JP2004204323A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2004204323A
JP2004204323A JP2002376824A JP2002376824A JP2004204323A JP 2004204323 A JP2004204323 A JP 2004204323A JP 2002376824 A JP2002376824 A JP 2002376824A JP 2002376824 A JP2002376824 A JP 2002376824A JP 2004204323 A JP2004204323 A JP 2004204323A
Authority
JP
Japan
Prior art keywords
gas
base material
processing apparatus
plasma processing
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376824A
Other languages
Japanese (ja)
Other versions
JP3984540B2 (en
Inventor
Kazuyuki Hayashi
和志 林
Toshihiro Kugimiya
敏洋 釘宮
Yasushi Goto
裕史 後藤
Kenichi Inoue
憲一 井上
Yoshiyuki Hosokawa
佳之 細川
Akira Kobayashi
明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002376824A priority Critical patent/JP3984540B2/en
Publication of JP2004204323A publication Critical patent/JP2004204323A/en
Application granted granted Critical
Publication of JP3984540B2 publication Critical patent/JP3984540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus which is hardly restricted by the size and the shape of a base material, and efficiently plasma-processing a surface of the base material with a simple constitution. <P>SOLUTION: In a plasma processing apparatus, a rotary electrode 20 and a base material 28 face each other, plasma 42 is generated therebetween, reaction gas is subjected to chemical reaction by the plasma 42 to perform plasma processing of the base material 28. At least a part of the upstream side part, in the rotational direction of the rotary electrode 20, of the circumferential surface of the rotary electrode 20 is covered by a covering member 14, and the distance between the covering member 14 and the base material 28 is set to be larger than the distance between the rotary electrode 20 and the base material 28. Thus, reaction gas in the covering member 14 is entrained by the circumferential surface of the rotary electrode 20 and fed to the plasma 42 between the base material 28 and the rotary electrode, and gas back-flowing from a plasma forming area is released from a space 29A between the covering member 14 and the base material 28. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマによる化学反応を利用して、基材表面に微結晶シリコン等の機能性膜やハードコーティングを形成するためのプラズマ処理装置に関するものである。
【0002】
【従来の技術】
近年、プラズマCVDにより成膜等の処理を行う手段として、基材と対向配置されるプラズマ発生用の電極を略円柱状とし、かつ、これを高速回転させるようにしたものが開発されるに至っている(例えば特許文献1参照)。
【0003】
【特許文献1】
特開平9−104985号公報(第10〜11頁、図3〜図5)
この文献のプラズマ処理装置では、内部が密閉された反応容器内に回転電極が収容されるとともに、同容器の底部に設置されたテーブル上に基材搬送台が設けられている。そして、この基材搬送台上に基材をセットした状態で前記反応容器内を排気し、前記回転電極を回転させながらこれに高周波電力(直流電力でもよい)を印加して当該回転電極と基材との間にプラズマを発生させるとともに、当該反応容器内に反応ガス(図例ではSiH4とH2との混合ガス)及び希釈ガス(例えばHe)を反応容器10内に導入することにより、これらのガスが回転電極の回転によって当該回転電極と基材との間のプラズマに巻き込まれ、このプラズマにおいて前記反応ガスが化学反応を起こしながら基材が基材搬送台とともに所定方向に走査される結果、基材表面に薄膜が形成されるようになっている。
さらに、特許文献2には、チャンバ内の反応ガス残存量を低減されるべく、前記回転電極を囲むように反応ガス流路形成部材が配置されたものが開示されている。この反応ガス流路形成部材内には、反応ガス導入路と反応ガス排気路とが形成されており、これらの流路の密閉性を高めるべく、前記反応ガス流路形成部材は基材表面に対し極力近接して配置された構成となっている。
【特許文献2】
特開2002−294362号公報(第3〜5頁、図1〜図7)
【0004】
【発明が解決しようとする課題】
図4は、前記特許文献1のチャンバ内におけるガスの流れをシュミレーション解析した結果を示した図である。同図矢印A1に示されるように、回転電極20の外周面近傍の反応ガスは当該回転電極20の回転に巻き込まれてプラズマ42の形成領域に送られるが、当該プラズマ形成領域での回転電極20の外周面と基材28の上面との間隙はきわめて小さいため(特許文献1の記載では0.01〜1mm)、供給される反応ガスの多くは同図矢印A2に示されるように前記プラズマ形成領域からガス供給方向と反対の方向にはじき出され、その中には前記プラズマ形成領域に一旦到達したガスも含まれる。
【0005】
このようにプラズマ形成領域に一旦到達したガスは、前記プラズマ形成領域内で一部反応して別のガスに変化しているおそれがあり、また、同ガス中には前記プラズマ形成領域付近で発生しているパーティクルが含まれる可能性が高い。従って、このようなガスがプラズマ形成領域から回転電極の回転方向上流側に逆流して新しい反応ガスと混じることにより、当該反応ガスの純度が低下し、また当該反応ガス中のパーティクル含有量が増えることとなり、その結果、得られる薄膜等の品質が低下するおそれがある。
【0006】
さらに、前記特許文献2に記載される装置に至っては、反応ガス流路形成部材を基材に極力近接させて反応ガス供給路をほぼ密閉した構成となっているため、プラズマ形成領域から逆流したガスが新しい反応ガスに混入する割合はきわめて高くなり、前記の不都合はさらに深刻なものとなる。
【0007】
本発明は、このような事情に鑑み、プラズマ形成領域から逆流するガスが新しい反応ガスに混じるのを有効に抑止して質の高いプラズマ処理を実現できる装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、このような特性に鑑みてなされたものであり、プラズマに反応ガスを供給することにより化学反応を起こさせて基材表面をプラズマ処理するプラズマ処理装置において、円筒状の外周面を有し、その中心軸回りに回転駆動される回転電極と、この回転電極の外周面に隙間をおいて前記基材の表面を対向させ、かつ、その隙間を維持しながら当該基材を前記回転電極の回転中心軸を横切る方向に移送する基材移送手段と、前記回転電極に電圧を印加して前記隙間にプラズマを発生させるプラズマ生成手段と、前記反応ガスを収容し、前記回転電極の外周面のうち当該回転電極が前記基材の表面と対向する対向位置よりも当該回転電極の回転方向上流側の外周面の少なくとも一部を覆うように配置される覆い部材とを備え、この覆い部材は、その収容した反応ガスが前記回転電極の外周面に引き連れられて前記プラズマ生成手段により生成されるプラズマへ供給される位置であって、かつ、当該覆い部材と前記基材との間の距離が前記対向位置における回転電極と基材との間の距離よりも大きくなる位置に配置されているものである。
【0009】
この装置によれば、回転電極の外周面を覆うように配置された覆い部材の内部に収容された反応ガスが前記回転電極の外周面に引き連れられて当該回転電極と基材との間のプラズマ形成領域に送り込まれ、ここで化学反応を起こしてプラズマ処理に寄与する。
【0010】
従って、従来のように基材を反応容器内に密閉しなくてもプラズマへの反応ガスの供給が可能であり、当該反応容器を省略した場合には、ゲートバルブ等が不要になるとともに、基材の連続処理や、大面積基材・長尺基材の処理も容易に行うことができるという利点が得られる。
【0011】
そして、プラズマ処理は反応ガスが収容される覆い部材の外側で行われることとなり、しかも、当該覆い部材と前記基材との間の距離が前記対向位置における回転電極と基材との間の距離よりも大きくなるように覆い部材が配置されているため、前記プラズマ形成領域から回転電極回転方向上流側に逆流したガス(反応ガスの余剰分)は前記覆い部材と基材との間隙を通じて円滑に逃がされる。従って、この逆流ガスが前記覆い部材内の新しい反応ガスと混じることが有効に抑止され、これにより高品質のプラズマ処理が可能になる。
【0012】
特に、前記覆い部材と前記基材との間の距離が前記対向位置よりも前記回転電極の回転方向上流側における当該回転電極の外周面と前記覆い部材との間の距離よりも大きくなるように覆い部材を配置すれば、前記逆流ガスが前記覆い部材内の新しい反応ガスに混入するのをより確実に抑止できることになる。
【0013】
さらに、前記覆い部材と基材との間隙を通じて逃がされた逆流ガスを前記覆い部材の外側から回収するための逆流ガス回収部を備えれば、当該逆流ガスと新しい反応ガスとの混合をより有効に防ぐことができるとともに、逆流ガスが外部へ無秩序に放散されるのを抑止することが可能になる。
【0014】
なお、前記対向位置よりも前記回転電極の回転方向上流側の領域における前記基材と前記覆い部材との間の具体的な距離については、適宜設定すればよいが、前記逆流ガスをより円滑に逃がすには前記距離を前記対向位置における基材と回転電極外周面との距離の2倍以上とするのがよい。
