JP2004207519A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2004207519A
JP2004207519A JP2002375421A JP2002375421A JP2004207519A JP 2004207519 A JP2004207519 A JP 2004207519A JP 2002375421 A JP2002375421 A JP 2002375421A JP 2002375421 A JP2002375421 A JP 2002375421A JP 2004207519 A JP2004207519 A JP 2004207519A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
semiconductor
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002375421A
Other languages
Japanese (ja)
Inventor
祐次 ▲高▼橋
Yuji Takahashi
Kunihiro Jinme
邦博 甚目
Kenichi Koya
賢一 小屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Panasonic Holdings Corp
Original Assignee
Toyoda Gosei Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2002375421A priority Critical patent/JP2004207519A/en
Publication of JP2004207519A publication Critical patent/JP2004207519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which prevents the occurrence of color shading and is easily manufactured, thereby intending to enhance the luminance. <P>SOLUTION: A semitransmissive optical reflection film 2A is provided upward of an LED chip 2 (on a side of a light emitting observation surface), so that a blue light L is radiated in an upward and side direction. The blue light L radiated from the side is reflected by a reflection surface of a cup 1B and radiated upward. Thus, the blue color L can be uniformly irradiated in a wide range with respect to a phosphor disposed not only in an upward direction of the LED chip 2, but also in a side direction thereof, to obtain a white light having no color shading. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発光装置に関し、特に、発光ダイオード(Light-Emitting Diode:以下「LED」という。)から放射される光を蛍光体で吸収し、異なる波長の光に波長変換して放射させ、発光ダイオード放射光と波長変換光との混合光を放射させる発光装置に関する。
【0002】
【従来の技術】
この出願の発明に関連する先行技術文献情報としては次のものがある。
【0003】
【特許文献1】
特開2000−216434号公報(図2)
図8は、特許文献1に示される発光装置の縦断面を示し、凹断面形状を有するパッケージ10と、パッケージ10の凹部11内に収容されるLEDチップ12と、パッケージ10の凹部11内に収容された透光性樹脂による第1のコーティング部13および第2のコーティング部14と、パッケージ10の外部に露出して設けられる外部電極15と、外部電極15とLEDチップ12とを電気的に接続するボンディングワイヤ16とによって構成されており、第2のコーティング部14にはLEDチップ12の発光に基づく可視光を吸収して波長変換された可視光を放射する蛍光物質14Aが含まれている。これにより、LEDチップ12の発光に基づく光を波長変換して他の色の可視光を得ることができる。
【0004】
例えば、青色系のLEDチップ12から放射された青色光を、青色光を吸収して黄色光を放射する蛍光物質14Aを含んだ第2のコーティング部14に通過させると、青色光と波長変換光である黄色光とが混合されて補色による白色光を得ることができる。
【0005】
【発明が解決しようとする課題】
しかし、従来の発光装置によると、LEDチップから放射される光量が全方位に対して均一とはならず、特に、LEDチップの上方へ放射される光量が側面等の他の方向に放射される光量と比べて大になるため、蛍光物質の光吸収量にばらつきが生じて一律な波長変換性が得られず、その結果、色むらが生じるという問題がある。
【0006】
特許文献1に開示される発光装置では、第2のコーティング部の中心部分の厚さを周囲の厚さに対して大にすることにより第2のコーティング部を通過するあらゆる方向の光(例えば、中心を通る垂直光と中心を外れる斜めの光)の光路長を等しくして色むらの発生を抑制しているが、蛍光物質を所定の領域に所定の厚さで配置するための高度な樹脂成型性を要するだけでなく、中心部分の光吸収や散乱が大になって輝度の低下を生じるという不都合がある。
【0007】
従って、本発明の目的は、色むらの発生を解消でき、製造が容易で輝度の向上を図ることのできる発光装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するため、発光面に垂直な方向に放射する光の一部を反射させ、その反射光の少なくとも一部を発光面に水平な方向に放射する半導体発光素子と、
前記半導体発光素子を収容し、内壁面を前記光の反射面とする素子収容部と、前記素子収容部に収容された前記半導体発光素子を封止し、前記光によって励起されて前記光の波長と異なった波長の励起光を放射する蛍光体を含んだ透光性樹脂部とを含むことを特徴とする発光装置を提供する。
【0009】
このような構成によれば、半導体発光素子から面方向および発光面に水平な方向に光が放射されるので、光が分散し、素子収容部内の透光性樹脂部に光が行きわたるようになり、そのことによって蛍光体が充分に励起されて良好な波長変換性が得られる。
【0010】
また、本発明の発光装置において、半導体発光素子を窒化ガリウム系化合物半導体、例えば、InGaNで構成すると、Inの組成比によって青色光の波長を任意に設定することができ、例えば、GaNで構成すると、近紫外光を放射させることができる。
【0011】
半導体発光素子が青色光を放射するときは、蛍光体として励起によって黄色光を放射するものを使用すると、白色LEDを得ることができ、また、蛍光体として励起によって赤色光および緑色光を放射するものを使用しても白色LEDを得ることができる。
【0012】
また、半導体発光素子が近紫外光(あるいは紫外光)を放射するときは、蛍光体として励起によって赤、緑、及び青の各色の光を放射するものを使用すると白色LEDを得ることができる。
【0013】
なお、本発明の発光装置は、白色LEDに限定されるものではなく、半導体発光素子の発光色と蛍光体の励起光の波長の組み合わせによって各種の色のLEDを得ることができる。
【0014】
【発明の実施の形態】
図1は、本発明の第1の実施の形態に係る発光装置を示し、(a)は縦断面図、(b)は(a)のLEDチップ2の部分拡大図である。この発光装置は、先端部にメタルステム1aを有するリードフレーム1Aと、メタルステム1aに設けられて内面に光を反射させる反射面を有するカップ1Bと、リードフレーム1Cと、半透明の光反射膜2Aを上部に設けられたLEDチップ2と、LEDチップ2に設けられるAuバンプ3Aおよび3Bと、サブマウント素子4と、サブマウント素子4をカップ1B内に固定するAgペースト5と、蛍光体を混入されてカップ1Bに注入される透光性樹脂6と、リードフレーム1Cとサブマウント素子4とを電気的に接続する金線のボンディングワイヤ7と、透明エポキシ樹脂部8とより構成されている。なお、(b)においては透光性樹脂6の図示を省略している。
【0015】
LEDチップ2は、例えば、GaN、GaAlN、InGaN、InGaAlN等の窒化ガリウム系化合物半導体やZnSe(セレン化亜鉛)等で450nm〜480nmの青色系で発光するように形成されており、光反射膜2Aと、サファイア基板2Bと、AlNバッファ層2Cと、n型半導体層2Dと、n側電極2Eと、発光する層を有する多層2Kと、p型半導体層2Fと、p側電極2Gと、LEDチップ2の表面保護および光放射性を付与するための保護膜2Iを備え、サブマウント素子4にフリップチップ接合されている。このLEDチップ2は、n側電極2Eとp側電極2Gに駆動電圧を印加することによってn型半導体層2Dとp型半導体層2F間の多層2K内で面状に発光する。
【0016】
光反射膜2Aは、サファイア基板2Bの表面にスパッタリング法、真空蒸着法等の薄膜形成方法によって半透過性を有するアルミニウム膜を薄膜状に形成したものであり、サファイア基板2Bの組成や透光性を阻害することがなければ他の方法で形成しても良い。なお、形成される薄膜についてもアルミニウムに限定されることなく、膜厚に応じて光透過性の調整が可能であれば他の金属材料、あるいは金属以外の材料を用いても良い。また、側面方向への青色光の放射性に優れる材料を選択することが好ましい。
【0017】
