JP2004205241A - Drill outer diameter measuring method - Google Patents

Drill outer diameter measuring method Download PDF

Info

Publication number
JP2004205241A
JP2004205241A JP2002371597A JP2002371597A JP2004205241A JP 2004205241 A JP2004205241 A JP 2004205241A JP 2002371597 A JP2002371597 A JP 2002371597A JP 2002371597 A JP2002371597 A JP 2002371597A JP 2004205241 A JP2004205241 A JP 2004205241A
Authority
JP
Japan
Prior art keywords
drill
outer diameter
cutting edge
axis
margin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002371597A
Other languages
Japanese (ja)
Inventor
Kensuke Kawanaka
健介 川中
Toshihiro Ono
智弘 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Kobe Tools Corp
Priority to JP2002371597A priority Critical patent/JP2004205241A/en
Publication of JP2004205241A publication Critical patent/JP2004205241A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill outer diameter measuring method to perform high-accuracy measurement suppressing a dispersion in measurement results by surely scanning cutting edge margin parts with laser radiation when measuring the outer diameter of cutting edges of a drill with using laser radiation. <P>SOLUTION: The drill 10 has, in its cutting edge parts 11, the cutting edges 14 on the end side of a pair of chip discharge grooves formed symmetrically with respect to an axis O and a margin part formed on the outer circumferential side thereof. The outer diameters of the cutting edges 14 are measured by means of the maximum value of the light shading width by the edge parts 11 by feeding the drill 10 in the direction of the axis O while rotating it about the axis O, and by scanning laser radiation S directed toward the cutting edge 14 along a plane P perpendicular to the axis O. The revolution speed R (P.P.M.) of the drill 10 is set within a range shown in the expression (where, n≥2), assuming that a reference outer diameter of the edge 14 is D mm, the width of the margin part is M mm, time required for the edge parts 11 to be scanned a time with the laser radiation S is t sec, a reference feed per half-revolution made by the drill 10 about the axis O is L mm, and the feed rate of the drill 10 is V mm/sec. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一対の切屑排出溝が切刃部に形成されてその先端に切刃が形成された、いわゆる2枚刃のドリルの上記切刃の外径を、レーザ光を走査して測定する際のドリル外径の測定方法に関するものである。
【0002】
【従来の技術】
この種のドリルのような回転工具の外径測定においては、工具表面に各種のコーティングが施されていたりすることも多いため、非接触で測定を行うことが望ましく、例えば特許文献1等にレーザ光を用いて工具外径を測定するものが提案されている。すなわち、このようなレーザ光による測定は、工具をその軸線回りに回転しつつ該軸線方向に送り出すとともに、上記切刃に向けてレーザ光を照射して軸線に直交する平面に沿って走査し、このレーザ光が工具によって遮られた遮光幅の最大値を上記切刃の外径として測定するものであり、非接触であるためコーティング工具の被膜を傷つけたりすることがないのは勿論、例えば一般的な丸棒(円柱)の外径を繰り返し測定した場合には、測定結果のばらつきを1μm以下程度に抑えることができるなど、高精度の測定が可能である。
【0003】
【特許文献1】
特開2001−82932号公報
【0004】
【発明が解決しようとする課題】
ところが、このような丸棒の外径を測定する場合に対し、上述のようなドリルの切刃の外径を測定する場合には、測定条件によっては結果に大きなばらつきが生じるおそれがある。すなわち、この切刃が形成されるドリルの切刃部の外周には上記切屑排出溝が形成されるとともに、この切屑排出溝の外周側にはマージン部を介して切刃外径よりも外径が小さくされた、いわゆる二番面が形成されており、従って切刃部外周に形成される一対の上記マージン部の双方をレーザ光が1回の走査の間で測定したときの遮光幅が得られなければ、実際の切刃外径よりも小さな測定結果が得られてしまう。また、このようなドリルにおいては、上記切刃部の外径がドリル後端側に向かうに従い漸次小さくなるように、いわゆるバックテーパが付されていることも多く、しかも上述のようなコーティングが施されたドリルではその被膜の厚さも均一ではなく、多くの場合は先端部で盛り上がる(厚肉となる)傾向がある。従って、これらの点を考慮すると、ドリルの切刃の外径を正確に測定するには、ドリルを回転しながら送り出す際に、切刃とマージン部とが交差する切刃の外周端から周方向(マージン部の幅方向)に沿って延びる極短い部分(以下、刃先マージン部と称する。)をレーザ光によって確実に走査して測定を行わなければならない。
【0005】
本発明は、このような背景の下になされたもので、上述のようにレーザ光を用いてドリルの切刃の外径を測定するに際し、上記刃先マージン部を確実にレーザ光によって走査することにより、測定結果のばらつきを抑えて高精度の測定を行うことの可能なドリル外径の測定方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
ここで、上記課題を解決して、このような目的を達成するために、本発明の発明者は鋭意研究を重ねた結果、以下のような知見を得るに至った。すなわち、まず第1には、レーザ光によって上記刃先マージン部を確実に走査するためには、このレーザ光が刃先マージン部を走査する測定時間が、該レーザ光が切刃部を横切って1回走査するのに要する時間の2倍よりも長くなければならず、この測定時間が長いほど高精度の測定結果が得られるという知見である。
【0007】
ここで、基準外径(いわゆる呼び径)がD(mm)とされるドリルをその軸線回りに回転数R(R.P.M)で回転させるときの刃先マージン部の周速v(mm/s)は、次式で与えられる。
【0008】
【数2】

