JP2004205899A - 光リンクケーブル - Google Patents

光リンクケーブル Download PDF

Info

Publication number
JP2004205899A
JP2004205899A JP2002376298A JP2002376298A JP2004205899A JP 2004205899 A JP2004205899 A JP 2004205899A JP 2002376298 A JP2002376298 A JP 2002376298A JP 2002376298 A JP2002376298 A JP 2002376298A JP 2004205899 A JP2004205899 A JP 2004205899A
Authority
JP
Japan
Prior art keywords
optical
circuit board
conversion circuit
link cable
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002376298A
Other languages
English (en)
Inventor
Tomoyuki Akiyoshi
智幸 明▲よし▼
Masami Tokumitsu
雅美 徳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002376298A priority Critical patent/JP2004205899A/ja
Publication of JP2004205899A publication Critical patent/JP2004205899A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】低コストで機械的に光学調芯を行なうことができる光リンクケーブルを提供する。
【解決手段】光ファイバ4を有するケーブルの端部に設けられた筐体の内部の実装基板7に、電気接続端子に接続され、各々光配線を有するOEICチップ9及びLD素子をフリップチップ実装すると共に、OEICチップ9及びLD素子の各々の光配線と直接光学結合できるように、光ファイバ4の位置決めを行なうV字型溝8を設けた光リンクケーブル。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータ等の端末機器をインターネット等のネットワークに接続するために用いる光リンクケーブルに関し、特に、光信号の接続端子を有しないコンピュータ等において、1Gbit/s以上の高速通信を実現する場合に好適である。
【0002】
【従来の技術】
インターネット等の需要の急速な増加に伴い、通信容量の拡大が急務になっている。光通信における通信容量を拡大する方法としては、個々の通信の処理速度を上げて、複数の信号を多重する時間分割多重(TDM)方式と、異なる複数の波長を利用して、信号を多重する波長多重(WDM)方式が提案されている。TDM方式を採用した場合、必然的に光ファイバ内を流れる信号の速度を速くする必要があり、現在10Gbit/sから40Gbit/sへ上げるための努力がなされている。今後、この通信速度が更に上がることは必至である。
【0003】
同様に、ローカルエリアネットワーク(LAN)などのアクセス系インターネットの光リンク網の速度及び容量も拡大されつつある。しかしながら、現在一般的には、パーソナルコンピュータ等の端末機器は、光信号の接続端子を有していないため、光リンク網にはルータやハブ等を介することで接続されている。つまり、端末機器からルータやハブ等までは電気ケーブルで接続され、そして、ルータやハブ等からは、電気−光変換を行うことで光リンク網に接続されることになる。
【0004】
電気ケーブルの一種であり、現在一般的に利用されている100Base−T(100Mbit/s)のEthernet(登録商標)接続ケーブルを図5に示す。イーサーネットケーブル31は、ノイズ低減のためツイストペアにされた導線34を複数有するツイストケーブル32と、一般的にはRJ−45と呼ばれるコネクタ部33とを有しており、コネクタ部33のコネクタプラグ35には、各々の導線34と接続された複数の電気接続端子36が配設されている。端末機器側には、コネクタ部33が着脱可能なネットワーク用のポートが備えられており、コネクタ部33の背面側の留め具(図5中には示していない。)を用いてポート側へ固定する。端末機器は、図5に示すようなイーサーネットケーブル31等を用いることで、ネットワークに接続されることになる。
【0005】
このような接続形態を用いた場合、通信速度や接続距離はイーサーネットケーブル等の電気ケーブルで律速されてしまう。つまり、光ファイバと比較すると電気ケーブルは通信速度が遅く、接続距離も短いため、電気ケーブルを介して端末機器がネットワークへ接続されている場合、電気ケーブルにより通信速度や接続距離が律速されてしまうこととなる。現在10Gbit/sのLAN光リンク網が構築されつつあるが、電気ケーブルを用いた場合の上限通信速度は1Gbit/s程度であり、端末機器を直接10Gbit/sで接続することは極めて困難であった。