n側電極2Eは、例えば、Al、V、Sn、Ti、Cr、Nb、Ta、Mo、W、又はHf等の金属又はこれらの合金を用いて形成することができる。なお、異なる組成の層が積層された二層あるいは多層構造としてもよく、例えば、VとAlの二層構造としても良い。
【0018】
p側電極2Gは、例えば、Rh、Au、Pt、Ag、Cu、Al、Ni、Co、Mg、Pd、V、Mn、Bi、Sn、又はRe等の金属又はこれらの合金を用いて形成することができる。なお、異なる組成の層が積層された二層あるいは多層構造としても良い。
【0019】
保護膜2Iは、例えば、SiO2からなり、光透過性および絶縁性を有してLEDチップ2の表面を保護する。なお、保護膜2IはLEDチップ2の側面方向に対して青色光Lが放射されやすい膜厚で形成されている。
【0020】
サブマウント素子4は、n型のシリコン基板によって形成され、LEDチップ2を静電気から保護するためのツェナーダイオードとして動作する。また、Auバンプ3Aによってp側電極2Gと接続されるn側電極4Aと、p型半導体層4Bと、Auバンプ3Bによってn側電極2Eと接続されるp側電極4Cと、Agペースト5を介してカップ部1Bに電気的に接続されるn電極4Dと、n型半導体層4Eとを有する。
【0021】
透光性樹脂6は、エポキシ樹脂からなり、蛍光体としてCe:YAG(イットリウム・アルミニウム・ガーネット)を含有している。なお、透光性樹脂6として固化後に透明となるシリコン樹脂を用いても良い。
【0022】
このように構成された発光装置において、リードフレーム1Aおよび1Cに電圧を印加すると、LEDチップ2は多層2K内で面状に発光して波長450〜480nmの青色光Lを放射する。
【0023】
光反射膜2Aは、青色光を反射するとともに半透過させてLEDチップ2の上方に青色光Lを放射させる。青色光Lの一部は、蛍光体を励起することにより波長550〜580nmの黄色光に波長変換される。この黄色光と青色光Lとが混合されることによって白色光が放射される。
【0024】
また、光反射膜2Aで反射された青色光Lは、LEDチップ2の側面より放射される。青色光Lの一部は、LEDチップ2の側方に配置される蛍光体を励起することにより黄色光に波長変換される。この黄色光と青色光Lとが混合されることによって白色光が放射される。また、側面より放射された青色光Lは、カップ1Bの反射面で反射されて上方に放射される。
【0025】
カップ1Bで反射された青色光Lの一部は、光路上に配置される蛍光体を励起することにより黄色光に波長変換され、青色光Lと混合されることによって白色光を放射する。
【0026】
上記した第1の実施の形態によると、LEDチップ2の上方(発光観測面側)に半透過性の光反射膜2Aを設けて青色光Lを上方および側面方向に放射させるようにしたので、LEDチップ2の上方だけでなく側面方向に配置された蛍光体に対しても均一に青色光Lを照射することができ、広範囲にわたって色むらのない白色光を得ることができる。
【0027】
また、側面方向に放射された青色光Lをカップ1Bで反射して上方に導くようにしているので、光路上に配置された蛍光体を励起することができ、波長変換効率が向上して白色光の輝度を向上させることができる。
【0028】
また、青色光Lが分散されることによって、蛍光体の濃度を部分的に変化させるといった樹脂組成の調整や、高度な樹脂成形性を必要としないで容易に製造することができ、蛍光体の濃度(使用量)を低減することができる。
【0029】
なお、上記した第1の実施の形態では、青色光と黄色光との混合に基づいて白色光を得る構成について説明したが、白色光を得る構成として、例えば、青色光によって励起されて緑色光を放射する第1の蛍光体と、青色光によって励起されて赤色光を放射する第2の蛍光体とを透光性樹脂6に混合し、赤色光、緑色光、および青色光の混合によって白色光を得るようにしても良い。
【0030】
また、LEDチップ2についても青色光を放射するものに限定されず、例えば、近紫外光を放射するLEDチップを用いるようにしても良い。この場合には、近紫外光によって励起されて赤色光、緑色光、および青色光を放射する蛍光体を透光性樹脂6に混合して用いることにより、白色光を得ることができる。
【0031】
図2は、本発明の第2の実施の形態に係るLEDチップ2を部分的に示し、サファイア基板2Bの表面に青色光を拡散させる光拡散材としてSiO2を混入させた光拡散層2Hを設けている。その他、図示しない構成については第1の実施の形態と同じである。
【0032】
また、光拡散層2Hは、サファイア基板2Bを透過した青色光Lを光拡散材としての酸化チタンやアルミナによって反射および拡散させることにより、図示するようにLEDチップ2の上方、斜め上方、側面方向、およびサファイア基板2B側に放射させるようにしても良い。
【0033】
上記した第2の実施の形態によると、サファイア基板2Bの表面に光拡散材を混入させた光拡散層2Hを設けて青色光Lを反射および拡散させるようにしたので、LEDチップ2の上方だけでなく斜め上方や側面方向に配置された蛍光体に対しても光拡散に基づいて均一な青色光Lを照射することができ、広範囲にわたって色むらのない白色光を得ることができる。
【0034】
図3は、本発明の第3の実施の形態に係るフリップチップ接合型の発光装置を示し、(a)はカップ1Bの部分断面図、(b)は(a)のLEDチップ2の部分拡大図である。この発光装置は、サファイア基板2Bの表面を粗面化した凹凸面2bを形成し、この凹凸面2b上に光反射膜2Aを設けている。また、LEDチップ2の表面には前述の保護膜(図示せず)が設けられている。光反射膜2Aの構成および形成方法については第1の実施の形態で説明したものと同様であるので、重複する説明を省略する。
【0035】
図3(b)は、光反射膜2Aにおける青色光Lの透過および反射を示し、多層2K内での発光に基づいて放射される青色光Lは、凹凸面2bへの入射位置に応じた方向に反射される反射光と、凹凸面2bを通過する際に偏光される半透過光となってLEDチップ2の上方および側面方向から放射される。
【0036】
上記した第3の実施の形態によると、光反射膜2Aを設けられるサファイア基板2Bの表面を粗面化したので、光反射膜2Aに入射する位置に応じた反射方向への青色光Lおよび半透過光を発生させることができ、第1の実施の形態の効果に加えて青色光Lの側面方向への拡散性がより高められる。これにより、LEDチップ2の上方だけでなく斜め上方や側面方向に配置された蛍光体に対しても広範囲に均一に青色光Lを照射することができ、色むらのない白色光を得ることができる。
【0037】
図4は、本発明の第4の実施の形態に係るフェイスアップ接合型の発光装置を示し、LEDチップ20は、発光観測面側から順にp側電極2Gと、p型半導体層2Fと、n側電極2Eと、n型半導体層2Dと、AlNバッファ層2Cと、サファイア基板2Bとを備え、光拡散材9Aを混入されたマウント9によってカップ1Bの底面に接着固定されている。また、p側電極2Gとn側電極2Eには金線のボンディングワイヤ7が電気的に接続されており、n側電極2E側のボンディングワイヤ7はリードフレーム1Aと電気的に接続される。また、LEDチップ20の表面には図示しない保護膜が設けられている。その他、第1および第3の実施の形態と同一の構成を有する部分については同一の引用数字を付しているので、重複する説明を省略する。
【0038】
p側電極2Gは、Co/Au合金の導電性膜からなり、p型半導体層2Fの表面全体を覆うように設けられるとともに、多層2K内での発光に基づく青色光Lを半透過させる膜厚で形成されている。なお、p側電極2Gは、上記したCo/Au合金の他に、例えば、Rh、Au、Pt、Ag、Cu、Al、Ni、Co、Mg、Pd、V、Mn、Bi、Sn、又はRe等の金属又はこれらの合金を用いて形成することができる。中でも、Rh,Ptは、GaN系半導体から成る青色LEDの発光波長に対して高い反射効率を有するため、好適なp電極材料として用いることができる。また、異なる組成の層が積層された二層あるいは多層構造としても良い。また、側面方向への青色光の放射性に優れる材料を選択することが好ましい。
【0039】
マウント9は、扱いが容易で透光性を有するエポキシ樹脂等の樹脂材料を用いて形成されている。このマウント9に用いられる樹脂は、接着性を有すると共に、極めて小さいLEDチップ2の側面にせり上がった場合でも側面で各層間がショートしないよう絶縁性を有することが好ましい。
【0040】
このように構成された発光装置において、リードフレーム1Aおよび1Cに電圧を印加すると、LEDチップ2は多層2K内で面状に発光して波長450〜480nmの青色光Lを放射する。
【0041】
p側電極2Gは、青色光Lを半透過させることによってLEDチップ2の上方に青色光Lを放射させる。青色光Lの一部は、蛍光体を励起することにより波長550〜580nmの黄色光に波長変換される。この黄色光と青色光Lとが混合されることによって白色光が放射される。
【0042】
また、多層2K内から下方に放射される青色光Lはサファイア基板2Bを透過してマウント9に達する。マウント9は、混入された光拡散材9Aによって青色光Lを拡散し、側面あるいは斜め上方に拡散光として放射する。放射された拡散光は、カップ1Bの反射面で反射されて上方に放射される。
【0043】
カップ1Bで反射された青色光Lの一部は、光路上に配置される蛍光体を励起することにより黄色光に波長変換され、青色光Lと混合されることによって白色光を放射する。
【0044】
上記した第4の実施の形態によると、多層2K内から上方に放射された青色光Lをp側電極2Gで半透過させるとともに、多層2K内から下方に放射された青色光Lを光拡散材9Aを混入されたマウント9で拡散させるようにしたので、LEDチップ2の発光に基づく青色光Lを上方、斜め上方、および側面方向に効率良く拡散させることができる。特に、カップ1Bの底面付近に充分に青色光Lが行きわたることから、カップ1B内での波長変換効率がより向上して色むらのない白色光を得ることができる。
【0045】