Figure 2004205241
【0009】
一方、マージン部の周方向の幅をM(mm)、レーザ光が1回走査するのに要する時間をt(sec)としたとき、この1回の操作時間tの間で回転するドリルの一対の刃先マージン部の双方が必ず走査されるようにするためには、次式の条件が満たされなければならず、上式より、測定時のドリルの回転数Rについてさらに以下の条件が得られる。ただし、次式においてn≧2であり、このnが大きくなるほどレーザ光が刃先マージン部を走査する回数が増えるため、測定精度が向上する。ちなみに、実験によれば、nは9以上であることが望ましい。
【0010】
【数3】
Figure 2004205241
【0011】
【数4】
Figure 2004205241
【0012】
【数5】
Figure 2004205241
【0013】
また、第2の知見は、ドリルの切刃部に与えられた上記バックテーパやコーティング被膜の膜厚の不均一などによるドリルの軸線方向すなわち送り方向の外径の変化に基づく誤差を抑制するには、測定時のドリルの回転数Rは上記の結果とは逆に速いほうが望ましいというものである。すなわち、刃先マージン部周辺において軸線方向に単位長さ(1mm)の範囲におけるドリル外径変化の最大値をdとし、ドリルを軸線方向に送り出すことによる外径変化の許容値をsとしたとき、一対の刃先マージン部はドリルの半回転毎にレーザ光によって走査されるため、この許容値以内に外径変化を抑えるためのドリルが半回転する間の送り量を基準送り量L(mm)とすると、この基準送り量Lは次式で与えられる。
【0014】
【数6】
Figure 2004205241
【0015】
一般的には、上述のコーティング被膜の膜厚の不均一によるドリル外径の変化は6〜7μmであり、許容値sを上記レーザ光による測定における測定結果のばらつきの大きさに合わせて1μmとすると、基準送り量Lは1/7=0.143(mm)となる。従って、測定時のドリルの送り量がこの基準送り量Lの1/2よりも小さければ、ドリルの送りによる外径変化に基づく誤差を上記許容値sより小さく抑えることができるので、これにより測定時のドリルの回転数Rは、送り速度をV(mm/sec)とすると次式の条件を満たすことが要求され、結果的に以下の式が得られる。
【0016】
【数7】
Figure 2004205241
【0017】
【数8】
Figure 2004205241
【0018】
しかして、本発明は、これらの知見に基づいてなされたものであって、切刃部に一対の切屑排出溝が軸線に対して対称に形成され、これらの切屑排出溝の先端側には切刃が、外周側にはマージン部がそれぞれ形成されたドリルの上記切刃の外径を測定するドリル外径の測定方法であって、上記ドリルを上記軸線回りに回転させつつ該軸線方向に送り出すとともに、上記切刃に向けてレーザ光を上記軸線に直交する平面に沿って走査し、上記切刃部による遮光幅の最大値により上記外径を測定するに際して、上記切刃の基準外径をD(mm)、上記マージン部の幅をM(mm)、上記レーザ光が上記切刃部を1回走査するのに要する時間をt(sec)、上記ドリルが上記軸線回りに半回転する間の基準送り量をL(mm)、上記ドリルの送り速度をV(mm/sec)としたとき、上記ドリルの回転数R(R.P.M)を次式で示される範囲(ただし、n≧2)に設定することを特徴とする。従って、このような測定方法によれば、レーザ光により非接触で測定が行われるためドリル表面にコーティング等が施されていてもその被膜を傷つけたりすることがないのは勿論、極短い刃先マージン部をレーザ光によって確実に走査するとともに上記コーティング等による誤差をも十分に抑えることができ、これにより極めて正確なドリル外径の測定を図ることが可能となる。
【0019】
【数9】
Figure 2004205241
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1および図2は、本実施形態の測定方法に係わるドリル外径の測定装置を示すものであり、この測定装置においては図1に示すように基台1上に取り付けられたスライド台座2が、ステッピングモータ3に連結されたボールネジ4によって送り方向Fにスライド可能とされ、このスライド台座2上にドリル10が載置されてその軸線O回りに回転されつつ上記送り方向Fに所定の送り速度V(mm/sec)で送り出され、この送り方向F側の基台1上に設けられたレーザ測定器5によって測定が行われるようになされている。
【0021】
ここで、上記スライド台座2上には偏心ゲージ6が取り付けられており、この偏心ゲージ6には、上記送り方向Fに平行に延びる回転軸線を有する一対の支持ローラ6A,6Aが水平方向に僅かな間隔をあけて並列に設けられており、これらの支持ローラ6A,6Aは、同じくスライド台座2上に取り付けられたスピードコントロールモータ7に連結されて回転可能とされている。そして、これらの支持ローラ6A,6Aの間の上に、切刃部11を上記送り方向F側に向けて突出させるようにドリル10を載置して支持し、上記スピードコントロールモータ7によって支持ローラ6A,6Aを回転することにより、ドリル10もその軸線O回りに所定の回転数R(R.P.M)で回転可能とされている。
【0022】
一方、上記レーザ測定器5は、図2に示すように偏心ゲージ6の送り方向F側に発光部5Aと受光部5Bとがこの送り方向Fに直交する水平方向(図2における左右方向)に支持ローラ6A,6Aが通過可能な間隔をあけて対向するように設けられたものであり、発光部5Aからレーザ光Sをドリル10の軸線Oに垂直な仮想平面P(図1参照)に沿って受光部5Bに向け水平に発光し、かつ垂直方向に切刃部11の外径よりも十分大きな範囲で走査することにより、これら発光部5Aと受光部5Bとの間に送り出されたドリル10の上記切刃部11がレーザ光Sを遮る遮光幅を測定し、その最大値を当該部分における切刃部11の外径として測定する。なお、この発光部5Aからのレーザ光Sが受光部5Bとの間を垂直方向に1回走査する時間、すなわちこのレーザ光Sが上記切刃部11を1回走査するのに要する時間t(sec)は、調整可能とされている。
【0023】
このような測定装置によって切刃外径が測定される上記ドリル10は、その切刃部11が図3および図4に示すように軸線Oを中心とした概略円柱状をなし、その外周には一対の切屑排出溝12,12が軸線Oに関して対称に、かつドリル10の後端側に向けて螺旋状をなすように形成されている。また、これらの切屑排出溝12,12の先端側には、該ドリル10の先端逃げ面13との交差稜線部に上記切刃14,14がそれぞれ形成されるとともに、切屑排出溝12,12の外周側には切刃部11の外周面15との交差稜線部にマージン部16,16が形成され、さらにこの外周面15のマージン部16以外の部分は該マージン部16に対して外径が僅かに小さくなるようにされた二番面17とされている。従って、切刃部11の外周においてはこのマージン部16が最も外径が大きくなり、このマージン部16先端の切刃14に連なる一対の刃先マージン部18,18が垂直方向に位置して上記レーザ光Sを遮るときの遮光幅が、当該ドリル10の切刃14の外径とされる。
【0024】
そして、上記構成の測定装置を用いて、このようなドリル10の切刃14の外径を測定するに際し、本実施形態では、当該ドリル10の基準外径(呼び径)をD(mm)とし、上記マージン部18の幅(図4参照)をM(mm)とし、さらに上述のようにドリル10が軸線O回りに半回転する間の送り量を基準送り量L(mm)としたとき、偏心ゲージ6およびスピードコントロールモータ7によるドリル10の回転数R(R.P.M)を、次式で示される範囲に設定している。ただし、n≧2であり、望ましくはn≧9である。
【0025】
【数10】
Figure 2004205241
【0026】
例えば、基準外径D=2.0(mm)、マージン部18の幅M=0.19(mm)のドリル10に対し、レーザ光Sが切刃部11を1回走査するのに要する時間t=0.01(sec)とし、n=9.07とし、上述の結果に基づいて基準送り量L=0.143(mm)とし、さらにドリル10の送り速度V=0.02(mm/sec)としたとき、上記ドリル10の回転数R(R.P.M)は、4.2(R.P.M)<R<20.01(R.P.M)の範囲に設定される。しかして、本実施形態の測定方法によれば、このようにドリル10の回転数Rが上記式で示される範囲内に設定されることにより、上記知見に基づいて、刃先マージン部18,18における切刃14の外径を確実に測定することができて測定結果のばらつきを抑えることが可能となるとともに、コーティング等による軸線O方向の外径の変化に伴う誤差も1μm以下に抑制して高精度の測定を図ることができる。
【0027】
ここで、上記の条件(基準外径D=2.0(mm)、マージン部18の幅M=0.19(mm)、レーザ光Sが切刃部11を1回走査するのに要する時間t=0.01(sec)、n=9.07、基準送り量L=0.143(mm)、送り速度V=0.02(mm/sec))としたときに、上記結果に基づいてドリル10の回転数R=20(R.P.M)として、当該ドリル10の切刃14の外径を50回にわたって測定した結果を次表1に示す。しかして、これより、測定結果のばらつきは1.9999(mm)〜2.0012(mm)の1.3μmの幅に収まっており、すなわち基準外径D=2.0(mm)に対して0.1%の測定誤差しか発生していないことが分かる。
【0028】
【表1】
Figure 2004205241
【0029】
【発明の効果】
以上説明したように、本発明によれば、ドリルを回転させながら送り出してレーザ光によりドリルの切刃の外径を測定するに際し、上述のような範囲にドリルの回転数を設定することにより、切刃の刃先マージン部における外径を確実にすることができるとともに、コーティング等による軸線方向での外径変化による誤差も抑えることができ、測定結果のばらつきの少ない高精度の測定を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係わる測定装置を示す側面図である。
【図2】図1に示す測定装置を送り方向F側から見た正面図である。
【図3】本発明の一実施形態によって測定が行われるドリル10の正面図である。
【図4】図3に示すドリルの切刃部11の斜視図である。
【符号の説明】
2 スライド台座
3 ステッピングモータ
4 ボールネジ
5 レーザ測定器
6 偏心ゲージ
7 スピードコントロールモータ
10 ドリル
11 切刃部
12 切屑排出溝
14 切刃
16 マージン部
18 刃先マージン部
O ドリル11の軸線
M マージン部18の幅
S レーザ光[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention measures the outer diameter of the above-mentioned cutting edge of a so-called two-flute drill in which a pair of chip discharge grooves are formed in a cutting edge portion and a cutting edge is formed at the tip thereof by scanning a laser beam. The present invention relates to a method for measuring the outer diameter of a drill at the time.
[0002]
[Prior art]
In the measurement of the outer diameter of a rotary tool such as a drill, it is often desirable to perform measurement in a non-contact manner because various types of coatings are applied to the tool surface. One that measures the outer diameter of a tool using light has been proposed. That is, such a measurement by laser light, while rotating the tool around its axis and sending it out in the axial direction, irradiates the cutting edge with laser light and scans along a plane perpendicular to the axis, This laser beam measures the maximum value of the light-shielding width blocked by the tool as the outer diameter of the cutting blade. When the outer diameter of a typical round bar (cylinder) is repeatedly measured, high-precision measurement is possible, for example, the variation in the measurement result can be suppressed to about 1 μm or less.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-82932
[Problems to be solved by the invention]
However, when measuring the outer diameter of the drill cutting edge as described above in contrast to the case of measuring the outer diameter of such a round bar, there is a possibility that the results may vary greatly depending on the measurement conditions. That is, the chip discharge groove is formed on the outer periphery of the cutting edge portion of the drill in which the cutting edge is formed, and the outer diameter of the chip discharge groove is smaller than the outer diameter of the cutting edge via the margin portion. A so-called second surface is formed, so that the light-shielding width is obtained when the laser beam is measured during one scan of both the pair of margins formed on the outer periphery of the cutting blade. Otherwise, a measurement result smaller than the actual cutting edge outer diameter will be obtained. In addition, such drills are often provided with a so-called back taper so that the outer diameter of the cutting edge portion becomes gradually smaller toward the rear end of the drill, and the above-mentioned coating is applied. The thickness of the coating is not uniform in drilled drills, and in many cases, the tip tends to bulge (become thick) at the tip. Therefore, in consideration of these points, in order to accurately measure the outer diameter of the cutting edge of the drill, when feeding while rotating the drill, the circumferential direction from the outer peripheral end of the cutting edge where the cutting edge and the margin intersect with each other. A very short portion (hereinafter, referred to as a blade edge margin portion) extending along the (width direction of the margin portion) must be reliably scanned by laser light for measurement.
[0005]
The present invention has been made under such a background, and when the outer diameter of the cutting edge of a drill is measured using laser light as described above, it is necessary to surely scan the cutting edge margin portion with laser light. Accordingly, it is an object of the present invention to provide a method for measuring the outer diameter of a drill, which is capable of performing highly accurate measurement while suppressing variation in the measurement result.
[0006]
[Means for Solving the Problems]