【0015】
一方、前記覆い部材内の反応ガスが前記回転電極の外周面に引き連れられて前記プラズマに供給されるようにするためには、前記距離は当該基材と前記回転電極の回転中心軸との距離よりも小さいことが好ましい。
【0016】
前記覆い部材は、前記回転電極の回転方向上流側部分のみを覆うものでもよいが、前記基材移送手段が前記回転電極の下端部と前記基材とを対向させながら当該基材を移送するものである場合、前記覆い部材は前記回転電極の少なくとも上半部分の外周面を覆うように配置され、前記覆い部材の内側には、前記反応ガスが導入され、この反応ガスを前記回転電極が前記基材と対向する位置よりもその回転方向上流側の位置で当該回転電極の外周面に供給する反応ガス供給室と、前記回転電極が前記基材と対向する位置よりもその回転方向下流側の位置で当該回転電極の外周面に引き連れられたガスを受け入れ、このガスを特定箇所に導出するためのガス導出室とが形成されている構成とするのが、より好ましい。
【0017】
この構成によれば、覆い部材の内側に形成された反応ガス供給室内で回転電極外周面に供給された反応ガスがプラズマ形成領域に引き連れられて化学反応を起こした後、このプラズマ形成領域から回転電極外周面に引き連れられて前記覆い部材内のガス導出室に入り込み、特定個所に導出される。すなわち、プラズマ形成領域で発生したガスは前記ガス導出室を通じて特定領域に導かれることとなり、当該ガスが無秩序に外部に放散されることが抑止される。
【0018】
さらに、前記対向位置よりも前記回転電極の回転方向下流側の領域における前記基材と前記覆い部材との間の距離も当該対向位置における前記基材と前記回転電極との間の距離より大きくなるように当該覆い部材を配置し、この覆い部材と前記基材との間隙を通じて前記対向位置に向けて遮断用ガスを供給するための下流側遮断用ガス供給部を備えるようにすることにより、前記プラズマ形成領域で発生したガスの放散をより確実に抑止できる。
【0019】
具体的には、前記覆い部材及び基材搬送手段を囲むハウジングを備え、このハウジングに、前記下流側遮断用ガス供給部と、当該ハウジングの基材入口近傍に遮断用ガスを供給することにより前記覆い部材と基材との間隙から逃がされる逆流ガスをハウジング内方へ押し戻すための上流側遮断用ガス供給部が設けられている構成とするのが、より好ましい。この構成によれば、プラズマ形成領域に供給される反応ガスや同領域で発生したガスがハウジング外部に放散されるのを防ぎながら、当該ハウジング内で基材表面のプラズマ処理を効率良く行うことができる。
【0020】
より具体的に、前記下流側遮断用ガス供給部及び上流側遮断用ガス供給部としては、前記基材の移送路に対して前記覆い部材と同じ側から遮断用ガスを供給するようにハウジング内に形成された遮断用ガス供給通路を含むものが、好適である。この装置によれば、基本的に基材入口及び基材出口は開放した状態のまま基材を移送させることができ、簡単な構成でより効率の高いプラズマ処理ができる。
【0021】
さらに、前記ハウジングに、前記上流側遮断用ガス供給部により供給される上流側遮断用ガスと前記逆流ガスとの混合ガスを前記上流側遮断用ガス供給部と当該回転電極との間の位置からハウジング外部の特定個所へ導出するための混合ガス導出部が設けられている構成とすれば、当該混合ガスがハウジング内で充満するのを回避して前記上流側遮断用ガスや逆流ガスの良好な流れを促進することができる。
【0022】
この場合、前記下流側遮断用ガス供給部及び上流側遮断用ガス供給部は、前記基材の移送路に対して前記覆い部材と同じ側から遮断用ガスを供給するようにハウジング内に形成された遮断用ガス供給通路を含み、前記混合ガス導出部は、前記遮断用ガス供給通路と略平行に延び、当該遮断用ガス供給通路と前記覆い部材との間の位置に形成される混合ガス導出通路を含むものが、好適である。
【0023】
この構成によれば、基材移送路を確保しながら前記混合ガスの導出を円滑に行うことができる。
【0024】
【発明の実施の形態】
図1〜図3は、本発明の実施の形態にかかるプラズマ処理装置を示したものである。なお、この実施の形態では、板状の基材28の表面に薄膜を形成する処理を行う成膜装置について説明するが、本発明はこれに限らず、例えばエッチングなど、他のプラズマ処理を行う場合にも適用が可能である。
【0025】
図示の装置は、ハウジング10を有し、このハウジング10の底部に基材移送通路18が形成されるとともに、その上方に回転電極20を覆う覆い部材14が設けられている。
【0026】
覆い部材14は、回転電極20の外周面のうち下端部(基材28と対向する部分)を残してその他の外周面、すなわち上半部分の外周面を含む外周面を覆う形状を有し、その内部空間16が、前記回転電極20が前記基材28と対向する位置よりも当該回転電極20の回転方向上流側の反応ガス供給室16aと回転方向下流側のガス導出室16bとに区画されている。換言すれば、覆い部材14の底壁14bに開口14aが形成され、この開口14aから下向きに回転電極20の下端部のみが突出した状態となっている。
【0027】
従って、この実施の形態では、覆い部材14の底壁14bと基材28との間の距離D(図3)が、回転電極20と基材28とが対向する対向位置における当該回転電極20の外周面と基材28との間の距離dよりも大きくなる(図例では回転電極−基材間距離dの2倍以上の距離)となるように、覆い部材14が配置されている。
【0028】
さらに、この実施の形態では、前記底壁−基材間距離Dが、前記対向位置よりも前記回転電極回転方向上流側(図1では左側)における前記開口14aの隙間寸法(すなわち回転電極20の外周面と覆い部材14の底壁14bとの間の距離)よりも大きくなるように、覆い部材14が配置されている。
【0029】
なお、本発明において覆い部材14の具体的な材質は問わないが、電気絶縁を考慮すると、壁面を例えばステンレス鋼にする一方で基材28と対向する底面すなわち底壁14bの外側面を例えばセラミックスとするのがよい。
【0030】
前記覆い部材14の天壁には、前記反応ガス供給室16a内に反応ガスを供給するための反応ガス供給口15が設けられるとともに、当該天壁を貫通するようにガス導出管(ガス導出通路形成部)17が固定されている。このガス導出管17は、前記反応ガス供給室16aに面する側の壁が前記反応ガス供給室16aとガス導出室16bとを区画する隔壁17bとなっており、かつ、当該導出管17内にガス導出室16b側に連通する上下方向のガス導出通路17aを形成しており、このガス導出管17の下端部には案内部材とクリーニング部材とを兼ねるブラシローラ21が設けられている。このブラシローラ21は、例えば金属材料や高分子材料で形成されたブラシを有して回転電極20の外周面に軽く接触しながら同期回転し、当該回転電極20に引き連れられているガスを上方のガス導出通路17aに案内するとともに、回転電極20の外周面に付着した膜を掻き取る役目を行う。
【0031】
前記回転電極20の外周面は円筒状をなし、その回転中心軸22回りに回転駆動されるようになっている。具体的には、前記回転中心軸22にカップリング23を介して回転駆動用モータ24が連結されている。また、前記回転中心軸22には、前記回転電極20に電圧を印加して基材28との隙間にプラズマ42を発生させるための高周波電源(直流電源でもよい)26が接続されている。
【0032】
ハウジング10の下部の基材移送通路18は、前記回転中心軸22を横切る方向(図1では左右方向)に形成されており、この基材移送通路18に沿って基材移送手段である多数の搬送コロ30が設けられている。
【0033】
これらの搬送コロ30は、ハウジング10の側壁下部に形成された基材入口10aと基材出口10bとを結ぶ直線に沿って多数配列され、その上に載せられた基材28を基材入口10aからハウジング10内に侵入させて前記回転電極20の下端部に微小隙間をおいて対向させ、かつ、基材出口10bを通じてハウジング10の外部に導出するように構成されている。
【0034】
具体的には、各搬送コロ30に図3に示すようなプーリ32が連結され、このプーリ32がベルト34を介して図略の回転駆動手段に連結されており、この回転駆動手段による各搬送コロ30の回転駆動によって前記基材28の水平方向の搬送が行われる。
【0035】
さらに、前記搬送コロ30に混じって接地用ローラ40が設けられている。この接地用ローラ40は、前記回転電極20の下端部と対向する位置に配され、接地されている。また、この接地用ローラ40の両隣に位置する複数の搬送コロ30は連結部材36によって相互に連結され、この連結部材36は昇降装置38に連結されている。この昇降装置38は、前記連結部材36及びこれに連結される複数の搬送コロ30を一体に昇降させることにより、当該搬送コロ30により搬送される基材28と前記回転電極20の外周面との間隔を調整する。
【0036】
前記ハウジング10には、その基材入口10aの近傍及び基材出口10bの近傍で基材移送通路18に対して上から遮断用ガスを供給する上流側遮断用ガス供給部及び下流側遮断用ガス供給部が設けられている。
【0037】
具体的には、ハウジング10内において、前記覆い部材14よりも回転電極回転方向上流側(図1では左側)及び下流側(同図右側)に、それぞれ、上下方向に延びる上流側遮断用ガス供給通路44及び下流側遮断用ガス供給通路45が形成され、各供給通路44,45の上端に遮断用ガス供給口48,49がそれぞれ設けられており、各遮断用ガス供給口48,49には図略の遮断用ガス供給源が接続されている。また、上流側遮断用ガス供給通路44と覆い部材14との間の位置には上下方向に延びる混合混合ガス導出通路46が形成され、その上端にガス導出口50が設けられている。
【0038】
なお、本発明において「遮断用ガス」には、プラズマ領域での化学反応に影響を与えないガスを任意選択することが可能であり、一般には、窒素、ヘリウム、アルゴン、その他の不活性ガス等が好適である。
【0039】
前記ハウジング10よりも基材搬送方向上流側の位置には、処理すべき基材28を予熱するための予熱装置12が設けられている。この予熱装置12は、搬送コロ30により形成される基材移送通路を囲むヒータハウジング54と、このヒータハウジング54内に格納されるヒータ56とを備えている。そして、ヒータハウジング54に設けられた基材入口54aからヒータハウジング54内に搬入された基材28がヒータ56によって上側から加熱され、その後に前記ヒータハウジング54の基材出口54からそのまま前記ハウジング10の基材入口10aに移送されるようになっている。
【0040】
次に、この装置の作用を説明する。
【0041】
搬送コロ30に載せられた基材28は、まず予熱装置12を通過して予熱された後、ハウジング10の基材入口10aから同ハウジング10内に導入される。そして、接地用ローラ40に達した時点で確実に接地されるとともに、この接地された基材28と適当な電圧が印加された回転電極20との隙間にプラズマ42が生成される。
【0042】
一方、回転電極20が図1の矢印方向(同図反時計回り方向)に高速回転駆動されるとともに、これを覆う覆い部材14の反応ガス供給室16a内に反応ガス供給口15を通じて反応ガス等(例えばシリコン成膜を行う場合には反応ガスであるSiH4及びH2と不活性ガスであるHe)が流量制御器の制御の下、供給されている。
【0043】
この反応ガス等は、回転電極20と基材28との対向位置よりも回転電極20の回転方向上流側における当該回転電極20の外周面に供給され、同外周面に引き連れられて覆い部材14の開口14aからプラズマ42に供給され、ここで化学反応を起こして基材表面上に薄膜を形成する。そして、薄膜が形成された基材28は、そのまま基材出口10bを通じてハウジング10の外部に排出される。