図5は、本発明の第5の実施の形態に係るフェイスアップ接合型の発光装置を示し、サファイア基板2Bの下方に光反射膜2Aを設けたLEDチップ20をマウント9によってカップ1Bの底面に接着固定している構成について第4の実施の形態と相違し、その他については第4の実施の形態と同一の構成を有している。
【0046】
上記した第5の実施の形態によると、多層2K内から上方に放射された青色光をp側電極2Gで半透過させるとともに多層2K内から下方に放射された青色光を光反射膜2Aで反射して側面方向に放射させるようにしたので、第4の実施の形態と同様にLEDチップ2の発光に基づく青色光を上方および側面方向に効率良く拡散させることができ、カップ1B内での波長変換効率が向上して色むらのない白色光を得ることができる。なお、マウント9に第4の実施の形態で説明した酸化チタン、アルミナ、SiO2等の光拡散材9Aを混入し、光反射膜2Aを透過した半透過光を光拡散材9Aに基づいて拡散させるようにしても良い。
【0047】
また、上記した各実施の形態では、LEDチップ2の表面もしくは近傍に光放射性を改善する構成を有する発光装置を説明したが、例えば、LEDチップ2の層中に光放射性を改善する構成を設けても良い。係る構成として、例えば、LEDチップ2の発光波長に対してブラッグの回析条件を満たすように屈折率の異なる層を交互に積層して構成される分布型ブラッグ反射器(DBR:Distributed Bragg Reflector)を用いることができる。
【0048】
図6は、本発明の第6の実施の形態に係るフリップチップ接合型の発光装置の部分断面図を示し、LEDチップ2のp側電極2Gとp型半導体層2Fとの間にDBR2Jを有する。その他の構成については第3の実施の形態に係る発光装置と同一の構成を有することから、重複する説明を省略する。
【0049】
上記した第6の実施の形態によると、多層2Kに対してサブマウント素子4側にDBR2Jを設けることにより、多層2K内から放射された青色光がDBR2Jで拡散されてサファイア基板2B方向に反射されるようになり、LEDチップ2の上方および斜め上方への光放射性を高めることができる。なお、LEDチップ2については上記したフリップチップ接合型に限定されず、例えば、フェイスアップ接合型であっても良い。
【0050】
図7は、本発明の第7の実施の形態に係るフェイスアップ接合型の発光装置の部分断面図を示し、LEDチップ20のAlNバッファ層2Cとn型半導体層2Dとの間にDBR2Jを有する。その他の構成については第4の実施の形態に係る発光装置と同一の構成を有することから、重複する説明を省略する。
【0051】
上記した第7の実施の形態によると、多層2Kに対してサファイア基板2B側にDBR2Jを設けることにより、多層2K内から放射された青色光がDBR2Jで拡散されてp側電極2G方向に反射されるようになり、LEDチップ2の上方および斜め上方への光放射性を高めることができる。なお、この構成によれば、第4の実施の形態でマウント9に混入していた光拡散材9Aを用いなくても、第4の実施の形態と同様の効果が得られる。
【0052】
なお、上記した各実施の形態で説明した構成は、白色に限定されることなく複数の光を混合して所望の発光色を得る発光装置に適用可能であり、特に、LEDを発光源とする発光装置に有効である。
【0053】
また、上記した各実施の形態では、半導体発光素子としてp層とn層よりなるホモ接合型発光素子を採用した構成を説明したが、これに代わるものとして発光層の両側にp型およびn型のクラッド層を配置したダブルヘテロ型発光素子を採用できることは当然のことである。
【0054】
【発明の効果】
以上説明したように、本発明の発光装置によると、カップ内に収容されたLEDチップから放射される青色光を反射又は拡散に基づいて上方だけでなく斜め上方や側面方向にも放射させるようにしたため、色むらの発生を解消でき、製造が容易で輝度の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る発光装置を示し、(a)は縦断面図、(b)は(a)のLEDチップの部分拡大図である。
【図2】本発明の第2の実施の形態に係るLEDチップの部分拡大図である。
【図3】本発明の第3の実施の形態に係る発光装置を示し(a)はカップの部分断面図、(b)は(a)に示すLEDチップの部分拡大図である。
【図4】本発明の第4の実施の形態に係る発光装置の部分断面図である。
【図5】本発明の第5の実施の形態に係る発光装置の部分断面図である。
【図6】本発明の第6の実施の形態に係る発光装置の部分断面図である。
【図7】本発明の第7の実施の形態に係る発光装置の部分断面図である。
【図8】特許文献1(特開2000−216434号)に示される発光装置の縦断面図である。
【符号の説明】
1A,リードフレーム 1B,カップ部 1C,リードフレーム
1a,メタルステム 2,LEDチップ 2A,光反射膜
2B,サファイア基板 2C,バッファ層 2D,n型半導体層
2E,n側電極 2F,p型半導体層 2G,p側電極 2H,光拡散層
2I,保護膜 2J,DBR 2K,多層 3A,バンプ 3B,バンプ
4,サブマウント素子 4A,n側電極 4B,p型半導体層 4C,p側電極4D,n電極 4E,n型半導体層 5,Agペースト 6,透光性樹脂
7,ボンディングワイヤ 8,透明エポキシ樹脂部 9,マウント
9A,光拡散材 10,パッケージ 11,凹部 12,チップ
13,コーティング部 14,コーティング部 14A,蛍光物質
15,外部電極 16,ボンディングワイヤ 20,LEDチップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting device, and in particular, absorbs light emitted from a light-emitting diode (hereinafter, referred to as “LED”) with a phosphor, converts the wavelength into light of a different wavelength, emits the light, and emits light. The present invention relates to a light emitting device that emits a mixed light of a diode emission light and a wavelength conversion light.
[0002]
[Prior art]
Prior art document information related to the invention of this application includes the following.
[0003]
[Patent Document 1]
JP 2000-216434 A (FIG. 2)
FIG. 8 shows a longitudinal section of the light emitting device disclosed in Patent Document 1, in which a package 10 having a concave cross-sectional shape, an LED chip 12 accommodated in a concave portion 11 of the package 10, and an LED chip 12 accommodated in the concave portion 11 of the package 10. Electrically connecting the first coating portion 13 and the second coating portion 14 made of the transparent resin, the external electrode 15 provided to be exposed to the outside of the package 10, and the external electrode 15 and the LED chip 12; The second coating portion 14 includes a fluorescent substance 14A that absorbs visible light based on light emission of the LED chip 12 and emits wavelength-converted visible light. Thereby, the wavelength of the light based on the light emission of the LED chip 12 can be converted to obtain visible light of another color.
[0004]
For example, when blue light emitted from the blue LED chip 12 is passed through the second coating portion 14 containing the fluorescent material 14A that absorbs blue light and emits yellow light, the blue light and the wavelength-converted light are emitted. Is mixed with the yellow light to obtain white light of a complementary color.
[0005]
[Problems to be solved by the invention]