Here, in order to solve the above-mentioned problems and achieve such an object, the inventor of the present invention has earnestly studied and as a result, has obtained the following knowledge. That is, firstly, in order to surely scan the cutting edge margin portion with the laser light, the measurement time for scanning the cutting edge margin portion with the laser light is one time after the laser light crosses the cutting edge portion. It is a finding that the measurement time must be longer than twice the time required for scanning, and the longer the measurement time, the higher the accuracy of the measurement result.
[0007]
Here, the peripheral speed v (mm / s) of the cutting edge margin portion when a drill whose reference outer diameter (so-called nominal diameter) is D (mm) is rotated at a rotation speed R (RPM) around its axis is: It is given by the following equation.
[0008]
(Equation 2)
Figure 2004205241
[0009]
On the other hand, when the width of the margin in the circumferential direction is M (mm) and the time required for one scan by the laser beam is t (sec), a pair of drills rotating during this one operation time t In order to make sure that both of the edge margins are scanned, the following condition must be satisfied. From the above expression, the following condition is further obtained for the rotational speed R of the drill at the time of measurement. . However, in the following equation, n ≧ 2, and the greater the value of n, the greater the number of times the laser beam scans the blade margin, thus improving the measurement accuracy. Incidentally, according to experiments, it is desirable that n is 9 or more.
[0010]
[Equation 3]
Figure 2004205241
[0011]
(Equation 4)
Figure 2004205241
[0012]
(Equation 5)
Figure 2004205241
[0013]
Further, the second finding is to suppress errors due to changes in the outer diameter in the axial direction of the drill, that is, in the feed direction due to the back taper applied to the cutting edge of the drill and unevenness in the thickness of the coating film. Is that it is desirable that the rotational speed R of the drill at the time of measurement be faster, contrary to the above result. That is, when the maximum value of the change in the outer diameter of the drill in the range of the unit length (1 mm) in the axial direction around the cutting edge margin portion is d, and the allowable value of the outer diameter change by feeding the drill in the axial direction is s, Since the pair of cutting edge margins is scanned by the laser beam every half rotation of the drill, the feed amount during the half rotation of the drill for suppressing the outer diameter change within this allowable value is defined as a reference feed amount L (mm). Then, the reference feed amount L is given by the following equation.
[0014]
(Equation 6)
Figure 2004205241
[0015]
Generally, the change in the outer diameter of the drill due to the unevenness of the thickness of the coating film is 6 to 7 μm, and the allowable value s is set to 1 μm in accordance with the variation in the measurement result in the measurement using the laser beam. Then, the reference feed amount L becomes 1/7 = 0.143 (mm). Accordingly, if the feed amount of the drill at the time of measurement is smaller than 1/2 of the reference feed amount L, the error based on the change in the outer diameter due to the feed of the drill can be suppressed to be smaller than the allowable value s. When the feed rate is V (mm / sec), the rotation speed R of the drill is required to satisfy the following expression, and as a result, the following expression is obtained.
[0016]
(Equation 7)
Figure 2004205241
[0017]
(Equation 8)
Figure 2004205241
[0018]
Thus, the present invention has been made based on these findings, and a pair of chip discharge grooves are formed symmetrically with respect to the axis in the cutting edge portion, and the tip side of these chip discharge grooves is cut. A method for measuring the outer diameter of a cutting edge of a drill having a margin portion formed on an outer peripheral side thereof, wherein the drill is rotated around the axis and is sent out in the axial direction. Along with scanning the laser beam toward the cutting edge along a plane perpendicular to the axis, and measuring the outer diameter by the maximum value of the light shielding width by the cutting edge portion, the reference outer diameter of the cutting edge D (mm), the width of the margin portion is M (mm), the time required for the laser beam to scan the cutting edge once is t (sec), while the drill is half rotated around the axis. The reference feed amount is L (mm) and the drill feed speed is V (mm / s). ec), the rotation speed R (RPM) of the drill is set in a range represented by the following equation (where n ≧ 2). Therefore, according to such a measuring method, since the measurement is performed in a non-contact manner by the laser beam, even if the drilling surface is coated, the coating is not damaged, and the cutting edge margin is extremely short. The portion can be reliably scanned by the laser beam, and the error due to the coating or the like can be sufficiently suppressed, whereby extremely accurate measurement of the outer diameter of the drill can be achieved.
[0019]
(Equation 9)
Figure 2004205241
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. 1 and 2 show an apparatus for measuring the outer diameter of a drill according to the measuring method of the present embodiment. In this measuring apparatus, a slide base 2 mounted on a base 1 as shown in FIG. A drill 10 is slidable in a feed direction F by a ball screw 4 connected to a stepping motor 3. A drill 10 is placed on the slide base 2 and is rotated around its axis O while a predetermined feed speed is set in the feed direction F. V (mm / sec), and the measurement is performed by a laser measuring device 5 provided on the base 1 in the feeding direction F side.
[0021]
Here, an eccentric gauge 6 is mounted on the slide pedestal 2, and a pair of support rollers 6A, 6A having a rotation axis extending in parallel with the feed direction F is slightly attached to the eccentric gauge 6 in the horizontal direction. These support rollers 6A, 6A are rotatably connected to a speed control motor 7, which is also mounted on the slide pedestal 2. A drill 10 is mounted and supported between the support rollers 6A, 6A so that the cutting blade 11 protrudes toward the feed direction F. The speed control motor 7 controls the support roller 6A. By rotating 6A, 6A, the drill 10 is also rotatable around its axis O at a predetermined rotational speed R (RPM).
[0022]
On the other hand, as shown in FIG. 2, the laser measuring device 5 has a light emitting unit 5A and a light receiving unit 5B on the side of the eccentric gauge 6 in the feed direction F in a horizontal direction (horizontal direction in FIG. The support rollers 6A, 6A are provided so as to face each other with an interval capable of passing, and the laser light S is emitted from the light emitting unit 5A along an imaginary plane P (see FIG. 1) perpendicular to the axis O of the drill 10. The drill 10 emitted between the light emitting portion 5A and the light receiving portion 5B by emitting light horizontally to the light receiving portion 5B and scanning in a vertical direction in a range sufficiently larger than the outer diameter of the cutting edge portion 11B. The cutting width of the cutting edge 11 that blocks the laser beam S is measured, and the maximum value is measured as the outer diameter of the cutting edge 11 in the relevant portion. It should be noted that the laser light S from the light emitting unit 5A scans the space between the light receiving unit 5B and the light receiving unit 5B once in the vertical direction, that is, the time t ( sec) is adjustable.
[0023]
The drill 10 whose outer diameter of the cutting edge is measured by such a measuring device has a cutting edge portion 11 having a substantially columnar shape centered on the axis O as shown in FIGS. A pair of chip discharge grooves 12 are formed symmetrically with respect to the axis O and spiral toward the rear end of the drill 10. Further, on the tip side of the chip discharge grooves 12, 12, the cutting blades 14, 14 are respectively formed at the intersection ridges with the tip flank 13 of the drill 10, and the chip discharge grooves 12, 12 are formed. Margins 16, 16 are formed on the outer peripheral side at intersections with the outer peripheral surface 15 of the cutting edge 11, and portions of the outer peripheral surface 15 other than the margin 16 have an outer diameter with respect to the margin 16. The second surface 17 is made slightly smaller. Therefore, on the outer periphery of the cutting edge portion 11, the margin portion 16 has the largest outer diameter, and a pair of cutting edge margin portions 18, 18 connected to the cutting edge 14 at the front end of the margin portion 16 are positioned vertically so that the laser The light blocking width at the time of blocking the light S is defined as the outer diameter of the cutting edge 14 of the drill 10.
[0024]
When measuring the outer diameter of the cutting edge 14 of such a drill 10 using the measuring device having the above configuration, in the present embodiment, the reference outer diameter (nominal diameter) of the drill 10 is set to D (mm). When the width of the margin portion 18 (see FIG. 4) is M (mm), and the feed amount during the half rotation of the drill 10 around the axis O is the reference feed amount L (mm) as described above, The rotation speed R (RPM) of the drill 10 by the eccentric gauge 6 and the speed control motor 7 is set in a range represented by the following equation. However, n ≧ 2, and preferably n ≧ 9.
[0025]
(Equation 10)
Figure 2004205241
[0026]
For example, for a drill 10 having a reference outer diameter D = 2.0 (mm) and a width M of a margin portion 18 of 0.19 (mm), a time required for the laser beam S to scan the cutting edge portion 11 once. t = 0.01 (sec), n = 9.07, the reference feed amount L = 0.143 (mm) based on the above result, and the feed speed V of the drill 10 = 0.02 (mm / (sec), the rotation speed R (RPM) of the drill 10 is set in a range of 4.2 (RPM) <R <20.01 (RPM). However, according to the measuring method of the present embodiment, the rotation speed R of the drill 10 is set within the range shown by the above equation, and based on the above knowledge, the cutting edge margin portions 18, 18 can be used. It is possible to reliably measure the outer diameter of the cutting blade 14 and suppress variations in the measurement result, and also suppress an error due to a change in the outer diameter in the direction of the axis O due to coating or the like to 1 μm or less to achieve a high level. Accuracy can be measured.
[0027]
Here, the above conditions (reference outer diameter D = 2.0 (mm), width M of margin portion 18 = 0.19 (mm), time required for laser light S to scan cutting edge portion 11 once) When t = 0.01 (sec), n = 9.07, reference feed amount L = 0.143 (mm), feed speed V = 0.02 (mm / sec)), based on the above results, Table 1 shows the results of measuring the outer diameter of the cutting edge 14 of the drill 10 over 50 times, assuming that the rotation speed R of the drill 10 is 20 (RPM). Thus, from this, the dispersion of the measurement results is within the 1.3 μm width of 1.9999 (mm) to 2.00012 (mm), that is, with respect to the reference outer diameter D = 2.0 (mm). It can be seen that only a measurement error of 0.1% has occurred.
[0028]
[Table 1]
Figure 2004205241
[0029]
【The invention's effect】
As described above, according to the present invention, when measuring the outer diameter of the cutting edge of the drill by sending out the laser while rotating the drill, by setting the number of rotations of the drill in the range as described above, The outer diameter at the cutting edge margin of the cutting edge can be ensured, errors due to changes in the outer diameter in the axial direction due to coating, etc. can be suppressed, and high-precision measurement with little variation in measurement results can be performed. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a side view showing a measuring device according to an embodiment of the present invention.
FIG. 2 is a front view of the measuring device shown in FIG. 1 as viewed from a feeding direction F side.
FIG. 3 is a front view of a drill 10 where measurements are made according to one embodiment of the present invention.
FIG. 4 is a perspective view of a cutting edge portion 11 of the drill shown in FIG.
[Explanation of symbols]
2 Slide pedestal 3 Stepping motor 4 Ball screw 5 Laser measuring instrument 6 Eccentric gauge 7 Speed control motor 10 Drill 11 Cutting blade section 12 Chip discharge groove 14 Cutting blade 16 Margin section 18 Cutting edge margin section O Axis line M of drill 11 Width of margin section 18 S laser beam

Claims (1)

切刃部に一対の切屑排出溝が軸線に対して対称に形成され、これらの切屑排出溝の先端側には切刃が、外周側にはマージン部がそれぞれ形成されたドリルの上記切刃の外径を測定するドリル外径の測定方法であって、上記ドリルを上記軸線回りに回転させつつ該軸線方向に送り出すとともに、上記切刃に向けてレーザ光を上記軸線に直交する平面に沿って走査し、上記切刃部による遮光幅の最大値により上記外径を測定するに際して、上記切刃の基準外径をD(mm)、上記マージン部の幅をM(mm)、上記レーザ光が上記切刃部を1回走査するのに要する時間をt(sec)、上記ドリルが上記軸線回りに半回転する間の基準送り量をL(mm)、上記ドリルの送り速度をV(mm/sec)としたとき、上記ドリルの回転数R(R.P.M)を次式(ただし、n≧2)で示される範囲に設定することを特徴とするドリル外径の測定方法。
Figure 2004205241
A pair of chip discharge grooves are formed symmetrically with respect to the axis at the cutting edge portion, and a cutting edge is formed on the tip side of these chip discharge grooves, and a margin portion is formed on the outer peripheral side. A method for measuring the outer diameter of a drill for measuring the outer diameter, wherein the drill is sent out in the axial direction while rotating the drill around the axis, and the laser beam is directed toward the cutting edge along a plane perpendicular to the axis. When scanning and measuring the outer diameter based on the maximum value of the light shielding width by the cutting blade, the reference outer diameter of the cutting blade is D (mm), the width of the margin is M (mm), and the laser light is The time required to scan the cutting edge once is t (sec), the reference feed amount during which the drill makes a half rotation around the axis is L (mm), and the feed speed of the drill is V (mm / sec), the drill rotation speed R (RPM) is calculated by the following equation (where n ≧ 2). Measurement methods of the drill outer diameter and setting the range indicated in.
Figure 2004205241
JP2002371597A 2002-12-24 2002-12-24 Drill outer diameter measuring method Withdrawn JP2004205241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371597A JP2004205241A (en) 2002-12-24 2002-12-24 Drill outer diameter measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371597A JP2004205241A (en) 2002-12-24 2002-12-24 Drill outer diameter measuring method