【0044】
このとき、基材28は覆い部材14の下方を通過するだけでよく、従来のように反応容器内に基材28を閉じ込める必要がないので、ゲートバルブ等を要しない簡素な構成で、基材28の連続処理や、大面積基材・長尺基材の処理などが可能になる。
【0045】
ところで、前記回転電極20と基材28との対向位置における当該回転電極20と基材28との間の距離dはきわめて小さいので、当該対向位置に供給される反応ガスの多くがプラズマ形成領域から回転電極20の回転方向上流側(図1では左側)に逆流する可能性があり、この逆流ガスが新しい反応ガスと混じると成膜の品質を低下させるおそれがある。しかしながら、図示の装置では、当該回転電極20の回転方向上流側における覆い部材底壁14bと基材28との間の距離Dが、前記対向位置における回転電極20の外周面と基材28との距離dよりも大きくなる位置に覆い部材14が配置されているので、その底壁14bと基材28との間隙29A(図1)を通じて、前記プラズマ形成領域から回転電極回転方向上流側(図1では左側)に逆流した逆流ガスが覆い部材14の外側へ円滑に逃がされ、当該逆流ガスと新しい反応ガスとの混合が有効に抑止されることになる。
【0046】
特に、この実施の形態では、前記距離Dが、回転電極回転方向上流側における当該回転電極20と覆い部材14の底壁14bとの距離よりも大きくなっているので、前記逆流ガスが覆い部材14内の新しい反応ガスに混入することがより確実に抑止されることとなる。
【0047】
さらに、前記逆流ガスは、上流側遮断用ガス供給通路44を通じてハウジング10内に供給される上流側遮断用ガスによってハウジング内方に押し返され、当該逆流ガスがハウジング10の外部に無秩序に放散されることが防がれるとともに、当該逆流ガス及び遮断用ガスの混合ガスが混合ガス導出通路46を通じてハウジング10の外部の特定個所に回収されることにより、前記上流側遮断用ガス及び逆流ガスの円滑な流れが促進される。この混合ガス導出通路46や前記ガス導出通路17を通じてのガスの回収は、例えば排気用ポンプを駆動することにより行うことが可能である。
【0048】
一方、前記プラズマ42の生成領域で発生したガスは、そのまま回転電極20の外周面に引き連れられてガス導出室16b内に入り込み、同外周面からブラシローラ21によってガス導出通路17aに案内され、ハウジング10外部の特定部位(ガス処理部)に導出される。すなわち、プラズマ形成領域で発生したガスは秩序をもって特定箇所に回収される。
【0049】
特にこの実施の形態では、前記対向位置よりも回転電極回転方向下流側(図1では右側)における覆い部材底壁14bと基材28との間の距離Dが、前記対向位置における回転電極20の外周面と基材28との距離dよりも大きく確保され、かつ、その底壁−基材間に確保された間隙29B(図1)を通じて、下流側遮断用ガス供給通路45からハウジング10内に導入された下流側遮断用ガスが前記プラズマ42へ供給され、このプラズマ42で生成されたガスを基材出口10b側から内方へ押し込むため、当該プラズマ42で生成されたガスはより確実にガス導出室16bに導かれることとなり、当該ガスが基材出口10bを通じて無秩序にハウジング10の外部に放散されることがより有効に抑止される。
【0050】
なお、本発明は以上の実施の形態に限られず、例えば次のような形態をとることも可能である。
【0051】
・本発明において、遮断用ガスの供給の有無は反応ガスやプラズマ生成により生ずるガスの特性等に応じて適宜選択すればよい。反応ガスの特性によっては、覆い部材14の内部を反応ガス供給室とガス導出室とに区画せずに単純に同部材14内に反応ガスを適量収容しておくようにしてもプラズマ処理を行うことが可能であり、例えばハウジング10を設置しなくても、逆流ガスと新しい反応ガスとの混合の抑止効果や、回転電極20の回転方向下流側で既反応ガスを覆い部材14内に回収する効果を得ることは可能である。
【0052】
・前記覆い部材14は、回転電極20の外周面のうち少なくとも回転電極回転方向上流側の部分を覆うものであればよく、その覆う部位も適宜設定可能である。ただし、覆い部材14に収容された反応ガスが回転電極外周面に引き連れられてプラズマ形成領域に供給されるには、当該覆い部材14がある程度は基材28に近い位置にあることが必要であり、具体的には、覆い部材14の底壁14bから基材28までの距離Dが当該基材28から回転電極20の回転中心軸22までの距離よりも小さいことが好ましい。
【0053】
・前記実施形態では、回転電極20の回転の向きと基材28の移送の向きとが合致しているものを示したが、回転電極20の回転の向きと逆向きに基材28を移送する(図1では右向きに基材28を移送する)場合にも本発明の適用が可能である。この場合、回転電極の回転方向上流側は基材移送方向下流側となり、回転電極の回転方向下流側は基材移送方向上流側となる。
【0054】
【発明の効果】
以上のように本発明は、回転電極が基材の表面と対向する部分を残してその他の当該回転電極の部分を覆い部材で覆い、この覆い部材内に収容された反応ガスが前記回転電極の外周面に引き連れられて前記プラズマ生成手段により生成されるプラズマへ供給されるようにし、かつ、回転電極回転方向上流側における覆い部材と基材との距離を回転電極と基材との距離よりも大きくして当該覆い部材と基材との間にプラズマ形成領域から逆流するガスを逃がすための空間を確保したものであるので、当該逆流ガスが新しい反応ガスに混じるのを有効に抑止して質の高いプラズマ処理を実現できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかるプラズマ処理装置の断面正面図である。
【図2】前記プラズマ処理装置の断面平面図である。
【図3】前記プラズマ処理装置の側面図である。
【図4】従来のプラズマ処理装置における回転電極周囲のガスの流れを示す正面図である。
【符号の説明】
10 ハウジング
14 覆い部材
16a 反応ガス供給室
16b ガス導出室
17 ガス導出管(ガス導出通路形成部)
20 回転電極
24 回転駆動モータ
26 高周波電源(プラズマ生成手段)
28 基材
30 搬送コロ(基材移送手段)
44 上流側遮断用ガス供給通路
45 下流側遮断用ガス供給通路
46 混合ガス導出通路
D 覆い部材の底壁と基材との間の距離
d 回転電極の外周面と基材との間の距離
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing apparatus for forming a functional film such as microcrystalline silicon or a hard coating on a surface of a base material using a chemical reaction by plasma.
[0002]
[Prior art]
In recent years, as a means for performing processing such as film formation by plasma CVD, an electrode for plasma generation, which is disposed to face a substrate, has a substantially columnar shape and is rotated at a high speed. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-9-104985 (pages 10 to 11, FIGS. 3 to 5)
In the plasma processing apparatus disclosed in this document, a rotating electrode is accommodated in a reaction vessel whose inside is sealed, and a substrate transfer table is provided on a table provided at the bottom of the vessel. Then, the inside of the reaction vessel is evacuated with the base material set on the base material carrier, and high-frequency power (or DC power) is applied to the rotary electrode while rotating the rotary electrode, and the rotary electrode and the base are rotated. A plasma is generated between the reaction vessel and a reaction gas (SiH in the illustrated example). Four And H Two Gas and a diluent gas (for example, He) are introduced into the reaction vessel 10 so that these gases are entrained in the plasma between the rotating electrode and the base material by the rotation of the rotating electrode. The substrate is scanned in a predetermined direction together with the substrate carrier while the reaction gas causes a chemical reaction, so that a thin film is formed on the substrate surface.
Further, Patent Literature 2 discloses a configuration in which a reaction gas flow path forming member is disposed so as to surround the rotating electrode so as to reduce the amount of residual reaction gas in the chamber. A reaction gas introduction path and a reaction gas exhaust path are formed in the reaction gas flow path forming member, and the reaction gas flow path forming member is formed on the surface of the base material in order to increase the hermeticity of these flow paths. On the other hand, they are arranged as close as possible.
[Patent Document 2]
JP-A-2002-294362 (pages 3 to 5, FIGS. 1 to 7)
[0004]
[Problems to be solved by the invention]
FIG. 4 is a diagram showing a result of a simulation analysis of a gas flow in the chamber of Patent Document 1. As shown by an arrow A1 in the figure, the reaction gas near the outer peripheral surface of the rotary electrode 20 is entrained by the rotation of the rotary electrode 20 and is sent to the region where the plasma 42 is formed. Is extremely small (0.01 to 1 mm in the description of Patent Document 1), most of the supplied reaction gas is formed by the plasma formation as indicated by arrow A2 in FIG. The gas is ejected from the region in the direction opposite to the gas supply direction, and includes the gas once reaching the plasma forming region.
[0005]
The gas that has once reached the plasma formation region may partially react in the plasma formation region and change to another gas, and may be generated in the same gas in the vicinity of the plasma formation region. It is highly possible that particles are included. Therefore, such a gas flows backward from the plasma formation region to the upstream side in the rotation direction of the rotating electrode and mixes with the new reaction gas, thereby lowering the purity of the reaction gas and increasing the particle content in the reaction gas. As a result, the quality of the obtained thin film or the like may be deteriorated.
[0006]
Furthermore, the apparatus described in Patent Document 2 has a configuration in which the reaction gas supply path is substantially sealed by bringing the reaction gas flow path forming member as close as possible to the base material, so that the apparatus flows backward from the plasma formation area. The rate at which the gas mixes with the new reaction gas becomes very high, and the disadvantages mentioned above become even more serious.
[0007]
In view of such circumstances, an object of the present invention is to provide an apparatus capable of effectively preventing a gas flowing backward from a plasma forming region from being mixed with a new reaction gas and realizing high quality plasma processing.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of such characteristics, and in a plasma processing apparatus that performs a chemical reaction by supplying a reactive gas to plasma to perform a plasma process on a substrate surface, a cylindrical outer peripheral surface is formed. A rotating electrode that is driven to rotate about its central axis, and opposes the surface of the substrate with a gap on the outer peripheral surface of the rotating electrode, and rotates the substrate while maintaining the gap. Substrate transfer means for transferring in a direction transverse to the rotation center axis of the electrode, plasma generation means for applying a voltage to the rotation electrode to generate plasma in the gap, and accommodating the reaction gas; A cover member disposed so as to cover at least a part of the outer peripheral surface on the rotation direction upstream side of the rotary electrode from a facing position where the rotary electrode faces the surface of the base material, Is a position where the contained reaction gas is drawn to the plasma generated by the plasma generation means by being drawn by the outer peripheral surface of the rotary electrode, and a distance between the covering member and the base material. Are arranged at positions where the distance between the rotating electrode and the base material at the facing position is larger than the distance between the rotating electrode and the base material.
[0009]
According to this device, the reaction gas accommodated in the covering member arranged so as to cover the outer peripheral surface of the rotating electrode is drawn by the outer peripheral surface of the rotating electrode, and the plasma between the rotating electrode and the base material is drawn. It is sent to the formation area where it undergoes a chemical reaction and contributes to plasma processing.
[0010]
Therefore, it is possible to supply the reaction gas to the plasma without sealing the base material in the reaction vessel as in the related art, and when the reaction vessel is omitted, a gate valve and the like become unnecessary, and the base material becomes unnecessary. The advantage is that continuous processing of materials and processing of large-area substrates and long-sized substrates can be easily performed.
[0011]
Then, the plasma processing is performed outside the covering member in which the reaction gas is accommodated, and the distance between the covering member and the substrate is the distance between the rotating electrode and the substrate at the facing position. Since the covering member is arranged so as to be larger than the above, the gas (surplus of the reactive gas) flowing backward from the plasma forming region to the rotating electrode rotation direction upstream side smoothly flows through the gap between the covering member and the base material. Escaped. Therefore, the backflow gas is effectively prevented from being mixed with the new reaction gas in the covering member, thereby enabling high quality plasma processing.