However, according to the conventional light emitting device, the amount of light emitted from the LED chip is not uniform in all directions, and in particular, the amount of light emitted above the LED chip is emitted in another direction such as a side surface. Since it is larger than the amount of light, the amount of light absorbed by the fluorescent substance varies, so that uniform wavelength conversion cannot be obtained. As a result, color unevenness occurs.
[0006]
In the light emitting device disclosed in Patent Literature 1, light in all directions passing through the second coating portion (for example, by increasing the thickness of the central portion of the second coating portion with respect to the peripheral thickness) (for example, The optical path lengths of vertical light passing through the center and oblique light off the center are equalized to suppress the occurrence of color unevenness, but an advanced resin for arranging the fluorescent substance in a predetermined area at a predetermined thickness. In addition to the need for moldability, there is the disadvantage that the light absorption and scattering at the central portion increase and the luminance is reduced.
[0007]
Accordingly, an object of the present invention is to provide a light emitting device that can eliminate the occurrence of color unevenness, can be easily manufactured, and can improve luminance.
[0008]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, to reflect a part of light emitted in a direction perpendicular to the light emitting surface, a semiconductor light emitting element that emits at least a part of the reflected light in a direction horizontal to the light emitting surface,
An element accommodating portion that accommodates the semiconductor light emitting element and has an inner wall surface that reflects the light, seals the semiconductor light emitting element accommodated in the element accommodating portion, and is excited by the light to emit the light. And a light-transmitting resin portion containing a phosphor that emits excitation light having a different wavelength.
[0009]
According to such a configuration, light is radiated from the semiconductor light emitting element in the surface direction and in the direction horizontal to the light emitting surface, so that the light is dispersed and the light is transmitted to the translucent resin part in the element housing part. As a result, the phosphor is sufficiently excited to obtain good wavelength conversion properties.
[0010]
Further, in the light-emitting device of the present invention, when the semiconductor light-emitting element is formed of a gallium nitride-based compound semiconductor, for example, InGaN, the wavelength of blue light can be arbitrarily set depending on the composition ratio of In. , Can emit near-ultraviolet light.
[0011]
When the semiconductor light emitting element emits blue light, if a phosphor that emits yellow light by excitation is used, a white LED can be obtained, and the phosphor emits red light and green light by excitation. A white LED can be obtained by using a light emitting diode.
[0012]
When the semiconductor light emitting element emits near-ultraviolet light (or ultraviolet light), a white LED can be obtained by using a phosphor that emits light of each color of red, green, and blue by excitation.
[0013]
Note that the light emitting device of the present invention is not limited to white LEDs, and LEDs of various colors can be obtained by combining the emission color of the semiconductor light emitting element and the wavelength of the excitation light of the phosphor.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
1A and 1B show a light emitting device according to a first embodiment of the present invention, wherein FIG. 1A is a longitudinal sectional view, and FIG. 1B is a partially enlarged view of the LED chip 2 of FIG. This light emitting device includes a lead frame 1A having a metal stem 1a at a tip, a cup 1B provided on the metal stem 1a and having a reflection surface for reflecting light on an inner surface, a lead frame 1C, and a translucent light reflecting film. 2A, an LED chip 2 provided on the upper part, Au bumps 3A and 3B provided on the LED chip 2, a submount element 4, an Ag paste 5 for fixing the submount element 4 in the cup 1B, and a phosphor. It is composed of a translucent resin 6 mixed and injected into the cup 1B, a bonding wire 7 of a gold wire for electrically connecting the lead frame 1C and the submount element 4, and a transparent epoxy resin portion 8. . Note that the illustration of the translucent resin 6 is omitted in FIG.
[0015]
The LED chip 2 is formed of, for example, a gallium nitride-based compound semiconductor such as GaN, GaAlN, InGaN, or InGaAlN, or ZnSe (zinc selenide) or the like so as to emit blue light of 450 nm to 480 nm, and has a light reflection film 2A. , A sapphire substrate 2B, an AlN buffer layer 2C, an n-type semiconductor layer 2D, an n-side electrode 2E, a multilayer 2K having a light emitting layer, a p-type semiconductor layer 2F, a p-side electrode 2G, and an LED chip. 2 is provided with a protective film 2I for protecting the surface and providing light emission, and is flip-chip bonded to the submount element 4. The LED chip 2 emits light in a planar manner in the multilayer 2K between the n-type semiconductor layer 2D and the p-type semiconductor layer 2F by applying a drive voltage to the n-side electrode 2E and the p-side electrode 2G.
[0016]
The light reflecting film 2A is formed by forming a semi-transmissive aluminum film in a thin film shape on a surface of a sapphire substrate 2B by a thin film forming method such as a sputtering method or a vacuum evaporation method. May be formed by another method as long as it is not hindered. Note that the thin film to be formed is not limited to aluminum, and another metal material or a material other than metal may be used as long as the light transmittance can be adjusted according to the film thickness. Further, it is preferable to select a material having excellent blue light emission in the side direction.
[0017]
The n-side electrode 2E can be formed using a metal such as Al, V, Sn, Ti, Cr, Nb, Ta, Mo, W, or Hf, or an alloy thereof, for example. Note that a two-layer structure or a multilayer structure in which layers having different compositions are stacked, for example, a two-layer structure of V and Al may be used.
[0018]
The p-side electrode 2G is formed using, for example, a metal such as Rh, Au, Pt, Ag, Cu, Al, Ni, Co, Mg, Pd, V, Mn, Bi, Sn, or Re, or an alloy thereof. be able to. Note that a two-layer or multilayer structure in which layers having different compositions are stacked may be used.
[0019]
The protective film 2I is made of, for example, SiO 2 and has a light transmitting property and an insulating property to protect the surface of the LED chip 2. Note that the protective film 2I is formed to have a thickness that allows the blue light L to be easily emitted in the side direction of the LED chip 2.
[0020]
The submount element 4 is formed of an n-type silicon substrate, and operates as a Zener diode for protecting the LED chip 2 from static electricity. Further, the n-side electrode 4A connected to the p-side electrode 2G by the Au bump 3A, the p-type semiconductor layer 4B, the p-side electrode 4C connected to the n-side electrode 2E by the Au bump 3B, and the Ag paste 5 And an n-type semiconductor layer 4E electrically connected to the cup portion 1B.
[0021]
The translucent resin 6 is made of an epoxy resin and contains Ce: YAG (yttrium aluminum garnet) as a phosphor. Note that a silicon resin that becomes transparent after solidification may be used as the translucent resin 6.
[0022]
In the light emitting device thus configured, when a voltage is applied to the lead frames 1A and 1C, the LED chip 2 emits a planar light in the multilayer 2K and emits blue light L having a wavelength of 450 to 480 nm.
[0023]
The light reflecting film 2 </ b> A reflects the blue light and transmits the blue light L above the LED chip 2 by partially transmitting the blue light. A part of the blue light L is converted into a yellow light having a wavelength of 550 to 580 nm by exciting the phosphor. By mixing the yellow light and the blue light L, white light is emitted.
[0024]
The blue light L reflected by the light reflection film 2A is emitted from the side surface of the LED chip 2. A part of the blue light L is converted into a yellow light by exciting a phosphor disposed on the side of the LED chip 2. By mixing the yellow light and the blue light L, white light is emitted. Further, the blue light L emitted from the side surface is reflected by the reflection surface of the cup 1B and emitted upward.
[0025]
A part of the blue light L reflected by the cup 1B is converted into a yellow light by exciting a phosphor disposed on the optical path, and emits white light by being mixed with the blue light L.
[0026]
According to the above-described first embodiment, the semi-transmissive light reflection film 2A is provided above the LED chip 2 (on the light emission observation surface side), and the blue light L is emitted upward and in the side direction. It is possible to uniformly irradiate the blue light L not only on the LED chip 2 but also on the phosphors arranged in the side direction, and it is possible to obtain white light without color unevenness over a wide range.
[0027]
Further, since the blue light L radiated in the side direction is reflected by the cup 1B and guided upward, the phosphor disposed on the optical path can be excited, the wavelength conversion efficiency is improved, and the white light is improved. The brightness of light can be improved.
[0028]
Further, by dispersing the blue light L, adjustment of the resin composition such as partial change of the concentration of the phosphor and production of the phosphor without the need for advanced resin moldability can be easily performed. The concentration (amount used) can be reduced.
[0029]
In the first embodiment described above, a configuration in which white light is obtained based on a mixture of blue light and yellow light is described. However, as a configuration in which white light is obtained, for example, green light excited by blue light and A first phosphor that emits red light and a second phosphor that emits red light when excited by blue light are mixed with the translucent resin 6, and white light is mixed by mixing red light, green light, and blue light. Light may be obtained.
[0030]
Further, the LED chip 2 is not limited to the one that emits blue light. For example, an LED chip that emits near-ultraviolet light may be used. In this case, white light can be obtained by mixing a phosphor excited by near-ultraviolet light and emitting red light, green light, and blue light with the translucent resin 6.
[0031]
FIG. 2 partially shows an LED chip 2 according to a second embodiment of the present invention, and includes a light diffusion layer 2H in which SiO 2 is mixed as a light diffusion material for diffusing blue light on the surface of a sapphire substrate 2B. Provided. Otherwise, the configuration not shown is the same as that of the first embodiment.
[0032]
Further, the light diffusion layer 2H reflects and diffuses the blue light L transmitted through the sapphire substrate 2B with titanium oxide or alumina as a light diffusion material, so as to be above, diagonally above, and laterally above the LED chip 2 as illustrated. And the sapphire substrate 2B.
[0033]
According to the second embodiment described above, the light diffusion layer 2H in which the light diffusion material is mixed is provided on the surface of the sapphire substrate 2B to reflect and diffuse the blue light L. In addition, it is possible to irradiate uniform blue light L based on light diffusion to phosphors disposed obliquely upward or in the side direction, and to obtain white light without color unevenness over a wide range.
[0034]
3A and 3B show a light emitting device of a flip chip bonding type according to a third embodiment of the present invention, wherein FIG. 3A is a partial sectional view of a cup 1B, and FIG. 3B is a partial enlarged view of the LED chip 2 of FIG. FIG. In this light emitting device, an uneven surface 2b obtained by roughening the surface of a sapphire substrate 2B is formed, and a light reflecting film 2A is provided on the uneven surface 2b. Further, the above-mentioned protective film (not shown) is provided on the surface of the LED chip 2. Since the configuration and the forming method of the light reflecting film 2A are the same as those described in the first embodiment, the overlapping description will be omitted.
[0035]
FIG. 3B shows transmission and reflection of the blue light L in the light reflection film 2A, and the direction of the blue light L emitted based on the light emission in the multilayer 2K depends on the incident position on the uneven surface 2b. The light is reflected from the LED chip 2 and radiated from above and on the side of the LED chip 2 as semi-transmitted light polarized when passing through the uneven surface 2b.
[0036]
According to the above-described third embodiment, the surface of the sapphire substrate 2B on which the light reflecting film 2A is provided is roughened, so that the blue light L and the half light in the reflecting direction corresponding to the position of incidence on the light reflecting film 2A. Transmitted light can be generated, and in addition to the effects of the first embodiment, the diffusivity of the blue light L in the side direction can be further enhanced. As a result, the blue light L can be uniformly radiated over a wide range not only above the LED chip 2 but also to the phosphors disposed diagonally above or in the side direction, and white light without color unevenness can be obtained. it can.
[0037]
FIG. 4 shows a face-up junction type light emitting device according to a fourth embodiment of the present invention. The LED chip 20 includes a p-side electrode 2G, a p-type semiconductor layer 2F, and an n-type electrode in order from the emission observation surface side. A side electrode 2E, an n-type semiconductor layer 2D, an AlN buffer layer 2C, and a sapphire substrate 2B are provided, and are adhesively fixed to the bottom surface of the cup 1B by a mount 9 mixed with a light diffusing material 9A. Also, a gold bonding wire 7 is electrically connected to the p-side electrode 2G and the n-side electrode 2E, and the bonding wire 7 on the n-side electrode 2E is electrically connected to the lead frame 1A. In addition, a protective film (not shown) is provided on the surface of the LED chip 20. In addition, parts having the same configuration as those of the first and third embodiments are denoted by the same reference numerals, and redundant description will be omitted.
[0038]
The p-side electrode 2G is made of a conductive film of a Co / Au alloy, is provided so as to cover the entire surface of the p-type semiconductor layer 2F, and has a thickness that allows the blue light L based on light emission in the multilayer 2K to be partially transmitted. It is formed with. The p-side electrode 2G may be made of, for example, Rh, Au, Pt, Ag, Cu, Al, Ni, Co, Mg, Pd, V, Mn, Bi, Sn, or Re in addition to the Co / Au alloy described above. Etc. or an alloy thereof. Above all, Rh and Pt can be used as a suitable p-electrode material because they have high reflection efficiency with respect to the emission wavelength of a blue LED made of a GaN-based semiconductor. Further, a two-layer or multilayer structure in which layers having different compositions are stacked may be used. Further, it is preferable to select a material having excellent blue light emission in the side direction.
[0039]
The mount 9 is formed using a resin material such as an epoxy resin which is easy to handle and has a light transmitting property. It is preferable that the resin used for the mount 9 has an adhesive property and an insulating property so that even when the resin rises to the side surface of the extremely small LED chip 2, the layers are not short-circuited on the side surface.
[0040]
In the light emitting device thus configured, when a voltage is applied to the lead frames 1A and 1C, the LED chip 2 emits a planar light in the multilayer 2K and emits blue light L having a wavelength of 450 to 480 nm.
[0041]
The p-side electrode 2G emits the blue light L above the LED chip 2 by partially transmitting the blue light L. A part of the blue light L is converted into a yellow light having a wavelength of 550 to 580 nm by exciting the phosphor. By mixing the yellow light and the blue light L, white light is emitted.
[0042]
The blue light L emitted downward from inside the multilayer 2K passes through the sapphire substrate 2B and reaches the mount 9. The mount 9 diffuses the blue light L by the mixed light diffusing material 9A and emits the diffused light to the side surface or obliquely upward. The emitted diffused light is reflected by the reflecting surface of the cup 1B and emitted upward.
[0043]
A part of the blue light L reflected by the cup 1B is converted into a yellow light by exciting a phosphor disposed on the optical path, and emits white light by being mixed with the blue light L.
[0044]
According to the above-described fourth embodiment, the blue light L emitted upward from inside the multilayer 2K is semi-transmitted by the p-side electrode 2G, and the blue light L emitted downward from inside the multilayer 2K is a light diffusing material. Since 9A is diffused by the mixed mount 9, the blue light L based on the light emission of the LED chip 2 can be efficiently diffused upward, obliquely upward, and in the side direction. In particular, since the blue light L sufficiently spreads near the bottom surface of the cup 1B, the wavelength conversion efficiency in the cup 1B is further improved, and white light without color unevenness can be obtained.
[0045]
FIG. 5 shows a face-up junction type light emitting device according to a fifth embodiment of the present invention. An LED chip 20 provided with a light reflection film 2A below a sapphire substrate 2B is mounted on a bottom surface of a cup 1B by a mount 9. The fourth embodiment differs from the fourth embodiment in the configuration of the adhesive fixing, and has the same configuration as the fourth embodiment in other respects.
[0046]
According to the fifth embodiment, the blue light emitted upward from inside the multilayer 2K is semi-transmitted by the p-side electrode 2G, and the blue light emitted downward from inside the multilayer 2K is reflected by the light reflection film 2A. As described in the fourth embodiment, the blue light based on the light emission of the LED chip 2 can be efficiently diffused upward and in the side direction, and the wavelength in the cup 1B can be increased. Conversion efficiency is improved, and white light without color unevenness can be obtained. Incidentally, the titanium oxide described in the fourth embodiment in mount 9, alumina, mixed with light diffusing material 9A such as SiO 2, based on the semi-transmissive light transmitted through the light reflective film 2A on the light diffusing member 9A diffusion You may make it do.
[0047]
Further, in each of the above-described embodiments, the light emitting device having the structure for improving the light emitting property on or near the surface of the LED chip 2 has been described. However, for example, a structure for improving the light emitting property is provided in the layer of the LED chip 2. May be. As such a configuration, for example, a distributed Bragg reflector (DBR) configured by alternately stacking layers having different refractive indices so as to satisfy Bragg diffraction conditions with respect to the emission wavelength of the LED chip 2. Can be used.
[0048]
FIG. 6 is a partial cross-sectional view of a flip-chip junction type light emitting device according to a sixth embodiment of the present invention, and has a DBR 2J between a p-side electrode 2G of the LED chip 2 and a p-type semiconductor layer 2F. . The other configuration has the same configuration as that of the light emitting device according to the third embodiment, and a duplicate description will be omitted.
[0049]
According to the above-described sixth embodiment, by providing the DBR 2J on the submount element 4 side with respect to the multilayer 2K, the blue light radiated from inside the multilayer 2K is diffused by the DBR 2J and reflected toward the sapphire substrate 2B. As a result, it is possible to enhance the light emission properties above and diagonally above the LED chip 2. The LED chip 2 is not limited to the flip chip bonding type described above, and may be, for example, a face-up bonding type.
[0050]
FIG. 7 is a partial cross-sectional view of a face-up junction type light emitting device according to a seventh embodiment of the present invention, and has a DBR 2J between the AlN buffer layer 2C and the n-type semiconductor layer 2D of the LED chip 20. . The other configuration has the same configuration as that of the light emitting device according to the fourth embodiment, and a duplicate description will be omitted.
