JP2004200345A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2004200345A
JP2004200345A JP2002366163A JP2002366163A JP2004200345A JP 2004200345 A JP2004200345 A JP 2004200345A JP 2002366163 A JP2002366163 A JP 2002366163A JP 2002366163 A JP2002366163 A JP 2002366163A JP 2004200345 A JP2004200345 A JP 2004200345A
Authority
JP
Japan
Prior art keywords
gas
flat plate
electrode
gas supply
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366163A
Other languages
Japanese (ja)
Other versions
JP4292002B2 (en
Inventor
Takashi Koshimizu
隆史 小清水
Osamu Kasahara
修 笠原
Unryu Ogawa
雲龍 小川
Noriyoshi Sato
徳芳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002366163A priority Critical patent/JP4292002B2/en
Publication of JP2004200345A publication Critical patent/JP2004200345A/en
Application granted granted Critical
Publication of JP4292002B2 publication Critical patent/JP4292002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the plasma production efficiency by raising plasma density in a plasma processing apparatus. <P>SOLUTION: A plurality of gas supply holes 40 are provided for supplying gas between a flat plate electrodes 3, 17 in a flat plate electrode 17 of a pair of electrodes 3, 17 to which high frequency electric power is supplied. A plurality of protrusions 50 are provided on the face of the flat plate electrode 17 having these gas supply holes 40 opposed to the other flat plate electrode 3 for forming the gradient of an electric field becoming higher as it goes to its tip end. The gas supply hole 40 is provided in each protrusion 50 for supplying the gas. It is preferable to provide a gas supply hole 41 also in a flat plate part of the flat plate electrode 17, on which the protrusions 50 are provided, among the protrusions 50. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造工程に用いるプラズマ処理装置に関するものである。
【0002】
【従来の技術】
プラズマ処理装置は、エッチングや薄膜堆積など、プラズマ固有の性質を生かした加工技術の実現により、今や産業界に不可欠な半導体基盤技術としてその重要度が増している。
中でも種々の基板上に電子材料の層を堆積するプラズマ促進化学気相堆積法(Plasma Enhanced Chemical Vapor Deposition:PECVD)を用いたプラズマ処理装置は、半導体デバイスの製造に広く用いられている。
【0003】
PECVDを用いたプラズマ処理装置としては、ホローカソード現象を利用して高密度プラズマを得るとともに、メンテナンスサイクルを延ばし、電極のフッ化減少を改善したものが知られている(例えば、特許文献1参照。)。
【0004】
特許文献1のプラズマ処理装置は、図16に示すように、平行平板電極構造をしており、気密な処理室1に基板4を収容し、処理室1内に設けられている一対の平板電極2、3間に成膜ガスを供給しながら高周波電力を印加してプラズマを発生させ、成膜ガス中のガス分子を分解して化学反応を起こし、基板表面上に薄膜を形成するものである。
成膜ガスは、カソード電極2に接続されたガス導入口15を通って供給され、カソード電極2に設けた分散板12、ガス導入孔5を経由してカソード電極2とアノード電極3間へと導入される。アノード電極3と対向するカソード電極2の平板部45に、電極面積を拡大するための凹部70を複数設けてある。この凹部70にはガス供給口は設けずに、凹部70を設けずに残ったアノード電極3の平板部分にガス供給孔5を設けてある。ガス導入口15から先に非成膜ガスを導入し、後から成膜ガスを導入する。これにより非成膜ガスを凹部に入り込ませ、後から導入される成膜ガスが凹部70に入らないようにしている。
電極2、3間へ導入された成膜ガスに、結合コンデンサ19、ガス導入口15、アノードサセプタ13を経由したRF高周波電源9の高周波電力を電極3に印加してプラズマを発生させ、基板4上に所定の成膜を行う。なお、上ヒータ10と下ヒータ11は、基板4を一定の温度に均一に加熱するために設けられている。
【0005】
このように特許文献1のプラズマ処理装置によれば、電極に複数の凹部を設けたので、非成膜ガスが凹部70内に滞留することになって、凹部70内に成膜ガスによる累積形成膜が形成されにくくなり、メンテナンスサイクルの長期化を可能としている。また、非成膜ガスが滞留した凹部70からホローカソード現象により高密度エネルギーが出て、凹部70以外の平板部分に設けたガス供給孔5から導入される成膜ガスを有効に電離するので、凹部70を形成していないものに比べて、必要とする高周波電力を低減でき、電極2、3間に加わる直流電圧が大幅に小さくなり、電極シース電位勾配を緩やかにすることができる。その結果、高周波電力を印加する側の電極2でのスパッタリング現象等が抑制され、電極2へのフッ化物の生成を低減している。
【0006】
【特許文献1】
特開2001−135626号公報
【0007】
【発明が解決しようとする課題】
上述した特許文献1によれば、一対の平板電極のうち高周波電力を印加する側の平板電極に複数の凹部を設けて電極面積を増加したので、凹部を設けないものに比べて、フッ化物の生成の低減とともに、低い高周波電力で成膜ガスを有効に電離できるので、プラズマ生成効率は改善されている。しかしながら、この場合でも、ガス供給孔が電極の平板部分に設けられているので、高周波電力によって形成される電極間の電界を、この平板部分に設けられているガス供給孔から導入されるガス分子に、より有効に作用するようには企図されていないため、プラズマ生成効率に改善の余地がある。
【0008】
そこで本発明の目的は、ガス供給孔から導入されるガス分子に、より有効に電界を作用するようして、プラズマ生成効率を向上させることを可能としたプラズマ処理装置を提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するために、対向する一対の平板電極間にガスを供給し、一対の平板電極の少なくとも一方の平板電極に高周波電力を印加してプラズマを発生させて基板にプラズマ処理を行うプラズマ処理装置において、前記高周波電力が印加される平板電極に複数の突起を設け、前記複数の突起に前記ガスを供給するガス供給孔を設けたことを特徴とするプラズマ処理装置である。
【0010】
このように構成することにより、突起を設けた平板電極の周囲に存在する電子が加速され、突起に設けられたガス供給孔を通って平板電極間に供給されたガスの分子と衝突する。このガス分子は衝突によって正イオンと電子に分れ、分子に衝突した電子、及び分子から電離した電子は、さらに別のガス分子と衝突する。これが連鎖的に繰り返されることによってガス分子の電離が促進され、プラズマが生成する。平板電極に設けた突起には電界の勾配が形成され、突起先端に向かって電界が高くなるので、その周辺の電子は加速されやすく、連鎖的な衝突及びガス分子の電離が激しく繰り返されて電子密度が高くなり、プラズマ生成効率が向上する。
【0011】
また、突起を設けた平板電極では、平板電極間に突出した突起先端で最もホロー放電が生じやすく、突起先端で生じたホロー放電による効果は突起側面を伝わり電極表面に達する。電極表面は突起によって分断されることなく全体がひとつながりであるため、突起先端から生じたホロー放電による効果は電極全体に広がる。
【0012】
前記突起が設けられた平板電極の突起間の平板部にも、前記ガス供給孔を設けることが好ましい。これにより、平板電極の突起間の平板部に設けたガス供給口から突起間にガスが供給されると、平板電極の突起間に生じるホローカソード現象が促進し、より電子密度を高くすることができる。また、平板電極の突起間の平板部にガスが流れると、突起間の平板部に滞留するパーティクルが、このガスにより突起間から押し出されるので、滞留したパーティクルを有効に除去できる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
まず、図1を用いて、PECVDを用いて成膜処理を行うプラズマ処理装置の全体構成を説明する。
図1に示すように、プラズマ処理装置の処理室1は、インナケース18とアウタケース31とからなる減圧可能な二槽構造となっている。密閉されたアウタケース31の内部にインナケース18が設けられる。インナケース18はアウタケース31の天井に取り付けられて上部が閉じ底部が開口したケース本体と、底部開口を塞ぐケース外蓋としてのアノードサセプタ13とから構成される。
【0014】
処理室1内には一対の平行平板電極が設けられる。一方はアノード電極3、他方はカソード電極17を構成する。一方のアノード電極3は、アノードサセプタ13上に支持される。アノード電極3上に基板4が載置され、基板4の外周には絶縁リング16が設けられる。アノード電極3は、アノード電極3を支持するアノードサセプタ13を通して接地される。
【0015】
他方のカソード電極17は、上部全面をインナケース18のケース本体内に設けられた絶縁ケース8で覆われる。カソード電極17の下部外周は絶縁リング20により支持されることで、接地されている処理室1のインナケース18及びアウタケース31とは絶縁されている。
【0016】
カソード電極17は、ガス供給ヘッド35の一部を構成する。すなわち、ガスガス供給ヘッド35は、絶縁ケース8から引き出されて成膜ガスを処理室1内に導入するガス導入口15と、ガス導入口15から導入されたガスを分散する分散板12と、高周波電力を印加されるカソード電極17とから構成される。このカソード電極17は、ガス導入口15から分散板12を介して導入される成膜ガスを一対の電極3、17間に供給する複数のガス供給孔40を有する。
【0017】
RF高周波電源9はマッチングボックス37及び結合コンデンサ19を介してガス導入口15からカソード電極17に接続される。アノード電極3を支持するアノードサセプタ13の接地は、インナケース18及びアウタケース31を介してなされる。
【0018】
成膜ガスは、ガス導入口15を通って処理室1内へ供給され、カソード電極17に設けた分散板12、ガス供給孔40を経由して電極3、17間へと導かれる。カソード電極17に設けられた上ヒータ10と、アノード電極3に設けられた下ヒータ11は、基板4を一定の温度に均一に加熱するために設けられている。
【0019】
基板4を載置するアノードサセプタ13は昇降移動するようになっている。アノードサセプタ13は、上昇時、インナケース18の下部開口を閉じて内槽を形成し、その内槽内に基板4を閉じ込める。下降時、内槽を開いて、基板4を外槽となるアウタケース31へ取り出す。
【0020】
成膜時は、アノードサセプタ13を上昇して内槽を形成する。カソード電極17とアノード電極3間に導入された成膜ガスに、RF高周波電源9の高周波電力を印加してプラズマを発生させ、基板4上に所定の成膜を行う。プラズマにより処理された成膜ガスの残留ガスは、処理室1に連通する排気管7を通り、図示しない排気処理系へと処理される。なお、図中、ガス供給系、基板搬送系、排気処理系は省略してある。
【0021】
図2〜図4は、上述したプラズマ処理装置の構成を機能ごとに捉らえてユニット化して示した説明図である。図2はプラズマ処理装置の基本構成図である。図3は一対の平板電極を構成する高周波プラズマ生成電極の構成図である。図4は高周波プラズマ生成電極を構成するカソード電極を含むガス供給ヘッドの構成図である。
これらの図では、ガス供給ヘッド35は、ガス導入口15と、ガス導入口に連通した中空のヘッド本体と、ヘッド本体の底部を構成するカソード電極17とから主に構成される。ガス導入口15は3本設けられ、3本のうちの1本には成膜ガスを流し、残りの2本にはプラズマ生成用ガス、例えばアルゴン(Ar)ガスを流すように構成される。成膜ガスを流す1本のガス導入口15には、RF高周波電源9をマッチングボックス37及び結合コンデンサ19を介して接続し高周波電力を印加する。アノード電極3は接地する。
また、カソード電極17は、アノード電極3と対向する平板部45と、その平板部45に電界勾配を形成するための複数の突起50と、各突起50に設けられた第1の供給孔となるガス供給孔40とから構成される。平板部45と突起50とは個別に形成しても一体に形成してもよい。この場合、突起50の一部を平板部45に設けた孔に圧入することにより一体化してもよい。
【0022】
また、カソード電極17の突起50の間の平板部45には、第2の供給孔となるガス供給孔41を設けることが好ましい。この平板部45のガス供給孔41の径は、突起50のガス供給孔41の径との関係で決められる。例えば、第1のガス供給孔41の直径を0.8mmとすれば、その倍の直径1.6mmがよい。
このガス供給孔41は、例えば、カソード電極17の平板部45に多数の貫通孔を設け、これら貫通孔の一部に突起50を設けて、残りの貫通孔をガス供給孔41として利用するようにしてもよい。
なお、ガス導入口15とアノード電極3とをつなぐ中空のヘッド本体は、内部の分散板12の記載を省略してある。
【0023】
カソード電極17の平板部45に設ける複数の突起50は、平板部45のほぼ全面に配置するが、例えば、図5〜図7に示すように配置するとよい。図5では碁盤の目状に配置して隣り合う4つの突起を直線で結ぶと四角形状になるようにしている。図6は碁盤の目をずらして隣り合う4つの突起を直線で結ぶと菱形となるようにしている。図7ではさらにずらしてランダム状に配置している。
突起50の形状は、電界勾配を付けることができるように形成し、例えばアノード電極3に向って突出する形状に形成される。具体的には、図9〜図12に例示するような形状とするとよい。図9には先端部が半球形をした円柱状のもの、図10は先端部が円錐形をした円柱状のもの、図11は円錐状のもの、図12は断面半楕円状のものがそれぞれ示されている。なおこの他に、先端部が三角錐状、四角錐状、多角錐状をしていてもよい。
これらに示された突起50は、カソード電極17の平板部45(例えば貫通孔)に装着される円柱状の装着部51と、その装着部51に同軸に一体的に設けられ、装着部51との境目(基端部)52が装着部51及び平板部45の貫通孔より径が大きく形成されて平板部45から突出する突出部53とから形成されている。この突起50の軸にその軸方向に沿ってガス供給孔40が設けられている。
【0024】
装着部51の直径は、平板部45の貫通孔の径と同じか若干小さな径に形成される。また、突起50が圧入により装着される場合には、装着部51の直径は、平板部45の貫通孔の径より若干大きな径に形成される。また、装着部51の軸方向の長さは、平板部45の厚さにもよるが、好ましくは平板部45の厚さと同じにすることがよい。
【0025】
突起50の平板部45への装着は、例えば、平板部45に貫通孔を設け、この貫通孔に突起50の装着部51を圧入して行ってもよいし、平板部45の貫通孔に突起50の装着部51を挿入した後、溶接等により固着して行ってもよい。また、装着部51の外周にねじ山を設け、このねじ山に螺合するねじ溝を平板部45の貫通孔を形成する壁に設けて、ねじ止めによって行うようにしてもよい。
【0026】
このように、カソード電極17のアノード電極3と対向する側の面に、突起先端にいくほど電界強度が高くなる電界勾配を形成するための突起50を複数配置し、この突起50内に設けたガス供給孔40を通過するガス分子が、電界勾配によって加速されるようにする。
【0027】
このことを、図14を用いて説明する。この図14は、カソード電極17に高周波電力が印加されていると共に、突起50内に設けた第1の供給孔であるガス供給孔40から成膜ガスが供給されている状態を示すものである。
まず、カソード電極17に高周波電力が印加されると、アノード電極3に向って突出する突起50は、先端にいくにつれて電界が高くなる。図14では、電界が高くなる様子を分かり易いようにドットの濃淡で表示した。このように電界が突起50の先端にいくにつれて高くなると、突起50の周囲に存在する電子e-は加速されることになる。
【0028】
カソード電極17の平板部45に設けた突起50の周囲に存在する電子e-が加速されると、この加速された電子e-は、突起50に設けられたガス供給孔40を通って電極3、17間の空間に供給された成膜ガスの分子Aと衝突する(図14(a))。このガス分子Aは衝突によってA+イオンと電子e-に分れ、ガス分子Aに衝突した電子e-及びガス分子Aから電離した電子e-は、軽量であるためさらに別のガス分子と衝突する(図14(b))。これが連鎖的に繰り返されることによってガス分子の電離が促進され、プラズマが生成する。平板部45に設けた突起50には電界の勾配が形成され、突起先端で電界が高くなるので、その周辺の電子e-は特に高速に加速されやすく、連鎖的な衝突及びガス分子Aの電離が激しく繰り返されて電子密度が特に高くなり、プラズマ生成効率が向上する。
【0029】
なお、衝突により分かれたA+イオンが衝突の勢いで別の分子に衝突することもあるが、A+イオンより電子e-のほうがはるかに軽量であるので、圧倒的に電子による衝突が多いと考えられる。
また、衝突の激しさは、ガスの圧力や高周波電源の出力などによって変わるが、基本的な衝突の原理は図14を用いて説明したものと同じであると考えられる。
【0030】
なお、従来例で説明した図16のカソード電極2も、平板部に凹部を設けることで、カソード電極2に相対的に凸部が形成されることになる。しかし、この従来例の凸部と実施の形態の突起50とは基本的に構成が異なる。従来例のものでは、平板部に設けた凹部70は互いに独立して存在しているが、この凹部70を設けることなく取り残された平板部分は、凹部70からみて相対的に凸部になっているとしても、この凸部は独立して存在しているわけではなく、面一のものとして互いにつながっている。これに対して実施の形態の突起50は、平板部45から突出させているので、独立した存在であり、つながっていない。また、従来例のものでは、相対的に凸部となっている平板部分にガス供給孔5を設けているため、このガス供給孔5に沿って電界の勾配が生じない。これに対して、実施の形態のものでは平板部45から突出した突起にガス供給孔50を設けているので、電界勾配が生じ、先端にいくにしたがって電界集中を起こすことができる。
したがって、従来例のものでは、ガス分子はこれを加速するように電界の影響をガス供給孔50内で受けないので、ガス供給孔5から出るガスの分子が凸部によっては加速されることはなく、したがって電子密度は高めることができない。
【0031】
したがって、実施の形態のように、電界勾配を形成するための突起50を設け、この突起50からガスを供給することにより、ガスの分子及び電子による衝突が増えるので、電子密度が高くなり、その結果、プラズマ生成効率を向上でき、必要とする高周波電力をより低減できる。
【0032】
また、突起50を設けると、ホローカソード現象によるプラズマ密度を増加できる。ホローカソード現象を生かした電極構造として、既に図17の(a)のような平板電極2の電極表面に多数の凹部(くぼみ)70を設けたものが知られている。しかし、ホロー放電は空間に突出した部分ほど生じやすいので、この凹部構造では凹部70の周縁部で最もホロー放電が起こりやすく、しかも周縁部は分断されることなく全体がひとつながりであるため、放電による効果は矢印で示すように周縁部全体に広がってしまい、凹部70の内側には伝播しにくい(ホローカソード現象によるプラズマ密度の増加は、凹部が1つだけの場合が最も効果的である)。一方、実施の形態による平板電極17では、空間に突出した突起50の先端で最もホロー放電が生じやすく、図17(b)に示すように、突起先端で生じたホロー放電による効果は突起50側面を伝わり平板電極17の電極表面に達する。電極表面は突起50によって分断されることなく、全体がひとつながりであるため、突起先端から生じた放電による効果は矢印で示すように平板電極全体に広がる。
【0033】
また、カソード電極17の突起50の間の平板部45にガス供給孔41を設けると、このガス供給孔41から供給されたガスによって突起50の間にガスの分子が滞留することなく、突起50の間以外の平板電極3、17間に押し出される。これにより、突起50の間にガスの分子が滞留する場合に比して突起50の間以外の平板電極3、17間にガスの分子が多く存在するので、前記の衝突が起こりやすくなり、より電子密度を高くすることができる。また、カソード電極17の突起50の間の平板部45にガス供給孔41を設けて、このガス供給孔41から突起50間に直接ガスを流すことにより、エネルギーの拡散を強めてホローカソード現象を促進することができ、より一層電子密度を高くすることができる。
【0034】
また、カソード電極17の突起50の間の平板部45にガス供給孔41を設けると、突起50の間の平板部45の表面上にパーティクルがたまりやすいが、ガス供給孔41からのガスの供給により、そのパーティクルを除去することができるので、パーティクルの集積も防ぐことが可能となる。
【0035】
【実施例】
凹凸電極であって凹凸部両方に孔を設けた突起付のカソード電極17を用いて電子密度の圧力依存性を調べた。
図1に示す構成のプラズマ処理装置を用い、処理室1内圧力を100〜1000mTorrに維持して、カソード電極17のガス供給孔40、41からアルゴンを流しつつ(凹凸部両方の孔からガス供給し)、20mm離間して配設された一対の直径165mmの電極17、3間に周波数13.56MHz、出力20Wの高周波電力を印加し、一対の電極17、3間の電子密度を調べた。電子密度は、Mo製シングルプローブをプラズマの中心位置に挿入して測定し、その結果を図15に示した。
上記突起付カソード電極としては図8に示すものを用いた。このカソード電極17は碁盤目状に配置され、その突起50の個数は373個である。平板部45のガス供給孔41は、突起50を避けるように、碁盤目状に配置され、その個数は352個であり、その直径は1.6mmである。
突起50としては図13に示す形状の、ガス供給孔直径:0.8、突起傾斜広がり角度:40°、装着部直径:2.2mm、長さ:2.5mm、突出部長さ:6.3mm、基端部直径:6mmのものを用いた。突起50のカソード電極への取付けは、装着部51の外周にねじ山56を設け、このねじ山56に螺合するねじ溝を平板部45の貫通孔を形成する壁に設けて、ねじ止めによって行った。
また、比較のために上記突起付カソード電極と同一の電極を用いるが、どちらのガス供給孔からもガスを供給せずに、代りに一対の電極間にアルゴンを供給する場合(凹凸部どちらの孔からもガス供給なし)と、カソード電極として平板円盤状の平行平板電極を用いた場合(平行平板電極)とについても前記と同様にして電子密度を調べた。
【0036】
図15に示した結果から、実施の形態の突起付カソード電極17を用いた(凹凸部両方の孔からガス供給)場合は、圧力100、200、400、600、800、1000mTorrのいずれにおいても、凹凸のない平行平板電極の場合の2〜4倍ぐらいの電子密度の値となった。また、突起付カソード電極を用いても凹凸部どちらの孔からもガス供給なしの場合は、平行平板電極の場合の1.5〜2倍ぐらいの電子密度の値となった。
【0037】
したがって、実施の形態の突起付カソード電極17を用いて両方の孔からガスを供給することにより、電子密度を大きくすることができ、プラズマ生成効率を向上させることができる。
また、例えば、平行平板電極の場合の1.5倍の電子密度を得たいのであれば、実施の形態のカソード電極17のガス供給孔40,41の半分を閉塞させるとか、またはガスの流量と排気速度を下げるとかすることにより簡単に対応できることになる。
【0038】
【発明の効果】
本発明によれば、突起のガス供給孔を通るガスの分子は電界により加速されるため、他のガス分子と衝突して、この衝突のエネルギーによって分子はイオンと電子に分かれ、さらに軽量の電子等は別の分子と衝突し、このような衝突が連鎖的に繰り返されるので、電子密度を大きくすることができ、プラズマ生成効率を向上することができる。
【図面の簡単な説明】
【図1】実施形態によるプラズマ処理装置の全体構成図である。
【図2】実施形態によるプラズマ処理装置の基本構成図である。
【図3】実施形態による高周波プラズマ生成電極の構成図である。
【図4】実施形態によるカソード電極を含むガス供給ヘッドの構成図である。
【図5】実施形態によるカソード電極の平板部を示す平面図である。
【図6】実施形態によるカソード電極の平板部を示す平面図である。
【図7】実施形態によるカソード電極の平板部を示す平面図である。
【図8】具体的なカソード電極の平板部を示す平面図である。
【図9】実施形態による突起の断面図である。
【図10】実施形態による突起の断面図である。
【図11】実施形態による突起の断面図である。
【図12】実施形態による突起の断面図である。
【図13】具的的な突起の断面図である。
【図14】実施形態による突起のガス供給孔からの分子による衝突を説明する概念図である。
【図15】実施の形態のカソード電極を含む3種類のカソード電極を用いたプラズマ処理装置における電子密度の圧力依存性を示す比較図である。
【図16】従来例によるプラズマ処理装置の全体構成図である。
【図17】従来例と実施の形態とのホロー放電効果を比較した説明図であり、(a)は従来例、(b)は実施の形態である。
【符号の説明】
1 処理室
3 アノード電極
4 基板
7 排気管
9 RF高周波電源
15 ガス導入口
17 カソード電極
40 ガス供給孔
41 ガス供給孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing apparatus used in a semiconductor manufacturing process.
[0002]
[Prior art]
2. Description of the Related Art A plasma processing apparatus has become increasingly important as a semiconductor basic technology indispensable to the industry by realizing a processing technology utilizing characteristics inherent to plasma, such as etching and thin film deposition.
Above all, a plasma processing apparatus using plasma enhanced chemical vapor deposition (PECVD) for depositing a layer of an electronic material on various substrates is widely used in the manufacture of semiconductor devices.
[0003]
As a plasma processing apparatus using PECVD, a plasma processing apparatus that obtains high-density plasma using the hollow cathode phenomenon, extends a maintenance cycle, and reduces fluoridation of an electrode is known (for example, see Patent Document 1). .).
[0004]
As shown in FIG. 16, the plasma processing apparatus of Patent Document 1 has a parallel plate electrode structure, accommodates a substrate 4 in an airtight processing chamber 1, and has a pair of flat electrodes provided in the processing chamber 1. A plasma is generated by applying high-frequency power while supplying a film-forming gas between two or three, and decomposes gas molecules in the film-forming gas to cause a chemical reaction to form a thin film on the substrate surface. .
The film-forming gas is supplied through a gas inlet 15 connected to the cathode electrode 2, and flows between the cathode electrode 2 and the anode electrode 3 via the dispersion plate 12 provided on the cathode electrode 2 and the gas inlet hole 5. be introduced. The flat plate portion 45 of the cathode electrode 2 facing the anode electrode 3 is provided with a plurality of concave portions 70 for increasing the electrode area. No gas supply port is provided in the concave portion 70, and the gas supply hole 5 is provided in the flat plate portion of the anode electrode 3 remaining without providing the concave portion 70. A non-film-forming gas is introduced first through the gas inlet 15 and a film-forming gas is introduced later. This allows the non-film-forming gas to enter the concave portion, and prevents the film-forming gas introduced later from entering the concave portion 70.
The high-frequency power of the RF high-frequency power source 9 is applied to the electrode 3 through the coupling capacitor 19, the gas inlet 15, and the anode susceptor 13 to the film-forming gas introduced between the electrodes 2 and 3 to generate plasma. A predetermined film is formed thereon. The upper heater 10 and the lower heater 11 are provided for uniformly heating the substrate 4 to a constant temperature.
[0005]
As described above, according to the plasma processing apparatus disclosed in Patent Literature 1, since a plurality of concave portions are provided in the electrode, the non-film-forming gas stays in the concave portion 70, and the film-forming gas is accumulated in the concave portion 70 by the film-forming gas. The film is hardly formed, and the maintenance cycle can be lengthened. In addition, since the hollow cathode phenomenon causes high-density energy to be emitted from the concave portion 70 in which the non-film-forming gas has accumulated, the film-forming gas introduced from the gas supply holes 5 provided in the flat plate portion other than the concave portion 70 is effectively ionized. The required high-frequency power can be reduced, the DC voltage applied between the electrodes 2 and 3 can be significantly reduced, and the electrode sheath potential gradient can be moderated as compared with the case where the concave portion 70 is not formed. As a result, a sputtering phenomenon or the like on the electrode 2 to which high-frequency power is applied is suppressed, and the generation of fluoride on the electrode 2 is reduced.
[0006]
[Patent Document 1]
JP 2001-135626 A
[Problems to be solved by the invention]
According to Patent Literature 1 described above, a plurality of recesses are provided on the plate electrode to which high-frequency power is applied, of the pair of plate electrodes, to increase the electrode area. The plasma generation efficiency is improved because the film formation gas can be effectively ionized with low high-frequency power as well as the generation is reduced. However, even in this case, since the gas supply holes are provided in the flat portions of the electrodes, the electric field between the electrodes formed by the high-frequency power is changed by the gas molecules introduced from the gas supply holes provided in the flat portions. In addition, there is room for improvement in plasma generation efficiency because it is not intended to work more effectively.
[0008]
Therefore, an object of the present invention is to provide a plasma processing apparatus capable of improving the plasma generation efficiency by more effectively applying an electric field to gas molecules introduced from a gas supply hole.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a plasma is supplied between a pair of opposed flat plate electrodes, and a high-frequency power is applied to at least one of the pair of flat plate electrodes to generate plasma and perform plasma processing on the substrate. The plasma processing apparatus is characterized in that a plurality of projections are provided on the plate electrode to which the high-frequency power is applied, and a gas supply hole for supplying the gas is provided on the plurality of projections.
[0010]
With this configuration, electrons existing around the plate electrode provided with the protrusions are accelerated and collide with gas molecules supplied between the plate electrodes through the gas supply holes provided in the protrusions. The gas molecules are separated into positive ions and electrons by collision, and the electrons that collide with the molecule and the electrons that are ionized from the molecule collide with another gas molecule. By repeating this in a chain, ionization of gas molecules is promoted, and plasma is generated. An electric field gradient is formed on the projection provided on the plate electrode, and the electric field increases toward the tip of the projection, so that electrons around the projection are easily accelerated, and chain collisions and ionization of gas molecules are repeated violently. The density is increased, and the plasma generation efficiency is improved.
[0011]
In a plate electrode provided with protrusions, hollow discharge is most likely to occur at the tip of the protrusion projecting between the plate electrodes, and the effect of the hollow discharge generated at the tip of the protrusion reaches the electrode surface through the side surface of the protrusion. Since the entire electrode surface is continuous without being separated by the projection, the effect of the hollow discharge generated from the tip of the projection spreads over the entire electrode.
[0012]
It is preferable that the gas supply hole is also provided in a flat portion between the projections of the flat electrode provided with the projections. Thereby, when gas is supplied between the projections from the gas supply port provided in the flat portion between the projections of the flat electrode, a hollow cathode phenomenon generated between the projections of the flat electrode is promoted, and the electron density can be further increased. it can. Further, when a gas flows in the flat portion between the projections of the flat electrode, particles staying in the flat portion between the projections are pushed out from between the projections by the gas, so that the staying particles can be effectively removed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, an overall configuration of a plasma processing apparatus that performs a film forming process using PECVD will be described with reference to FIG.
As shown in FIG. 1, the processing chamber 1 of the plasma processing apparatus has a two-tank structure including an inner case 18 and an outer case 31, which can be decompressed. The inner case 18 is provided inside the sealed outer case 31. The inner case 18 includes a case body attached to the ceiling of the outer case 31 and having a closed top and an open bottom, and an anode susceptor 13 as a case outer lid that covers the bottom opening.
[0014]
In the processing chamber 1, a pair of parallel plate electrodes is provided. One constitutes the anode electrode 3 and the other constitutes the cathode electrode 17. One anode electrode 3 is supported on an anode susceptor 13. The substrate 4 is mounted on the anode electrode 3, and an insulating ring 16 is provided on the outer periphery of the substrate 4. The anode electrode 3 is grounded through an anode susceptor 13 that supports the anode electrode 3.
[0015]
The entire upper surface of the other cathode electrode 17 is covered with the insulating case 8 provided in the case body of the inner case 18. The lower periphery of the cathode electrode 17 is supported by the insulating ring 20, so that it is insulated from the inner case 18 and the outer case 31 of the processing chamber 1 that are grounded.
[0016]
The cathode electrode 17 forms a part of the gas supply head 35. That is, the gas gas supply head 35 includes a gas inlet 15 that is drawn out of the insulating case 8 and introduces a film forming gas into the processing chamber 1, a dispersion plate 12 that disperses the gas introduced from the gas inlet 15, And a cathode electrode 17 to which power is applied. The cathode electrode 17 has a plurality of gas supply holes 40 for supplying a film formation gas introduced from the gas introduction port 15 through the dispersion plate 12 between the pair of electrodes 3 and 17.
[0017]
The RF high-frequency power supply 9 is connected to the cathode electrode 17 from the gas inlet 15 via the matching box 37 and the coupling capacitor 19. The anode susceptor 13 supporting the anode electrode 3 is grounded via the inner case 18 and the outer case 31.
[0018]
The film forming gas is supplied into the processing chamber 1 through the gas inlet 15, and is guided between the electrodes 3 and 17 via the dispersion plate 12 provided on the cathode 17 and the gas supply holes 40. The upper heater 10 provided on the cathode electrode 17 and the lower heater 11 provided on the anode electrode 3 are provided for uniformly heating the substrate 4 to a constant temperature.
[0019]
The anode susceptor 13 on which the substrate 4 is placed moves up and down. When the anode susceptor 13 rises, the lower opening of the inner case 18 is closed to form an inner tank, and the substrate 4 is confined in the inner tank. When descending, the inner tank is opened, and the substrate 4 is taken out to the outer case 31 serving as the outer tank.
[0020]
At the time of film formation, the anode susceptor 13 is raised to form an inner tank. A high-frequency power of an RF high-frequency power supply 9 is applied to the film-forming gas introduced between the cathode electrode 17 and the anode electrode 3 to generate plasma, and a predetermined film is formed on the substrate 4. The residual gas of the film forming gas processed by the plasma passes through an exhaust pipe 7 communicating with the processing chamber 1 and is processed into an exhaust processing system (not shown). In the figure, a gas supply system, a substrate transfer system, and an exhaust processing system are omitted.
[0021]
FIG. 2 to FIG. 4 are explanatory diagrams showing the configuration of the above-described plasma processing apparatus as a unit by capturing each function. FIG. 2 is a basic configuration diagram of the plasma processing apparatus. FIG. 3 is a configuration diagram of a high-frequency plasma generation electrode constituting a pair of plate electrodes. FIG. 4 is a configuration diagram of a gas supply head including a cathode electrode constituting a high-frequency plasma generation electrode.
In these figures, the gas supply head 35 is mainly composed of the gas inlet 15, a hollow head main body communicating with the gas inlet, and the cathode electrode 17 forming the bottom of the head main body. Three gas inlets 15 are provided, and one of the three gas inlets 15 is configured to flow a deposition gas, and the other two are configured to flow a plasma generation gas, for example, an argon (Ar) gas. An RF high-frequency power supply 9 is connected to one gas inlet 15 through which a film forming gas flows through a matching box 37 and a coupling capacitor 19, and high-frequency power is applied. The anode electrode 3 is grounded.
Further, the cathode electrode 17 becomes a flat plate portion 45 facing the anode electrode 3, a plurality of protrusions 50 for forming an electric field gradient in the flat plate portion 45, and first supply holes provided in each protrusion 50. And a gas supply hole 40. The flat plate portion 45 and the protrusion 50 may be formed individually or integrally. In this case, a part of the projection 50 may be integrated by pressing into a hole provided in the flat plate portion 45.
[0022]
Further, it is preferable to provide a gas supply hole 41 serving as a second supply hole in the flat plate portion 45 between the projections 50 of the cathode electrode 17. The diameter of the gas supply hole 41 of the flat plate portion 45 is determined in relation to the diameter of the gas supply hole 41 of the projection 50. For example, if the diameter of the first gas supply hole 41 is 0.8 mm, a double diameter of 1.6 mm is preferable.
The gas supply holes 41 are provided, for example, by providing a large number of through holes in the flat plate portion 45 of the cathode electrode 17, providing projections 50 in some of these through holes, and using the remaining through holes as the gas supply holes 41. It may be.
The hollow head body connecting the gas inlet 15 and the anode electrode 3 does not show the internal dispersion plate 12.
[0023]
The plurality of projections 50 provided on the flat plate portion 45 of the cathode electrode 17 are arranged on almost the entire surface of the flat plate portion 45, but may be arranged as shown in FIGS. In FIG. 5, four projections adjacent to each other are arranged in a grid pattern to form a square shape by connecting four adjacent projections with a straight line. In FIG. 6, the four projections adjacent to each other are shifted from each other by a straight line so as to form a rhombus. In FIG. 7, they are further shifted and arranged in a random manner.
The shape of the protrusion 50 is formed so that an electric field gradient can be provided, and is formed, for example, in a shape protruding toward the anode electrode 3. Specifically, the shape may be as illustrated in FIGS. 9 to 12. FIG. 9 shows a cylindrical shape with a hemispherical tip, FIG. 10 shows a cylindrical shape with a conical tip, FIG. 11 shows a conical shape, and FIG. It is shown. In addition, the tip may have a triangular pyramid shape, a quadrangular pyramid shape, or a polygonal pyramid shape.
The projections 50 shown in these figures are provided coaxially and integrally with a cylindrical mounting portion 51 mounted on a flat plate portion 45 (for example, a through hole) of the cathode electrode 17, and the mounting portion 51 (Base end) 52 is formed of a mounting portion 51 and a projecting portion 53 having a larger diameter than the through hole of the flat plate portion 45 and protruding from the flat plate portion 45. A gas supply hole 40 is provided on the axis of the projection 50 along the axial direction.
[0024]
The diameter of the mounting portion 51 is equal to or slightly smaller than the diameter of the through hole of the flat plate portion 45. When the projection 50 is mounted by press fitting, the diameter of the mounting portion 51 is formed to be slightly larger than the diameter of the through hole of the flat plate portion 45. The length of the mounting portion 51 in the axial direction depends on the thickness of the flat plate portion 45, but is preferably the same as the thickness of the flat plate portion 45.
[0025]
The mounting of the protrusion 50 on the flat plate portion 45 may be performed, for example, by providing a through hole in the flat plate portion 45 and press-fitting the mounting portion 51 of the protrusion 50 into the through hole, or by inserting the protrusion into the through hole of the flat plate portion 45. After inserting the mounting part 51 of 50, it may be fixed by welding or the like. Alternatively, a thread may be provided on the outer periphery of the mounting portion 51, and a thread groove to be screwed with the thread may be provided on a wall of the flat plate portion 45 where the through hole is formed, and screwing may be performed.
[0026]
In this manner, a plurality of projections 50 for forming an electric field gradient in which the electric field intensity becomes higher toward the tip of the projections are arranged on the surface of the cathode electrode 17 facing the anode electrode 3, and are provided in the projections 50. The gas molecules passing through the gas supply holes 40 are accelerated by the electric field gradient.
[0027]
This will be described with reference to FIG. FIG. 14 shows a state in which high-frequency power is applied to the cathode electrode 17 and a film forming gas is supplied from the gas supply hole 40 which is the first supply hole provided in the projection 50. .
First, when high-frequency power is applied to the cathode electrode 17, the electric field of the protrusion 50 protruding toward the anode electrode 3 increases toward the tip. In FIG. 14, the appearance of the increase in the electric field is indicated by shading of the dots so as to be easily understood. When the electric field increases toward the tip of the protrusion 50, the electrons e existing around the protrusion 50 are accelerated.
[0028]
When the electrons e existing around the protrusion 50 provided on the flat plate portion 45 of the cathode electrode 17 are accelerated, the accelerated electrons e pass through the gas supply holes 40 provided on the protrusion 50 to form the electrode 3. , 17 (FIG. 14A). The gas molecules A are separated into A + ions and electrons e by collision, and the electrons e colliding with the gas molecules A and the electrons e ionized from the gas molecules A collide with further gas molecules due to their light weight. (FIG. 14B). By repeating this in a chain, ionization of gas molecules is promoted, and plasma is generated. Since a gradient of an electric field is formed on the projection 50 provided on the flat plate portion 45 and the electric field is increased at the tip of the projection, the electrons e around the projection are particularly easily accelerated at a high speed, so that chain collision and ionization of the gas molecules A occur. Is repeated violently, the electron density becomes particularly high, and the plasma generation efficiency is improved.
[0029]
In addition, the A + ion separated by collision may collide with another molecule with the force of collision, but the electron e is much lighter than the A + ion. Conceivable.
The severity of the collision varies depending on the gas pressure, the output of the high-frequency power supply, and the like, but the basic principle of the collision is considered to be the same as that described with reference to FIG.
[0030]
In the cathode electrode 2 of FIG. 16 described in the conventional example, a convex portion is formed relatively to the cathode electrode 2 by providing a concave portion in the flat plate portion. However, the configuration of the projection of the conventional example and the projection 50 of the embodiment are basically different. In the conventional example, the concave portions 70 provided in the flat plate portion exist independently of each other, but the flat plate portion left without providing the concave portion 70 becomes a relatively convex portion as viewed from the concave portion 70. However, these protrusions do not exist independently, but are connected to each other as a flush surface. On the other hand, since the projection 50 of the embodiment is projected from the flat plate portion 45, it is independent and not connected. In the conventional example, since the gas supply holes 5 are provided in the relatively convex flat plate portion, no electric field gradient occurs along the gas supply holes 5. On the other hand, in the embodiment, since the gas supply holes 50 are provided in the protrusions protruding from the flat plate portion 45, an electric field gradient is generated, and the electric field concentration can be caused toward the tip.
Therefore, in the conventional example, since the gas molecules are not affected by the electric field in the gas supply hole 50 so as to accelerate the gas molecules, the gas molecules coming out of the gas supply hole 5 may not be accelerated by the projections. And therefore the electron density cannot be increased.
[0031]
Therefore, as in the embodiment, a projection 50 for forming an electric field gradient is provided, and by supplying a gas from the projection 50, collisions of gas molecules and electrons increase, so that the electron density increases. As a result, the plasma generation efficiency can be improved, and the required high-frequency power can be further reduced.
[0032]
Further, when the projections 50 are provided, the plasma density due to the hollow cathode phenomenon can be increased. As an electrode structure utilizing the hollow cathode phenomenon, there is already known an electrode structure in which a large number of recesses (dents) 70 are provided on the electrode surface of a plate electrode 2 as shown in FIG. However, since hollow discharge is more likely to occur in a portion protruding into a space, hollow discharge is most likely to occur at the peripheral portion of the concave portion 70 in this concave structure, and the peripheral portion is connected without being divided. Effect spreads over the entire periphery as shown by the arrow and is hardly propagated inside the recess 70 (the increase in plasma density due to the hollow cathode phenomenon is most effective when there is only one recess). . On the other hand, in the flat electrode 17 according to the embodiment, hollow discharge is most likely to occur at the tip of the protrusion 50 projecting into the space. As shown in FIG. And reaches the electrode surface of the plate electrode 17. Since the entire electrode surface is not separated by the projection 50 but is continuous as a whole, the effect of the discharge generated from the tip of the projection spreads over the entire flat electrode as indicated by the arrow.
[0033]
Further, when the gas supply holes 41 are provided in the flat plate portion 45 between the protrusions 50 of the cathode electrode 17, gas molecules supplied from the gas supply holes 41 do not cause gas molecules to stay between the protrusions 50. Are extruded between the flat plate electrodes 3 and 17 other than those between. Thereby, compared with the case where gas molecules stay between the projections 50, more gas molecules exist between the plate electrodes 3 and 17 other than between the projections 50, so that the collision is more likely to occur, and The electron density can be increased. Further, a gas supply hole 41 is provided in the flat plate portion 45 between the projections 50 of the cathode electrode 17, and a gas is directly flowed from the gas supply hole 41 to the space between the projections 50, thereby enhancing the energy diffusion and reducing the hollow cathode phenomenon. Can be promoted, and the electron density can be further increased.
[0034]
Further, when the gas supply holes 41 are provided in the flat plate portion 45 between the projections 50 of the cathode electrode 17, particles easily accumulate on the surface of the flat plate portion 45 between the protrusions 50. Accordingly, the particles can be removed, and hence the accumulation of particles can be prevented.
[0035]
【Example】
The pressure dependency of the electron density was investigated using a cathode electrode 17 having protrusions and projections provided with holes in both the projections and depressions.
Using the plasma processing apparatus having the configuration shown in FIG. 1 and maintaining the internal pressure of the processing chamber 1 at 100 to 1000 mTorr, while supplying argon from the gas supply holes 40 and 41 of the cathode electrode 17 (gas supply from both the concave and convex portions). Then, high-frequency power having a frequency of 13.56 MHz and an output of 20 W was applied between a pair of electrodes 165 and 165 mm in diameter, which were disposed 20 mm apart, and the electron density between the pair of electrodes 17 and 3 was examined. The electron density was measured by inserting a single probe made of Mo into the center of the plasma, and the results are shown in FIG.
The thing shown in FIG. 8 was used as the cathode electrode with the projection. The cathode electrodes 17 are arranged in a grid pattern, and the number of the projections 50 is 373. The gas supply holes 41 of the flat plate portion 45 are arranged in a grid pattern so as to avoid the projections 50, the number thereof is 352, and the diameter is 1.6 mm.
As the protrusion 50, the gas supply hole diameter: 0.8, the protrusion inclination / spread angle: 40 °, the mounting portion diameter: 2.2 mm, the length: 2.5 mm, and the protrusion length: 6.3 mm as shown in FIG. The diameter of the base end portion was 6 mm. The projection 50 is attached to the cathode electrode by providing a thread 56 on the outer periphery of the mounting portion 51, a thread groove to be screwed to the thread 56 is provided on a wall forming a through hole of the flat plate portion 45, and screwing is performed. went.
Further, for comparison, the same electrode as the above-mentioned cathode electrode with projections is used, but argon is supplied between a pair of electrodes instead of supplying gas from either of the gas supply holes. The electron density was also measured in the same manner as described above for the case where no gas was supplied from the holes) and the case where a flat plate-shaped parallel plate electrode was used as the cathode electrode (parallel plate electrode).
[0036]
From the results shown in FIG. 15, when the cathode electrode 17 with projections according to the embodiment is used (gas is supplied from both holes of the concave and convex portions), the pressure is 100, 200, 400, 600, 800, and 1000 mTorr. The value of the electron density was about 2 to 4 times that of the parallel plate electrode having no irregularities. In addition, even when the cathode electrode with projections was used, when the gas was not supplied from either hole of the uneven portion, the electron density was about 1.5 to 2 times that of the parallel plate electrode.
[0037]
Therefore, by supplying gas from both holes using the cathode electrode 17 with projections of the embodiment, the electron density can be increased and the plasma generation efficiency can be improved.
For example, if it is desired to obtain an electron density 1.5 times that of the parallel plate electrode, half of the gas supply holes 40 and 41 of the cathode electrode 17 of the embodiment may be closed, or the gas flow rate may be reduced. By reducing the pumping speed, it can be easily handled.
[0038]
【The invention's effect】
According to the present invention, the gas molecules passing through the gas supply holes of the projections are accelerated by the electric field, and collide with other gas molecules. Etc. collide with another molecule, and such collisions are repeated in a chain, so that the electron density can be increased and the plasma generation efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a plasma processing apparatus according to an embodiment.
FIG. 2 is a basic configuration diagram of a plasma processing apparatus according to an embodiment.
FIG. 3 is a configuration diagram of a high-frequency plasma generation electrode according to the embodiment.
FIG. 4 is a configuration diagram of a gas supply head including a cathode electrode according to the embodiment.
FIG. 5 is a plan view showing a flat plate portion of the cathode electrode according to the embodiment.
FIG. 6 is a plan view showing a flat plate portion of a cathode electrode according to the embodiment.
FIG. 7 is a plan view showing a flat plate portion of the cathode electrode according to the embodiment.
FIG. 8 is a plan view showing a specific flat plate portion of a cathode electrode.
FIG. 9 is a sectional view of a protrusion according to the embodiment.
FIG. 10 is a sectional view of a protrusion according to the embodiment.
FIG. 11 is a cross-sectional view of a protrusion according to the embodiment.
FIG. 12 is a sectional view of a protrusion according to the embodiment.
FIG. 13 is a sectional view of a specific projection.
FIG. 14 is a conceptual diagram illustrating collision of a protrusion from a gas supply hole with molecules according to the embodiment.
FIG. 15 is a comparison diagram showing pressure dependency of electron density in a plasma processing apparatus using three types of cathode electrodes including the cathode electrode of the embodiment.
FIG. 16 is an overall configuration diagram of a conventional plasma processing apparatus.
17A and 17B are explanatory diagrams comparing the hollow discharge effect between the conventional example and the embodiment, wherein FIG. 17A is a conventional example and FIG. 17B is an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing chamber 3 Anode electrode 4 Substrate 7 Exhaust pipe 9 RF high frequency power supply 15 Gas inlet 17 Cathode electrode 40 Gas supply hole 41 Gas supply hole

Claims (2)

対向する一対の平板電極間にガスを供給し、一対の平板電極の少なくとも一方の平板電極に高周波電力を印加してプラズマを発生させて基板にプラズマ処理を行うプラズマ処理装置において、
前記高周波電力が印加される平板電極に複数の突起を設け、
前記複数の突起に前記ガスを供給するガス供給孔を設けたことを特徴とするプラズマ処理装置。
In a plasma processing apparatus for supplying a gas between a pair of opposed flat plate electrodes, applying high-frequency power to at least one of the pair of flat plate electrodes to generate plasma, and performing plasma processing on the substrate,
Providing a plurality of protrusions on the plate electrode to which the high-frequency power is applied,
A plasma processing apparatus, wherein a gas supply hole for supplying the gas is provided in the plurality of protrusions.
前記複数の突起が設けられた平板電極の突起間の平板部にもガス供給孔を設けた請求項1に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein a gas supply hole is also provided in a flat portion between the projections of the flat electrode having the plurality of projections.
JP2002366163A 2002-12-18 2002-12-18 Plasma processing equipment Expired - Lifetime JP4292002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366163A JP4292002B2 (en) 2002-12-18 2002-12-18 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366163A JP4292002B2 (en) 2002-12-18 2002-12-18 Plasma processing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008113028A Division JP5030850B2 (en) 2008-04-23 2008-04-23 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2004200345A true JP2004200345A (en) 2004-07-15
JP4292002B2 JP4292002B2 (en) 2009-07-08

Family

ID=32763449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366163A Expired - Lifetime JP4292002B2 (en) 2002-12-18 2002-12-18 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4292002B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917475B1 (en) 2007-07-06 2009-09-14 홍인표 A chemical vapor deposition device having a shower head
WO2009152670A1 (en) * 2008-06-19 2009-12-23 东莞宏威数码机械有限公司 Radio frequency electrode and apparatus for film formation
JP2010062382A (en) * 2008-09-04 2010-03-18 Sharp Corp Vapor phase deposition device and vapor phase deposition method
WO2010113709A1 (en) * 2009-03-31 2010-10-07 三洋電機株式会社 Plasma processing apparatus and method for manufacturing solar cell using same
JP2010238831A (en) * 2009-03-31 2010-10-21 Sharp Corp Vapor phase deposition device, and vapor phase deposition method
CN101928935A (en) * 2009-06-19 2010-12-29 株式会社半导体能源研究所 Plasma processing apparatus, film-forming method and method for fabricating thin film transistor
JP2011054950A (en) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd Method for manufacturing microcrystalline semiconductor film and thin film transistor
US8394685B2 (en) 2010-12-06 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Etching method and manufacturing method of thin film transistor
US8410486B2 (en) 2010-05-14 2013-04-02 Semiconductor Energy Labortory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8426295B2 (en) 2010-10-20 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline silicon film and manufacturing method of semiconductor device
US8450158B2 (en) 2010-11-04 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8772627B2 (en) 2009-08-07 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US8778745B2 (en) 2010-06-29 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8815635B2 (en) 2010-11-05 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of photoelectric conversion device
US8859404B2 (en) 2010-08-25 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8884297B2 (en) 2010-05-14 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof
US8895116B2 (en) 2010-11-04 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of crystalline semiconductor film and manufacturing method of semiconductor device
US9048327B2 (en) 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device
US9177761B2 (en) 2009-08-25 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
JP2017152689A (en) * 2016-02-05 2017-08-31 ラム リサーチ コーポレーションLam Research Corporation Chamber for patterning non-volatile metals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061749B1 (en) * 2012-12-27 2020-01-02 주식회사 무한 Apparatus for processing substrate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917475B1 (en) 2007-07-06 2009-09-14 홍인표 A chemical vapor deposition device having a shower head
WO2009152670A1 (en) * 2008-06-19 2009-12-23 东莞宏威数码机械有限公司 Radio frequency electrode and apparatus for film formation
JP2010062382A (en) * 2008-09-04 2010-03-18 Sharp Corp Vapor phase deposition device and vapor phase deposition method
WO2010113709A1 (en) * 2009-03-31 2010-10-07 三洋電機株式会社 Plasma processing apparatus and method for manufacturing solar cell using same
JP2010238831A (en) * 2009-03-31 2010-10-21 Sharp Corp Vapor phase deposition device, and vapor phase deposition method
KR20100136933A (en) * 2009-06-19 2010-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Plasma treatment apparatus, method for forming film, and method for manufacturing thin film transistor
JP2011023714A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Plasma treatment apparatus, method for forming film, and method for manufacturing thin-film transistor
KR101698327B1 (en) * 2009-06-19 2017-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Plasma treatment apparatus, method for forming film, and method for manufacturing thin film transistor
TWI556309B (en) * 2009-06-19 2016-11-01 半導體能源研究所股份有限公司 Plasma treatment apparatus, method for forming film, and method for manufacturing thin film transistor
CN101928935A (en) * 2009-06-19 2010-12-29 株式会社半导体能源研究所 Plasma processing apparatus, film-forming method and method for fabricating thin film transistor
US8772627B2 (en) 2009-08-07 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
JP2011054950A (en) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd Method for manufacturing microcrystalline semiconductor film and thin film transistor
US8258025B2 (en) 2009-08-07 2012-09-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and thin film transistor
US9177761B2 (en) 2009-08-25 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8884297B2 (en) 2010-05-14 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof
US8410486B2 (en) 2010-05-14 2013-04-02 Semiconductor Energy Labortory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US8778745B2 (en) 2010-06-29 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8859404B2 (en) 2010-08-25 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8426295B2 (en) 2010-10-20 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of microcrystalline silicon film and manufacturing method of semiconductor device
US8450158B2 (en) 2010-11-04 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
US8895116B2 (en) 2010-11-04 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of crystalline semiconductor film and manufacturing method of semiconductor device
US8815635B2 (en) 2010-11-05 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of photoelectric conversion device
US8394685B2 (en) 2010-12-06 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Etching method and manufacturing method of thin film transistor
US9048327B2 (en) 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device
JP2017152689A (en) * 2016-02-05 2017-08-31 ラム リサーチ コーポレーションLam Research Corporation Chamber for patterning non-volatile metals

Also Published As

Publication number Publication date
JP4292002B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP2004200345A (en) Plasma processing apparatus
US7927455B2 (en) Plasma processing apparatus
JP4565743B2 (en) Semiconductor processing chamber electrode and method of manufacturing the same
US20080156771A1 (en) Etching apparatus using neutral beam and method thereof
JP5287850B2 (en) Cathode electrode for plasma CVD and plasma CVD apparatus
CN1619011A (en) Ionized physical vapor deposition apparatus using helical self-resonant coil
US6380684B1 (en) Plasma generating apparatus and semiconductor manufacturing method
WO2010110099A1 (en) Plasma processing apparatus and method of producing amorphous silicon thin film using same
JP2012038682A (en) Plasma processing apparatus and plasma control method
JP6544902B2 (en) Plasma processing system
JP5030850B2 (en) Plasma processing equipment
US20090214402A1 (en) Microplasma Array
JPH0817748A (en) Plasma processing device
KR100381205B1 (en) Plasma CVD system and plasma CVD film deposition method
JP2004353066A (en) Plasma source and plasma treatment system
JP4730572B2 (en) Plasma film forming apparatus and cleaning method thereof
JP2009253102A (en) Cathode electrode for plasma cvd and plasma cvd apparatus
JP3151364U (en) Plasma chemical vapor deposition equipment
KR100500427B1 (en) Apparatus for Surface Treatment Using Atmospheric Pressure Plasma
JPH024976A (en) Thin film formation
JP5585294B2 (en) Plasma processing apparatus and thin film manufacturing method using the same
JP2000178744A (en) Film forming device
JPS61238981A (en) Method for making uniform high-frequency etching
KR20050087405A (en) Chemical vapor deposition apparatus equipped with showerhead which generates high density plasma
JP2005353636A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4292002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term