JP2004206995A - Deflection electromagnet, electrically-charged particles transportation path and circular accelerator - Google Patents

Deflection electromagnet, electrically-charged particles transportation path and circular accelerator Download PDF

Info

Publication number
JP2004206995A
JP2004206995A JP2002373681A JP2002373681A JP2004206995A JP 2004206995 A JP2004206995 A JP 2004206995A JP 2002373681 A JP2002373681 A JP 2002373681A JP 2002373681 A JP2002373681 A JP 2002373681A JP 2004206995 A JP2004206995 A JP 2004206995A
Authority
JP
Japan
Prior art keywords
charged particle
electromagnet
hole
magnetic field
deflection electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002373681A
Other languages
Japanese (ja)
Other versions
JP3867668B2 (en
Inventor
Hirobumi Tanaka
博文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002373681A priority Critical patent/JP3867668B2/en
Publication of JP2004206995A publication Critical patent/JP2004206995A/en
Application granted granted Critical
Publication of JP3867668B2 publication Critical patent/JP3867668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deflection electromagnet by which control of a magnetic field in a passing range of a plurality of electrically-charged particle beams, an electrically-charged particles transportation path easily achieving the desired function by using such a deflection electromagnet and a circular accelerator in which orbital adjustment of the electrically-charged particle beams is facilitated by making the magnetic field in the deflection electromagnet uniform at a high precision. <P>SOLUTION: A plurality of magnetic poles 10a and 10b of the deflection electromagnet 1 are provided on a top part and a bottom part of the passing range of a plurality of electrically charged particles in the deflection electromagnet 1 deflecting a plurality of electrically charged particle beams. A return yoke 12 of the deflection electromagnet 1 is provided on a surface which is perpendicular to the proceeding direction A of the electrically-charged particles and a plurality of through holes 13 through which a plurality of vacuum ducts passes are provided in the return yoke 12. Furthermore, each cross section area of the plurality of holes 13 is designed by computer simulation so that the magnetic field is uniform over the whole passing range of the beam of the deflection electromagnet 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、複数の荷電粒子ビームを偏向する偏向電磁石において、上記複数の荷電粒子ビームの通過領域における磁場の制御が容易な偏向電磁石の構成を示すものである。また、このような偏向電磁石を用いた荷電粒子輸送路、および上記偏向電磁石を用いた円形加速装置に関するものである。
【0002】
【従来の技術】
荷電粒子の利用に際しては、荷電粒子を所定の位置に導く必要がある。
この役割を担うのが荷電粒子輸送路であるが、上記荷電粒子輸送路では、各種の用途に応じて偏向電磁石が使用されることが多い。特に、複数の荷電粒子ビームよりなる幅の広い荷電粒子ビームを用いる場合には、当該ビーム幅に対応する幅の広い輸送路が必要になる。その場合、上記偏向電磁石は幅の広いものにする必要が生じると共に、この幅の広い領域に亘り磁場を制御して、所定の位置に必要なビームサイズでビームが輸送できるようにする必要がある。
【0003】
例えば、質量分離された高品質広幅パラレルリボンビームによりイオン注入を行うイオン注入装置においては、ビーム強度の均質化を実現するために、注入ビームはマルチポールと呼ばれる、直線状に配置された複数の小型の偏向電磁石のトンネル(電磁石トンネル)を通過する構成となっている(例えば、非特許文献1参照。)。このような装置ではマルチポールを構成する各偏向電磁石毎に、その通電電流をフィードバック制御し、荷電粒子が輸送される電磁石トンネル内の磁場を制御することによって、ビーム強度のばらつきが約3%以下である均質なビームを得ていた。
【0004】
また、幅広の偏向電磁石を利用した他の例にマイクロトロン加速装置がある(例えば、特許文献1参照。)。この加速装置は、当該加速装置の両端部に一定磁場強度の大型の偏向電磁石を備え、電子を加速装置内で周回させるようにした周回型円形加速装置である。この装置では、電子は原則として1周回ごとに、電子加速機能を有する高周波加速空洞が設置された加速軌道を通過し、加速の都度に電子ビームのエネルギーが変化する。また、両端の大型偏向電磁石の磁場が一定であることから、上記加速軌道以外の軌道では、電子のエネルギーに応じて異なる周回軌道となるように設計されている。このように、マイクロトロン加速装置では、複数の周回軌道により荷電粒子(電子)輸送路が構成されるが、通常、上記大型偏向電磁石に入る前面に、所定のビーム集束力を得るために、逆方向の偏向特性を有する偏向電磁石を追加配置する。このビーム集束力の調整に際しては、ビームダイナミックスの要請により、追加偏向電磁石における各軌道毎のBL積(磁場強度のビーム進行方向の積分値)が同じである必要がある。但し、L(偏向電磁石における磁場の有効長さ)は、構成を簡単にするために通常一定に設計されるので、上記追加偏向電磁石は、複数の電子ビーム通過部分に亘って磁場強度が均一であることが必要となる。
【0005】