[0051]
According to the seventh embodiment, by providing the DBR 2J on the sapphire substrate 2B side with respect to the multilayer 2K, the blue light emitted from inside the multilayer 2K is diffused by the DBR 2J and reflected in the direction of the p-side electrode 2G. As a result, it is possible to enhance the light emission properties above and diagonally above the LED chip 2. According to this configuration, the same effects as in the fourth embodiment can be obtained without using the light diffusing material 9A mixed in the mount 9 in the fourth embodiment.
[0052]
Note that the configuration described in each of the above embodiments is not limited to white and can be applied to a light emitting device that obtains a desired emission color by mixing a plurality of lights, and in particular, an LED is used as a light emission source. It is effective for light emitting devices.
[0053]
Further, in each of the above-described embodiments, the configuration in which the homojunction light emitting element including the p layer and the n layer is adopted as the semiconductor light emitting element has been described. However, as an alternative, the p type and the n type It is a matter of course that a double hetero type light emitting element having the above-mentioned cladding layer can be adopted.
[0054]
【The invention's effect】
As described above, according to the light emitting device of the present invention, the blue light radiated from the LED chip housed in the cup is radiated not only upward but also obliquely upward and sideward based on reflection or diffusion. Therefore, it is possible to eliminate the occurrence of color unevenness, facilitate manufacture, and improve luminance.
[Brief description of the drawings]
1A and 1B show a light emitting device according to a first embodiment of the present invention, wherein FIG. 1A is a longitudinal sectional view, and FIG. 1B is a partially enlarged view of the LED chip of FIG.
FIG. 2 is a partially enlarged view of an LED chip according to a second embodiment of the present invention.
3A and 3B show a light emitting device according to a third embodiment of the present invention, wherein FIG. 3A is a partial cross-sectional view of a cup, and FIG. 3B is a partially enlarged view of the LED chip shown in FIG.
FIG. 4 is a partial sectional view of a light emitting device according to a fourth embodiment of the present invention.
FIG. 5 is a partial sectional view of a light emitting device according to a fifth embodiment of the present invention.
FIG. 6 is a partial sectional view of a light emitting device according to a sixth embodiment of the present invention.
FIG. 7 is a partial sectional view of a light emitting device according to a seventh embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a light emitting device disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-216434).
[Explanation of symbols]
1A, lead frame 1B, cup 1C, lead frame 1a, metal stem 2, LED chip 2A, light reflection film 2B, sapphire substrate 2C, buffer layer 2D, n-type semiconductor layer 2E, n-side electrode 2F, p-type semiconductor layer 2G, p-side electrode 2H, light diffusion layer 2I, protective film 2J, DBR 2K, multilayer 3A, bump 3B, bump 4, submount element 4A, n-side electrode 4B, p-type semiconductor layer 4C, p-side electrode 4D, n Electrode 4E, n-type semiconductor layer 5, Ag paste 6, translucent resin 7, bonding wire 8, transparent epoxy resin part 9, mount 9A, light diffusing material 10, package 11, concave part 12, chip 13, coating part 14, Coating part 14A, fluorescent substance 15, external electrode 16, bonding wire 20, LED chip

Claims (10)

発光面に垂直な方向に放射する光の一部を反射させ、その反射光の少なくとも一部を発光面に水平な方向に放射する半導体発光素子と、
前記半導体発光素子を収容し、内壁面を前記光の反射面とする素子収容部と、前記素子収容部に収容された前記半導体発光素子を封止し、前記光によって励起されて前記光の波長と異なった波長の励起光を放射する蛍光体を含んだ透光性樹脂部とを含むことを特徴とする発光装置。
A semiconductor light emitting element that reflects a part of light emitted in a direction perpendicular to the light emitting surface and emits at least a part of the reflected light in a direction horizontal to the light emitting surface,
An element accommodating portion that accommodates the semiconductor light emitting element and has an inner wall surface that reflects the light, seals the semiconductor light emitting element accommodated in the element accommodating portion, and is excited by the light to emit the light. And a light-transmitting resin portion containing a phosphor that emits excitation light having a different wavelength.
前記半導体発光素子は、窒化ガリウム系化合物半導体によって形成されることを特徴とする請求項1記載の発光装置。The light emitting device according to claim 1, wherein the semiconductor light emitting element is formed of a gallium nitride compound semiconductor. 前記透光性樹脂部は、前記半導体発光素子から放出される青色光によって励起された前記蛍光体から放射される黄色光と前記青色光との混合に基づく白色光を透過させることを特徴する請求項1記載の発光装置。The light-transmitting resin portion transmits white light based on a mixture of yellow light and blue light emitted from the phosphor excited by blue light emitted from the semiconductor light-emitting element. Item 2. The light emitting device according to Item 1. 前記半導体発光素子は、半透過性を有する光反射膜を表面に有することを特徴とする請求項1記載の発光装置。2. The light emitting device according to claim 1, wherein the semiconductor light emitting element has a semi-transmissive light reflecting film on a surface. 前記光反射膜は、粗面化された前記表面に設けられることを特徴とする請求項4記載の発光装置。The light emitting device according to claim 4, wherein the light reflecting film is provided on the roughened surface. 前記半導体発光素子は、前記光を拡散させる光拡散材を混入された光拡散層を表面に有することを特徴する請求項1記載の発光装置。The light emitting device according to claim 1, wherein the semiconductor light emitting element has a light diffusion layer on a surface of which a light diffusion material for diffusing the light is mixed. 前記表面は、前記半導体発光素子の発光観測面側であることを特徴とする請求項4記載又は第6項の発光装置。7. The light emitting device according to claim 4, wherein the surface is on a light emission observation surface side of the semiconductor light emitting element. 前記表面は、前記半導体発光素子の固定面側であることを特徴とする請求項4又は第6項記載の発光装置。The light emitting device according to claim 4, wherein the surface is a fixed surface side of the semiconductor light emitting element. 前記光反射膜は、前記素子収容部内にフリップチップ接合される前記半導体発光素子の発光観測面側に配置されるサファイア基板に積層された半透過性を有するアルミニウム膜であることを特徴とする請求項4記載の発光装置。The light reflecting film is a semi-transmissive aluminum film laminated on a sapphire substrate disposed on a light emission observing surface side of the semiconductor light emitting device to be flip-chip bonded in the device accommodating portion. Item 5. The light emitting device according to Item 4. 前記光反射膜は、前記素子収容部内にフェイスアップ接合される前記半導体発光素子の発光観測面側に配置されるp型半導体層に積層された半透過性を有するp側電極であることを特徴とする請求項4記載の発光装置。The light reflection film is a semi-transmissive p-side electrode laminated on a p-type semiconductor layer arranged on a light emission observation surface side of the semiconductor light emitting element that is face-up joined in the element accommodating portion. The light emitting device according to claim 4, wherein
JP2002375421A 2002-12-25 2002-12-25 Light emitting device Pending JP2004207519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375421A JP2004207519A (en) 2002-12-25 2002-12-25 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375421A JP2004207519A (en) 2002-12-25 2002-12-25 Light emitting device

Publications (1)

Publication Number Publication Date
