecting device
US10/694,880 US6977518B2 (en) 2002-11-11 2003-10-29 Electrical leak detecting apparatus
CNB2003101138311A CN100504412C (en) 2002-11-11 2003-10-31 Creepage detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002327388 2002-11-11
JP2003140991A JP2004212376A (en) 2002-11-11 2003-05-19 Leakage detecting device

Publications (2)

Publication Number Publication Date
JP2004212376A true JP2004212376A (en) 2004-07-29
JP2004212376A5 JP2004212376A5 (en) 2005-10-27

Family

ID=32828403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140991A Pending JP2004212376A (en) 2002-11-11 2003-05-19 Leakage detecting device

Country Status (1)

Country Link
JP (1) JP2004212376A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309907A (en) * 2006-05-22 2007-11-29 Toyota Industries Corp Grounding detecting device, and on-vehicle ac-dc conversion device
JP2009097914A (en) * 2007-10-15 2009-05-07 Denso Corp Electrical leakage detection method
JP2010536314A (en) * 2007-08-08 2010-11-25 エルジー・ケム・リミテッド Battery leakage current sensing device and method
JP2014029293A (en) * 2012-07-31 2014-02-13 Keihin Corp Electrical leakage detection device
CN105938167A (en) * 2016-06-16 2016-09-14 贵阳英纳瑞电气有限公司 DC system AC fleeing fault point positioning search apparatus and method
JP2017530672A (en) * 2014-09-30 2017-10-12 ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. Grid tie inverter safety detection device and method
EP3073279A4 (en) * 2013-11-19 2018-01-03 Hyun Chang Lee Mobile electric leakage detection device and method
WO2018047750A1 (en) * 2016-09-08 2018-03-15 株式会社オートネットワーク技術研究所 Step-down conversion circuit
JP2018151188A (en) * 2017-03-10 2018-09-27 日立建機株式会社 Electric working vehicle
CN109119970A (en) * 2017-06-23 2019-01-01 Tdk株式会社 Earth detector, wireless power transmission device, wireless receiving device and Wireless power transmission system
JP2019009980A (en) * 2017-06-23 2019-01-17 Tdk株式会社 Electrical leak detector, wireless transmission device, wireless power reception device and wireless power transmission system
JP2019030101A (en) * 2017-07-28 2019-02-21 住友電気工業株式会社 Electric power conversion system, method of estimating voltage at earth position, and distributed power supply system
JP2019030099A (en) * 2017-07-28 2019-02-21 住友電気工業株式会社 Dc power supply system and earth determination method
CN110780223A (en) * 2018-07-11 2020-02-11 西门子股份公司 Ground fault detection circuit and device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309907A (en) * 2006-05-22 2007-11-29 Toyota Industries Corp Grounding detecting device, and on-vehicle ac-dc conversion device
JP2010536314A (en) * 2007-08-08 2010-11-25 エルジー・ケム・リミテッド Battery leakage current sensing device and method
JP2009097914A (en) * 2007-10-15 2009-05-07 Denso Corp Electrical leakage detection method
JP2014029293A (en) * 2012-07-31 2014-02-13 Keihin Corp Electrical leakage detection device
EP3418757A1 (en) * 2013-11-19 2018-12-26 Hyun Chang Lee Mobile electric leakage detection device and method
US10996285B2 (en) 2013-11-19 2021-05-04 Hyun Chang Lee Method of detecting earth leaking point without interrupting a power supply
EP3073279A4 (en) * 2013-11-19 2018-01-03 Hyun Chang Lee Mobile electric leakage detection device and method
US10520540B2 (en) 2013-11-19 2019-12-31 Hyun Chang Lee Survey signal transmitter
US10495679B2 (en) 2013-11-19 2019-12-03 Hyun Chang Lee Mobile electric leakage detection device and method
JP2017530672A (en) * 2014-09-30 2017-10-12 ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. Grid tie inverter safety detection device and method
CN105938167A (en) * 2016-06-16 2016-09-14 贵阳英纳瑞电气有限公司 DC system AC fleeing fault point positioning search apparatus and method
WO2018047750A1 (en) * 2016-09-08 2018-03-15 株式会社オートネットワーク技術研究所 Step-down conversion circuit
JP2018151188A (en) * 2017-03-10 2018-09-27 日立建機株式会社 Electric working vehicle
CN109119970A (en) * 2017-06-23 2019-01-01 Tdk株式会社 Earth detector, wireless power transmission device, wireless receiving device and Wireless power transmission system
JP2019009980A (en) * 2017-06-23 2019-01-17 Tdk株式会社 Electrical leak detector, wireless transmission device, wireless power reception device and wireless power transmission system
CN109119970B (en) * 2017-06-23 2021-01-12 Tdk株式会社 Electric leakage detection device, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP2019030101A (en) * 2017-07-28 2019-02-21 住友電気工業株式会社 Electric power conversion system, method of estimating voltage at earth position, and distributed power supply system
JP2019030099A (en) * 2017-07-28 2019-02-21 住友電気工業株式会社 Dc power supply system and earth determination method
JP6996895B2 (en) 2017-07-28 2022-01-17 住友電気工業株式会社 DC power supply system and ground fault determination method
CN110780223A (en) * 2018-07-11 2020-02-11 西门子股份公司 Ground fault detection circuit and device

Similar Documents

Publication Publication Date Title
US6977518B2 (en) Electrical leak detecting apparatus
CN103890957B (en) Safety equipment for photovoltaic system and the method for safe operation equipment
JP2004212376A (en) Leakage detecting device
JP3956895B2 (en) Earth leakage detector
CN103718055A (en) Systems and apparatus for fault detection in dc power sources using ac residual current detection
WO2008016179A1 (en) Insulation resistance determining system, insulation resistance determining apparatus and insulation resistance determining method
KR20100014787A (en) Circuit arrangement and method for increasing the safety of an electonic operating device
CN110927457B (en) Inverter and insulation detection circuit
JP2007309907A (en) Grounding detecting device, and on-vehicle ac-dc conversion device
JP3884386B2 (en) Grid-connected inverter device
CN104215870B (en) The system and method for characterizing the electrical connection between power supply unit and vehicles energy accumulating equipment
JPH02231922A (en) Inrush current prevention system for motor driver upon recovery from instantaneous power interruption
JP4875257B2 (en) Earth leakage detector
CA2340473C (en) Ground fault interrupter
JP4874314B2 (en) Voltage detection device, power conversion device, and air conditioner
KR100820308B1 (en) Battery charging apparatus
KR101148682B1 (en) Non-battery type ups for data backup
CN105322773A (en) Slow start circuit and operation method thereof
KR200431523Y1 (en) Battery charging apparatus
CN107534287A (en) Power safety device and equipment comprising same
JP4791938B2 (en) Power converter
CN215894753U (en) Insulation impedance detection circuit, equipment and vehicle
CN112534670A (en) Arc identification
CN110661426A (en) Power system and method for detecting overload
CN112731007B (en) Residual current protection device test system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129