マイクロトロン加速装置の上記追加偏向電磁石には、従来、前述のイオン注入装置で使用しているマルチポール型の小型電磁石トンネルと同種のタイプの電磁石を使用していた。即ち、電子ビームの各軌道毎に、その位置に対応した場所に小型の偏向電磁石を設置し、各電磁石毎の通電量を制御することにより各軌道毎の磁場強度のばらつきを小さくするという制御を行っていた。
【0006】
【非特許文献1】
出川 通、外3名,「大面積用イオン注入装置の開発と応用」,第2回・応用加速器・関連技術研究シンポジウム(1999年12月1−3日,東京)(Proceedings of the Second Symposium on Accelerator and Related Technology for Application),シンポジウム組織委員会,p.33−p.36
【特許文献1】
特開2002−237400号公報(第5−7頁、図1)
【0007】
【発明が解決しようとする課題】
このように、従来の円形加速装置やイオン注入装置に用いられる偏向電磁石では、前述のように、複数の荷電粒子ビームの通過領域の上下にそれぞれ複数の磁極を設け、複数の磁極にそれぞれ巻かれたコイルの励磁電流を各磁極毎に変化させることにより、各軌道毎の磁場を制御することが多かった。あるいは、複数の磁極のギャップ間距離を各軌道毎に変えることで制御することが行われていた。
しかしながら、上記イオン注入装置の例に示すように、従来の偏向電磁石では側面にリターンヨークを備えた構成であるため、磁路はビーム進行方向に垂直な面内に形成される構成であった。このような構成において、電磁石を構成する鉄等の比透磁率は有限であり、磁極ギャップが同じでも、また各電磁石毎の通電量が同じでも、リターンヨークに近い部分の磁場が、遠い部分の磁場に比べて強くなるため、各コイル通電量を同じにしても、ビーム強度の均一化を図るために必要な各軌道毎の磁場の均一度は達成できない。これを改善するためには、通常、各コイルの励磁電流を制御することにより、磁場強度分布の均一化を図るが、リターンヨークが一体となっているため、ヨーク内の各磁極毎の磁束が互いに相関をもつことにより、ある磁極のコイル電流を変化させた場合には別の磁極の磁場分布も変わってしまい、磁場強度の制御が非常に難しくなるといった問題があった。このように、従来の構成の偏向電磁石を用い、複数の荷電粒子ビームが通過する領域の磁場の制御を行うには、調整箇所が多く、相互に作用し合うため、調整が複雑であるといった問題があった。
また、磁場ヒステリシス特性に起因する残留磁場により、磁場強度と電磁石コイル通電量との関係が一定せず、その都度再調整を要するため、ΔB/B=1×10−3以下にするのは大変な手間を要し、かなり困難な作業となるという問題があった。
特に、上記マイクロトロン加速装置の場合は、均一度±0.1%という厳しい精度要求があるため、従来の偏向電磁石で得られる磁場均一度ではこれに対応することが難しく、結果として荷電粒子ビームの軌道調整が困難であった。このことは、複数のビーム軌道をもつ円形加速装置の実現をも困難にするものであった。
【0008】
この発明は上記のような問題点を解消するためになされたもので、複数の荷電粒子ビームの通過領域における磁場の制御が容易な偏向電磁石、及びこのような偏向電磁石を用い、所望の機能が容易に達成できる荷電粒子輸送路を提供するものである。また、偏向電磁石における磁場を高い均一度で均一にして、荷電粒子ビームの軌道調整が容易な円形加速装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の偏向電磁石は、複数の荷電粒子ビームを偏向させる偏向電磁石において、上記偏向電磁石の磁極は、上記複数の荷電粒子ビームが並ぶ面の両側の面にそれぞれ設けられ、上記偏向電磁石のリターンヨークは、上記荷電粒子ビームの進行方向に対し垂直な面内に設けられると共に、上記複数の荷電粒子ビームが通過する複数の貫通穴を有し、上記複数の貫通穴は、少なくとも1つの貫通穴の穴断面積が他の貫通穴の穴断面積と異なっているものである。
【0010】
また、本発明の荷電粒子輸送路は、上記偏向電磁石と、上記偏向電磁石のリターンヨークにおける複数の貫通穴にそれぞれ配設され、荷電粒子を輸送する真空ダクトとを備えたものである。
【0011】
また、本発明の円形加速装置は、高周波加速空洞で加速された荷電粒子を、上記荷電粒子のエネルギーに応じて異なる複数のビーム軌道で周回する円形加速装置において、各ビーム軌道毎に、上記ビーム軌道を包含するように設けられた複数の真空ダクトに、上記構成の偏向電磁石を取り付け、上記偏向電磁石のリターンヨークにおける複数の貫通穴のそれぞれを上記複数の真空ダクトが通過するように構成したものである。
【0012】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1を図を用いて説明する。図1は本発明の実施の形態1による荷電粒子輸送路における偏向電磁石の構成を示す斜視図である。図1において、偏向電磁石1は、複数の荷電粒子ビームが通過する領域の上側(複数の荷電粒子ビームが並ぶ面の上側)に設けられた上側磁極10aとコイル11a、上記領域の下側(複数の荷電粒子ビームが並ぶ面の下側)に設けられた下側磁極10bとコイル11b、及び荷電粒子の進行方向(矢印A方向と平行な方向)に対し垂直な面内に設けられたリターンヨーク12で構成されている。上記リターンヨーク12には複数の貫通穴13が設けられ、上記複数の貫通穴13に、荷電粒子を輸送する複数の真空ダクトを配設する。また、上記複数の貫通穴13は、少なくとも1つの貫通穴の穴断面積が他の貫通穴の穴断面積と異なっている。磁極10a、10bは複数のビーム通過領域の全体に亘って設けられ、複数のビーム通過領域の全体に亘ってコイル11a、11bが巻かれている。
【0013】
図2(a)は図1に示す偏向電磁石1を図1の矢印A方向より見た図、図2(b)は偏向電磁石1の貫通穴13中に真空ダクト2を配置した図である。荷電粒子は真空ダクト2中を輸送される。真空ダクト2は走行する荷電粒子ビームを包含する位置・大きさで設置する。貫通穴13は荷電粒子通過領域に設けられているが、その穴断面積は、複数の荷電粒子ビームの通過領域における磁場が所望の磁場分布となるように設計されており、本実施の形態では偏向電磁石1のビーム通過領域全体に 亘って磁場が均一となる様に設計されている。なお、真空ダクト2の中心位置は荷電粒子ビームの中心位置と一致させるが、貫通穴13の中心位置は、真空ダクト2が入るという条件のみ満たされていれば良く、貫通穴13の中心位置と荷電粒子ビームの中心位置とは一致させる必要はない。
【0014】
次に、複数の貫通穴13の穴断面積について述べる。
偏向電磁石の磁極間のギャップ長が同じ場合でも磁場分布が均一とならないメカニズムは以下の通りである。磁極ギャップ中で発生した磁力線はリターンヨーク中を戻る。リターンヨークがビーム通過領域の側面ではなく、荷電粒子の進行方向に対し垂直な面内に設けられていると、磁石全体の磁力線の分布は均一となり、磁極ギャップで発生する磁場強度はほぼ均一となるが、本実施の形態のようにリターンヨーク12に貫通穴13があると、貫通穴13中には磁力線は殆ど通らず、磁気抵抗が小さい鉄(磁石の材質として鉄を仮定)中を、貫通穴13を取り囲むように磁力線が回る。よってリターンヨーク12の鉄中の磁束密度に位置依存性が生じ、磁束密度が異なると透磁率が異なるので磁気抵抗にも位置依存性が生じる。よって磁石全体の磁力線の分布が変化し、磁極ギャップで発生する磁場強度にも場所依存性が生じる。
【0015】
図3(a)は貫通穴13の穴断面積を均一にした場合の、磁極ギャップで発生する磁場強度分布を計算した結果を示す図である。貫通穴の断面形状は長方形であり、垂直方向の穴径(貫通穴の高さ)を4.6cm、水平方向の穴径(貫通穴の幅)を8cmとした。各貫通穴(貫通穴番号1〜6)の中心位置は下記の表1に示すようにした。ここで、各貫通穴13の中心位置は概略荷電粒子が通過する位置にあわせる必要があり、任意の位置に選ぶことはできない。図3(a)において、横軸は水平方向位置(m)、縦軸は磁場強度(Tesla)、荷電粒子が通過する部分は、x=0mからx=1.2mの部分である。また、磁極ギャップには負極性の磁場を発生させている。図3(a)より、磁場の絶対値の最大値は0.01920(Tesla)、最小値は0.01912(Tesla)程度であり、不均一性は、(0.01920−0.01912)/0.01920/2=0.0021で、ΔB/B=±0.21%であり、荷電粒子が周回する型の円形加速装置で用いる為に十分とはいえない。
【0016】
【表1】

Figure 2004206995
【0017】
図3(b)は貫通穴13の断面積を貫通穴毎に変化させた場合の、磁極ギャップで発生する磁場強度分布を計算した結果を示す図である。貫通穴の断面形状は図3(a)の場合と同様、長方形であり、垂直方向の穴径(貫通穴の高さ)は4.6cm、水平方向の穴径(貫通穴の幅)は下記の表2に示すように各貫通穴(貫通穴番号1〜6)毎に変化させている。なお各貫通穴の中心位置、及び磁場の極性は図3(a)のものと同じである。図3(b)において、横軸は水平方向位置(m)、縦軸は磁場強度(Tesla)、荷電粒子が通過する部分は、x=0mからx=1.2mの部分である。図3(b)より、磁場の絶対値の最大値は0.019135(Tesla)、最小値は0.019118(Tesla)であり、不均一性は、(0.019135−0.019118)/0.019135/2=0.00044で、ΔB/B=±0.04%となる。図3(a)の結果と比較して、円形加速装置で用いるために十分な均一度(一般的な許容値:ΔB/B=±0.1%以下)を得ることができる。なお、各貫通穴の穴断面積(ここでは各貫通穴の幅)は、コンピュータシミュレーションによる磁場分布計算を繰り返し行うことにより、必要な均一度が得られる値が決定される。あるいは、磁場測定と試作を繰り返し行うことにより、必要な均一度が得られる値が決定される。また、磁場分布は鉄等の磁性体の透磁率が変化すると変わるので、透磁率をなるべく実際に使用する材質に近い値にして最適化を行うことが必要となる。
【0018】
【表2】
Figure 2004206995
【0019】
以上のように、本実施の形態による偏向電磁石は、従来の偏向電磁石のように、複数のビーム軌道に対応した場所毎に複数の小型の偏向電磁石を設置し。各偏向電磁石への通電量を制御することによって、各軌道毎の磁場を制御するのではなく、偏向電磁石の幾何学的形状により各軌道毎の磁場を制御する、即ちリターンヨークを荷電粒子ビームの進行方向に対し垂直な面内に設け、さらにリターンヨークに設ける複数の貫通穴の穴断面積をコンピュータシミュレーションによって設計することにより、所望の磁場分布が得られるようにしているので、簡単な構成で、容易に複数の荷電粒子ビームが輸送される部分の磁場を均一に発生させることが可能となる。
【0020】
なお、上記実施の形態1では貫通穴の断面積は長方形であったが、角部をR加工した略長方形であっても、また円形、楕円形、レーストラック形状等であっても同様な効果を得ることができる。
長方形、または略長方形の場合は、製作が容易な偏向電磁石を実現できる、貫通穴に通す真空ダクトの支持が容易になる等の効果がある。
【0021】
また、上記実施の形態では、偏向電磁石における磁極は、複数の真空ダクトの上下に、複数のビーム通過領域の全体に亘って一対設ける構成としたが、1つ以上のビーム軌道毎に、複数対、分割して設け、それぞれにコイルを別々に設ける構成としても良い。一対である場合は、上記効果に加え、製作が容易である効果がある。各ビーム軌道毎に個別に設ける場合は、形成される磁場をさらに微調整することができる効果がある。
【0022】
実施の形態2.
図4、及び図5は、各々本発明の実施の形態2による円形加速装置を示す斜視図、及び平面構成図であり、荷電粒子として電子を加速するマイクロトロンである。本実施の形態においては、荷電粒子が大型偏向電磁石に入る前面に設けられた、逆方向の偏向特性を有する偏向電磁石に対して、実施の形態1と同様の構成の偏向電磁石を適用したものである。但し、これらの図では、当該偏向電磁石の詳細を示すことは困難なので、従来のマイクロトロン加速装置の構成との外見上の差異は現れていない。
【0023】
図4、5において、電子銃31で発生した電子は、輸送路32を通過して高周波加速空洞33に入射する。高周波加速空洞33に入射した電子は高周波加速空洞33で加速され、一対の偏向電磁石35、36で偏向されて、高周波加速空洞33を何回も通過する。上記一対の偏向電磁石35、36は、装置両端に設置された一対の第1偏向電磁石(大型偏向電磁石)35と、電子が第1偏向電磁石35に入る前面、即ち高周波加速空洞33と第1偏向電磁石35との間に設けられた一対の第2偏向電磁石36とで構成されている。一対の偏向電磁石35、36で偏向され、高周波加速空洞33に再度入射した電子は、高周波加速空洞33でさらに加速され、加速の都度に電子ビームのエネルギーが変化するので、加速軌道以外の軌道では、荷電粒子のエネルギーに応じて異なる周回軌道となる。第2偏向電磁石36は、第1偏向電磁石35と逆極性であり、電子を逆方向に偏向させて所定のビーム集束力を得るように磁場強度が調整されている。また、電子は高真空でないとガスとの散乱により失われてしまうので、真空ダクト34中を輸送されるが、この真空ダクト34は、各ビーム軌道毎に、ビーム軌道を包含するように設けられる。図4、5においては、電子は4つの周回軌道をとり、これら4つの周回軌道は、図に示すように、第2偏向電磁石36に接続される5本の真空ダクト34a〜34e内に形成される。
【0024】
本実施の形態による円形加速装置においては、上記第2偏向電磁石36に実施の形態1と同様の構成の偏向電磁石を適用する。即ち、実施の形態1における偏向電磁石1は第2偏向電磁石36に相当する。
【0025】
第2偏向電磁石36は、前述のように、所定のビーム集束力を得るために配置されており、ビーム起動毎の偏向角を一定にして周回できるようにするためには、各電子ビーム軌道毎のBL積(磁場強度のビーム進行方向の積分値)を同じにする必要がある。従って、この部分に実施の形態1の偏向電磁石を用いると、磁場強度の均一化が簡単になり、その結果、電子ビームの軌道がずれることが無く、電子ビームの軌道調整が容易な円形加速装置を提供することが可能となる。
【0026】
なお、上記実施の形態2ではマイクロトロン等の電子を加速する円形加速装置に対して、実施の形態1に示した偏向電磁石を適用したが、他の荷電粒子の円形加速装置に適用してもよく、偏向電磁石のビーム通過領域における磁場の制御が容易となる。
また、イオンビーム加工機における荷電粒子輸送路に対しても、実施の形態1に示した偏向電磁石を適用することにより、ビーム通過領域における磁場の制御が容易となり、均質なイオンビームが容易に得られるようになる。
また、その他、複数の荷電粒子ビームを偏向させる幅広の偏向電磁石を備えた種々の荷電粒子輸送路、加速装置、荷電粒子蓄積装置等において、実施の形態1と同様の構成の偏向電磁石を適用してもよく、簡単な構成により、上記偏向電磁石における磁場の制御が容易となり、ビーム調整等、所望の機能が達成できる、性能の優れた装置を得ることが可能となる。
【0027】
【発明の効果】
以上のように、この発明によれば、複数の荷電粒子ビームを偏向させる偏向電磁石において、上記偏向電磁石の磁極は、上記複数の荷電粒子ビームが並ぶ面の両側の面にそれぞれ設けられ、上記偏向電磁石のリターンヨークは、上記荷電粒子ビームの進行方向に対し垂直な面内に設けられると共に、上記複数の荷電粒子ビームが通過する複数の貫通穴を有し、上記複数の貫通穴は、少なくとも1つの貫通穴の穴断面積が他の貫通穴の穴断面積と異なっているので、簡単な構成の偏向電磁石により、複数の荷電粒子ビームの通過領域における磁場の制御が容易となる効果がある。
【0028】
また、この発明によれば、上記偏向電磁石と、上記偏向電磁石のリターンヨークにおける複数の貫通穴にそれぞれ配設され、荷電粒子を輸送する真空ダクトとにより荷電粒子輸送路を構成したので、磁場の制御が容易となるため、性能の優れた輸送路が容易に得られる効果がある。
【0029】
また、この発明によれば、高周波加速空洞で加速された荷電粒子を、上記荷電粒子のエネルギーに応じて異なる複数のビーム軌道で周回する円形加速装置において、各ビーム軌道毎に、上記ビーム軌道を包含するように設けられた複数の真空ダクトに、上記構成の偏向電磁石を取り付け、上記偏向電磁石のリターンヨークにおける複数の貫通穴のそれぞれを上記複数の真空ダクトが通過するように構成したので、偏向電磁石における磁場を高い精度で均一にでき、荷電粒子ビームの軌道調整が容易な円形加速装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による荷電粒子輸送路における偏向電磁石の構成を示す斜視図である。
【図2】本発明の実施の形態1に係わる偏向電磁石及び荷電粒子輸送路を図1の矢印A方向より見た図である。
【図3】本発明の実施の形態1に係わる偏向電磁石において、貫通穴の穴断面積が均一な場合と変化させた場合とにおける磁場強度分布を計算した結果を示す図である。
【図4】本発明の実施の形態2による円形加速装置を示す斜視図である。
【図5】本発明の実施の形態2による円形加速装置を示す平面構成図である。
【符号の説明】
1 偏向電磁石、2,34,34a〜34e 真空ダクト、10a,10b 磁極、11a,11b コイル、12 リターンヨーク、13 貫通穴、31 電子銃、32 輸送路、33 高周波加速空洞、35 第1偏向電磁石、36 第2偏向電磁石。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a deflection electromagnet that deflects a plurality of charged particle beams, and shows a configuration of a deflection electromagnet in which a magnetic field can be easily controlled in a region where the plurality of charged particle beams pass. The present invention also relates to a charged particle transport path using such a bending electromagnet, and a circular accelerator using the above bending electromagnet.
[0002]
[Prior art]
When using charged particles, it is necessary to guide the charged particles to a predetermined position.
The charged particle transport path plays this role. In the charged particle transport path, a bending electromagnet is often used depending on various applications. In particular, when a wide charged particle beam including a plurality of charged particle beams is used, a wide transport path corresponding to the beam width is required. In that case, the bending electromagnet needs to be wide, and it is necessary to control the magnetic field over this wide area so that the beam can be transported to a predetermined position with a required beam size. .
[0003]
For example, in an ion implanter that performs ion implantation using a mass-separated high-quality wide parallel ribbon beam, in order to achieve homogenization of the beam intensity, the implantation beam is referred to as a multipole, and a plurality of linearly arranged linear beams are used. It is configured to pass through a tunnel of small bending electromagnets (electromagnetic tunnel) (for example, see Non-Patent Document 1). In such an apparatus, the current supplied to each bending electromagnet constituting the multipole is feedback-controlled to control the magnetic field in the electromagnet tunnel in which the charged particles are transported, so that the variation in the beam intensity is about 3% or less. Had a homogeneous beam.
[0004]
Another example using a wide bending electromagnet is a microtron accelerator (for example, see Patent Document 1). This accelerating device is a revolving type circular accelerating device in which large deflecting electromagnets having a constant magnetic field strength are provided at both ends of the accelerating device so that electrons circulate in the accelerating device. In this device, electrons pass through an acceleration trajectory provided with a high-frequency accelerating cavity having an electron acceleration function every round in principle, and the energy of the electron beam changes each time acceleration is performed. Further, since the magnetic fields of the large bending electromagnets at both ends are constant, the orbits other than the above-mentioned accelerating orbit are designed to have different orbits according to the energy of the electrons. As described above, in the microtron accelerator, a charged particle (electron) transport path is formed by a plurality of orbits. However, in order to obtain a predetermined beam converging force, a reverse direction is usually provided on the front surface entering the large bending magnet. A bending electromagnet having a directional deflection characteristic is additionally arranged. In adjusting the beam converging force, the BL product (integral value of the magnetic field strength in the beam traveling direction) for each orbit in the additional bending electromagnet needs to be the same due to the demand of the beam dynamics. However, since L (effective length of the magnetic field in the bending electromagnet) is usually designed to be constant in order to simplify the configuration, the additional bending electromagnet has a uniform magnetic field intensity over a plurality of electron beam passage portions. It is necessary to have something.
[0005]
Conventionally, as the additional bending electromagnet of the microtron accelerator, an electromagnet of the same type as the multipole type small electromagnet tunnel used in the above-described ion implantation apparatus has been used. In other words, for each orbit of the electron beam, a small deflection electromagnet is installed at a location corresponding to the position, and by controlling the amount of electricity for each electromagnet, the control of reducing the variation in the magnetic field strength for each orbit is controlled. I was going.
[0006]
[Non-patent document 1]
Toru Degawa and three others, "Development and Application of Large Area Ion Implantation System", 2nd Symposium on Applied Accelerators and Related Technologies (December 1-3, 1999, Tokyo) (Proceedings of the Second Symposium on) Accelerator and Related Technology for Application), Organizing Committee of Symposium, p. 33-p. 36
[Patent Document 1]
JP-A-2002-237400 (page 5-7, FIG. 1)
[0007]
[Problems to be solved by the invention]
As described above, in the bending electromagnet used in the conventional circular accelerator or ion implanter, as described above, a plurality of magnetic poles are provided above and below the passage area of a plurality of charged particle beams, and the magnetic poles are respectively wound around the plurality of magnetic poles. In many cases, the magnetic field of each orbit is controlled by changing the exciting current of the coil for each magnetic pole. Alternatively, control has been performed by changing the distance between gaps of a plurality of magnetic poles for each orbit.
However, as shown in the above example of the ion implantation apparatus, the conventional bending electromagnet has a configuration in which a return yoke is provided on a side surface, so that the magnetic path is formed in a plane perpendicular to the beam traveling direction. In such a configuration, the relative magnetic permeability of iron or the like constituting the electromagnet is finite, and even if the magnetic pole gap is the same, and even if the energization amount of each electromagnet is the same, the magnetic field in the portion near the return yoke is in the distant portion. Since the magnetic field becomes stronger than the magnetic field, even if the energization amount of each coil is the same, the uniformity of the magnetic field for each orbit required for achieving uniform beam intensity cannot be achieved. In order to improve this, the magnetic field strength distribution is usually made uniform by controlling the exciting current of each coil, but since the return yoke is integrated, the magnetic flux of each magnetic pole in the yoke is reduced. Due to the mutual correlation, when the coil current of a certain magnetic pole is changed, the magnetic field distribution of another magnetic pole also changes, and there is a problem that control of the magnetic field intensity becomes very difficult. As described above, in order to control the magnetic field in a region through which a plurality of charged particle beams pass by using the bending electromagnet having the conventional configuration, there are many adjustment points and interact with each other, so that the adjustment is complicated. was there.
In addition, the relationship between the magnetic field strength and the amount of current applied to the electromagnet coil is not constant due to the residual magnetic field caused by the magnetic field hysteresis characteristic, and it is necessary to readjust the value each time. Therefore, it is very difficult to set ΔB / B = 1 × 10 −3 or less. It takes a lot of time and labor, making it a rather difficult task.
In particular, in the case of the above-mentioned microtron accelerator, there is a strict accuracy requirement of uniformity of ± 0.1%. Therefore, it is difficult to cope with the magnetic field uniformity obtained by the conventional bending electromagnet. Orbit adjustment was difficult. This has made it difficult to realize a circular accelerator having a plurality of beam orbits.
[0008]
The present invention has been made in order to solve the above problems, and a bending electromagnet that can easily control a magnetic field in a region where a plurality of charged particle beams pass, and a desired function using such a bending electromagnet. It is intended to provide a charged particle transport path which can be easily achieved. It is another object of the present invention to provide a circular accelerator in which the magnetic field in the bending electromagnet is made uniform with high uniformity and the trajectory of the charged particle beam can be easily adjusted.
[0009]
[Means for Solving the Problems]
The deflection electromagnet of the present invention is a deflection electromagnet for deflecting a plurality of charged particle beams, wherein the magnetic poles of the deflection electromagnet are provided on both sides of a surface on which the plurality of charged particle beams are arranged, and a return yoke of the deflection electromagnet is provided. Is provided in a plane perpendicular to the traveling direction of the charged particle beam, and has a plurality of through holes through which the plurality of charged particle beams pass, and the plurality of through holes have at least one through hole. The hole cross-sectional area is different from the hole cross-sectional areas of the other through holes.
[0010]
Further, the charged particle transport path of the present invention includes the bending electromagnet, and a vacuum duct disposed in each of a plurality of through holes in a return yoke of the deflection electromagnet and configured to transport charged particles.
[0011]
Further, the circular accelerator of the present invention is a circular accelerator, in which the charged particle accelerated by the high-frequency acceleration cavity orbits in a plurality of beam orbits different according to the energy of the charged particle, wherein the beam A plurality of vacuum ducts provided so as to include the orbit, the bending electromagnet of the above configuration is attached, and the plurality of through-holes in the return yoke of the bending electromagnet are configured so that the plurality of vacuum ducts pass through. It is.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a bending electromagnet in a charged particle transport path according to Embodiment 1 of the present invention. In FIG. 1, a bending electromagnet 1 includes an upper magnetic pole 10a and a coil 11a provided above a region through which a plurality of charged particle beams pass (above a surface on which a plurality of charged particle beams are arranged), and a lower portion (a plurality of The lower magnetic pole 10b and the coil 11b provided on the lower side of the plane where the charged particle beams are arranged, and the return yoke provided in a plane perpendicular to the traveling direction of the charged particles (a direction parallel to the direction of arrow A). 12. The return yoke 12 is provided with a plurality of through holes 13, and a plurality of vacuum ducts for transporting charged particles are provided in the plurality of through holes 13. In the plurality of through holes 13, at least one through hole has a different hole cross sectional area from other through holes. The magnetic poles 10a and 10b are provided throughout the plurality of beam passage areas, and the coils 11a and 11b are wound over the entire plurality of beam passage areas.
[0013]
FIG. 2A is a diagram of the bending electromagnet 1 shown in FIG. 1 as viewed from the direction of arrow A in FIG. 1, and FIG. 2B is a diagram in which the vacuum duct 2 is arranged in a through hole 13 of the bending electromagnet 1. The charged particles are transported in the vacuum duct 2. The vacuum duct 2 is installed at a position and size that include the traveling charged particle beam. The through-hole 13 is provided in the charged particle passage area. The hole cross section is designed such that the magnetic field in the passage area of the plurality of charged particle beams has a desired magnetic field distribution. The magnetic field is designed to be uniform over the entire beam passage area of the bending electromagnet 1. Although the center position of the vacuum duct 2 is made to coincide with the center position of the charged particle beam, the center position of the through hole 13 only needs to satisfy the condition that the vacuum duct 2 enters. It is not necessary to match the center position of the charged particle beam.
[0014]
Next, the hole cross-sectional area of the plurality of through holes 13 will be described.
The mechanism by which the magnetic field distribution is not uniform even when the gap length between the magnetic poles of the bending electromagnet is the same is as follows. Lines of magnetic force generated in the pole gap return in the return yoke. If the return yoke is provided not in the side of the beam passage area but in a plane perpendicular to the traveling direction of the charged particles, the distribution of the magnetic field lines of the entire magnet becomes uniform, and the magnetic field intensity generated in the magnetic pole gap is almost uniform. However, if there is a through hole 13 in the return yoke 12 as in the present embodiment, the lines of magnetic force hardly pass through the through hole 13 and the magnetic resistance is small in iron (assuming iron as the material of the magnet). The lines of magnetic force rotate so as to surround the through hole 13. Therefore, the magnetic flux density in the iron of the return yoke 12 has position dependency, and if the magnetic flux density differs, the magnetic permeability differs, so that the magnetic resistance also has position dependency. Therefore, the distribution of the magnetic field lines of the entire magnet changes, and the magnetic field intensity generated in the magnetic pole gap also has location dependence.
[0015]
FIG. 3A is a diagram showing a result of calculating a magnetic field intensity distribution generated in the magnetic pole gap when the through-hole 13 has a uniform hole cross-sectional area. The cross-sectional shape of the through hole was rectangular, and the hole diameter in the vertical direction (height of the through hole) was 4.6 cm, and the hole diameter in the horizontal direction (width of the through hole) was 8 cm. The center position of each through hole (through hole numbers 1 to 6) was as shown in Table 1 below. Here, the center position of each through-hole 13 needs to be approximately aligned with the position through which the charged particles pass, and cannot be selected at an arbitrary position. In FIG. 3A, the horizontal axis represents the horizontal position (m), the vertical axis represents the magnetic field strength (Tesla), and the portion where the charged particles pass is from x = 0 m to x = 1.2 m. A negative magnetic field is generated in the magnetic pole gap. 3A, the maximum value of the absolute value of the magnetic field is about 0.01920 (Tesla), the minimum value is about 0.01912 (Tesla), and the inhomogeneity is (0.01920-0.01912) / 0.01920 / 2 = 0.0021 and ΔB / B = ± 0.21%, which is not sufficient for use in a circular accelerator in which charged particles orbit.
[0016]
[Table 1]
Figure 2004206995
[0017]
FIG. 3B is a diagram illustrating a calculation result of a magnetic field intensity distribution generated in the magnetic pole gap when the cross-sectional area of the through hole 13 is changed for each through hole. The cross-sectional shape of the through hole is rectangular as in the case of FIG. 3A, the vertical hole diameter (height of the through hole) is 4.6 cm, and the horizontal hole diameter (the width of the through hole) is as follows. As shown in Table 2, the values are changed for each through hole (through hole numbers 1 to 6). The center position of each through hole and the polarity of the magnetic field are the same as those in FIG. In FIG. 3B, the horizontal axis represents the horizontal position (m), the vertical axis represents the magnetic field strength (Tesla), and the portion through which the charged particles pass is from x = 0 m to x = 1.2 m. According to FIG. 3B, the maximum value of the absolute value of the magnetic field is 0.019135 (Tesla), the minimum value is 0.019118 (Tesla), and the inhomogeneity is (0.009135 to 0.019118) / 0. 0.019135 / 2 = 0.00044, and ΔB / B = ± 0.04%. Compared with the result of FIG. 3A, it is possible to obtain a sufficient degree of uniformity (a general allowable value: ΔB / B = ± 0.1% or less) for use in a circular accelerator. The hole cross-sectional area of each through-hole (here, the width of each through-hole) is determined by repeatedly performing a magnetic field distribution calculation by computer simulation to determine a value at which a required uniformity is obtained. Alternatively, by repeatedly performing the magnetic field measurement and the trial production, a value at which the required uniformity is obtained is determined. Since the magnetic field distribution changes when the magnetic permeability of a magnetic substance such as iron changes, it is necessary to optimize the magnetic permeability to a value as close as possible to the material actually used.
[0018]
[Table 2]
Figure 2004206995
[0019]
As described above, in the bending electromagnet according to the present embodiment, a plurality of small bending electromagnets are installed at locations corresponding to a plurality of beam trajectories, like a conventional bending electromagnet. Instead of controlling the magnetic field for each trajectory by controlling the amount of current supplied to each deflecting electromagnet, the magnetic field for each trajectory is controlled by the geometric shape of the deflecting electromagnet. The desired magnetic field distribution is obtained by designing the hole cross-sectional area of a plurality of through-holes provided in the return yoke in a plane perpendicular to the traveling direction by computer simulation. Thus, it is possible to easily and uniformly generate a magnetic field in a portion where a plurality of charged particle beams are transported.
[0020]
In the first embodiment, the cross-sectional area of the through-hole is rectangular. However, the same effect can be obtained even if the through-hole has a substantially rectangular shape with a rounded corner, or a circular, elliptical, or race-track shape. Can be obtained.
In the case of a rectangular shape or a substantially rectangular shape, there are effects that a bending electromagnet that can be easily manufactured can be realized, and that a vacuum duct that passes through a through hole is easily supported.
[0021]
In the above-described embodiment, the magnetic poles of the bending electromagnet are provided in pairs above and below the plurality of vacuum ducts over the entirety of the plurality of beam passage areas. , And a coil may be separately provided for each. In the case of a pair, there is an effect that manufacture is easy in addition to the above-mentioned effects. When individually provided for each beam orbit, there is an effect that the formed magnetic field can be further finely adjusted.
[0022]
Embodiment 2 FIG.
FIGS. 4 and 5 are a perspective view and a plan view, respectively, showing a circular accelerator according to a second embodiment of the present invention, which is a microtron for accelerating electrons as charged particles. In the present embodiment, a deflection electromagnet having the same configuration as that of the first embodiment is applied to a deflection electromagnet provided on the front surface where charged particles enter a large deflection electromagnet and having a deflection characteristic in a reverse direction. is there. However, in these figures, it is difficult to show the details of the bending electromagnet, so that there is no apparent difference from the configuration of the conventional microtron accelerator.
[0023]
4 and 5, the electrons generated by the electron gun 31 pass through the transport path 32 and enter the high-frequency acceleration cavity 33. The electrons incident on the high-frequency accelerating cavity 33 are accelerated by the high-frequency accelerating cavity 33, deflected by the pair of bending electromagnets 35 and 36, and pass through the high-frequency accelerating cavity 33 many times. The pair of bending electromagnets 35 and 36 include a pair of first bending electromagnets (large bending electromagnets) 35 installed at both ends of the apparatus, a front surface where electrons enter the first bending electromagnet 35, that is, the high-frequency acceleration cavity 33 and the first deflection electromagnet. It is constituted by a pair of second bending electromagnets 36 provided between the electromagnets 35. Electrons that have been deflected by the pair of bending electromagnets 35 and 36 and re-entered the high-frequency acceleration cavity 33 are further accelerated by the high-frequency acceleration cavity 33, and the energy of the electron beam changes each time acceleration occurs. The orbit varies depending on the energy of the charged particles. The second bending electromagnet 36 has a polarity opposite to that of the first bending electromagnet 35, and the magnetic field intensity is adjusted so that electrons are deflected in the opposite direction to obtain a predetermined beam focusing power. In addition, since electrons are lost due to scattering with gas unless they are in a high vacuum, they are transported in a vacuum duct 34. The vacuum duct 34 is provided for each beam orbit so as to encompass the beam orbit. . 4 and 5, the electrons take four orbits, and these four orbits are formed in five vacuum ducts 34a to 34e connected to the second bending electromagnet 36 as shown in the figures. You.
[0024]
In the circular acceleration device according to the present embodiment, a bending electromagnet having the same configuration as that of the first embodiment is applied to the second bending electromagnet 36. That is, the bending electromagnet 1 in the first embodiment corresponds to the second bending electromagnet 36.
[0025]
As described above, the second bending electromagnet 36 is disposed to obtain a predetermined beam focusing force. (The integral value of the magnetic field intensity in the beam traveling direction) needs to be the same. Therefore, when the bending electromagnet according to the first embodiment is used in this portion, the uniformity of the magnetic field intensity can be easily made. As a result, the orbit of the electron beam does not shift, and the circular accelerator can easily adjust the orbit of the electron beam. Can be provided.
[0026]
In the second embodiment, the bending electromagnet shown in the first embodiment is applied to the circular accelerator for accelerating electrons, such as a microtron, but may be applied to the circular accelerator for other charged particles. It is easy to control the magnetic field in the beam passage region of the bending electromagnet.
Also, by applying the bending electromagnet described in Embodiment 1 to the charged particle transport path in the ion beam processing machine, it is easy to control the magnetic field in the beam passage area and easily obtain a homogeneous ion beam. Will be able to
In addition, a deflection electromagnet having the same configuration as that of the first embodiment is applied to various charged particle transport paths, acceleration devices, charged particle storage devices, and the like including a wide deflection electromagnet that deflects a plurality of charged particle beams. With a simple configuration, it is easy to control the magnetic field in the bending electromagnet, and it is possible to obtain a high-performance device that can achieve desired functions such as beam adjustment.
[0027]
【The invention's effect】
As described above, according to the present invention, in the deflection electromagnet for deflecting a plurality of charged particle beams, the magnetic poles of the deflection electromagnet are provided on both surfaces of the surface on which the plurality of charged particle beams are arranged, respectively. The return yoke of the electromagnet is provided in a plane perpendicular to the traveling direction of the charged particle beam, has a plurality of through holes through which the plurality of charged particle beams pass, and the plurality of through holes have at least one through hole. Since the through-hole area of one through-hole is different from the through-hole area of the other through-holes, the bending electromagnet having a simple configuration has an effect that the control of the magnetic field in the passage region of the plurality of charged particle beams becomes easy.
[0028]
According to the present invention, the charged particle transport path is constituted by the deflection electromagnet and the vacuum ducts respectively disposed in the plurality of through holes in the return yoke of the deflection electromagnet and transporting the charged particles. Since control is facilitated, there is an effect that a transport route having excellent performance can be easily obtained.
[0029]
Further, according to the present invention, in a circular accelerator in which charged particles accelerated by the high-frequency acceleration cavity orbit in a plurality of different beam orbits according to the energy of the charged particles, the beam orbit is set for each beam orbit. The plurality of vacuum ducts provided so as to include the deflection electromagnet having the above-described configuration are attached to the plurality of through-holes in the return yoke of the deflection electromagnet. It is possible to provide a circular accelerator in which the magnetic field in the electromagnet can be made uniform with high accuracy and the trajectory of the charged particle beam can be easily adjusted.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a bending electromagnet in a charged particle transport path according to Embodiment 1 of the present invention.
FIG. 2 is a view of the bending electromagnet and the charged particle transport path according to the first embodiment of the present invention as viewed from the direction of arrow A in FIG.
FIG. 3 is a diagram showing calculation results of magnetic field intensity distributions when the cross-sectional area of the through-hole is uniform and when the cross-sectional area of the through-hole is changed in the bending electromagnet according to the first embodiment of the present invention.
FIG. 4 is a perspective view showing a circular acceleration device according to a second embodiment of the present invention.
FIG. 5 is a plan view showing a circular accelerator according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bending electromagnet, 2, 34, 34a-34e Vacuum duct, 10a, 10b magnetic pole, 11a, 11b coil, 12 return yoke, 13 through hole, 31 electron gun, 32 transport path, 33 high-frequency accelerating cavity, 35 first deflection electromagnet , 36 second bending electromagnet.

Claims (6)

複数の荷電粒子ビームを偏向させる偏向電磁石において、上記偏向電磁石の磁極は、上記複数の荷電粒子ビームが並ぶ面の両側の面にそれぞれ設けられ、上記偏向電磁石のリターンヨークは、上記荷電粒子ビームの進行方向に対し垂直な面内に設けられると共に、上記複数の荷電粒子ビームが通過する複数の貫通穴を有し、上記複数の貫通穴は、少なくとも1つの貫通穴の穴断面積が他の貫通穴の穴断面積と異なっていることを特徴とする偏向電磁石。In the deflection electromagnet that deflects the plurality of charged particle beams, the magnetic poles of the deflection electromagnet are provided on both sides of the surface on which the plurality of charged particle beams are arranged, and the return yoke of the deflection electromagnet is provided with A plurality of through-holes are provided in a plane perpendicular to the traveling direction and through which the plurality of charged particle beams pass, and the plurality of through-holes have at least one through-hole having a cross-sectional area of another through-hole. A bending electromagnet characterized in that the hole has a different hole cross-sectional area. 複数の貫通穴の断面形状が略長方形であり、各貫通穴の垂直方向の穴径が等しく、少なくとも1つの貫通穴の水平方向の穴径が他の貫通穴の水平方向の穴径と異なっていることを特徴とする請求項1記載の偏向電磁石。The cross-sectional shape of the plurality of through holes is substantially rectangular, the vertical hole diameter of each through hole is equal, and the horizontal hole diameter of at least one through hole is different from the horizontal hole diameter of the other through holes. The bending electromagnet according to claim 1, wherein 磁極は複数の磁極で構成され、各磁極は各荷電粒子ビームの通過領域に対応して配設されていることを特徴とする請求項1または2記載の偏向電磁石。3. The bending electromagnet according to claim 1, wherein the magnetic pole is composed of a plurality of magnetic poles, and each magnetic pole is arranged corresponding to a passage area of each charged particle beam. 磁極は、複数の荷電粒子ビームの通過領域全体に亘って、複数の荷電粒子ビームが並ぶ面の両側の面に一対設けられていることを特徴とする請求項1または2記載の偏向電磁石。The bending electromagnet according to claim 1, wherein a pair of magnetic poles are provided on both sides of a surface on which the plurality of charged particle beams are arranged, over the entire region through which the plurality of charged particle beams pass. 請求項1ないし4のいずれかに記載の偏向電磁石、および上記偏向電磁石のリターンヨークにおける複数の貫通穴にそれぞれ配設され、荷電粒子を輸送する真空ダクトを備えたことを特徴とする荷電粒子輸送路。A charged particle transport, comprising: the bending electromagnet according to any one of claims 1 to 4, and vacuum ducts respectively disposed in a plurality of through holes in a return yoke of the deflection electromagnet and configured to transport charged particles. Road. 高周波加速空洞で加速された荷電粒子を、上記荷電粒子のエネルギーに応じて異なる複数のビーム軌道で周回する円形加速装置において、各ビーム軌道毎に、上記ビーム軌道を包含するように設けられ、上記荷電粒子を輸送する複数の真空ダクト、および上記複数の真空ダクトが、リターンヨークにおける複数の貫通穴のそれぞれを通過するように構成した請求項1ないし4のいずれかに記載の偏向電磁石を備えたことを特徴とする円形加速装置。In a circular accelerator that orbits the charged particles accelerated by the high-frequency acceleration cavity in a plurality of different beam orbits according to the energy of the charged particles, each circular orbit is provided so as to include the beam orbit, A plurality of vacuum ducts for transporting charged particles, and the bending electromagnet according to any one of claims 1 to 4, wherein the plurality of vacuum ducts are configured to pass through each of the plurality of through holes in the return yoke. A circular accelerator characterized by the above-mentioned.
JP2002373681A 2002-12-25 2002-12-25 Bending electromagnet, charged particle transport path, and circular accelerator Expired - Fee Related JP3867668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373681A JP3867668B2 (en) 2002-12-25 2002-12-25 Bending electromagnet, charged particle transport path, and circular accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373681A JP3867668B2 (en) 2002-12-25 2002-12-25 Bending electromagnet, charged particle transport path, and circular accelerator

Publications (2)

Publication Number Publication Date
JP2004206995A true JP2004206995A (en) 2004-07-22
JP3867668B2 JP3867668B2 (en) 2007-01-10

Family

ID=32811893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373681A Expired - Fee Related JP3867668B2 (en) 2002-12-25 2002-12-25 Bending electromagnet, charged particle transport path, and circular accelerator

Country Status (1)

Country Link
JP (1) JP3867668B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139525A (en) * 2005-11-17 2007-06-07 National Institute Of Advanced Industrial & Technology Method and device for focusing positron beam
JP2014229575A (en) * 2013-05-27 2014-12-08 住友重機械工業株式会社 Microtron
TWI565370B (en) * 2015-09-11 2017-01-01 三菱電機股份有限公司 Electromagnet rack, electromagnet device and particle beam treatment device
CN108696981A (en) * 2018-05-31 2018-10-23 北京鑫智能技术股份有限公司 A kind of α magnet for irradiation accelerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139525A (en) * 2005-11-17 2007-06-07 National Institute Of Advanced Industrial & Technology Method and device for focusing positron beam
JP4696301B2 (en) * 2005-11-17 2011-06-08 独立行政法人産業技術総合研究所 Positron beam focusing method and focusing apparatus
JP2014229575A (en) * 2013-05-27 2014-12-08 住友重機械工業株式会社 Microtron
TWI565370B (en) * 2015-09-11 2017-01-01 三菱電機股份有限公司 Electromagnet rack, electromagnet device and particle beam treatment device
CN108696981A (en) * 2018-05-31 2018-10-23 北京鑫智能技术股份有限公司 A kind of α magnet for irradiation accelerator

Also Published As

Publication number Publication date
JP3867668B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US5132544A (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
US5568109A (en) Normal conducting bending electromagnet
US7112789B2 (en) High aspect ratio, high mass resolution analyzer magnet and system for ribbon ion beams
US5117212A (en) Electromagnet for charged-particle apparatus
JPH10513301A (en) System and method for generating an oscillating magnetic field at a working gap useful for illuminating a surface with atomic and molecular ions
US20070176123A1 (en) Ion implanter having a superconducting magnet
JP3867668B2 (en) Bending electromagnet, charged particle transport path, and circular accelerator
KR20170101198A (en) Combined multipole magnet and dipole scanning magnet
JP7366997B2 (en) Scanning magnet design for improved efficiency
KR20130098215A (en) Mass analyzer apparatus and systems operative for focusing ribbon ion beams and for separating desired ion species from unwanted ion species in ribbon ion beams
JP5800286B2 (en) Ion implanter
JP2000277323A (en) Variable magnetic field magnet
KR100213462B1 (en) Device and process for controlling the focusing of a monopolar charged particle beam
JP3324748B2 (en) Magnetic field variable magnet
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JPH06349593A (en) Sheet plasma generation method and device
EP2458949B1 (en) Magnetic field control apparatus
JP2700687B2 (en) Wiggler equipment
JP3065988B2 (en) Normal conduction type bending electromagnet
JP2001043998A (en) Electromagnet, circular accelerator using it and circular accelerator system
JPH0660998A (en) Convergent type multipolar undulator
WO2012104636A1 (en) Multipole magnet
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
WO2002054442A2 (en) Ion beam collimating system
JPH0487199A (en) Synchrotron radiation generating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

LAPS Cancellation because of no payment of annual fees