【0006】
類似する技術として、端末機器の10Base−T(10Mbit/s)のインターフェースと光ケーブルとの間に、10ベースT変換及び光/電気変換を行なう変換器を挿入することで、端末機器自体を変更すること無く、光ケーブルのネットワークに接続する技術が知られている(特許文献1参照)。
【0007】
上記技術では、光/電気変換を行なう変換素子(光→電気変換素子、電気→光変換素子)と光ケーブルからの光ファイバとのアライメントを行なう際に、光学特性を観測しながら、個々の部材の調整を行なうアクティブアライメント方式が用いられており、調整に時間、手間が掛かり、製造コストが上昇する一因となっていた。
【0008】
製造コストを低減するためには、アクティブアライメント方式ではなく、ただ機械的に置くだけでアライメント可能なパッシブアライメント方式を採用する必要がある。このような要求に対応する1つの方法として、半導体基板上に電子回路及びフォトダイオード(光素子)を搭載し、半導体基板の外部から入力される光をフォトダイオードに導く光配線構造(外部からの光ビームのスポットサイズを変換する構造、光信号をフォトダイオード近傍に導く光導波路、光路を変更してフォトダイオードへ給光する構造より構成される。)を有する光半導体装置が提案されている(特許文献2参照)。上記光配線構造を有する光半導体装置を、半田ボールバンプを用いてフリップチップ実装することにより、光半導体装置自体のパッシブアライメンが可能となり、所定の位置に配置された光ファイバに対する光学的な位置合わせが可能となる。
【0009】
【特許文献1】
特開2000−216792号公報(第2−3頁、第1−3図)
【特許文献2】
特開2002−40273号公報(第2−7頁、第4−10図)
【0010】
【発明が解決しようとする課題】
コンピュータ等の端末機器から光リンク網に直接接続するためには、電気信号と光信号との変換を行なう光リンクケーブルが必要であり、光リンクケーブルとして機能させるには、電気−光変換回路及び光−電気変換回路における光素子の光軸と外部からの光ファイバとの光学的な結合が必要である。従来の実装技術における光学的な位置合わせは、光学特性を見ながら最良の位置で両者を固定するアクティブアライメント方式や外部レンズ系を用いたアライメント方法が用いられていたため、光学調芯のための費用が掛かり、製造コストが高くなるといった問題点があった。
【0011】
これに対して、光配線構造を有する光半導体装置を、半田ボールバンプを用いて実装基板にフリップチップ実装することにより、実装基板に対する光半導体装置の位置を精度よくアライメントして、光半導体装置上の光素子に光信号を適切に導くようにする技術が確立されている。しかしながら、これはあくまでも実装基板に対する光半導体装置の位置をアライメントするものであり、光ファイバに対しては適用することができない。つまり、これらの従来技術では、光ファイバと光半導体装置との互いの配置に関するアライメントについて、具体的な手段が何ら示されていない。したがって、光ファイバと光半導体装置とのアライメントについても、低コストで、機械的に、高い精度で光学調芯を行なうことができる技術が求められている。
【0012】
本発明は上記課題に鑑みなされたもので、低コストで機械的に光学調芯を行なうことができる光リンクケーブルを提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決する本発明に係る光リンクケーブルは、光ファイバを有するケーブルの端部に設けられた筐体と、筐体に設けられた電気接続端子と、筐体の内部に設けられた実装基板と、電気接続端子に接続され、各々光配線を有する電気−光変換回路基板及び光−電気変換回路基板とを有し、電気−光変換回路基板及び光−電気変換回路基板が実装基板上にフリップチップ実装されると共に、電気−光変換回路基板及び光−電気変換回路基板の各々の光配線と直接光学結合できるように、光ファイバの位置決めを行なう位置決め手段を実装基板に設けたことを特徴とする。
実装基板上において、電気−光変換回路基板及び光−電気変換回路基板の配置位置がフリップチップ実装により機械的に決定され、更に、光ファイバの配置位置が位置決め手段により機械的に決定されて(パッシブアライメント方式)、電気−光変換回路基板及び光−電気変換回路基板の各々の光配線に対して、光ファイバが精度よく配置されることとなる。そのため、レンズ等を用いること無く、光ファイバと各々の光配線とを直接光学結合できる。
【0014】
上記課題を解決する本発明に係る光リンクケーブルは、位置決め手段をV字型の溝としたことを特徴とする。
【0015】
上記課題を解決する本発明に係る光リンクケーブルは、電気−光変換回路基板及び光−電気変換回路基板の各々の光配線が、受光素子又は発光素子に光を導く光導波路及び光路変更手段により構成されていることを特徴とする。
