JP2004201420A - Disk-shaped eccentric rotor and flat coreless vibrating motor equipped with same - Google Patents

Disk-shaped eccentric rotor and flat coreless vibrating motor equipped with same Download PDF

Info

Publication number
JP2004201420A
JP2004201420A JP2002367539A JP2002367539A JP2004201420A JP 2004201420 A JP2004201420 A JP 2004201420A JP 2002367539 A JP2002367539 A JP 2002367539A JP 2002367539 A JP2002367539 A JP 2002367539A JP 2004201420 A JP2004201420 A JP 2004201420A
Authority
JP
Japan
Prior art keywords
air
core armature
coil
winding
eccentric rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002367539A
Other languages
Japanese (ja)
Other versions
JP3581706B2 (en
Inventor
Tadao Yamaguchi
忠男 山口
Masahiro Takagi
正弘 高城
Satoru Shimosegawa
悟 下瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2002367539A priority Critical patent/JP3581706B2/en
Priority to KR1020030027105A priority patent/KR100935509B1/en
Priority to CNB03124064XA priority patent/CN100452621C/en
Publication of JP2004201420A publication Critical patent/JP2004201420A/en
Application granted granted Critical
Publication of JP3581706B2 publication Critical patent/JP3581706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disk-shaped eccentric rotor reduced in the size of the rotor itself, facilitated in actuating by using three winding-type air-core armature coils each capable of taking a large number of windings, and secured in vibration quantity by using an eccentric member, and to provide a flat coreless vibrating motor equipped with the rotor. <P>SOLUTION: In the flat coreless vibrating motor; an axis penetration hole is formed at the center of a commutator base material 9, nine commutator segment patterns S1... are print-formed on a first surface outside the radial direction of the axis penetration hole, conductors that short-circuit every three commutator segment patterns are print-formed on the first surface, a printing air-core armature coil Rb1 is arranged on the first surface, the first, second and third winding air-core armature coils Ra, Rb and Rc are placed on a second surface at an arrangement opening angle of 80°, and the eccentric member W is arranged on the side opposite to radial direction of the second winding-type air-core armature coil so as to be accommodated in thicknesses of the winding air-core armature coils. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、移動体通信機器のサイレントコール手段などに用いられる薄型の偏平コアレス振動モータの改良に係り、円盤形偏心ロータの改良およびそのロータを搭載する厚さが2ミリ程度の薄型の偏平コアレス振動モータに関する。
【0002】
【従来の技術】
移動体通信機器の小型薄型化志向に伴い、移動体通信機器に搭載される部材も小型薄型化の要求がつよい。
たとえば、最近では、扁平化の要求は極めて強いものとなり、偏心ロータも厚みが極限まで追い込まれ、モータのサイズも直径10mm、厚みも2mm程度まで要求される。
このような扁平型振動モータの先行技術としては、3個の空心電機子コイルを片側に偏在させるようにしたもの(特許文献1参照)か、3個の等分配置した空心電機子コイルのうち1個を小さくしてアンバランスを発生するものがある。(特許文献2参照)
しかしながら、前述のように偏心ロータの厚みが極限まで追い込まれるようになると、ロータ自体、特に空心電機子コイルだけでアンバランスにしたものでは振動量が少なく、実用的にはタングステン等の高比重ウエイトを補助的に空心電機子コイル間に付加させる構成にする必要がある。(特許文献3参照)
さらに、空心電機子コイルを配置しない部分に高比重ウエイトを付加させる構成の例として、本願出願人による出願がある。(特許文献5および6参照)
また、移動体通信機器のサイレントコール手段の一つに扁平型振動モータでは、機器側の印刷配線板に両面粘着剤などを介して直接載置するため、取り付け面は平坦が要求され、ブラシに電力を供給する給電端子はモータの側周部に導出されるようになっている。
【0003】
このような扁平型振動モータは、軸方向界磁型リング状マグネットで駆動されるので、このマグネットの内径部分に配されたブラシに電力を供給する給電構造に工夫が必要である。このため、ブラシに電力を供給する給電構造前記マグネットと、このマグネットを載置したハウジングの一部であるブラケットとの間から導出させる必要がある。
また、このような扁平型振動モータは、薄型化のためにブラケットにブラシベースの形状に合わせてプレス加工によって凹所を形成し、この凹所にブラシベースを埋め込むことにより、ブラスベースの厚みを無視できるようにしたものがある。(特許文献4参照)
【0004】
【特許文献1】米国特許5036239公報
【特許文献2】特開平2−17853号公報
【特許文献3】特開2000−224805号公報
【特許文献4】特開平10−262352号公報
【特許文献5】特開2002−119915
【特許文献6】特開2002−119914
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献3のものは、単相のためロータの電機子コイルの位置決めが必要で、ロータ自体を薄型にできない。
また、薄型を目的とした特許文献5、6のような構成は、空心電機子コイルの配置位置が配置開角120度で3相ながら、一つの巻線型空心電機子コイルを欠相させて2個以下で構成してあるので、トルクリップルが激しくなる傾向にある。すなわち、ロータの停止位置によっては起動トルクが小となる位置が発生するため最小の起動トルクを高く設定することが必要となる。そのため径方向が大型なものには好適であるが、特に径方向が小形なものではコイルも小さいものとなり起動に要する電圧が大となってしまう。
また、特許文献4のようにハウジングをプレス加工で押し潰して凹所を形成するのは、ブラケットの厚みが必要であり、このため、従来の技術では厚さが2.5mm程度が限界であった。
そこで、この発明は、偏心ロータを構成する空心電機子コイルの構成、配置構成に工夫を加え、有効導体数を確保することによって起動を容易にさせ、小型かつ薄くしながらも振動を確保でき、ハウジングにも工夫を加え、小径でありながらモータの厚みを2mm程度にできるようにしたものである。
【0006】
【課題を解決するための手段】
上記課題の基本的な解決は、請求項1に示す発明のように、第1、第2の面を有する印刷配線整流子基材の中心に軸挿通孔が設けられると共に、第1面で前記軸挿通孔の半径方向外方に9個の整流子セグメントパターンが印刷形成され、これらの整流子セグメントパターンを3個目毎にショートする導体が印刷形成され、第2の面に第1,第2および第3の巻線空心電機子コイルが約80度の配置開角で載置され、前記第2の巻線型空心電機子コイルの径方向反対側にこれらの巻線空心電機子コイルの厚み内に収まるように偏心部材が配されたもので達成できる。
このようにすれば、ロータ自体が薄型にでき、巻数が多く取れる3個の巻線型空心電機子コイルによって起動が容易となり、偏心部材で振動量を確保できる。
【0007】
具体的には、請求項2、3に示す発明のように、印刷空心電機子コイルが前記第1、第2のいずれかの少なくとも一方の面に形成され、前記いずれか少なくとも1個の巻線空心電機子コイルと直列に接続されているものにするか、前記印刷空心電機子コイルは前記第2の巻線空心電機子コイルと直列に接続され、平面視で互いに重畳しないように3個形成されており、前記各巻線型空心電機子コイルと平面視で少なくとも一部が重畳しているものにするのがよい。
このようにすれば、有効導体数が多くなるのでさらに起動が容易にできる。
さらに、請求項4に示す発明のように、前記第2の巻線空心コイルは第1、第3の巻線空心コイルに対して軽量化されたものにするのがよい。
このようにすれば、第2の空心電機子コイルの軽量化によって重心がより反対側に移動するので、偏心量を大にできる。
請求項5、6に示す発明のように、前記偏心部材は比重15以上のタングステン合金を含むものにしたり、前記偏心部材はタングステン合金をブロックあるいは粒状にして樹脂で全体の比重が10以上となるように巻線型空心電機子コイルと共に一体成形されたものにするのがよい。
このようにすれば、重心の位置が大きく偏心するので、振動量を大にできる。
【0008】
この偏心ロータを使用して薄型の偏平コアレス振動モータにするには、請求項7、8に示すように、前記請求項1乃至6のいずれか1項に記載の円盤形偏心ロータと、この円盤形偏心ロータが軸を介して格納されるケースとブラケットからなるハウジングと、この偏心ロータに空隙を介して磁力を与えるためにNS交互に6極に磁化され、ハウジングの一部に配された扁平なマグネットと、この扁平なマグネットの内径部で基端がブラシベースに配され、先端が前記整流子セグメントを介して前記空心電機子コイル群に摺接開角180度で摺接することによって電力を供給するブラシとを備えたものにしたり、前記軸は少なくとも一端が前記ハウジングに固定されると共に、このハウジングを構成するケースの開口部にブラケットが組み付けられ、このハウジングは厚みが0.2mm以下で構成されると共に、前記ブラシベースはフレキシブルで接着層を含めた厚みが0.18mm以下で構成され、前記ハウジングはマグネットが配される部分に透孔が設けられ、この透孔を通って前記フレキシブルベースの一部がハウジング側方に導出されているにものにすれば達成できる。
このようにした偏平コアレス振動モータは、薄型ながらも振動量が確保でき、軸径がたとえば、0.5ミリ程度にものでも、確実に保持でき、落下など衝撃がロータに加わっても軸の変形が防止でき、たとえばブラケットの厚みを0.15〜0.2ミリしたものでも潰すような無理な手段が不要となるので、薄型化に対してフレキシブルブラシベースの厚みを考慮しなくて済み、2mm厚のモータにすることができる。
【0009】
【発明の実施の形態】
次に、この発明の実施の形態の図面を説明する。
図1は、この発明の第1の実施の形態の偏心ロータを備えた扁平コアレス振動モータの断面図である。
図2は、図1の給電構造の特徴を示す底面図である。
図3は、図1の偏心ロータを構成する整流子基材のセグメント側から見た平面図である。
図4は、図3を反セグメント側から見た平面図である。
図5は、図1の偏心ロータの平面図である。
図6は、図1のモータの回転原理説明図である。
図7は、偏心ロータの変形例の平面図である
【0010】
以下、上記各図面に基づく実施の形態を説明する。
図1は、厚み2mm程度に構成した薄型の偏平コアレス振動モータを示し、0.15mmの薄い磁性ステンレス板を絞り加工により形成したケース1と、このケースの開口部にレーザ溶接Yで取り付けた0.2mm程度のブラケット2でハウジングHが構成され、内部には、前記ブラケット2の中心に直径0.5mm程度の軸3が圧入固定され、この軸3の半径方向外方に6極の薄いリング状マグネット4が載置されている。
ここで軸3の基端3aはブラケット2に対し圧入の代わりに、または本例のように圧入後、レーザ溶接Yしてもよい。
軸3には、焼結含油軸受Bと、樹脂によって形成される軸受け部B1により厚み0.6mm程度の偏心ロータRが回転自在に装着され、軸方向空隙を介して前記リング状マグネット4に臨ませている。
ここでは、偏心ロータRは、後述の図3のA−A線切断断面で表されている。
【0011】
ブラケット2には、図2に示すように、ちょうどマグネット4の載置部の一部に透孔2aが設けられている。ブラシ6、7を接触角180度となるよう植設したフレキシブルベース8は、前記ブラシを植設したパターン6a、7aを半径方向へ延在させてこの透孔2aを通して前記ケース1の側周に導出される。したがって、フレキシブルブラシベース8をマグネット4とブラケットの間から外方に導出するに当たって、この0.15mm程度の厚みを有するフレキシブルベース8の導出空間を容易に確保できることになる。ここで前記フレキシブルベース8は所定の面に接着剤が付着されていてブラケット、マグネットに接着で固定するのがよい。
前記フレキシブルベース8の給電電極部はブラケット2より突き出された舌片2bの端部で折り返され、3方向に半田電極がむき出されて容易に機器側の印刷配線板に半田結線できるようになっている。
一方ハウジングの他部を構成するケース1には、中央に軸3の他端3bが装着される浅いバーリング状透孔1aが配され、この透孔1aの周囲の突部にポリイミドフイルムPを配着し、このポリイミドフイルムPを介して前記偏心ロータR軸受Bの上面を前記一対のブラシ6、7の押接力によって摺接させている。
一対のブラシ6、7は接触角180度でロータを傾かないよう押圧し、ロータ3は常時ケース1側に付勢され、ポリイミドフイルムPで回転自在に押さえられるので、ケース1側に移動して当たるおそれがなく、空隙を常に一定にして回転位置がばらつくこともなく安定して回転支承させることができる。ここで、前記軸3の他端は前記ケースに前記バーリング状透孔1aの部分でレーザ溶接Yされている。
また、ケース1とブラケット2はレーザ溶接接合されているので、薄手の部材でも変形が起きにくく、前記軸3は前記偏心ロータの落下などの衝撃が加わっても透孔から外れてしまうおそれはない。
【0012】
偏心ロータRを構成する整流子基材9は、図3に示すように厚み0.06mm程で表面に薄く粘着剤を塗布した薄いフイルム状フレキシブル印刷配線板で、直径が9.3mm程度で第1、第2の両面を有する印刷配線板で構成されている。
整流子基材9には、図3に示すように、中心に軸挿通孔11を有し、第1面側において、この軸挿通孔11の周囲に等間隔で9個の整流子セグメントパターンS1〜S9が印刷形成されて平板コミュテータ5を構成している。それぞれの整流子セグメントパターンS1〜S9は、内側導体D3やスルーホールH1〜H7を介したパターンにより3個毎にショートさせている。
この整流子セグメントパターンS1〜S9の外方には、有効導体部分の開角がマグネット4の磁極開角とほぼ等しい約60度で構成された3個の印刷配線型空心電機子コイルRb1A、Rb2AおよびRb3A(以下印刷コイルRb1A、Rb2AおよびRb3A)が配置角約120度で等間隔に印刷形成されている。
また、図4にも示すように、フレキシブル印刷配線板の第2面には、第一面に形成した印刷コイルRb1AおよびRb3Aの反対面にあたる位置に2個の印刷配線型空心コイルRb1B、Rb3B(以下印刷コイルRb1B、Rb3B)が印刷形成されている。この印刷コイルRb1B、Rb3Bは各内径部に設けられたスルーホールH8、H9およびH10によりそれぞれ印刷コイルRb1A、Rb3Aと直列に接続され、第1面から第2面に亘ってそれぞれひとつの空心コイルRb1、Rb3を形成している。
【0013】
ここで、印刷コイルRb1Bは後述の多層巻線型空心電機子コイルRa、Rcの巻先端末を接続する端末結線端子T1、T2およびT3やパターンP4を設けるため開角がやや狭められている。また、印刷コイルRb2Aに対応する第2面の印刷配線型空心電機子コイルは端末結線端子T4を形成する都合上、接続だけのパターンP4にしてコイル部分の形成は省いてあるが、配置に余裕がある場合他のコイルと同様印刷形成して印刷配線電機子コイルRb2Bとしても良い。
ここで、空心コイルRb1、Rb3は、印刷コイルRb1AとRb1Bを、またRb3AとRb3Bとを直列に接続して形成している。
図中12は、火花消去用として隣り合ったセグメント同士C6、C7およびC8間に挿入されたカーボン印刷抵抗であり、T1、T2およびT3は後述の巻線型空心電機子コイルの端末結線パターンである。
この整流子基材9を偏心ロータRとして構成するには、さらに図5に示すように、第2面に配置角が約80度で有効導体部分がマグネット4の磁極の幅の開角にほぼ等しく60度になるようにした3個の多層巻線型空心電機子コイルRa、Rb及びRc(以下巻線コイルRa、RbおよびRc)を隣接して載置し、巻線コイルRbの径方向反対側に銅タングステン焼結合金で比重18程度の平面視で拡開した扇形の偏心部材Wを配し固定する。固定の方法としては、樹脂で一体成形する方法や、接着剤で固定する等種々の方法がとられる。
また、偏心部材Wとしてタングステンあるいはそれ以外の金属をブロック状、粒状あるいは粉状にしたものを樹脂に混入し、射出成形によりコイルや印刷基板と一体に成形したり、その樹脂で成形された扇型の錘を、やはり樹脂で一体に固定したり、接着剤等で固定してもよい。
偏心部材Wの厚みは巻線型空心電機子コイルの厚み以内とすることでロータRが厚くなることを防ぐことができる。
巻線コイルRbは空心コイルRb1と同位置に配置し、空心コイルRb1と直列に接続することで一つのコイルと見なして作用させる。
【0014】
偏心ロータRの重心の移動量を大にするための構成として、偏心部材Wにたいし回転軸をはさんで反対側にあるこの巻線コイルRbをその両側の巻線コイルRa、Rcに比して、軽量化することが考えられる。例えば、コイルの材質としてアルミニウム線のように重量の軽い材質を用いたり、コイルの巻数を他に比べて少なくすると軽量化できる。
巻線コイルRbを軽量化させるため巻数を減らす方法として、コイル外形が小さくなるように巻数を減らす、コイル内径部が大きくなるように巻数を減らすあるいは厚みが小さくなるように巻数を減らす等がある。
そして巻線コイルRbと直列に結線した空心コイルRb1、Rb2およびRb3がこの巻線コイルRbの巻数の少ない分の回転力を補うため、図6に示すように配置角120度で巻線コイルRbと同相位置に配置されている。
外形を小さくするようコイルを形成すると、隣接する巻線コイルRa、Rcを巻線コイルRbへ寄せることにより偏心部材Wを載置する面積が増え、偏心部材Wを大きくして偏心量を増やすことができる。
あるいは、隣接する巻線コイルRa、Rcの巻数を多くするよう外径を大きくできるので、巻線コイルRa、Rcで発生するロータRの回転力を大きくすることができる。
内径部を大きくするようにコイルを形成すると、コイルの開角を磁極開角と同じにできるため、回転力の発生に寄与する効果がある。
巻線コイルRbを軽量化する方法としては、これら効果を考慮し条件にあった方法で行うとよいし、銅線の代わりにアルミニウム線で構成してもよい。
【0015】
さらに、図1に示すように前述の焼結含油軸受Bが、中心において該ロータRの厚みの上半分に装着され、下半分の軸受け部B1をチタン酸カリウムウイスカ入りのポリアミドもしくはポリブチレンテレフタレートなど高摺動性を有する樹脂にしてロータと一体に構成し、前記軸3に直接回転自在に装着するようになっている。
こうすることによって高価な焼結含油軸受を小型にしつつ中央部に逃げ部を構成した軸受け部分を容易に構成することができ、受け部を軸方向へ延ばすことができるため軸に対する回転ロスを軽減できる。
【0016】
ここで、平板コミュテータ5は、この薄いフレキシブル印刷配線板9に形成するか、または、このフレキシブル基板に別の薄い印刷配線板で平板コミュテータを形成したものを添設してもよい。
この平板コミュテータ5は、図6の回転原理説明図に示すようにN、S交互に6極に着磁されたマグネット4を組みあわせる場合は、3個毎にショートした9極のセグメントS1ないしS9からなる公知のものが用いられる。
本実施例の場合、セグメントS1、S4、S7がショートされ、セグメントS2、S5、S8が、セグメントS3、S6、S9がそれぞれショートされる。
今、この結線状態を説明すると、巻線コイルRaの巻き始め端末は、巻線コイルRcの巻き終わり端末と共に、端末結線パターンT1に半田もしくは熱圧着で結線されて整流子セグメントS6に接続され、マイナス側のブラシ7を介して電源マイナス側に接続される。
巻線コイルRaの巻き終わりは、巻線コイルRbの巻き始めと端末結線パターンT3を介してセグメントS2に結線される。
巻線コイルRbの巻き終わり端末は、印刷コイルRb3の巻き始め端末と接続され、印刷コイルRb3の巻き終わり端末は、印刷コイルRb2の巻き始め端末に、印刷コイルRb2の巻き終わり端末は、印刷コイルRb1の巻き始め端末とそれぞれ接続され、印刷コイルRb1の巻き終わり端末は、巻線型空心電機子コイルRc巻き始めと共に、前記セグメントS4に接続されている。
したがって、いま、セグメントS1に接続されたブラシ6がプラス側の電源により電力を供給された場合、図中のコイル線上に記された小さい矢印の方向へ電流が流れ、大きい矢印の方向へロータが回転移動するよう回転力が発生し、いずれのコイルにも、反トルクは発生しない。
また、印刷コイルRb1A、Rb2AおよびRb3Aが配置角120度で均等に配置されているため、トルクリップルの発生が軽減される。
【0017】
図7に示すものは、偏心ロータの変形例で、第2面では巻線コイルRbと印刷コイルRb1Bを重畳させないように印刷コイルRb1Bを削除し、その代わりに第1面の印刷コイルRb2Aと同位置に印刷コイルRb2Bを形成したものである。
このようにすると、端末結線パターンT4の位置をT1の隣りに持ってくることができるので、偏心部材W1をそのぶんを大きくできる。
この図7の構成による結線は、図6において印刷配線型空心電機子コイルRb1Bを削除し、同コイルRb2Aの位置に同コイルRb2Bを配置したものとなる。そして、その作用は図4の実施例と同様なので、詳細の説明は省略する。
この構成にすれば、円盤形でもタングステンの高比重による重量と空心電機子コイル側の偏心量があってもその差は偏心ウエイト側W側に大きく重心が来るので、偏心量の大なる偏心ロータにすることができる。
【0018】
【発明の効果】
この発明の偏心ロータは上記のように構成したので、ロータ自体が薄型にでき、偏心部材で振動を確保でき、巻線型空心電機子コイルを3個にしたので、巻数が多く取れることになって起動が容易となる。
フレキシブルベースをマグネットとブラケットの間から導出するに当たってたとえば、ブラケットの厚みが0.15〜0.2ミリのものでも潰すような無理な手段が不要となるので、薄型化に対してフレキシブルブラシベースの厚みを考慮しなくて済み、2mm厚のモータにすることができる。
特に請求項1に示すものでは、ロータ自体が薄型にでき、巻数が大に取れる3個の巻線型空心電機子コイルによって起動が容易となり、偏心部材で振動量を確保できる。
請求項2、3によれば、有効導体数が多くなるのでさらに起動が容易にできる。請求項5、6に示す発明のように、前記第2の巻線空心コイルは第1、第3の巻線空心コイルに対して軽量化されていたり、前記偏心部材は比重15以上のタングステン合金を含むものにしたり、前記偏心部材はタングステン合金をブロックあるいは粒状にして樹脂で全体の比重が10以上となるように巻線型空心電機子コイルと共に一体成形されたものにするのがよい。
このようにすれば、重心の位置が大きく偏心するので、振動量を大にできる。
請求項4に示す発明のように、前記第2の巻線空心コイルは第1、第3の巻線空心コイルに対して軽量化されたものにするのがよい。
このようにすれば、第2の空心電機子コイルの軽量化によって重心がより反対側に移動するので、偏心量を大にできる。
請求項5、6によれば、重心の位置が大きく偏心するので、振動量を大にできる。
このような偏心ロータを備えた偏平コアレス振動モータは、請求項7、8に示すようにすると、薄型ながらも振動量が確保でき、軸がたとえば、0.5ミリ程度にものでも、確実に保持でき、落下など衝撃がロータに加わっても軸の変形が防止でき、たとえばブラケットの厚みを0.15〜0.2ミリしたものでも潰すような無理な手段が不要となるので、薄型化に対してフレキシブルブラシベースの厚みを考慮しなくて済み、2mm厚のモータにすることができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態の偏心ロータを備えた偏平コアレス振動モータの断面図である。
【図2】図1の給電構造の特徴を示す底面図である。
【図3】図1の偏心ロータの平面図である。
【図4】図1の同モータの回転原理説明図である。
【図5】図1の偏心ロータの平面図である。
【図6】図5の同モータの回転原理説明図である。
【図7】図1の偏心ロータの変形例の平面図である。
【符号の説明】
H ハウジング
1 ケース
2 ブラケット
2a 透孔
3 軸
4 ネオジム製のリング状マグネット
R、R1 偏心ロータ
5 平板コミュテータ
6、7 一対のブラシ
8 フレキシブルブラシベース
9 整流子基材
[0001]
[Industrial applications]
The present invention relates to an improvement of a thin flat coreless vibration motor used for a silent call means of a mobile communication device, etc., and relates to an improvement of a disk-type eccentric rotor and a thin flat coreless motor having a thickness of about 2 mm for mounting the rotor. Related to a vibration motor.
[0002]
[Prior art]
With the trend toward smaller and thinner mobile communication devices, members mounted on the mobile communication devices are also required to be smaller and thinner.
For example, recently, the demand for flattening has become extremely strong, the thickness of eccentric rotors has been pushed to the limit, and the size of the motor has been required to be as large as 10 mm in diameter and about 2 mm in thickness.
As a prior art of such a flat type vibration motor, three air-core armature coils are unevenly distributed on one side (see Patent Document 1), or three air-core armature coils are arranged equally. In some cases, an imbalance is generated by reducing the size of one. (See Patent Document 2)
However, as described above, when the thickness of the eccentric rotor is driven to the limit, the amount of vibration is small in the rotor itself, particularly in the case where the rotor is unbalanced only with the air-core armature coil, and a high specific gravity weight such as tungsten is practically used. Needs to be added between the air-core armature coils. (See Patent Document 3)
Further, as an example of a configuration in which a high specific gravity weight is added to a portion where no air-core armature coil is arranged, there is an application by the present applicant. (See Patent Documents 5 and 6)
In addition, in the case of a flat vibration motor, which is one of the silent call means of mobile communication devices, since it is directly mounted on the printed wiring board of the device via a double-sided adhesive, the mounting surface is required to be flat, and A power supply terminal for supplying electric power is led to a side peripheral portion of the motor.
[0003]
Since such a flat type vibration motor is driven by an axial field type ring-shaped magnet, it is necessary to devise a power supply structure for supplying electric power to a brush disposed on an inner diameter portion of the magnet. For this reason, it is necessary to draw out the power supply structure for supplying power to the brush from between the magnet and a bracket which is a part of a housing on which the magnet is mounted.
In addition, in such a flat type vibration motor, in order to reduce the thickness, the thickness of the brass base is reduced by forming a recess in the bracket by pressing according to the shape of the brush base and embedding the brush base in the recess. Some have been made negligible. (See Patent Document 4)
[0004]
[Patent Document 1] U.S. Pat. No. 5,036,239 [Patent Document 2] JP-A-2-17853 [Patent Document 3] JP-A-2000-224805 [Patent Document 4] JP-A 10-262352 [Patent Document 5] JP-A-2002-119915
[Patent Document 6] JP-A-2002-119914
[0005]
[Problems to be solved by the invention]
However, in the case of Patent Document 3, since the armature coil of the rotor is single-phase, the rotor itself cannot be thinned.
Further, the configurations as disclosed in Patent Literatures 5 and 6 aiming at a thin type have a configuration in which one winding-type air-core armature coil is disconnected while the arrangement position of the air-core armature coil is three phases at an arrangement opening angle of 120 degrees. Since the number of components is less than the number, the torque ripple tends to be intense. That is, a position where the starting torque is small occurs depending on the stop position of the rotor, so that it is necessary to set the minimum starting torque high. For this reason, it is suitable for those having a large radial direction, but especially for those having a small radial direction, the coil becomes small and the voltage required for starting becomes large.
Also, forming a recess by crushing the housing by press working as in Patent Document 4 requires the thickness of the bracket, and therefore, the thickness of the conventional technology is limited to about 2.5 mm. Was.
In view of this, the present invention provides a configuration and arrangement of the air-core armature coil that constitutes the eccentric rotor, secures the number of effective conductors, facilitates startup, and can secure vibration while being small and thin. The housing is also devised so that the motor thickness can be reduced to about 2 mm while having a small diameter.
[0006]
[Means for Solving the Problems]
A basic solution to the above-mentioned problem is to provide a shaft insertion hole at the center of a printed wiring commutator substrate having first and second surfaces, as in the invention as set forth in claim 1, Nine commutator segment patterns are printed and formed radially outward of the shaft insertion holes, conductors that short-circuit these commutator segment patterns every third one are printed and formed, and the first and second commutator segments are formed on the second surface. The second and third wound air-core armature coils are mounted at an arrangement angle of about 80 degrees, and the thicknesses of these wound air-core armature coils are radially opposite to the second wound air-core armature coils. This can be achieved with an eccentric member arranged to fit within.
By doing so, the rotor itself can be made thinner, the starting can be facilitated by the three wound air-core armature coils that can take a large number of turns, and the amount of vibration can be secured by the eccentric member.
[0007]
More specifically, a printed air-core armature coil is formed on at least one of the first and second surfaces, and at least one of the windings is provided. Either it is connected in series with the air-core armature coil, or the three printed air-core armature coils are connected in series with the second wound air-core armature coil and formed so as not to overlap each other in plan view. Preferably, at least a part of each of the wound-type air-core armature coils overlaps in plan view.
In this case, the number of effective conductors is increased, so that starting can be further facilitated.
Further, as in the invention as set forth in claim 4, it is preferable that the second winding air-core coil is made lighter than the first and third winding air-core coils.
According to this configuration, the center of gravity moves to the opposite side due to the weight reduction of the second air-core armature coil, so that the amount of eccentricity can be increased.
According to the fifth and sixth aspects of the present invention, the eccentric member includes a tungsten alloy having a specific gravity of 15 or more, or the eccentric member is formed by blocking or granulating the tungsten alloy so that the entire specific gravity of the resin is 10 or more. As described above, it is preferable to integrally form the wire-type air-core armature coil together with the coil.
With this configuration, the position of the center of gravity is largely eccentric, and thus the amount of vibration can be increased.
[0008]
In order to make a thin flat coreless vibration motor using this eccentric rotor, as set forth in claims 7 and 8, the disc-shaped eccentric rotor according to any one of claims 1 to 6 and this disc A housing consisting of a case and a bracket in which the eccentric rotor is housed via a shaft, and NS which are magnetized into 6 poles alternately to give a magnetic force to the eccentric rotor via a gap, and are arranged in a part of the housing. And the base end is arranged on the brush base at the inner diameter of the flat magnet, and the tip is slid into contact with the air-core armature coil group through the commutator segment at an opening angle of 180 ° to supply electric power. A supply brush, or at least one end of the shaft is fixed to the housing, and a bracket is assembled to an opening of a case forming the housing. The housing has a thickness of 0.2 mm or less, the brush base is flexible and has a thickness of 0.18 mm or less including an adhesive layer, and the housing has a through hole in a portion where a magnet is arranged. This can be attained by providing a part of the flexible base extending to the side of the housing through the through hole.
Such a flat coreless vibration motor can secure a vibration amount even though it is thin, and can reliably hold even a shaft diameter of, for example, about 0.5 mm, and can deform the shaft even if a shock such as a drop is applied to the rotor. For example, it is not necessary to use an undue means for crushing even a bracket having a thickness of 0.15 to 0.2 mm. It can be a thick motor.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, drawings of an embodiment of the present invention will be described.
FIG. 1 is a sectional view of a flat coreless vibration motor provided with an eccentric rotor according to a first embodiment of the present invention.
FIG. 2 is a bottom view showing the features of the power supply structure of FIG.
FIG. 3 is a plan view of the commutator substrate constituting the eccentric rotor of FIG. 1 as viewed from the segment side.
FIG. 4 is a plan view of FIG. 3 as viewed from the opposite side of the segment.
FIG. 5 is a plan view of the eccentric rotor of FIG.
FIG. 6 is a diagram illustrating the principle of rotation of the motor of FIG.
FIG. 7 is a plan view of a modification of the eccentric rotor.
Hereinafter, embodiments based on the above drawings will be described.
FIG. 1 shows a thin flat coreless vibration motor having a thickness of about 2 mm, a case 1 in which a thin magnetic stainless steel plate of 0.15 mm is formed by drawing, and a case 0 attached to the opening of the case by laser welding Y. The housing H is constituted by a bracket 2 having a diameter of about 2 mm, and a shaft 3 having a diameter of about 0.5 mm is press-fitted and fixed at the center of the bracket 2 therein. A magnet 4 is mounted.
Here, the base end 3a of the shaft 3 may be subjected to laser welding Y instead of press-fitting into the bracket 2 or after press-fitting as in this example.
An eccentric rotor R having a thickness of about 0.6 mm is rotatably mounted on the shaft 3 by a sintered oil-impregnated bearing B and a bearing portion B1 formed of resin, and faces the ring-shaped magnet 4 through an axial gap. Not.
Here, the eccentric rotor R is represented by a section cut along the line AA in FIG. 3 described later.
[0011]
As shown in FIG. 2, the bracket 2 is provided with a through hole 2 a just in a part of the mounting portion of the magnet 4. The flexible base 8 in which the brushes 6 and 7 are planted so as to have a contact angle of 180 degrees extends the patterns 6a and 7a in which the brushes are planted in the radial direction and passes through the through holes 2a to the side circumference of the case 1. Derived. Therefore, when the flexible brush base 8 is led out from between the magnet 4 and the bracket, a space for leading out the flexible base 8 having a thickness of about 0.15 mm can be easily secured. Here, it is preferable that the flexible base 8 has an adhesive adhered to a predetermined surface and is fixed to the bracket and the magnet by bonding.
The power supply electrode portion of the flexible base 8 is folded back at the end of the tongue piece 2b protruding from the bracket 2, and the solder electrode is exposed in three directions so that it can be easily soldered to the printed wiring board on the device side. ing.
On the other hand, a shallow burring-shaped through hole 1a in which the other end 3b of the shaft 3 is mounted is disposed at the center of the case 1 constituting the other part of the housing, and a polyimide film P is disposed at a protrusion around the through hole 1a. The upper surface of the eccentric rotor R bearing B is brought into sliding contact with the pair of brushes 6 and 7 via the polyimide film P.
The pair of brushes 6 and 7 press the rotor at a contact angle of 180 degrees so as not to tilt, and the rotor 3 is constantly urged toward the case 1 and is rotatably pressed by the polyimide film P. There is no danger of hitting, and the gap can be kept constant and the rotation position can be stably supported without variation in the rotation position. Here, the other end of the shaft 3 is laser welded Y to the case at the burring-shaped through hole 1a.
In addition, since the case 1 and the bracket 2 are laser-welded, deformation is unlikely to occur even with a thin member, and the shaft 3 does not fall out of the through hole even when an impact such as a drop of the eccentric rotor is applied. .
[0012]
The commutator substrate 9 constituting the eccentric rotor R is a thin film-like flexible printed wiring board having a thickness of about 0.06 mm and a thin adhesive applied to the surface thereof as shown in FIG. It is composed of a printed wiring board having first and second double sides.
As shown in FIG. 3, the commutator base material 9 has a shaft insertion hole 11 at the center, and nine commutator segment patterns S1 around the shaft insertion hole 11 at equal intervals on the first surface side. To S9 are formed by printing to form the flat plate commutator 5. Each of the commutator segment patterns S1 to S9 is short-circuited every three by a pattern via the inner conductor D3 and the through holes H1 to H7.
Outside the commutator segment patterns S1 to S9, three printed wiring type air-core armature coils Rb1A and Rb2A having an opening angle of the effective conductor portion of about 60 degrees which is substantially equal to the opening angle of the magnetic pole of the magnet 4. And Rb3A (hereinafter referred to as print coils Rb1A, Rb2A and Rb3A) are printed at regular intervals at an arrangement angle of about 120 degrees.
Also, as shown in FIG. 4, on the second surface of the flexible printed wiring board, two printed wiring type air-cored coils Rb1B and Rb3B (at positions opposite to the printed coils Rb1A and Rb3A formed on the first surface). Hereinafter, print coils Rb1B and Rb3B) are formed by printing. The print coils Rb1B and Rb3B are connected in series with the print coils Rb1A and Rb3A by through holes H8, H9 and H10 provided in the respective inner diameter portions, and one air-core coil Rb1 is provided from the first surface to the second surface. , Rb3.
[0013]
Here, the opening angle of the printing coil Rb1B is slightly narrowed in order to provide the terminal connection terminals T1, T2 and T3 and the pattern P4 for connecting the winding terminals of the multilayer wound air-core armature coils Ra and Rc described later. The printed wiring type air-core armature coil on the second surface corresponding to the printing coil Rb2A has a connection-only pattern P4 for convenience of forming the terminal connection terminal T4, and the formation of the coil portion is omitted. If there is, the printed wiring armature coil Rb2B may be formed by printing in the same manner as the other coils.
Here, the air-core coils Rb1 and Rb3 are formed by connecting the printing coils Rb1A and Rb1B and connecting the Rb3A and Rb3B in series.
In the figure, reference numeral 12 denotes a carbon printing resistor inserted between adjacent segments C6, C7, and C8 for spark extinction, and T1, T2, and T3 are terminal connection patterns of a later-described wound-type air-core armature coil. .
In order to form the commutator substrate 9 as the eccentric rotor R, as shown in FIG. 5, the arrangement angle of the second surface is about 80 degrees and the effective conductor portion is substantially equal to the opening angle of the width of the magnetic pole of the magnet 4. Three multi-layer wound air-core armature coils Ra, Rb, and Rc (hereinafter, winding coils Ra, Rb, and Rc), which are equally set at 60 degrees, are placed adjacent to each other, and are radially opposite to the winding coils Rb. On the side, a fan-shaped eccentric member W, which is made of a copper-tungsten sintered alloy and has a specific gravity of about 18 and is expanded in plan view, is arranged and fixed. As a fixing method, there are various methods such as a method of integrally molding with a resin and a method of fixing with an adhesive.
Also, as the eccentric member W, tungsten or other metal in the form of a block, granule, or powder is mixed into a resin, and is molded integrally with a coil or a printed board by injection molding, or a fan formed of the resin. The weight of the mold may also be fixed integrally with a resin, or may be fixed with an adhesive or the like.
By setting the thickness of the eccentric member W within the thickness of the coiled air-core armature coil, it is possible to prevent the rotor R from becoming thick.
The winding coil Rb is arranged at the same position as the air-core coil Rb1, and is connected to the air-core coil Rb1 in series so that the coil Rb operates as one coil.
[0014]
As a configuration for increasing the amount of movement of the center of gravity of the eccentric rotor R, the winding coil Rb on the opposite side of the eccentric member W across the rotation axis is compared with the winding coils Ra and Rc on both sides thereof. Then, it is conceivable to reduce the weight. For example, the weight can be reduced by using a light-weight material such as an aluminum wire as the material of the coil or by reducing the number of turns of the coil as compared with the others.
Methods for reducing the number of turns to reduce the weight of the winding coil Rb include reducing the number of turns so as to reduce the outer shape of the coil, reducing the number of turns so as to increase the inner diameter of the coil, or reducing the number of turns so as to reduce the thickness. .
The air-core coils Rb1, Rb2, and Rb3 connected in series with the winding coil Rb compensate for the rotational force of the small number of turns of the winding coil Rb, and as shown in FIG. And in the same phase position.
When the coil is formed so as to reduce the outer shape, the area where the eccentric member W is placed is increased by moving the adjacent winding coils Ra and Rc to the winding coil Rb, and the eccentric member W is enlarged to increase the amount of eccentricity. Can be.
Alternatively, since the outer diameter can be increased so as to increase the number of turns of the adjacent winding coils Ra and Rc, the rotational force of the rotor R generated by the winding coils Ra and Rc can be increased.
If the coil is formed so as to increase the inner diameter, the opening angle of the coil can be made the same as the opening angle of the magnetic pole, which has the effect of contributing to the generation of rotational force.
As a method of reducing the weight of the winding coil Rb, a method suitable for the conditions may be used in consideration of these effects, or an aluminum wire may be used instead of the copper wire.
[0015]
Further, as shown in FIG. 1, the above-mentioned sintered oil-impregnated bearing B is mounted on the upper half of the thickness of the rotor R at the center, and the bearing part B1 of the lower half is made of polyamide or polybutylene terephthalate containing potassium titanate whiskers. The rotor is made of resin having high slidability and is integrally formed with the rotor, and is directly rotatably mounted on the shaft 3.
By doing so, it is possible to easily configure a bearing portion having a relief portion at the center while reducing the size of an expensive sintered oil-impregnated bearing, and reduce the rotation loss with respect to the shaft by extending the receiving portion in the axial direction. it can.
[0016]
Here, the flat plate commutator 5 may be formed on the thin flexible printed wiring board 9, or may be provided with another flexible printed wiring board on which a flat commutator is formed.
This plate commutator 5 has nine pole segments S1 to S9 which are short-circuited every three poles when combining magnets 4 which are magnetized into six poles alternately N and S as shown in FIG. Is used.
In the case of this embodiment, the segments S1, S4, and S7 are short-circuited, the segments S2, S5, and S8 are short-circuited, and the segments S3, S6, and S9 are short-circuited.
Now, this connection state will be described. The winding start terminal of the winding coil Ra is connected to the terminal connection pattern T1 by soldering or thermocompression bonding together with the winding end terminal of the winding coil Rc and connected to the commutator segment S6, The power supply is connected to the negative side via the negative side brush 7.
The winding end of the winding coil Ra is connected to the segment S2 via the terminal connection pattern T3 and the winding start of the winding coil Rb.
The winding end terminal of the winding coil Rb is connected to the winding start terminal of the printing coil Rb3, the winding end terminal of the printing coil Rb3 is connected to the winding start terminal of the printing coil Rb2, and the winding end terminal of the printing coil Rb2 is set to the printing coil. The winding end of the print coil Rb1 is connected to the winding start terminal of Rb1, and the winding end of the winding type air core armature coil Rc is connected to the segment S4 together with the winding start.
Therefore, when the brush 6 connected to the segment S1 is supplied with power from the positive power source, current flows in the direction of the small arrow drawn on the coil wire in the figure, and the rotor moves in the direction of the large arrow. A rotational force is generated so as to rotate, and no counter torque is generated in any of the coils.
Further, since the print coils Rb1A, Rb2A, and Rb3A are evenly arranged at an arrangement angle of 120 degrees, the occurrence of torque ripple is reduced.
[0017]
FIG. 7 shows a modification of the eccentric rotor, in which the print coil Rb1B is deleted so that the winding coil Rb and the print coil Rb1B are not overlapped on the second surface, and the same as the print coil Rb2A on the first surface. A print coil Rb2B is formed at a position.
By doing so, the position of the terminal connection pattern T4 can be brought next to T1, so that the eccentric member W1 can be enlarged by that much.
The connection according to the configuration of FIG. 7 is such that the printed wiring type air-core armature coil Rb1B is deleted in FIG. 6, and the coil Rb2B is arranged at the position of the coil Rb2A. Since the operation is the same as that of the embodiment of FIG. 4, the detailed description is omitted.
According to this configuration, even if there is a weight due to the high specific gravity of tungsten and the amount of eccentricity on the air-core armature coil side even in the disk type, the difference is large on the eccentric weight side W side and the eccentric rotor has a large eccentric amount. Can be
[0018]
【The invention's effect】
Since the eccentric rotor of the present invention is configured as described above, the rotor itself can be made thin, vibration can be secured by the eccentric member, and the number of winding type air core armature coils is three, so that a large number of turns can be obtained. Startup is easy.
In drawing out the flexible base from between the magnet and the bracket, for example, even if the thickness of the bracket is 0.15 to 0.2 mm, there is no need for an undue means to crush the flexible base. It is not necessary to consider the thickness, and the motor can be made 2 mm thick.
In particular, according to the first aspect, the rotor itself can be reduced in thickness, the starting can be facilitated by three wound air-core armature coils having a large number of windings, and the amount of vibration can be secured by the eccentric member.
According to the second and third aspects, since the number of effective conductors is increased, the starting can be further facilitated. As in the invention as set forth in claims 5 and 6, the second wound air core coil is lighter in weight than the first and third wound air core coils, and the eccentric member is a tungsten alloy having a specific gravity of 15 or more. It is preferable that the eccentric member is formed as a block or granule of a tungsten alloy and is integrally formed with resin so as to have an overall specific gravity of 10 or more together with a wound-type air-core armature coil.
With this configuration, the position of the center of gravity is largely eccentric, and thus the amount of vibration can be increased.
According to a fourth aspect of the present invention, it is preferable that the second winding air-core coil is made lighter than the first and third winding air-core coils.
According to this configuration, the center of gravity moves to the opposite side due to the weight reduction of the second air-core armature coil, so that the amount of eccentricity can be increased.
According to the fifth and sixth aspects, since the position of the center of gravity is largely eccentric, the amount of vibration can be increased.
The flat coreless vibration motor provided with such an eccentric rotor can secure a vibration amount even though it is thin, even if the shaft is, for example, about 0.5 mm. The shaft can be prevented from being deformed even if a shock is applied to the rotor, such as when the rotor is dropped. For example, an unnecessary means such as crushing a bracket having a thickness of 0.15 to 0.2 mm is not required. Thus, the thickness of the flexible brush base does not need to be considered, and a motor having a thickness of 2 mm can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flat coreless vibration motor including an eccentric rotor according to a first embodiment of the present invention.
FIG. 2 is a bottom view showing features of the power supply structure of FIG. 1;
FIG. 3 is a plan view of the eccentric rotor of FIG. 1;
FIG. 4 is an explanatory view of a rotation principle of the motor of FIG. 1;
FIG. 5 is a plan view of the eccentric rotor of FIG. 1;
FIG. 6 is an explanatory view of the principle of rotation of the motor shown in FIG. 5;
FIG. 7 is a plan view of a modification of the eccentric rotor of FIG.
[Explanation of symbols]
H Housing 1 Case 2 Bracket 2a Through hole 3 Shaft 4 Neodymium ring magnet R, R1 Eccentric rotor 5 Flat plate commutator 6, 7 A pair of brushes 8 Flexible brush base 9 Commutator substrate

Claims (8)

第1、第2の面を有する印刷配線整流子基材の中心に軸挿通孔が設けられると共に、第1面で前記軸挿通孔の半径方向外方に9個の整流子セグメントパターンが印刷形成され、これらの整流子セグメントパターンを3個目毎にショートする導体が印刷形成され、第2の面に第1,第2および第3の巻線空心電機子コイルが約80度の配置開角で載置され、前記第2の巻線型空心電機子コイルの径方向反対側にこれらの巻線空心電機子コイルの厚み内に収まるように偏心部材が配された円盤形偏心ロータ。A shaft insertion hole is provided at the center of the printed wiring commutator substrate having the first and second surfaces, and nine commutator segment patterns are formed on the first surface radially outward of the shaft insertion hole. A conductor that short-circuits each of these commutator segment patterns for every third line is printed, and the first, second and third winding air-core armature coils are arranged on the second surface at an angle of about 80 degrees. A disc-shaped eccentric rotor having an eccentric member disposed radially opposite to the second coiled air-core armature coil so as to be within the thickness of the coil. 印刷空心電機子コイルが前記第1、第2のいずれかの少なくとも一方の面に形成され、前記いずれか少なくとも1個の巻線空心電機子コイルと直列に接続されている請求項1に記載の円盤形偏心ロータ。2. The printed air core armature coil according to claim 1, wherein a printed air core armature coil is formed on at least one of the first and second surfaces, and is connected in series with the at least one wound air core armature coil. Disc type eccentric rotor. 前記印刷配線型空心電機子コイルは前記第2の巻線型空心電機子コイルと直列に接続され、平面視で互いに重畳しないように3個形成されており、前記各巻線型空心電機子コイルと平面視で少なくとも一部が重畳している請求項2に記載の円盤形偏心ロータ。The printed wiring type air-core armature coil is connected in series with the second winding type air-core armature coil, and is formed so as not to overlap with each other in plan view. 3. The disk-shaped eccentric rotor according to claim 2, wherein at least a part of the rotor overlaps. 前記第2の巻線空心コイルは第1、第3の巻線空心コイルに対して軽量化されている請求項1に記載の円盤形偏心ロータ。The disc-shaped eccentric rotor according to claim 1, wherein the second winding air-core coil is lighter in weight than the first and third winding air-core coils. 前記偏心部材は比重15以上のタングステン合金を含むものである請求項1に記載の円盤形偏心ロータ。2. The disk-type eccentric rotor according to claim 1, wherein the eccentric member includes a tungsten alloy having a specific gravity of 15 or more. 前記偏心部材はタングステン合金をブロックあるいは粒状にして全体の比重が13以上となるように樹脂で巻線型空心電機子コイルと共に一体成形された請求項1に記載の円盤形偏心ロータ。2. The disk-type eccentric rotor according to claim 1, wherein the eccentric member is made of a tungsten alloy in a block or a granular shape and is integrally formed with a wire-type air-core armature coil with a resin so as to have an overall specific gravity of 13 or more. 前記請求項1〜6のいずれか1項に記載の円盤形偏心ロータと、この円盤形偏心ロータが軸を介して格納されるケースとブラケットからなるハウジングと、この偏心ロータに軸方向空隙を介して磁力を与えるためにNS交互に6極に磁化され、ハウジングの一部に配された扁平なマグネットと、この扁平なマグネットの内径部で基端がブラシベースに配され、先端が前記整流子セグメントを介して前記空心電機子コイル群に摺接開角180度で摺接することによって電力を供給するブラシとを備えた偏平コアレス振動モータ。A disc-shaped eccentric rotor according to any one of claims 1 to 6, a housing including a case and a bracket in which the disc-shaped eccentric rotor is stored via a shaft, and an axial gap between the eccentric rotor and the housing. The magnet is magnetized into six poles alternately to provide magnetic force by NS, and a flat magnet disposed in a part of the housing, a base end of the flat magnet having an inner diameter portion disposed on a brush base, and a front end formed by the commutator A flat coreless vibration motor comprising: a brush for supplying electric power by slidingly contacting the air-core armature coil group at an opening angle of 180 degrees via a segment. 前記軸は少なくとも一端が前記ハウジングに固定されると共に、このハウジングを構成するケースの開口部にブラケットが組み付けられ、このハウジングは厚みが0.2mm以下で構成されると共に、前記ブラシベースはフレキシブルで接着層を含めた厚みが0.18mm以下で構成され、前記ハウジングはマグネットが配される部分の一部に透孔が設けられ、この透孔を通って前記フレキシブルベースの一部がハウジング側方に導出されている請求項7に記載の偏平コアレス振動モータ。At least one end of the shaft is fixed to the housing, and a bracket is attached to an opening of a case forming the housing. The housing has a thickness of 0.2 mm or less, and the brush base is flexible. The thickness of the housing including the adhesive layer is 0.18 mm or less, and the housing is provided with a through hole in a part of a portion where the magnet is arranged, and a part of the flexible base is passed through the through hole to a side of the housing. The flat coreless vibration motor according to claim 7, wherein the vibration motor is derived from:
JP2002367539A 2002-09-13 2002-12-19 Disc type eccentric rotor and flat coreless vibration motor equipped with the same rotor Expired - Fee Related JP3581706B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002367539A JP3581706B2 (en) 2002-12-19 2002-12-19 Disc type eccentric rotor and flat coreless vibration motor equipped with the same rotor
KR1020030027105A KR100935509B1 (en) 2002-09-13 2003-04-29 Slim type coreless motor
CNB03124064XA CN100452621C (en) 2002-09-13 2003-04-30 Ultra-thin type centreless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367539A JP3581706B2 (en) 2002-12-19 2002-12-19 Disc type eccentric rotor and flat coreless vibration motor equipped with the same rotor

Publications (2)

Publication Number Publication Date
JP2004201420A true JP2004201420A (en) 2004-07-15
JP3581706B2 JP3581706B2 (en) 2004-10-27

Family

ID=32764394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367539A Expired - Fee Related JP3581706B2 (en) 2002-09-13 2002-12-19 Disc type eccentric rotor and flat coreless vibration motor equipped with the same rotor

Country Status (1)

Country Link
JP (1) JP3581706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211980A (en) * 2010-03-31 2011-10-27 Hitachi Koki Co Ltd Lawnmower

Also Published As

Publication number Publication date
JP3581706B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US7271516B2 (en) Stepping motor for generating vibration
JP3337681B2 (en) Disc type eccentric rotor and flat type vibration motor provided with the rotor
CA2340957C (en) Dc brushless vibration motor
JP3628989B2 (en) Disc-shaped eccentric rotor and flat vibration motor having the same
JP2004112870A (en) Thin coreless motor
JP4722225B2 (en) Vibration motor
JP3560601B1 (en) Molded eccentric rotor and axial gap type coreless vibration motor having the same rotor
JP2002254029A (en) Dc brushless vibration motor
JP3581706B2 (en) Disc type eccentric rotor and flat coreless vibration motor equipped with the same rotor
KR100935509B1 (en) Slim type coreless motor
JP3472761B2 (en) Small brushless vibration motor
JP3796238B2 (en) An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor
JP3759092B2 (en) Flat coreless vibration motor equipped with an eccentric rotor and the same rotor
JP3645221B2 (en) Flat type vibration motor having an eccentric rotor and the same rotor
JP3706016B2 (en) Flat small brushless vibration motor
JP3894368B2 (en) Motor armature, axial gap motor with the same armature
JP2005012935A (en) Molded eccentric rotor, and axial air-gap type coreless vibrating motor equipped with that rotor
JP2006014441A (en) Eccentric rotor and flat core-less vibrating motor having the eccentric rotor
JP2009005491A (en) Axial air-gap type coreless vibration motor
JP3985964B2 (en) A stator having detent torque generating means and an axial air gap type brushless motor having the same stator
JP3627906B2 (en) A commutator having a resin bearing and a fixed shaft motor using the commutator
JP2007300726A (en) Eccentric rotor and flat coreless vibrating motor equipped with same
JP3357333B2 (en) Eccentric rotor and small vibration motor using the same eccentric rotor
JP3572484B2 (en) Eccentric rotor with high-density member, manufacturing method of the rotor, and flat coreless vibration motor using the rotor
JP3252140B1 (en) Eccentric rotor and flat type vibration motor provided with the rotor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040720

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040723

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20070730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090730

LAPS Cancellation because of no payment of annual fees