JP2004207519A true JP2004207519A (en) 2004-07-22

Family

ID=32813181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375421A Pending JP2004207519A (en) 2002-12-25 2002-12-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP2004207519A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011766A1 (en) * 2004-07-28 2006-02-02 Epivalley Co., Ltd. Optical device with photo detector
CN100340008C (en) * 2004-09-30 2007-09-26 中国科学院半导体研究所 Method for making GaN-based LED with back hole structure
KR100830605B1 (en) * 2005-02-05 2008-05-21 주식회사 에피밸리 Optical device with photo detector
WO2009116808A2 (en) * 2008-03-20 2009-09-24 서울반도체(주) Polarized light source, and a backlight unit and a liquid crystal display module which adopt the same
JP2011530194A (en) * 2008-08-04 2011-12-15 ソラア インコーポレーテッド White light device using non-polarizable or semipolar gallium containing materials and phosphors
KR20140049350A (en) * 2012-10-17 2014-04-25 엘지이노텍 주식회사 Light emitting device
US9046227B2 (en) 2009-09-18 2015-06-02 Soraa, Inc. LED lamps with improved quality of light
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
JPWO2013179624A1 (en) * 2012-05-31 2016-01-18 パナソニックIpマネジメント株式会社 LED module, lighting apparatus and lamp
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
JP2017201727A (en) * 2017-08-16 2017-11-09 日亜化学工業株式会社 Semiconductor light-emitting device
US11067250B2 (en) 2016-12-28 2021-07-20 Nichia Corporation Light emitting device and integrated light emitting device
US11101247B2 (en) 2015-10-08 2021-08-24 Nichia Corporation Light-emitting device, integrated light-emitting device, and light-emitting module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222767A (en) * 1995-02-17 1996-08-30 Iwasaki Electric Co Ltd Layered light emitting diode
JP2000343751A (en) * 1999-06-03 2000-12-12 Ricoh Co Ltd Led print head
JP2001036151A (en) * 1999-07-21 2001-02-09 Matsushita Electronics Industry Corp Surface emitting device
JP2002171000A (en) * 2000-09-21 2002-06-14 Sharp Corp Semiconductor light emitting device and light emitting display comprising it
JP2002319708A (en) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led chip and led device
JP2002368263A (en) * 2001-06-06 2002-12-20 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting device
JP2004152840A (en) * 2002-10-29 2004-05-27 Matsushita Electric Ind Co Ltd Semiconductor light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222767A (en) * 1995-02-17 1996-08-30 Iwasaki Electric Co Ltd Layered light emitting diode
JP2000343751A (en) * 1999-06-03 2000-12-12 Ricoh Co Ltd Led print head
JP2001036151A (en) * 1999-07-21 2001-02-09 Matsushita Electronics Industry Corp Surface emitting device
JP2002171000A (en) * 2000-09-21 2002-06-14 Sharp Corp Semiconductor light emitting device and light emitting display comprising it
JP2002319708A (en) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Led chip and led device
JP2002368263A (en) * 2001-06-06 2002-12-20 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting device
JP2004152840A (en) * 2002-10-29 2004-05-27 Matsushita Electric Ind Co Ltd Semiconductor light emitting device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011766A1 (en) * 2004-07-28 2006-02-02 Epivalley Co., Ltd. Optical device with photo detector
CN100340008C (en) * 2004-09-30 2007-09-26 中国科学院半导体研究所 Method for making GaN-based LED with back hole structure
KR100830605B1 (en) * 2005-02-05 2008-05-21 주식회사 에피밸리 Optical device with photo detector
WO2009116808A3 (en) * 2008-03-20 2009-12-23 서울반도체(주) Polarized light source, and a backlight unit and a liquid crystal display module which adopt the same
WO2009116808A2 (en) * 2008-03-20 2009-09-24 서울반도체(주) Polarized light source, and a backlight unit and a liquid crystal display module which adopt the same
USRE47711E1 (en) 2008-08-04 2019-11-05 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
JP2011530194A (en) * 2008-08-04 2011-12-15 ソラア インコーポレーテッド White light device using non-polarizable or semipolar gallium containing materials and phosphors
US8956894B2 (en) 2008-08-04 2015-02-17 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US11662067B2 (en) 2009-09-18 2023-05-30 Korrus, Inc. LED lamps with improved quality of light
US9046227B2 (en) 2009-09-18 2015-06-02 Soraa, Inc. LED lamps with improved quality of light
US11105473B2 (en) 2009-09-18 2021-08-31 EcoSense Lighting, Inc. LED lamps with improved quality of light
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US11611023B2 (en) 2010-08-19 2023-03-21 Korrus, Inc. System and method for selected pump LEDs with multiple phosphors
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US10700244B2 (en) 2010-08-19 2020-06-30 EcoSense Lighting, Inc. System and method for selected pump LEDs with multiple phosphors
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US9685594B2 (en) 2012-05-31 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. LED module and method of preparing the LED module, lighting device
JPWO2013179624A1 (en) * 2012-05-31 2016-01-18 パナソニックIpマネジメント株式会社 LED module, lighting apparatus and lamp
KR101944411B1 (en) 2012-10-17 2019-01-31 엘지이노텍 주식회사 Light emitting device
KR20140049350A (en) * 2012-10-17 2014-04-25 엘지이노텍 주식회사 Light emitting device
US11101247B2 (en) 2015-10-08 2021-08-24 Nichia Corporation Light-emitting device, integrated light-emitting device, and light-emitting module
US11515296B2 (en) 2015-10-08 2022-11-29 Nichia Corporation Light-emitting device, integrated light-emitting device, and light-emitting module
US11978725B2 (en) 2015-10-08 2024-05-07 Nichia Corporation Light-emitting device, integrated light-emitting device, and light-emitting module
US11067250B2 (en) 2016-12-28 2021-07-20 Nichia Corporation Light emitting device and integrated light emitting device
US11649947B2 (en) 2016-12-28 2023-05-16 Nichia Corporation Light emitting device and integrated light emitting device
JP2017201727A (en) * 2017-08-16 2017-11-09 日亜化学工業株式会社 Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
JP4254266B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP4447806B2 (en) Light emitting device
US8237350B2 (en) Light-emitting device
JP4289027B2 (en) Light emitting device
US9425367B2 (en) Light emitting device having opening for extracting light and method for manufacturing light emitting device having opening for extracting light
TWI550910B (en) Semiconductor light emitting device
US8525208B2 (en) Light emitting device
JP5634003B2 (en) Light emitting device
TWI381553B (en) A light-emitting element and a light-emitting device using the same
JP5507821B2 (en) Light emitting device
TWI543399B (en) Semiconductor light emitting device
TWI794311B (en) Light-emitting module and integrated light-emitting module
JP2004047748A (en) Light-emitting diode
JP2004128393A (en) Led device
JP2007012993A (en) Chip semiconductor light emitting device
JP2004207519A (en) Light emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP6201480B2 (en) Light emitting device and lighting device
JP6221456B2 (en) Light emitting device and lighting device
JP4709405B2 (en) Light emitting diode
JP2016086166A (en) Light emitting device
JP7236016B2 (en) light emitting device
JP2008282984A (en) Semiconductor light-emitting device
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
JP6680302B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120