光ファイバと光学結合する光配線は、光ファイバの端面と対向する面に垂直端面を有する光導波路と、光導波路を伝播する光を電気−光変換回路基板及び光−電気変換回路基板に設けられた受光素子又は発光素子に適切に導く光路変更手段とを有している。そのため、特に、面型の受光素子、発光素子を用いた微細構造の回路基板において、適切に光を導く構造とすることができ、回路基板をフリップチップ実装が可能なものとすることができる。
【0016】
上記課題を解決する本発明に係る光リンクケーブルは、筐体及び電気接続端子が、ネットワークの規格に適合する形状であることを特徴とする。
【0017】
【発明の実施の形態】
本発明は、高速通信が可能なコンピュータネットワーク用の光リンクケーブルにおいて、実装基板上に、フリップチップボンディング技術を用いて光素子を有する回路基板を実装すると共に、光ファイバの位置決め手段となるV字型の溝を設けて光ファイバを実装することで、光ファイバと回路基板間の光学調芯のパッシブアライメントを実現して、実装コストを低減するものである。上記特徴を有する本発明に係る光リンクケーブルを、以下に示す図面を用いて詳細に説明する。
【0018】
図1は、本発明に係る実施形態の一例を示す光リンクケーブルの外観図である。
【0019】
光リンクケーブル1は、複数の光ファイバ4を有する光ファイバケーブル2と、光ファイバケーブル2の端部に設けられた筐体となるコネクタ部3とを有しており、コネクタ部3のコネクタプラグ5には、複数の電気接続端子6が配設されている。コンピュータ等の端末機器側には、コネクタ部3が着脱可能なネットワーク用のポートが備えられており、コネクタ部3の背面側の留め具(図1中には示していない。)を用いてポート側へ固定する。光ファイバ4と電気接続端子6との間には、後述する電気−光変換回路及び光−電気変換回路が設けられ、端末機器からの信号、端末機器への信号を、それぞれ電気−光変換、光−電気変換することで、光リンク網に直接接続できるようになっている。つまり、図5に示す従来のイーサーネットケーブル31とは、電気接続端子部分を含むコネクタ部の外観が同一であり、同様にイーサーネットの規格に適合するものであるが、その内部構造と光ファイバで構成されているケーブルが異なっている。なお、図示していないが、本発明に係る光リンクケーブル1のコネクタ部3には電源ラインが接続されており、この電源ラインから内部の変換回路へ電源が供給されている。
【0020】
次に、コネクタ部3の内部構成を図2に示す。
図2に示すように、コネクタ部3の内部に配設された実装基板7上には、光ファイバ4の位置決めを行なう位置決め手段となるV字型溝8が設けられており、このV字型溝8に嵌合されて、受光用/発光用の2つの光ファイバ4が配設されている。光ファイバ4の端部には、それぞれ光−電気回路基板となるOEICチップ9と、電気−光回路基板となるLD(レーザダイオード)素子10とが配設され、LD素子10にはLD素子10を駆動するLDドライバ回路11が接続されている。これらの回路基板9、10は、実装基板7上の所定の位置に設けられ、半田材料に対して濡れ性の良い円形のトレイ部12に、球状の半田ボールバンプ13を介して取付けられることでフリップチップ実装されている。
【0021】
トレイ部12は電極パッドの役割も兼ねており、OEICチップ9、LD素子10、LDドライバ回路11と配線14等は、トレイ部12を介して電気的に接続されている。したがって、OEICチップ9からトレイ部12を介して配線14に接続されており、この配線14を介して外部インターフェース15に接続されて、電源及び信号のやり取りが行われる。同様に、トレイ部12、配線14を介して、LD素子10とLDドライバ回路11が接続され、更に、LDドライバ回路11からトレイ部12を介して、外部インターフェース15に接続されて、電源及び信号のやり取りが行われている。そして、外部インターフェース15には図1に示した電気接続端子6が接続され、端末機器等との信号の送受信が可能となる。
【0022】
つまり、コネクタ部3の内部は、基本的には受信部と送信部から構成され、光−電気変換を行なうための受信部は、光配線とO/E変換素子と増幅回路とを内部に有するOEICチップ9からなり、電気−光変換を行なうための送信部は、光配線とLD素子10とLDドライバ回路11とから構成されている(詳細な構成は図3、図4参照)。そして、光ファイ4への光信号、光ファイバ4からの光信号が、各々の回路基板9、10の光配線を経由して伝播される。
【0023】
変換素子、光配線を有する回路基板9、10と、外部からの光ファイバ4との光軸合わせは、実装基板7上に形成された光ファイバ保持用のV字型溝8と、半田ボールバンプ13の表面張力による自己位置合わせ機能を利用している。具体的には、回路基板9、10が、実装基板7上に形成されたトレイ部12に、球状の半田ボールバンプ13を用いて固定されることで(フリップチップ実装)、簡単に自己位置合わせができることとなる。特に、半導体プロセスで一般的な蒸着膜のリフトオフ技術などを用いることによって、半田ボールバンプの体積を一様に形成することが可能であり、体積を制御した半田ボールバンプを用いた場合、1μm以下の高い合わせ精度を得ることができる。このことにより、各々の回路基板9、10の光配線は、回路基板9、10自体が実装基板7にフリップチップ実装されて、実装基板7に対して精度よく配置されることとなり、更に、光ファイバ4は、実装基板7上のV字型溝8に嵌合されて、実装基板7に対して精度よく配置されることとなる。したがって、各々の回路基板9、10の光配線と光ファイバ4との互いの位置が、精度よく配置されることとなり、レンズ等を用いることもなく、直接光学結合できることとなる。
【0024】
なお、図2では、発熱の影響が直接LD素子10に及ばないように、LDドライバ回路11は独立して設けられているが、同一基板上にモノリシック集積されていても良い。又、図2では、LD素子10とLDドライバ回路11を用いて、電気信号から光信号へ直接変調を行なう構成としているが、光信号への変調は外部変調を用いても良く、更に、ドライバ回路も集積されたモノリシック光源であっても良い。又、回路基板9、10等と実装基板7との間に樹脂等を充填することで、固定強度を補強するようにしてもよい。
【0025】
次に、フリップチップ実装可能な構成の回路基板の一例を図3、図4に示す。なお、図3、図4においては、受光用の回路基板の一例として、O/E変換素子を用いたものを示すが、O/E変換素子の代わりにLD素子等を用いる場合、発光用の回路基板とすることができる。ちなみに、図2中では、図3、図4に示すOEICチップ9a、9bは、上下を逆にして配設されている。
【0026】
図3は、本発明に係る光リンクケーブルにおけるコネクタ部3の内部の実装基板7上に配設されたOEICチップの構成図である。
図3(a)はOEICチップの斜視図であり、図3(b)は図3(a)のA−A線矢視断面図である。
【0027】
図3に示すOEICチップは、基板16の内部にO/E変換素子17が埋込まれ、基板16上に光配線を構成する光導波路18が設けられた上面搭載型のOEICチップ9aである。詳細は図示していないが、光導波路18はコア層及びクラッド層から構成されるものである。
【0028】
図3に示すように、基板16の内部には光を受光して電気信号に変化するO/E変換素子17が埋込まれており、又、基板16上において、O/E変換素子17の上方から基板16の端部に向かって、光導波路18が形成されている。詳細に図示していないが、半田材料に対して濡れ性の良い円形のトレイ部を介して、複数の球状の半田ボールバンプ13が基板16上に設けられている。この球状の半田ボールバンプ13を用いることで、実装基板へ精度よく配置することが可能となる。又、O/E変換素子17には複数の内部配線14aが設けられており、この内部配線14a及び半田ボールバンプ13により電源の供給及び電気信号の出力を行なっている。
【0029】
光導波路18の一方の端部には、光配線を構成する光路変更手段となる反射面18bが設けられており、O/E変換素子17の略上方になるように配置されている。この反射面18bは適度な曲率半径を有しており、光導波路18を透過してくる光を、反射面18bと空気との全反射により図面下方に反射してO/E変換素子17上に集光している。なお、この反射面はテーパ形状でもよく、又、金属膜等を被覆してもよい。光導波路18の他方の端部18aは、垂直な端面となるように形成されており、端部18aに向かい合うように、V字型溝により光ファイバが配設されている。したがって、光ファイバからの光信号は、端部18aから入射されて、光導波路18を経由して、反射部18bで反射して、O/E変換素子17へ入射される(図3(b)中の矢印参照)。なお、O/E変換素子17は、図3中の上方側から光信号を入射可能な面型素子である。
【0030】
反射面18bは、ステッパ等の露光機のフォーカスを深さ方向にずらしながら、照射強度を変えて光導波路上のレジストを複数回露光して、現像後に所定の曲率半径又はテーパ角度を有するようにレジストを形成し、その後、上記形状のレジスト及びその下層の光導波路を、RIE(リアクティブ・イオン・エッチング)等でエッチングすることで、上記レジストの形状を反映した光導波路の形状としている。反射面18aを、上記方法で作製することにより、光導波路18の端部において、精度のよいマイクロミラーとして機能させることができる。
【0031】
図4は、本発明に係る光リンクケーブルにおけるコネクタ部3の内部の実装基板7上に配設された他のOEICチップの構成図である。
図4(a)はOEICチップの斜視図であり、図4(b)は図4(a)のB−B線矢視断面図である。
【0032】
図4に示すOEICチップは、基板16内に光配線を構成する光導波路19が埋込まれ、基板16上にO/E変換素子23が設けられた基板埋込み型のOEICチップ9bである。
【0033】
図4に示すように、基板16の端部から中心に向かうように、基板16の内部にクラッド部20とコア部21からなる光導波路19が形成されており、光を受光して電気信号に変化するO/E変換素子23が、光導波路19の一方の端部側の基板16上に配置されている。詳細に図示していないが、半田材料に対して濡れ性の良い円形のトレイ部を介して、複数の球状の半田ボールバンプ13が基板16上に設けられている。この球状の半田ボールバンプ13を用いることで、実装基板へ精度よく配置することが可能となる。又、O/E変換素子23には図示していない複数の配線が設けられており、この配線及び半田ボールバンプ13により電源の供給及び電気信号の出力を行なっている。
【0034】
光導波路19は、V字型の溝に埋込むようにクラッド部20、コア部21を形成することで、構成されており、その他方の端部19a側では、V字状の光導波路19の幅及び深さが外部に向かって拡開するように形成されている。この端部19aは垂直加工されており、この端部19aに対面して光ファイバが配設されている。又、光導波路19からO/E変換素子23へ光を屈折させて入射するために、光導波路19とO/E変換素子23との間の基板16部分には、光路変更手段となる空間、屈折入射開口部22が形成されており、ここに入射された光は、屈折入射開口部22が有する逆メサ面16aと空気との境界部分で屈折して、O/E変換素子23へ入射されることとなる。したがって、光ファイバから端部19aへ入射された光信号が、光導波路19を経由し、更に、屈折入射開口部22で屈折させられて、O/E変換素子23へ入射されることとなる。なお、O/E変換素子23は下方側から光信号を入射可能な面型素子である。
【0035】
このような逆メサ面16aは、光導波路19の長手方向を、基板16の所定の結晶面(例えば、(100)面のInP基板を用いた場合、
【数1】
Figure 2004205899
面)に垂直とし、ウェットエッチング等を用いて異方性エッチングを行なうことで形成できる。したがって、逆メサ面16aを上記方法で作製することにより、光導波路19の端部において、光を屈折させて、図4(b)の矢印に示す如く、光信号をO/E変換素子23へ導くことができる。
【0036】
図3、図4に示したように、受光用の光−電気変換回路基板であるOEICチップ9a、9bは、その回路基板上又は回路基板内に、半導体プロセスを用いて光配線(光導波路、光路変更手段)を作製することによって、外部の光ファイバとのアライメント精度を向上させることが可能となる。これは、発光用の電気−光変換回路基板でも同様である。
【0037】
なお、光導波路18、19は、コア層及びクラッド層から構成されるものであり、これらは、ガラス、半導体又は有機材料等を用いて構成されている。
【0038】
上記実施例では、本発明に係る実施形態の一例として、イーサーネットのコネクタ部に、光信号の変換を行なう変換回路基板を有する構成とした。しかし、本発明は、イーサーネットのみに適用されるものではなく、他のネットワークの規格のコネクタの形状(電気接続端子の形状も含む)にも十分適用できるものである。又、本発明に係る光リンクケーブルを用いれば、10Gbit/sはもとより、それ以上高速の通信速度であっても、同一構造で対応可能である。
【0039】
【発明の効果】
以上説明してきたように、半田ボールバンプを用いたフリップチップ実装技術とチップ上に作製した光配線構造を用い、更に、実装基板上に設けたV字型の溝に光ファイバを嵌合することによって、光ファイバと光−電気変換回路基板及び電気−光変換回路基板とを、パッシブアライメント方式で、低コストで、機械的に光学調芯することができる。その結果、本発明に係る光リンクケーブルを用いることで、コンピュータ等の端末機器の接続端子を変更することなく光リンク網へ直接接続することができ、ネットワークの通信速度を向上させるとともに長距離伝送が可能になる。
【図面の簡単な説明】
【図1】本発明に係る実施形態の一例を示す光リンクケーブルの外観図である。
【図2】図1に示す本発明に係る光リンクケーブルのコネクタ部分の構成図である。
【図3】本発明に係る光リンクケーブルのコネクタ部分に内蔵されるO/E変換素子の構成図である。
【図4】本発明に係る光リンクケーブルのコネクタ部分に内蔵される他のO/E変換素子の構成図である。
【図5】従来の100Base−Tケーブルの外観図である。
【符号の説明】
1 光リンクケーブル
2 光ファイバケーブル
3 コネクタ部
4 光ファイバ
5 コネクタプラグ
6 電気接続端子
7 実装基板
8 V字型溝
9 OEICチップ
9a 上面搭載型OEICチップ
9b 基板埋込型OEICチップ
10 LD素子
11 LDドライバ回路
12 トレイ部
13 半田ボールバンプ
14 配線
15 電気インターフェース
16 基板
17 O/E変換素子
18 上面搭載型光導波路
19 基板埋込型光導波路
20 クラッド部
21 コア部
22 屈折入射開口部
23 O/E変換素子

Claims (4)

  1. 光ファイバを有するケーブルの端部に設けられた筐体と、
    前記筐体に設けられた電気接続端子と、
    前記筐体の内部に設けられた実装基板と、
    前記電気接続端子に接続され、各々光配線を有する電気−光変換回路基板及び光−電気変換回路基板とを有し、
    前記電気−光変換回路基板及び前記光−電気変換回路基板が前記実装基板上にフリップチップ実装されると共に、
    前記電気−光変換回路基板及び前記光−電気変換回路基板の各々の光配線と直接光学結合できるように、前記光ファイバの位置決めを行なう位置決め手段を前記実装基板に設けたことを特徴とする光リンクケーブル。
  2. 請求項1記載の光リンクケーブルにおいて、
    前記位置決め手段をV字型の溝としたことを特徴とする光リンクケーブル。
  3. 請求項1又は請求項2記載の光リンクケーブルにおいて、
    前記電気−光変換回路基板及び前記光−電気変換回路基板の各々の光配線が、受光素子又は発光素子に光を導く光導波路及び光路変更手段により構成されていることを特徴とする光リンクケーブル。
  4. 請求項1乃至請求項3のいずれかに記載の光リンクケーブルにおいて、
    前記筐体及び前記電気接続端子が、ネットワークの規格に適合する形状であることを特徴とする光リンクケーブル。
JP2002376298A 2002-12-26 2002-12-26 光リンクケーブル Withdrawn JP2004205899A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376298A JP2004205899A (ja) 2002-12-26 2002-12-26 光リンクケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376298A JP2004205899A (ja) 2002-12-26 2002-12-26 光リンクケーブル

Publications (1)

Publication Number Publication Date
JP2004205899A true JP2004205899A (ja) 2004-07-22

Family

ID=32813792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376298A Withdrawn JP2004205899A (ja) 2002-12-26 2002-12-26 光リンクケーブル

Country Status (1)

Country Link
JP (1) JP2004205899A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093117A1 (ja) * 2005-02-28 2006-09-08 Nec Corporation 2次元アレイ状光素子と光回路の接続構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093117A1 (ja) * 2005-02-28 2006-09-08 Nec Corporation 2次元アレイ状光素子と光回路の接続構造
US8358892B2 (en) 2005-02-28 2013-01-22 Nec Corporation Connection structure of two-dimensional array optical element and optical circuit
JP5240821B2 (ja) * 2005-02-28 2013-07-17 日本電気株式会社 2次元アレイ状光素子と光回路の接続構造

Similar Documents

Publication Publication Date Title
US11275225B2 (en) Method and system for an optical coupler for silicon photonics devices
US11137544B2 (en) Method and system for grating couplers incorporating perturbed waveguides
US20180306991A1 (en) Optical module including silicon photonics chip and coupler chip
US9379276B2 (en) Optical interconnection module and optical-electrical hybrid board
KR100461157B1 (ko) 병렬 광접속 모듈 및 그 제조방법
US6759687B1 (en) Aligning an optical device system with an optical lens system
CN110945976A (zh) 基于带有聚合物波导的玻璃基板的光学互连模块
Rho et al. PCB-compatible optical interconnection using 45-ended connection rods and via-holed waveguides
CN112969946A (zh) 网络交换机asic与光收发器的组装
US10996401B2 (en) Method and apparatus for optical coupling of optical signals for a photonic integrated circuit
US11611004B2 (en) Opto-electronic integrated circuit and computing apparatus
Ishii et al. SMT-compatible large-tolerance" OptoBump" interface for interchip optical interconnections
KR20070085080A (ko) 전자-광 모듈 제조 시스템 및 방법
US7430375B2 (en) Optical transceiver
US20020175339A1 (en) Optical interconnect structure, system and transceiver including the structure, and method of forming the same
KR100908241B1 (ko) 광전버스 모듈 및 그 제작방법
KR100927592B1 (ko) 광전 인쇄회로 모듈 및 그 모듈을 포함하는 광전 동시 통신시스템
JP2004205899A (ja) 光リンクケーブル
Noriki et al. Evaluation of optical coupling characteristics for optoelectronic hybrid LSI package
Guan et al. Silicon optical electrical interposer-fiber to the chip
Ishii et al. Large‐tolerant “OptoBump” interface for interchip optical interconnections
KR100398045B1 (ko) 광 송수신 모듈
WO2022208662A1 (ja) 光接続構造、パッケージ構造および光モジュール
US20240159969A1 (en) Optical connecting structure, package structure, optical module and manufacturing method for package structure
Lu Recent advances on chip-to-chip optical interconnect

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307