Publications (1)

Publication Number Publication Date
JP2004205241A true JP2004205241A (en) 2004-07-22

Family

ID=32810440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371597A Withdrawn JP2004205241A (en) 2002-12-24 2002-12-24 Drill outer diameter measuring method

Country Status (1)

Country Link
JP (1) JP2004205241A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220837A (en) * 2012-04-06 2014-12-17 株式会社牧野铣床制作所 Tool measuring method and machine tools provided with measuring functions
CN104220837B (en) * 2012-04-06 2016-11-30 株式会社牧野铣床制作所 The assay method of cutter and there is the lathe of measurement function
CN108627110A (en) * 2018-08-17 2018-10-09 宝银特种钢管有限公司 A kind of device and measurement method measuring spiral coil screw diameter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220837A (en) * 2012-04-06 2014-12-17 株式会社牧野铣床制作所 Tool measuring method and machine tools provided with measuring functions
EP2843356A4 (en) * 2012-04-06 2015-12-09 Makino Milling Machine Tool measuring method and machine tools provided with measuring functions
CN104220837B (en) * 2012-04-06 2016-11-30 株式会社牧野铣床制作所 The assay method of cutter and there is the lathe of measurement function
CN108627110A (en) * 2018-08-17 2018-10-09 宝银特种钢管有限公司 A kind of device and measurement method measuring spiral coil screw diameter

Similar Documents

Publication Publication Date Title
US7467475B1 (en) Leveling device
JP4914436B2 (en) Rotary encoder
JP2000002502A (en) Angle gauge for grinding sharp edged tool
JP2010286313A (en) Circularity measuring apparatus
JPS60123256A (en) Method of effectively projecting shaft of holder for rotary edge tool and laser device
JP2008264954A (en) Tool and correction method of tool
JP2006201164A (en) Method and system for inspecting processed component
JP2004205241A (en) Drill outer diameter measuring method
JP2003170335A (en) Method and device for measuring rotary cutting tool
JP6542742B2 (en) Drill blade phase measurement device and drill blade phase measurement method
JP2004098213A (en) Tool position measuring method, nc machining method and nc machine tool
US9381610B2 (en) Lathe cutter height gauge and method of use
JPH08197381A (en) Automatic measuring device of cutting tool
JP2007307684A (en) Sine bar
JP2006242606A (en) Method for measuring runout of rotating tool and its measuring apparatus
US6191856B1 (en) Optical inspection device
JP4953749B2 (en) Tool holder mounting state detection method and apparatus, and machine tool
JP4529664B2 (en) Tool shape measuring apparatus and method
JP2008304292A (en) Rotating body measuring method and system using pulsed laser light
CN111220045B (en) Twist drill detection device with angle scales and detection method
JP7159021B2 (en) Measuring device and measuring method for tool shape in tool presetter
JP2007090412A (en) Precision processing machine
JP2001082932A (en) Tool outside diameter measuring apparatus and its evaluating method
KR101925838B1 (en) Method for setting the horizontal and vertical position coordinates using vernier calipers
JP5523758B2 (en) PROJECT SHAPE MEASUREMENT DEVICE, PROJECTION SHAPE MEASUREMENT METHOD, AND PROGRAM

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307