[0012]
In particular, the distance between the covering member and the base material is greater than the distance between the outer peripheral surface of the rotating electrode and the covering member on the rotational direction upstream side of the rotating electrode from the facing position. By disposing the cover member, it is possible to more reliably prevent the backflow gas from being mixed into a new reaction gas in the cover member.
[0013]
Furthermore, if a backflow gas recovery unit for recovering the backflow gas released through the gap between the cover member and the base material from the outside of the cover member is provided, the mixing of the backflow gas with a new reaction gas can be further improved. It is possible to effectively prevent the backflow gas from being randomly dissipated to the outside while suppressing the backflow gas.
[0014]
The specific distance between the base material and the covering member in the region on the rotation direction upstream side of the rotating electrode from the facing position may be set as appropriate, but the backflow gas is more smoothly It is preferable that the distance is at least twice the distance between the base material and the outer peripheral surface of the rotating electrode at the facing position.
[0015]
On the other hand, in order for the reaction gas in the covering member to be drawn to the outer peripheral surface of the rotating electrode and supplied to the plasma, the distance is determined by a distance between the base material and the rotation center axis of the rotating electrode. It is preferably smaller than.
[0016]
The covering member may cover only the rotation-direction upstream portion of the rotary electrode, but the base material transferring means transfers the base material while facing the lower end portion of the rotary electrode and the base material. In the case, the covering member is disposed so as to cover an outer peripheral surface of at least an upper half portion of the rotating electrode, and inside the covering member, the reaction gas is introduced. A reaction gas supply chamber for supplying the outer peripheral surface of the rotary electrode at a position on the upstream side in the rotation direction from a position facing the base material, and a downstream side in the rotation direction of the rotation electrode from a position where the rotary electrode faces the base material; It is more preferable that a gas drawn by the outer peripheral surface of the rotary electrode be received at the position, and a gas lead-out chamber be formed to lead the gas to a specific location.
[0017]
According to this configuration, in the reaction gas supply chamber formed inside the covering member, the reaction gas supplied to the outer peripheral surface of the rotating electrode is attracted to the plasma formation region to cause a chemical reaction, and then the rotation gas is rotated from the plasma formation region. It is dragged by the electrode outer peripheral surface, enters the gas outlet chamber in the cover member, and is led out to a specific location. That is, the gas generated in the plasma formation region is guided to the specific region through the gas outlet chamber, and the gas is prevented from being randomly distributed to the outside.
[0018]
Further, the distance between the base material and the covering member in a region on the downstream side in the rotation direction of the rotating electrode from the facing position is also larger than the distance between the base material and the rotating electrode at the facing position. By disposing the covering member so as to include a downstream blocking gas supply unit for supplying a blocking gas toward the opposed position through a gap between the covering member and the base material, Dispersion of gas generated in the plasma formation region can be more reliably suppressed.
[0019]
Specifically, a housing surrounding the covering member and the base material transporting means is provided, and the housing is provided with the downstream side shutoff gas supply unit and a shutoff gas near the base material inlet of the housing. It is more preferable that an upstream-side shutoff gas supply unit for pushing backflow gas released from the gap between the covering member and the base material into the housing is provided. According to this configuration, it is possible to efficiently perform the plasma processing on the substrate surface in the housing while preventing the reaction gas supplied to the plasma formation region and the gas generated in the region from being diffused to the outside of the housing. it can.
[0020]
More specifically, the downstream-side shutoff gas supply unit and the upstream-side shutoff gas supply unit are provided in the housing so as to supply the shutoff gas from the same side as the covering member with respect to the transfer path of the base material. It is preferable to include a shut-off gas supply passage formed at the end. According to this apparatus, the base material can be transferred while the base material inlet and the base material outlet are basically kept open, and more efficient plasma processing can be performed with a simple configuration.
[0021]
Further, in the housing, a mixed gas of the upstream blocking gas supplied by the upstream blocking gas supply unit and the backflow gas is supplied from a position between the upstream blocking gas supply unit and the rotary electrode. If a configuration is provided in which a mixed gas deriving portion for deriving to a specific place outside the housing is provided, the mixed gas is prevented from being filled in the housing, and the upstream side shutoff gas and the backflow gas are prevented from being filled. Can promote flow.
[0022]
In this case, the downstream blocking gas supply unit and the upstream blocking gas supply unit are formed in the housing so as to supply the blocking gas to the transfer path of the base material from the same side as the covering member. The mixed gas deriving portion extends substantially parallel to the shutting gas supply passage, and is formed at a position between the shutting gas supply passage and the cover member. Those containing passages are preferred.
[0023]
According to this configuration, it is possible to smoothly discharge the mixed gas while securing the substrate transfer path.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show a plasma processing apparatus according to an embodiment of the present invention. In this embodiment, a film forming apparatus that performs a process of forming a thin film on the surface of a plate-shaped substrate 28 will be described. However, the present invention is not limited to this, and performs another plasma process such as etching. The case is also applicable.
[0025]
The illustrated apparatus has a housing 10, a base material transfer passage 18 is formed at the bottom of the housing 10, and a cover member 14 that covers the rotary electrode 20 is provided above the base material transfer passage 18.
[0026]
The covering member 14 has a shape that covers the other outer peripheral surface, that is, the outer peripheral surface including the outer peripheral surface of the upper half portion, except for the lower end portion (the portion facing the base material 28) of the outer peripheral surface of the rotating electrode 20, The internal space 16 is divided into a reaction gas supply chamber 16a on the upstream side in the rotation direction of the rotary electrode 20 and a gas outlet chamber 16b on the downstream side in the rotation direction from the position where the rotary electrode 20 faces the base material 28. ing. In other words, the opening 14a is formed in the bottom wall 14b of the cover member 14, and only the lower end of the rotating electrode 20 projects downward from the opening 14a.
[0027]
Therefore, in this embodiment, the distance D (FIG. 3) between the bottom wall 14b of the covering member 14 and the base material 28 is different from that of the rotary electrode 20 at the facing position where the rotating electrode 20 and the base material 28 face each other. The cover member 14 is arranged so as to be larger than the distance d between the outer peripheral surface and the base member 28 (in the illustrated example, the distance is twice or more the distance d between the rotating electrode and the base member).
[0028]
Furthermore, in this embodiment, the distance D between the bottom wall and the base material is such that the gap dimension of the opening 14a on the upstream side (the left side in FIG. 1) in the rotating electrode rotation direction from the facing position (that is, The cover member 14 is arranged so as to be larger than the distance between the outer peripheral surface and the bottom wall 14b of the cover member 14).
[0029]
In the present invention, the specific material of the covering member 14 is not limited. However, in consideration of electrical insulation, the wall surface is made of, for example, stainless steel while the bottom surface facing the base material 28, that is, the outer surface of the bottom wall 14b is made of, for example, ceramics. It is good to do.
[0030]
The top wall of the cover member 14 is provided with a reaction gas supply port 15 for supplying a reaction gas into the reaction gas supply chamber 16a, and a gas outlet pipe (gas outlet passage) penetrates the top wall. (Forming part) 17 is fixed. The gas outlet pipe 17 has a wall facing the reaction gas supply chamber 16a serving as a partition wall 17b for partitioning the reaction gas supply chamber 16a and the gas outlet chamber 16b. A vertical gas outlet passage 17a communicating with the gas outlet chamber 16b is formed, and a brush roller 21 serving as a guide member and a cleaning member is provided at the lower end of the gas outlet pipe 17. The brush roller 21 has a brush made of, for example, a metal material or a polymer material, and rotates synchronously while lightly contacting the outer peripheral surface of the rotating electrode 20, and moves the gas entrained by the rotating electrode 20 upward. It guides the gas to the gas outlet passage 17a and scrapes off the film adhering to the outer peripheral surface of the rotary electrode 20.
[0031]
The outer peripheral surface of the rotary electrode 20 has a cylindrical shape, and is driven to rotate around its rotation center axis 22. Specifically, a rotation drive motor 24 is connected to the rotation center shaft 22 via a coupling 23. Further, a high-frequency power supply (or a DC power supply) 26 for applying a voltage to the rotating electrode 20 to generate a plasma 42 in a gap with the base material 28 is connected to the rotation center shaft 22.
[0032]
The base material transfer passage 18 at the lower part of the housing 10 is formed in a direction crossing the rotation center axis 22 (in the left-right direction in FIG. 1). A transport roller 30 is provided.
[0033]
A large number of these transport rollers 30 are arranged along a straight line connecting the base material inlet 10a and the base material outlet 10b formed at the lower portion of the side wall of the housing 10, and the base material 28 placed thereon is moved to the base material inlet 10a. From the housing 10 to face the lower end of the rotary electrode 20 with a small gap therebetween, and to be led out of the housing 10 through the base material outlet 10b.
[0034]
Specifically, a pulley 32 as shown in FIG. 3 is connected to each transport roller 30, and this pulley 32 is connected to a rotation driving unit (not shown) via a belt 34, and each transport by the rotation driving unit is The rotation of the roller 30 causes the substrate 28 to be transported in the horizontal direction.
[0035]
Further, a grounding roller 40 is provided in addition to the transport roller 30. The grounding roller 40 is disposed at a position facing the lower end of the rotating electrode 20 and is grounded. The plurality of transport rollers 30 located on both sides of the ground roller 40 are connected to each other by a connecting member 36, and the connecting member 36 is connected to an elevating device 38. The elevating device 38 raises and lowers the connecting member 36 and the plurality of transport rollers 30 connected thereto integrally, so that the base material 28 transported by the transport rollers 30 and the outer peripheral surface of the rotary electrode 20 are moved. Adjust the spacing.
[0036]
The housing 10 has an upstream shutoff gas supply section and a downstream shutoff gas for supplying a shutoff gas from above to the base material transfer passage 18 near the base material inlet 10a and near the base material outlet 10b. A supply unit is provided.
[0037]
Specifically, in the housing 10, an upstream shutoff gas supply extending in the vertical direction is provided on the upstream side (left side in FIG. 1) and downstream side (right side in FIG. 1) of the rotating electrode with respect to the cover member 14. A passage 44 and a downstream shutoff gas supply passage 45 are formed, and shutoff gas supply ports 48, 49 are provided at the upper ends of the supply passages 44, 45, respectively. An unillustrated shutoff gas supply source is connected. In addition, a mixed gas outlet passage 46 extending vertically is formed at a position between the upstream blocking gas supply passage 44 and the cover member 14, and a gas outlet 50 is provided at an upper end thereof.
[0038]
In the present invention, as the “blocking gas”, a gas that does not affect the chemical reaction in the plasma region can be arbitrarily selected, and generally, nitrogen, helium, argon, other inert gas, or the like is used. Is preferred.
[0039]
A preheating device 12 for preheating the substrate 28 to be processed is provided at a position upstream of the housing 10 in the substrate transport direction. The preheating device 12 includes a heater housing 54 surrounding a base material transfer passage formed by the transport rollers 30, and a heater 56 stored in the heater housing 54. Then, the base material 28 carried into the heater housing 54 from the base material inlet 54 a provided in the heater housing 54 is heated from above by the heater 56, and then the housing 10 is directly passed through the base material outlet 54 of the heater housing 54. To the substrate inlet 10a.
[0040]
Next, the operation of this device will be described.
[0041]
The base material 28 placed on the transport roller 30 is first preheated by passing through the preheating device 12, and then introduced into the housing 10 from the base material inlet 10 a of the housing 10. Then, when it reaches the grounding roller 40, it is reliably grounded, and a plasma 42 is generated in a gap between the grounded substrate 28 and the rotating electrode 20 to which an appropriate voltage is applied.
[0042]
On the other hand, the rotating electrode 20 is driven to rotate at a high speed in the direction of the arrow in FIG. 1 (counterclockwise direction in FIG. 1), and the reaction gas or the like is supplied through the reaction gas supply port 15 into the reaction gas supply chamber 16a of the covering member 14 covering the same. (For example, when performing silicon film formation, SiH which is a reaction gas is used. Four And H Two And He) as an inert gas are supplied under the control of a flow controller.
[0043]
This reaction gas or the like is supplied to the outer peripheral surface of the rotary electrode 20 on the upstream side in the rotation direction of the rotary electrode 20 from the position where the rotary electrode 20 and the base member 28 face each other, and is dragged by the outer peripheral surface to form the cover member 14. The plasma is supplied from the opening 14a to the plasma 42 where a chemical reaction occurs to form a thin film on the surface of the base material. Then, the base material 28 on which the thin film is formed is discharged out of the housing 10 through the base material outlet 10b as it is.
[0044]
At this time, the base material 28 only needs to pass below the cover member 14, and it is not necessary to confine the base material 28 in the reaction vessel as in the related art. 28, a large area substrate, a long substrate, and the like.
[0045]
Incidentally, since the distance d between the rotating electrode 20 and the base material 28 at the position where the rotating electrode 20 and the base material 28 face each other is extremely small, most of the reaction gas supplied to the facing position is removed from the plasma forming region. There is a possibility that the gas flows backward in the rotation direction upstream side (the left side in FIG. 1) of the rotating electrode 20, and if the backflow gas is mixed with a new reaction gas, the quality of film formation may be deteriorated. However, in the illustrated device, the distance D between the cover member bottom wall 14b and the base material 28 on the upstream side in the rotation direction of the rotary electrode 20 is such that the distance between the outer peripheral surface of the rotary electrode 20 and the base material 28 at the opposed position is different. Since the cover member 14 is disposed at a position larger than the distance d, the cover member 14 is disposed on the upstream side in the rotating electrode rotation direction (FIG. 1) from the plasma forming region through a gap 29A (FIG. 1) between the bottom wall 14b and the base material 28. In this case, the backflow gas flowing backward (to the left) is smoothly released to the outside of the covering member 14, and the mixing of the backflow gas with the new reaction gas is effectively suppressed.
[0046]
In particular, in this embodiment, since the distance D is larger than the distance between the rotary electrode 20 and the bottom wall 14b of the cover member 14 on the upstream side in the rotary electrode rotation direction, the backflow gas is not covered by the cover member 14. Mixing into a new reaction gas in the inside is more reliably suppressed.
[0047]
Further, the backflow gas is pushed back inside the housing by the upstream blocking gas supplied into the housing 10 through the upstream blocking gas supply passage 44, and the backflow gas is randomly dissipated to the outside of the housing 10. And the mixed gas of the backflow gas and the blocking gas is collected at a specific location outside the housing 10 through the mixed gas outlet passage 46, so that the upstream blocking gas and the backflow gas can be smoothly mixed. Flow is promoted. The gas recovery through the mixed gas outlet passage 46 and the gas outlet passage 17 can be performed by, for example, driving an exhaust pump.
[0048]
On the other hand, the gas generated in the generation region of the plasma 42 is drawn as it is by the outer peripheral surface of the rotary electrode 20 and enters the gas outlet chamber 16b, and is guided from the outer peripheral surface by the brush roller 21 to the gas outlet passage 17a, and 10 to a specific site (gas processing unit) outside. That is, the gas generated in the plasma formation region is collected at a specific location in an orderly manner.
[0049]
In particular, in this embodiment, the distance D between the covering member bottom wall 14b and the base material 28 on the downstream side (the right side in FIG. 1) in the direction of rotation of the rotating electrode from the opposing position is equal to the distance of the rotating electrode 20 at the opposing position. Through the gap 29B (FIG. 1) secured between the bottom wall and the base material, a distance d between the outer peripheral surface and the base material 28 is ensured, and the gas is supplied from the downstream side shutoff gas supply passage 45 into the housing 10. The introduced downstream-side blocking gas is supplied to the plasma 42, and the gas generated by the plasma 42 is pushed inward from the base material outlet 10b side, so that the gas generated by the plasma 42 is more reliably a gas. Since the gas is led to the outlet chamber 16b, the gas is effectively prevented from being randomly distributed to the outside of the housing 10 through the base material outlet 10b.
[0050]
Note that the present invention is not limited to the above embodiment, and may take the following forms, for example.
[0051]
In the present invention, the presence or absence of the supply of the blocking gas may be appropriately selected according to the characteristics of the reaction gas or the gas generated by plasma generation. Depending on the characteristics of the reaction gas, the plasma processing is performed even if the inside of the covering member 14 is not divided into the reaction gas supply chamber and the gas outlet chamber, and the appropriate amount of the reaction gas is simply stored in the member 14. For example, even if the housing 10 is not installed, the effect of suppressing the mixing of the backflow gas and the new reaction gas can be prevented, and the already reacted gas can be collected in the covering member 14 on the downstream side in the rotation direction of the rotary electrode 20. It is possible to get the effect.
[0052]
The covering member 14 only needs to cover at least a portion of the outer peripheral surface of the rotating electrode 20 on the upstream side in the rotating electrode rotating direction, and the covering portion can be set as appropriate. However, in order for the reaction gas accommodated in the covering member 14 to be drawn to the outer peripheral surface of the rotating electrode and supplied to the plasma forming region, the covering member 14 needs to be at a position close to the base material 28 to some extent. Specifically, it is preferable that the distance D from the bottom wall 14b of the covering member 14 to the substrate 28 is smaller than the distance from the substrate 28 to the rotation center axis 22 of the rotating electrode 20.
[0053]
In the above-described embodiment, the rotation direction of the rotary electrode 20 and the transfer direction of the base material 28 match, but the base material 28 is transferred in a direction opposite to the rotation direction of the rotary electrode 20. The present invention is also applicable to the case where the substrate 28 is transferred rightward in FIG. In this case, the rotation electrode upstream in the rotation direction is downstream in the substrate transfer direction, and the rotation direction downstream in the rotation electrode is upstream in the substrate transfer direction.
[0054]
【The invention's effect】
As described above, in the present invention, the rotating electrode covers the other rotating electrode portion with the covering member except for the portion facing the surface of the base material, and the reaction gas accommodated in the covering member is the rotating electrode. It is supplied to the plasma generated by the plasma generation means by being dragged by the outer peripheral surface, and the distance between the covering member and the substrate on the upstream side in the rotating electrode rotation direction is larger than the distance between the rotating electrode and the substrate. Since the space is provided between the cover member and the base material to allow a gas flowing back from the plasma formation region to escape, the mixing of the backflow gas with a new reaction gas is effectively suppressed to improve the quality. This has the effect of realizing a plasma treatment with a high level.
[Brief description of the drawings]
FIG. 1 is a sectional front view of a plasma processing apparatus according to an embodiment of the present invention.
FIG. 2 is a sectional plan view of the plasma processing apparatus.
FIG. 3 is a side view of the plasma processing apparatus.
FIG. 4 is a front view showing a flow of gas around a rotating electrode in a conventional plasma processing apparatus.
[Explanation of symbols]
10 Housing
14 Covering member
16a Reaction gas supply chamber
16b Gas outlet room
17 Gas outlet pipe (gas outlet passage forming part)
20 rotating electrode
24 rotation drive motor
26 High frequency power supply (plasma generating means)
28 Substrate
30 transport rollers (substrate transfer means)
44 Upstream shutoff gas supply passage
45 Downstream cutoff gas supply passage
46 Mixed gas outlet passage
D Distance between bottom wall of covering member and base material
d Distance between outer peripheral surface of rotating electrode and substrate

Claims (12)

プラズマに反応ガスを供給することにより化学反応を起こさせて基材表面をプラズマ処理するプラズマ処理装置において、円筒状の外周面を有し、その中心軸回りに回転駆動される回転電極と、この回転電極の外周面に隙間をおいて前記基材の表面を対向させ、かつ、その隙間を維持しながら当該基材を前記回転電極の回転中心軸を横切る方向に移送する基材移送手段と、前記回転電極に電圧を印加して前記隙間にプラズマを発生させるプラズマ生成手段と、前記反応ガスを収容し、前記回転電極の外周面のうち当該回転電極が前記基材の表面と対向する対向位置よりも当該回転電極の回転方向上流側の外周面の少なくとも一部を覆うように配置される覆い部材とを備え、この覆い部材は、その収容した反応ガスが前記回転電極の外周面に引き連れられて前記プラズマ生成手段により生成されるプラズマへ供給される位置であって、かつ、当該覆い部材と前記基材との間の距離が前記対向位置における回転電極と基材との間の距離よりも大きくなる位置に配置されていることを特徴とするプラズマ処理装置。In a plasma processing apparatus for performing a chemical reaction by supplying a reaction gas to plasma to perform a plasma treatment on a substrate surface, a rotating electrode having a cylindrical outer peripheral surface and driven to rotate around a central axis thereof, A substrate transfer means for transferring the base material in a direction transverse to the rotation center axis of the rotary electrode , with the surface of the base material opposed to the outer circumferential surface of the rotary electrode with a gap therebetween, and maintaining the gap; Plasma generating means for applying a voltage to the rotating electrode to generate plasma in the gap; and a facing position in which the reaction gas is contained and the rotating electrode faces the surface of the base material on the outer peripheral surface of the rotating electrode. And a cover member arranged to cover at least a part of the outer peripheral surface of the rotary electrode on the upstream side in the rotation direction. The cover member draws the contained reaction gas to the outer peripheral surface of the rotary electrode. A position is supplied to the produced by him is in the plasma generation means plasma, and the distance between the distance between the said cover member and the substrate is the rotating electrode and the substrate at the opposing position A plasma processing apparatus, wherein the plasma processing apparatus is disposed at a position larger than the above . 請求項1記載のプラズマ処理装置において、前記覆い部材は、この覆い部材と前記基材との間の距離が前記対向位置よりも前記回転電極の回転方向上流側における当該回転電極の外周面と前記覆い部材との間の距離よりも大きくなる位置に配置されていることを特徴とするプラズマ処理装置。2. The plasma processing apparatus according to claim 1, wherein the covering member is configured such that a distance between the covering member and the base material is an outer peripheral surface of the rotating electrode on a rotation direction upstream side of the rotating electrode from the opposing position and the outer peripheral surface of the rotating electrode. 3. A plasma processing apparatus, wherein the plasma processing apparatus is arranged at a position larger than a distance between the cover member and the cover member. 請求項1または2記載のプラズマ処理装置において、前記プラズマの形成領域から逆流して前記覆い部材と基材との間隙を通じて逃がされた逆流ガスを前記覆い部材の外側から回収するための逆流ガス回収部を備えたことを特徴とするプラズマ処理装置。3. The backflow gas according to claim 1, wherein the backflow gas that flows backward from the plasma formation region and escapes through the gap between the cover member and the base material is collected from outside the cover member. 4. A plasma processing apparatus comprising a recovery unit. 請求項1〜3のいずれかに記載のプラズマ処理装置において、前記対向位置よりも前記回転電極の回転方向上流側の領域における前記基材と前記覆い部材との間の距離が当該基材と前記回転電極の回転中心軸との距離よりも小さくなる位置に当該覆い部材が配置されていることを特徴とするプラズマ処理装置。The plasma processing apparatus according to any one of claims 1 to 3, wherein a distance between the base material and the covering member in a region on a rotation direction upstream side of the rotary electrode from the facing position is the base material and the cover member. The plasma processing apparatus, wherein the cover member is disposed at a position smaller than a distance from a rotation center axis of the rotating electrode. 請求項4記載のプラズマ処理装置において、前記基材移送手段は前記回転電極の下端部と前記基材とを対向させながら当該基材を移送するものであり、前記覆い部材は前記回転電極の少なくとも上半部分の外周面を覆うように配置され、この覆い部材の内側には、前記反応ガスを収容してこの反応ガスを前記対向位置よりも前記回転電極の回転方向上流側の位置で当該回転電極の外周面に供給する反応ガス供給室と、前記回転電極が前記基材と対向する位置よりもその回転方向下流側の位置で当該回転電極の外周面に引き連れられたガスを受け入れ、このガスを特定箇所に導出するためのガス導出室とが形成されていることを特徴とするプラズマ処理装置。 5. The plasma processing apparatus according to claim 4, wherein the base material transfer unit transfers the base material while making a lower end portion of the rotary electrode face the base material, and the cover member includes at least the rotary electrode. The reaction gas is accommodated inside the covering member so as to cover the outer peripheral surface of the upper half portion, and the reaction gas is rotated at a position upstream of the counter electrode in the rotation direction of the rotating electrode. A reaction gas supply chamber for supplying to the outer peripheral surface of the electrode, and a gas drawn by the outer peripheral surface of the rotating electrode at a position downstream of the rotating electrode in the rotational direction from a position facing the substrate, and And a gas deriving chamber for deriving the gas to a specific location. 請求項5記載のプラズマ処理装置において、前記ガス導出室内に連通するガス導出通路を形成するガス導出通路形成部と、前記ガス導出室内で前記回転電極の外周面近傍の位置に設けられ、当該回転電極の外周面に引き連れられたガスを前記ガス導出通路に案内する案内部材とを備えたことを特徴とするプラズマ処理装置。6. The plasma processing apparatus according to claim 5, wherein a gas lead-out passage forming part that forms a gas lead-out passage communicating with the gas lead-out chamber is provided at a position near an outer peripheral surface of the rotating electrode in the gas lead-out chamber, and A plasma processing apparatus, comprising: a guide member for guiding a gas entrained on an outer peripheral surface of an electrode to the gas outlet passage. 請求項6記載のプラズマ処理装置において、前記案内部材は、前記回転電極の外周面に付着した膜を除去するクリーニング部材を兼ねることを特徴とするプラズマ処理装置。7. The plasma processing apparatus according to claim 6, wherein the guide member also serves as a cleaning member for removing a film attached to an outer peripheral surface of the rotating electrode. 請求項5〜7のいずれかに記載のプラズマ処理装置において、前記対向位置よりも前記回転電極の回転方向下流側の領域における前記基材と前記覆い部材との間の距離が当該対向位置における前記基材と前記回転電極との間の距離よりも大きくなるように当該覆い部材が配置されるとともに、この覆い部材と前記基材との間隙を通じて前記対向位置に向けて遮断用ガスを供給するための下流側遮断用ガス供給部を備えたことを特徴とするプラズマ処理装置。8. The plasma processing apparatus according to claim 5, wherein a distance between the base member and the covering member in a region downstream of the opposing position in the rotation direction of the rotary electrode is the distance at the opposing position. 9. The covering member is arranged so as to be larger than the distance between the base material and the rotating electrode, and a blocking gas is supplied toward the facing position through a gap between the covering member and the base material. A plasma processing apparatus comprising: a downstream-side shutoff gas supply unit. 請求項8記載のプラズマ処理装置において、前記覆い部材及び基材搬送手段を囲むハウジングとを備え、このハウジングに、前記下流側遮断用ガス供給部と、当該ハウジングの基材入口近傍に遮断用ガスを供給することにより前記覆い部材と基材との間隙から逃がされる逆流ガスをハウジング内方へ押し戻すための上流側遮断用ガス供給部が設けられていることを特徴とするプラズマ処理装置。9. The plasma processing apparatus according to claim 8, further comprising: a housing surrounding the covering member and the base material transporting means, wherein the housing includes a downstream side gas supply section for shutting off the gas, and a shutoff gas near the base material inlet of the housing. An upstream-side shutoff gas supply unit for pushing back the backflow gas, which is released from the gap between the covering member and the base material by supplying the backflow gas into the housing, is provided. 請求項9記載のプラズマ処理装置において、前記下流側遮断用ガス供給部及び上流側遮断用ガス供給部は、前記基材の移送路に対して前記覆い部材と同じ側から遮断用ガスを供給するようにハウジング内に形成された遮断用ガス供給通路を含むことを特徴とするプラズマ処理装置。10. The plasma processing apparatus according to claim 9, wherein the downstream-side gas supply unit and the upstream-side gas supply unit supply the gas to the transfer path of the base material from the same side as the covering member. A plasma processing apparatus including a shutoff gas supply passage formed in a housing. 請求項10記載のプラズマ処理装置において、前記ハウジングに、前記上流側遮断用ガス供給部により供給される上流側遮断用ガスと前記逆流ガスとの混合ガスを前記上流側遮断用ガス供給部と当該回転電極との間の位置からハウジング外部の特定個所へ導出するための混合ガス導出部が設けられていることを特徴とするプラズマ処理装置。11. The plasma processing apparatus according to claim 10, wherein a mixed gas of an upstream shut-off gas and the backflow gas supplied by the upstream shut-off gas supply unit is supplied to the housing by the upstream shut-off gas supply unit. A plasma processing apparatus, comprising: a mixed gas deriving unit for deriving a gas mixture from a position between the rotating electrode and a specific location outside the housing. 請求項11記載のプラズマ処理装置において、前記遮断用ガス供給部は、前記基材の移送路に対して前記覆い部材と同じ側から遮断用ガスを供給するようにハウジング内に形成された遮断用ガス供給通路を含み、前記混合ガス導出部は、前記遮断用ガス供給通路と略平行に延び、当該遮断用ガス供給通路と前記覆い部材との間の位置に形成される混合ガス導出通路を含むことを特徴とするプラズマ処理装置。12. The plasma processing apparatus according to claim 11, wherein the shut-off gas supply unit is formed in a housing so as to supply the shut-off gas from the same side as the covering member with respect to the transfer path of the base material. A gas supply passage, wherein the mixed gas outlet includes a mixed gas outlet that extends substantially parallel to the shutoff gas supply passage and is formed at a position between the shutoff gas supply passage and the cover member. A plasma processing apparatus characterized by the above-mentioned.
JP2002376824A 2002-12-26 2002-12-26 Plasma processing equipment Expired - Fee Related JP3984540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376824A JP3984540B2 (en) 2002-12-26 2002-12-26 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376824A JP3984540B2 (en) 2002-12-26 2002-12-26 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2004204323A true JP2004204323A (en) 2004-07-22
JP3984540B2 JP3984540B2 (en) 2007-10-03

Family

ID=32814181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376824A Expired - Fee Related JP3984540B2 (en) 2002-12-26 2002-12-26 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3984540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229557A (en) * 2003-10-29 2010-10-14 Kobe Steel Ltd Surface treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229557A (en) * 2003-10-29 2010-10-14 Kobe Steel Ltd Surface treatment equipment

Also Published As

Publication number Publication date
JP3984540B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP5777615B2 (en) Flow control mechanism of CVD chamber
KR101624352B1 (en) Gas injector and film forming apparatus
JP5857896B2 (en) Method of operating film forming apparatus and film forming apparatus
KR101531084B1 (en) Film forming apparatus
KR101575395B1 (en) Method for reducing particles and method for film forming
EP1638139A1 (en) Plasma processing device
TW201619430A (en) Atomic layer deposition chamber with thermal lid
JP2001520321A (en) Lid assembly for process chamber using asymmetric flow geometry
WO2005124845A1 (en) Substrate processing equipment and semiconductor device manufacturing method
KR20140118829A (en) Film deposition apparatus
US10043639B2 (en) Substrate processing apparatus and substrate processing method
KR102098416B1 (en) Split pumping method, apparatus, and system
US10151034B2 (en) Substrate processing method including supplying a fluorine-containing gas on a surface of a substrate
TWI602214B (en) Substrate processing apparatus, method of manufacturing semiconductor device, program, and recording medium
TW201720948A (en) Substrate processing apparatus
JPH10330944A (en) Substrate treating device
TWI733809B (en) Film forming device
US20110268891A1 (en) Gas delivery device
TWI689614B (en) Film forming method
JP3824302B2 (en) Plasma processing equipment
KR101990667B1 (en) Film formation device
JP2004006551A (en) Device and method for treating substrate
JP2004204323A (en) Plasma processing apparatus
JP5405403B2 (en) Surface treatment equipment
JP6809304B2 (en) Film deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees