JP2004205938A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2004205938A
JP2004205938A JP2002376930A JP2002376930A JP2004205938A JP 2004205938 A JP2004205938 A JP 2004205938A JP 2002376930 A JP2002376930 A JP 2002376930A JP 2002376930 A JP2002376930 A JP 2002376930A JP 2004205938 A JP2004205938 A JP 2004205938A
Authority
JP
Japan
Prior art keywords
light beam
opening
scanning device
optical scanning
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376930A
Other languages
Japanese (ja)
Other versions
JP4173362B2 (en
Inventor
Susumu Mikajiri
晋 三ヶ尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002376930A priority Critical patent/JP4173362B2/en
Publication of JP2004205938A publication Critical patent/JP2004205938A/en
Application granted granted Critical
Publication of JP4173362B2 publication Critical patent/JP4173362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high quality image by avoiding a distribution in intensity of a flux of light through diffraction of the flux of light passing through an aperture member. <P>SOLUTION: The aperture member 103 is attachably/detachably mounted between laser diode arrays 101a, 101b and a polygon motar 105, to be exact, between the laser diode arrays 101a, 101b and a cylinder lens 104, using screw holes 110c, 110d of a frame 110 and screws 112a, 112b. When the aperture member 103 is mounted on the frame 110, positioning is performed by the positioning holes which are formed in the aperture member 103 and which are not shown and by the bosses 111a, 111b which are formed in the frame 110, the aperture member 103 is made mountable on the frame 110 at a more proper position. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光走査装置およびこの光走査装置を備える画像形成装置に関するものであって、より詳しくは、高品質画像を提供することができる光走査装置およびこの光操作装置を備える画像形成装置に関するものである。
【0002】
【従来の技術】
近年、画素密度が1200dpiを超えるような高品質画像を提供することができる画像形成装置が市場に投入され始めている。画素密度が1200dpiを超えるような高品質画像が提供されるためには、被走査面の副走査方向における各光線束の間隔が21.2μmとなるように光線束の開きを調整することが必要である。そして、従来の技術として、光線を発する光源と、この光源によって発せられた光線の集まりである光線束をその開きを調整して通過させる開口部材とを備え、この開口部材が光源と一体的に支持されていることを特徴とするマルチビーム走査装置が知られている(特許文献1を参照)。
【0003】
【特許文献1】
特開平9−43523号公報(特に、[0015]段落および[図1]を参照)
【0004】
【発明が解決しようとする課題】
ところで、開口部材を通過した光線束は回折して、光線束の強度に分布が生じる。開口部材を通過した光線束の強度分布は、被走査面の副走査方向における各光線束の強度分布にも影響するので、被走査面の副走査方向における各光線束の間隔を21.2μmに保つことが困難になる。そして、被走査面の副走査方向における結像倍率が1より小さい場合には、焦点外れ量に対する光線束の径の変動量が大きいので、被走査面の副走査方向における各光線束の間隔を21.2μmに保つことは特に困難である。したがって、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることをできる限り回避することが必要である。
【0005】
ところが、前述の従来の技術においては、開口部材が光源と一体的に支持されて、開口部材の位置が固定されてしまうので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることが回避されず、被走査面の副走査方向における各光線束の間隔を予め定められた距離に保つことができない、すなわち、高品質画像を提供することができないという問題があった。
【0006】
そこで、本発明は、前述の問題を解決するためのものであって、高品質画像を提供することができる光走査装置およびこの光走査装置を備える画像形成装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
前述の課題を解決するため、本発明に係る光走査装置は、光線を発する光源と、前記光源によって発せれた光線の集まりである光線束をその開きを調整して通過させる開口部が形成された開口部材と、前記光源側からの光線束を第1の方向に収束させて第1の方向と垂直な方向な第2の方向に長い線像に結像する収束結像部材と、前記収束結像部材によって収束結像された光線束を偏向する偏向部材と、前記偏向部材によって偏向された光線束を光線束によって走査される被走査面に集光する集光部材とを備え、前記開口部材は、前記光源と前記偏向部材との間に着脱可能に設けられていることを特徴とする構成を有するものである。
【0008】
この構成によれば、開口部材が光源と偏向部材との間で自由に配置されるので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることが回避されて、高品質画像を提供することができる。
【0009】
本発明に係る光走査装置において、前記開口部材は、前記光源と前記収束結像部材との間に着脱可能に設けられていることを特徴とする構成を有するものである。
【0010】
この構成によれば、開口部材が光源と収束結像部材との間で自由に配置されるので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることがより回避されて、より高品質画像を提供することができる。
【0011】
本発明に係る光走査装置において、前記開口部材は、その固定位置を決するための位置決め穴を有することを特徴とする構成を有するものである。
【0012】
この構成によれば、この構成によれば、開口部材が位置決め穴によって自由に配置されるので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることを回避することが容易になり、より高品質画像を提供することができる。
【0013】
本発明に係る光走査装置において、前記開口部材に形成された前記開口部のうち隣り合う前記開口部の中心間距離をb、前記開口部材に形成された前記開口部のうち隣り合う前記開口部を通過する各光線束の光軸がなす角度をθ、前記収束結像部材の焦点距離をfとするとき、前記開口部材は、「b≧4f・tan(θ/2)」を満たしていることを特徴とする構成を有するものである。
【0014】
この構成によれば、開口部材が「b≧4f・tan(θ/2)」を満たしていると、焦点外れ量に対する光線束の径の変動量が緩やかになるので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることがより回避されて、より高品質画像を提供することができる。
【0015】
本発明に係る光走査装置において、前記開口部材は、前記開口部中心である開口中心軸から前記開口部を形成する周壁面までの距離が前記光源側から前記偏向部材側に向けて大きくなるように前記周壁面を勾配させていることを特徴とする構成を有するものである。
【0016】
この構成によれば、光源からの光線束が開口部材の周壁面に反射する頻度が低くなり、被走査面にゴースト像が生じること頻度も低くなるので、より高品質画像を提供することができる。また、開口部材の周壁面に反射した光線束が光源に戻る頻度が低くなるので、光源が反射した光線束によって破壊されることを防止することができる。
【0017】
本発明に係る光走査装置において、前記開口部材の前記周壁面と前記光源からの光線束の光軸とのなす角をδとするとき、前記開口部材は、「δ−(θ/2)>0」を満たしていることを特徴とする構成を有するものである。
【0018】
この構成によれば、光源からの光線束が開口部材の周壁面に反射する頻度がより低くなり、被走査面にゴースト像が生じること頻度もより低くなるので、より高品質画像を提供することができる。また、開口部材の周壁面に反射した光線束が光源に戻る頻度がより低くなるので、光源が反射した光線束によって破壊されることをより防止することができる。
【0019】
本発明に係る光走査装置において、前記開口部材は、被走査面を走査する光線束の副走査方向の開きを調整するように前記光源からの光線束の開きを調整することを特徴とする構成を有するものである。
【0020】
この構成によれば、被走査面を走査する光線束の副走査方向の開きが調整されるので、開口部材を通過した光線束の回折によって被走査面の副走査方向における光線束の強度に分布が生じることが回避されて、より高品質画像を提供することができる。
【0021】
これらの光走査装置が、ファクシミリ、複写機、複合機などの各種画像形成装置に適用されることを特徴とする構成を有している。
【0022】
この構成によれば、開口部材が光源と偏向部材との間で自由に配置されるので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることが回避されて、高品質画像を提供することができる。
【0023】
【発明の実施の形態】
(第1の実施の形態)
図1ないし図3を参照して、本発明に係る光走査装置の第1の実施の形態について説明する。
【0024】
図1に示すように、光走査装置は、感光体ドラム10を備えるファクシミリ、複写機、複合機などの画像形成装置に組み込まれ、感光体ドラム10の感光面10aを主走査方向Xおよび副走査方向Yに走査するようになっている。
【0025】
光走査装置は、図示しない駆動回路によって駆動されることによって光線を発する2つのレーザーダイオードアレイ101a、101bと、レーザーダイオードアレイ101a、101bによって発せられた光線の集まりである光線束を平行光線束に変換する2つのコリメータレンズ102a、102bと、コリメータレンズ102a、102bからの平行光線束をその開きを調整して通過させる開口部材103と、開口部材103を通過した平行光線束を第1の方向に収束させて第1の方向と垂直な第2の方向に長い線像に結像するシリンダレンズ104と、シリンダレンズ104によって収束結像された平行光線束を偏向するように回転するポリゴンモータ105と、ポリゴンモータ105の偏向面105aによって偏向された平行光線束を透過する第1走査レンズ106、第2走査レンズ107および第3走査レンズ108と、第3走査レンズ108を透過した平行光線束を感光体ドラム10の感光面10a側に反射する反射板109とを備える。そして、これらの各構成要素は、枠体110に収められている。
【0026】
ここで、レーザーダイオードアレイ101a、101bは、光源としての機能を有し、平行光線束の間隔がポリゴンモータ105付近に存在する偏向点では0mmになるように光線を発している。そして、図2に示すように、レーザーダイオードアレイ101a、101bは、偏向部材としての機能を有するポリゴンモータ105と一体的に組み付けられている。
【0027】
また、シリンダレンズ104は、収束結像部材としての機能を有し、開口部材103を通過した平行光線束が収束される第1の方向とは、感光面10aの主走査方向Xに対応する方向であり、他方、平行光線束が長い線像に結像される第2の方向とは、感光面10aの副走査方向Yに対応する方向である。
【0028】
また、第1走査レンズ106、第2走査レンズ107および第3走査レンズ108は、反射板109とともに集光部材としての機能を有し、感光面10aを等速走査するための光学素子を感光面10aの主走査方向Xに対応する方向に有し、シリンダレンズ104の結像点と像面が共役な位置関係にあって面倒れ補正効果をもった光学素子を感光面10aの副走査方向Yに対応する方向に有する。
【0029】
さて、図3を参照して、本発明の特徴的部分である開口部材103について説明する。図3に示すように、開口部材103は、レーザーダイオード側、すなわちアレイコリメータレンズ102a、102bからの平行光線束をその開きを調整して通過させる開口部103a、103bを有する。開口部103a、103bは、感光面10aの主走査方向Xに対応する第1の方向X´が感光面10aの副走査方向Yに対応する第2の方向Y´よりも長く形成されており、感光面10aを走査する光線束の副走査方向Yの開きを調整するようにアレイコリメータレンズ102a、102bからの光線束の開きを調整するようになっている。
【0030】
また、開口部材103は、レーザーダイオードアレイ101a、101bとポリゴンモータ105との間、より詳しくは、レーザーダイオードアレイ101a、101bとシリンダレンズ104との間で、枠体110のネジ穴110c、110dとネジ112a、112bによって着脱可能に取り付けられている。開口部材103が枠体110に装着される場合、開口部材103に形成された図示しない位置決め穴および枠体110に形成されたボス111a、111bによって位置決めが行われ、開口部材103がより適切な位置で枠体110に装着されるようになっている。
【0031】
なお、本実施の形態では、開口部材103が枠体110のネジ穴110c、110dとネジ112a、112bによって着脱可能に取り付けられているが、板ばねなどの装着手段を用いて取り付けられる場合を妨げるものではない。
【0032】
本実施の形態によれば、開口部材103がレーザーダイオードアレイ101a、101bとポリゴンモータ105との間、より詳しくは、レーザーダイオードアレイ101a、101bとシリンダレンズ104との間で自由に装着されるので、開口部材103を通過した光線束の回折によって感光面10a上の光線束の強度に分布が生じることが回避されて、高品質画像を提供することができる。
【0033】
本実施の形態によれば、開口部材103が位置決め穴によって自由に配置されるので、開口部材103を通過した光線束の回折によって感光面10a上の光線束の強度に分布が生じることを回避することが容易になり、より高品質画像を提供することができる。
【0034】
本実施の形態によれば、感光面10aを走査する光線束の副走査方向Yの開きが調整されるので、開口部材103を通過した光線束の回折によって感光面10aの副走査方向Yにおける光線束の強度に分布が生じることが回避されて、より高品質画像を提供することができる。
【0035】
(第2の実施の形態)
次に、図4および図5を参照して、本発明に係る光走査装置の第2の実施の形態について説明する。なお、第1の実施の形態の説明と重なる部分については、これを省略する。
【0036】
図4に示すように、開口部103a、103bのうち隣り合う開口部103a、103bをそれぞれ貫く開口中心線の間隔である中心間距離をb、開口部103a、103bのうち隣り合う開口部103a、103bを通過する各光線束の光軸がなす角度をθ、シリンダレンズ104の焦点距離をfとするとき、開口部材103は、図5に示した実験結果に基づいて、次式(式1)を満たすように構成されている。
b≧4f・tan(θ/2)・・・(式1)
【0037】
実験では、焦点距離f=70.6mm、θ=5.8°、各光線束の径の上限値が65μmであるとして、b=16.7mm(図5(a)を参照)、b=14.0mm(図5(b)を参照)、b=8.5mm(図5(c)を参照)の各場合における、焦点深度と光線束の径との関係を求めた。図5において、縦軸は感光面10aの副走査方向Yにおける各光線束の径(ビームスポット径ともいい、単位はμmである)を示し、他方、横軸は焦点深度(単位はmmである)を示している。図5(a)によれば、b=16.7mmのとき、光線束の径が65μm以下となる焦点深度の範囲(以下、焦点深度の許容範囲という)は、6.39mmである。図5(b)によれば、b=16.7mmのとき、焦点深度の許容範囲は5.95である。図5(c)によれば、b=8.5mmのとき、焦点深度の許容範囲は4.75である。これらの実験結果から、開口部材103が式1を満たすように構成されていれば、焦点深度の許容範囲は6.00mm以上確保されるとともに、焦点深度がマイナス方向にシフトする場合であっても、光線束の径の変化は、緩やかになっている。
【0038】
本実施の形態によれば、開口部材103が「b≧4f・tan(θ/2)」を満たしていると、焦点外れ量に対する光線束の径の変動量が緩やかになるので、開口部材103を通過した光線束の回折によって光線束の強度に分布が生じることがより回避されて、より高品質画像を提供することができる。
【0039】
(第3の実施の形態)
次に、図6を参照して、本発明に係る光走査装置の第3の実施の形態について説明する。なお、第1の実施の形態および第2の実施の形態の説明と重なる部分については、これを省略する。
【0040】
図6に示すように、開口部材103において、開口部103a、103b中心である開口中心軸から開口部103a、103bを形成する周壁面103cまでの距離がレーザーダイオードアレイ101a、101b側からポリゴンモータ105側に向けて大きくなるように周壁面103cが勾配している。また、開口部材103において、開口部材103の周壁面103cとレーザーダイオードアレイ101a、101bからの光線束の光軸とのなす角をδとするとき、開口部材103は、次式を満たすように構成されている。
δ−(θ/2)>0・・・(式2)
【0041】
本実施の形態によれば、レーザーダイオードアレイ101a、101bからの光線束が開口部材103の周壁面103cに反射する頻度が低くなり、感光面10aにゴースト像が生じること頻度も低くなるので、より高品質画像を提供することができる。また、開口部材103の周壁面103cに反射した光線束がレーザーダイオードアレイ101a、101bに戻る頻度が低くなるので、レーザーダイオードアレイ101a、101bが反射した光線束によって破壊されることを防止することができる。
【0042】
本実施の形態によれば、レーザーダイオードアレイ101a、101bからの光線束が開口部材103の周壁面103cに反射する頻度がより低くなり、感光面10aにゴースト像が生じること頻度もより低くなるので、より高品質画像を提供することができる。また、開口部材103の周壁面103cに反射した光線束がレーザーダイオードアレイ101a、101bに戻る頻度がより低くなるので、レーザーダイオードアレイ101a、101bが反射した光線束によって破壊されることをより防止することができる。
【0043】
【発明の効果】
本発明によれば、開口部材が光源と偏向部材との間で自由に配置されるので、開口部材を通過した光線束の回折によって光線束の強度に分布が生じることが回避されて、高品質画像を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る光走査装置の第1の実施の形態の構成を示す斜視図
【図2】第1の実施の形態の構成を示す上面図
【図3】第1の実施の形態の要部である開口部材の構成を示す斜視図
【図4】本発明に係る光走査装置の第2の実施の形態の要部である開口部材の構成を示す主走査方向における断上面図
【図5】第2の実施の形態の要部である開口部材の条件を導くための実験結果を示すグラフ(縦軸は光線束の径を示し、横軸は焦点深度を示す)
【図6】本発明に係る光走査装置の第3の実施の形態の要部である開口部材の構成を示す主走査方向における断上面図
【符号の説明】
101a、101b レーザーダイオードアレイ(光源)
103 開口部材
103a、103b 開口部
103c 周壁面
104 シリンダレンズ(収束結像部材)
105 ポリゴンモータ(偏向部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical scanning device and an image forming apparatus including the optical scanning device, and more particularly, to an optical scanning device capable of providing a high-quality image and an image forming apparatus including the optical operation device. Things.
[0002]
[Prior art]
2. Description of the Related Art In recent years, image forming apparatuses capable of providing high-quality images having a pixel density exceeding 1200 dpi have begun to be introduced to the market. In order to provide a high-quality image having a pixel density exceeding 1200 dpi, it is necessary to adjust the opening of the light beams so that the interval between the light beams in the sub-scanning direction on the surface to be scanned is 21.2 μm. is there. As a conventional technique, a light source that emits a light beam, and an opening member that adjusts the aperture of the light beam and transmits the light beam, which is a group of light beams emitted by the light source, are provided integrally with the light source. A multi-beam scanning device characterized by being supported is known (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-9-43523 (especially, see paragraph [0015] and FIG. 1)
[0004]
[Problems to be solved by the invention]
Meanwhile, the light beam that has passed through the aperture member is diffracted, and a distribution occurs in the light beam intensity. Since the intensity distribution of the light beam passing through the aperture member also affects the intensity distribution of each light beam in the sub-scanning direction of the surface to be scanned, the interval between the light beams in the sub-scanning direction of the surface to be scanned is maintained at 21.2 μm. It becomes difficult. When the imaging magnification of the scanned surface in the sub-scanning direction is smaller than 1, the variation of the diameter of the light beam with respect to the defocus amount is large. .2 .mu.m is particularly difficult. Therefore, it is necessary to avoid as much as possible a distribution of the intensity of the light beam caused by the diffraction of the light beam passing through the aperture member.
[0005]
However, in the above-described conventional technology, the aperture member is supported integrally with the light source, and the position of the aperture member is fixed. Therefore, the intensity of the light beam is distributed by diffraction of the light beam passing through the aperture member. Therefore, there is a problem that the interval between the light beams in the sub-scanning direction on the surface to be scanned cannot be kept at a predetermined distance, that is, a high-quality image cannot be provided.
[0006]
Therefore, the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide an optical scanning device capable of providing a high-quality image and an image forming apparatus including the optical scanning device. It is.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, an optical scanning device according to the present invention includes a light source that emits a light beam, and an opening that adjusts the aperture of a light beam that is a group of light beams emitted by the light source and passes the light beam. An aperture member, a convergent imaging member that converges a light beam from the light source side in a first direction to form a line image long in a second direction perpendicular to the first direction, A deflecting member for deflecting the light beam converged and imaged by the imaging member; and a condensing member for condensing the light beam deflected by the deflecting member on a surface to be scanned by the light beam, The member is configured to be detachably provided between the light source and the deflecting member.
[0008]
According to this configuration, since the aperture member is freely arranged between the light source and the deflecting member, it is possible to prevent the distribution of the intensity of the light beam from being generated due to the diffraction of the light beam that has passed through the aperture member, thereby achieving high quality. Images can be provided.
[0009]
In the optical scanning device according to the present invention, the aperture member is detachably provided between the light source and the convergent imaging member.
[0010]
According to this configuration, since the aperture member is freely disposed between the light source and the convergent imaging member, it is further avoided that the intensity of the light beam is distributed due to the diffraction of the light beam passing through the aperture member. , Can provide higher quality images.
[0011]
In the optical scanning device according to the present invention, the aperture member has a positioning hole for determining a fixing position thereof.
[0012]
According to this configuration, according to this configuration, since the opening member is freely arranged by the positioning hole, it is easy to avoid that the intensity of the light beam is distributed due to the diffraction of the light beam passing through the opening member. And a higher quality image can be provided.
[0013]
In the optical scanning device according to the aspect of the invention, a distance b between centers of adjacent openings among the openings formed in the opening member is b, and the openings adjacent to each other among the openings formed in the opening member are b. When the angle formed by the optical axes of the light beams passing through the aperture is θ and the focal length of the convergent imaging member is f, the aperture member satisfies “b ≧ 4f · tan (θ / 2)”. It has a configuration characterized by the above.
[0014]
According to this configuration, if the aperture member satisfies “b ≧ 4f · tan (θ / 2)”, the amount of change in the diameter of the light beam with respect to the defocus amount becomes gentle, so that the light beam passing through the aperture member The distribution of the intensity of the light beam due to the diffraction of the light beam is more avoided, and a higher quality image can be provided.
[0015]
In the optical scanning device according to the aspect of the invention, the opening member may be configured such that a distance from an opening center axis that is the center of the opening to a peripheral wall surface that forms the opening increases from the light source side to the deflection member side. In this case, the peripheral wall surface is inclined.
[0016]
According to this configuration, the frequency at which the light beam from the light source is reflected on the peripheral wall surface of the aperture member decreases, and the frequency at which a ghost image is generated on the surface to be scanned also decreases, so that a higher quality image can be provided. . Further, since the frequency of the light beam reflected on the peripheral wall surface of the opening member returning to the light source is reduced, it is possible to prevent the light source from being broken by the reflected light beam.
[0017]
In the optical scanning device according to the present invention, assuming that an angle between the peripheral wall surface of the aperture member and the optical axis of the light beam from the light source is δ, the aperture member is “δ− (θ / 2)> 0 "is satisfied.
[0018]
According to this configuration, the frequency of the ray bundle from the light source reflected on the peripheral wall surface of the aperture member is lower, and the frequency of the occurrence of a ghost image on the scanned surface is lower, so that a higher quality image is provided. Can be. Further, since the frequency of the light beam reflected on the peripheral wall surface of the opening member returning to the light source is lower, it is possible to further prevent the light source from being broken by the reflected light beam.
[0019]
In the optical scanning device according to the present invention, the aperture member adjusts the opening of the light beam from the light source so as to adjust the opening of the light beam for scanning the surface to be scanned in the sub-scanning direction. It has.
[0020]
According to this configuration, the opening of the light beam that scans the surface to be scanned in the sub-scanning direction is adjusted, so that the intensity of the light beam in the sub-scanning direction of the surface to be scanned is distributed by the diffraction of the light beam that has passed through the aperture member. Is avoided, and a higher quality image can be provided.
[0021]
These optical scanning apparatuses are configured to be applied to various image forming apparatuses such as facsimile machines, copiers, and multifunction peripherals.
[0022]
According to this configuration, since the aperture member is freely arranged between the light source and the deflecting member, it is possible to prevent the distribution of the intensity of the light beam from being generated due to the diffraction of the light beam that has passed through the aperture member, thereby achieving high quality. Images can be provided.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
A first embodiment of the optical scanning device according to the present invention will be described with reference to FIGS.
[0024]
As shown in FIG. 1, the optical scanning device is incorporated in an image forming apparatus such as a facsimile, a copying machine, or a multifunction machine having a photosensitive drum 10, and scans a photosensitive surface 10a of the photosensitive drum 10 in a main scanning direction X and a sub-scanning direction. The scanning is performed in the direction Y.
[0025]
The optical scanning device converts two laser diode arrays 101a and 101b that emit light beams by being driven by a drive circuit (not shown) into a parallel light beam, which is a collection of light beams emitted by the laser diode arrays 101a and 101b. Two collimator lenses 102a and 102b for conversion, an opening member 103 for adjusting the aperture of the parallel light beams from the collimator lenses 102a and 102b, and passing the parallel light beams passing through the opening member 103 in the first direction. A cylinder lens 104 that converges and forms a linear image long in a second direction perpendicular to the first direction, and a polygon motor 105 that rotates so as to deflect the parallel light beam converged and formed by the cylinder lens 104. Parallel light beam deflected by the deflection surface 105a of the polygon motor 105 A first scanning lens 106, a second scanning lens 107, and a third scanning lens 108 that transmit light, and a reflecting plate 109 that reflects a parallel light beam transmitted through the third scanning lens 108 toward the photosensitive surface 10a of the photosensitive drum 10. Is provided. These components are housed in a frame 110.
[0026]
Here, the laser diode arrays 101a and 101b have a function as a light source, and emit light so that the interval between parallel light beams becomes 0 mm at a deflection point existing near the polygon motor 105. Then, as shown in FIG. 2, the laser diode arrays 101a and 101b are integrally assembled with a polygon motor 105 having a function as a deflection member.
[0027]
Further, the cylinder lens 104 has a function as a convergent image forming member, and the first direction in which the parallel light beam passing through the aperture member 103 is converged is a direction corresponding to the main scanning direction X of the photosensitive surface 10a. On the other hand, the second direction in which the parallel light beam forms a long line image is a direction corresponding to the sub-scanning direction Y of the photosensitive surface 10a.
[0028]
The first scanning lens 106, the second scanning lens 107, and the third scanning lens 108 have a function as a condensing member together with the reflection plate 109, and use an optical element for scanning the photosensitive surface 10a at a constant speed. An optical element, which is located in a direction corresponding to the main scanning direction X of the photosensitive surface 10a and has an image plane and an image plane in a conjugate positional relationship and has a surface tilt correction effect, in the sub-scanning direction Y of the photosensitive surface 10a. In the direction corresponding to.
[0029]
Now, referring to FIG. 3, the opening member 103 which is a characteristic part of the present invention will be described. As shown in FIG. 3, the aperture member 103 has apertures 103a and 103b that allow the parallel light beams from the laser diode side, that is, the array collimator lenses 102a and 102b to pass through with their apertures adjusted. The openings 103a and 103b are formed such that a first direction X ′ corresponding to the main scanning direction X of the photosensitive surface 10a is longer than a second direction Y ′ corresponding to the sub-scanning direction Y of the photosensitive surface 10a. The opening of the light beams from the array collimator lenses 102a and 102b is adjusted so as to adjust the opening of the light beam scanning the photosensitive surface 10a in the sub-scanning direction Y.
[0030]
In addition, the opening member 103 is provided between the laser diode arrays 101a and 101b and the polygon motor 105, more specifically, between the laser diode arrays 101a and 101b and the cylinder lens 104, between the screw holes 110c and 110d of the frame 110. It is detachably attached by screws 112a and 112b. When the opening member 103 is mounted on the frame 110, positioning is performed by positioning holes (not shown) formed on the opening member 103 and bosses 111a and 111b formed on the frame 110, and the opening member 103 is positioned at a more appropriate position. To be mounted on the frame 110.
[0031]
In the present embodiment, the opening member 103 is detachably attached by the screw holes 110c and 110d of the frame 110 and the screws 112a and 112b. However, this prevents the case where the opening member 103 is attached by using attachment means such as a leaf spring. Not something.
[0032]
According to the present embodiment, the opening member 103 is freely mounted between the laser diode arrays 101a, 101b and the polygon motor 105, more specifically, between the laser diode arrays 101a, 101b and the cylinder lens 104. The distribution of the intensity of the light beam on the photosensitive surface 10a due to the diffraction of the light beam that has passed through the opening member 103 is avoided, and a high-quality image can be provided.
[0033]
According to the present embodiment, since the aperture member 103 is freely arranged by the positioning hole, it is possible to prevent the intensity of the light beam on the photosensitive surface 10a from being distributed due to the diffraction of the light beam passing through the aperture member 103. This makes it easier to provide higher quality images.
[0034]
According to the present embodiment, the aperture of the light beam scanning the photosensitive surface 10a in the sub-scanning direction Y is adjusted, so that the light beam in the sub-scanning direction Y of the photosensitive surface 10a is diffracted by the light beam passing through the aperture member 103. The occurrence of a distribution in the intensity of the bundle is avoided, and a higher quality image can be provided.
[0035]
(Second embodiment)
Next, a second embodiment of the optical scanning device according to the present invention will be described with reference to FIGS. In addition, about the part which overlaps description of 1st Embodiment, this is abbreviate | omitted.
[0036]
As shown in FIG. 4, b is a center-to-center distance that is a distance between opening center lines passing through the adjacent openings 103 a and 103 b among the openings 103 a and 103 b, and the adjacent openings 103 a among the openings 103 a and 103 b are Assuming that the angle between the optical axes of the respective light beams passing through 103b is θ and the focal length of the cylinder lens 104 is f, the aperture member 103 is based on the experimental result shown in FIG. It is configured to satisfy.
b ≧ 4f · tan (θ / 2) (Equation 1)
[0037]
In the experiment, assuming that the focal length f = 70.6 mm, θ = 5.8 °, and the upper limit of the diameter of each light beam is 65 μm, b = 16.7 mm (see FIG. 5A), b = 14 The relationship between the depth of focus and the diameter of the light beam in each case of 0.0 mm (see FIG. 5B) and b = 8.5 mm (see FIG. 5C) was determined. In FIG. 5, the vertical axis indicates the diameter of each light beam in the sub-scanning direction Y of the photosensitive surface 10a (also referred to as a beam spot diameter, the unit is μm), while the horizontal axis indicates the depth of focus (the unit is mm). ). According to FIG. 5A, when b = 16.7 mm, the range of the depth of focus where the diameter of the light beam is 65 μm or less (hereinafter, referred to as the allowable range of the depth of focus) is 6.39 mm. According to FIG. 5B, when b = 16.7 mm, the allowable range of the depth of focus is 5.95. According to FIG. 5C, when b = 8.5 mm, the allowable range of the depth of focus is 4.75. From these experimental results, if the aperture member 103 is configured to satisfy Expression 1, the allowable range of the depth of focus is secured to 6.00 mm or more, and even when the depth of focus shifts in the minus direction. The change in the diameter of the light beam is gradual.
[0038]
According to the present embodiment, when the aperture member 103 satisfies “b ≧ 4f · tan (θ / 2)”, the amount of change in the diameter of the light beam with respect to the defocus amount becomes gentle, so that the aperture member 103 The distribution of the intensity of the light beam due to the diffraction of the light beam that has passed through is prevented from being generated, and a higher quality image can be provided.
[0039]
(Third embodiment)
Next, a third embodiment of the optical scanning device according to the present invention will be described with reference to FIG. It should be noted that parts that are the same as those described in the first embodiment and the second embodiment are omitted.
[0040]
As shown in FIG. 6, in the aperture member 103, the distance from the central axis of the apertures 103a and 103b to the peripheral wall surface 103c forming the apertures 103a and 103b is from the side of the laser diode arrays 101a and 101b to the polygon motor 105. The peripheral wall surface 103c is inclined so as to increase toward the side. Further, in the opening member 103, when the angle between the peripheral wall surface 103c of the opening member 103 and the optical axis of the light beam from the laser diode arrays 101a and 101b is δ, the opening member 103 is configured to satisfy the following expression. Have been.
δ− (θ / 2)> 0 (Equation 2)
[0041]
According to the present embodiment, the frequency at which the light beam from the laser diode arrays 101a and 101b is reflected on the peripheral wall surface 103c of the aperture member 103 is reduced, and the frequency at which a ghost image is generated on the photosensitive surface 10a is also reduced. High quality images can be provided. Further, since the frequency of the light beam reflected on the peripheral wall surface 103c of the opening member 103 returns to the laser diode arrays 101a and 101b, it is possible to prevent the laser diode arrays 101a and 101b from being broken by the reflected light beam. it can.
[0042]
According to the present embodiment, the frequency of the light beams from the laser diode arrays 101a and 101b being reflected on the peripheral wall surface 103c of the aperture member 103 is lower, and the frequency of the occurrence of the ghost image on the photosensitive surface 10a is lower. , Can provide higher quality images. Further, since the frequency of the light beam reflected on the peripheral wall surface 103c of the aperture member 103 returns to the laser diode arrays 101a and 101b, the laser diode arrays 101a and 101b are further prevented from being broken by the reflected light beam. be able to.
[0043]
【The invention's effect】
According to the present invention, since the aperture member is freely disposed between the light source and the deflecting member, it is possible to avoid the distribution of the intensity of the light beam caused by the diffraction of the light beam that has passed through the aperture member, and to achieve high quality. Images can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of an optical scanning device according to a first embodiment of the present invention. FIG. 2 is a top view showing a configuration of the first embodiment. FIG. 3 is a first embodiment. FIG. 4 is a perspective view showing a configuration of an opening member which is a main part of FIG. 4. FIG. 4 is a cross-sectional top view in a main scanning direction showing a configuration of an opening member which is a main part of a second embodiment of the optical scanning device according to the present invention. FIG. 5 is a graph showing an experimental result for deriving conditions of an aperture member which is a main part of the second embodiment (the vertical axis indicates the diameter of a light beam, and the horizontal axis indicates the depth of focus).
FIG. 6 is a cross-sectional top view in the main scanning direction showing a configuration of an opening member which is a main part of an optical scanning device according to a third embodiment of the present invention.
101a, 101b Laser diode array (light source)
103 Opening members 103a, 103b Opening 103c Peripheral wall surface 104 Cylinder lens (convergent imaging member)
105 Polygon motor (deflection member)

Claims (8)

光線を発する光源と、
前記光源によって発せれた光線の集まりである光線束をその開きを調整して通過させる開口部が形成された開口部材と、
前記光源側からの光線束を第1の方向に収束させて第1の方向と垂直な方向な第2の方向に長い線像に結像する収束結像部材と、
前記収束結像部材によって収束結像された光線束を偏向する偏向部材と、
前記偏向部材によって偏向された光線束を光線束によって走査される被走査面に集光する集光部材とを備え、
前記開口部材は、前記光源と前記偏向部材との間に着脱可能に設けられていることを特徴とする光走査装置。
A light source that emits light rays,
An opening member formed with an opening that allows a light beam bundle, which is a collection of light beams emitted by the light source, to pass therethrough with its opening adjusted.
A converging imaging member that converges a light beam from the light source side in a first direction to form a line image long in a second direction perpendicular to the first direction;
A deflecting member that deflects the light beam converged and imaged by the convergent imaging member,
A light-condensing member that converges the light beam deflected by the deflecting member onto a surface to be scanned that is scanned by the light beam,
The optical scanning device, wherein the opening member is detachably provided between the light source and the deflection member.
前記開口部材は、前記光源と前記収束結像部材との間に着脱可能に設けられていることを特徴とする請求項1に記載の光走査装置。The optical scanning device according to claim 1, wherein the aperture member is detachably provided between the light source and the convergent image forming member. 前記開口部材は、その固定位置を決するための位置決め穴を有することを特徴とする請求項1に記載の光走査装置。The optical scanning device according to claim 1, wherein the opening member has a positioning hole for determining a fixing position. 前記開口部材に形成された前記開口部のうち隣り合う前記開口部の中心間距離をb、前記開口部材に形成された前記開口部のうち隣り合う前記開口部を通過する各光線束の光軸がなす角度をθ、前記収束結像部材の焦点距離をfとするとき、前記開口部材は、
b≧4f・tan(θ/2)
を満たしていることを特徴とする請求項1ないし請求項3の何れかに記載の光走査装置。
B is the distance between centers of adjacent openings among the openings formed in the opening member, and the optical axis of each light beam passing through the adjacent openings among the openings formed in the opening member. When the angle formed by θ and the focal length of the convergent imaging member is f, the aperture member is:
b ≧ 4f · tan (θ / 2)
The optical scanning device according to claim 1, wherein the optical scanning device satisfies the following.
前記開口部材は、前記開口部中心である開口中心軸から前記開口部を形成する周壁面までの距離が前記光源側から前記偏向部材側に向けて大きくなるように前記周壁面を勾配させていることを特徴とする請求項1ないし請求項4に記載の光走査装置。The opening member slopes the peripheral wall such that a distance from an opening central axis that is the center of the opening to a peripheral wall forming the opening increases from the light source side toward the deflection member side. The optical scanning device according to claim 1, wherein: 前記開口部材の前記周壁面と前記光源からの光線束の光軸とのなす角をδとするとき、前記開口部材は、
δ−(θ/2)>0
を満たしていることを特徴とする請求項5に記載の光走査装置。
When an angle between the peripheral wall surface of the opening member and the optical axis of the light beam from the light source is δ, the opening member is
δ− (θ / 2)> 0
The optical scanning device according to claim 5, wherein:
前記開口部材は、被走査面を走査する光線束の副走査方向の開きを調整するように前記光源からの光線束の開きを調整することを特徴とする請求項1ないし請求項6の何れかに記載の光走査装置。7. The aperture member according to claim 1, wherein the aperture member adjusts the aperture of the light beam from the light source so as to adjust the aperture of the light beam for scanning the surface to be scanned in the sub-scanning direction. 3. The optical scanning device according to claim 1. 請求項1ないし請求項7の何れかに記載の光走査装置を備えることを特徴とする画像形成装置。An image forming apparatus comprising the optical scanning device according to claim 1.
JP2002376930A 2002-12-26 2002-12-26 Optical scanning device Expired - Fee Related JP4173362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376930A JP4173362B2 (en) 2002-12-26 2002-12-26 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376930A JP4173362B2 (en) 2002-12-26 2002-12-26 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2004205938A true JP2004205938A (en) 2004-07-22
JP4173362B2 JP4173362B2 (en) 2008-10-29

Family

ID=32814257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376930A Expired - Fee Related JP4173362B2 (en) 2002-12-26 2002-12-26 Optical scanning device

Country Status (1)

Country Link
JP (1) JP4173362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450142B2 (en) * 2005-09-02 2008-11-11 Canon Kabushiki Kaisha Scanning optical device with post-deflection diffraction element supported by an end-side swing member to suppress vibration
JP2009069595A (en) * 2007-09-14 2009-04-02 Brother Ind Ltd Optical scanner and image forming apparatus
JP2010113194A (en) * 2008-11-07 2010-05-20 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450142B2 (en) * 2005-09-02 2008-11-11 Canon Kabushiki Kaisha Scanning optical device with post-deflection diffraction element supported by an end-side swing member to suppress vibration
JP2009069595A (en) * 2007-09-14 2009-04-02 Brother Ind Ltd Optical scanner and image forming apparatus
US8634123B2 (en) 2007-09-14 2014-01-21 Brother Kogyo Kabushiki Kaisha Optical scanning device and image forming apparatus
JP2010113194A (en) * 2008-11-07 2010-05-20 Ricoh Co Ltd Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP4173362B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
KR100374271B1 (en) Multi-beam scanning optical system and image forming apparatus using it
US7715075B2 (en) Optical beam scanning apparatus and image forming apparatus
JP3902933B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
JP4728584B2 (en) Optical scanning apparatus, image forming apparatus, and color image forming apparatus
KR100516892B1 (en) Multi-beam optical scanning device, and image forming apparatus and color image forming apparatus using the same
JP4551559B2 (en) Scanning optical device and image forming apparatus using the same
EP1113305B1 (en) Optical scanning apparatus, multi-beam optical scanning apparatus, and image forming apparatus using the same
JP2004012568A (en) Multibeam optical scanner
JP4173362B2 (en) Optical scanning device
US6950216B2 (en) Light source apparatus and optical scanner
JP2004163740A (en) Multiple beam scanning optical device and image forming apparatus using the same
JP5943610B2 (en) Optical scanning device and image forming apparatus having the same
JP3466841B2 (en) Scanning optical device
JP5074798B2 (en) Image forming apparatus and scanning optical unit and optical unit used in the image forming apparatus
JP2004045808A (en) Light deflector
JP2022096541A (en) Optical scanner
JP4618289B2 (en) Light source device and optical scanning device
JPH0980342A (en) Optical scanning device
JP2005227669A (en) Multi-beam scanner and image forming apparatus
US7518773B2 (en) Light scanning system and image forming apparatus employing the same
JP2005037501A (en) Optical scanner and image formation apparatus
JPH08267817A (en) Image forming apparatus
JP2003161903A (en) Scanner with two or more beams
JP2006162671A (en) Laser scanner
JP2005153169A (en) Light source unit, optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees