JP2004199977A - Fuel cell generator and its operation method - Google Patents

Fuel cell generator and its operation method Download PDF

Info

Publication number
JP2004199977A
JP2004199977A JP2002366236A JP2002366236A JP2004199977A JP 2004199977 A JP2004199977 A JP 2004199977A JP 2002366236 A JP2002366236 A JP 2002366236A JP 2002366236 A JP2002366236 A JP 2002366236A JP 2004199977 A JP2004199977 A JP 2004199977A
Authority
JP
Japan
Prior art keywords
fuel cell
water
gas
power generator
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366236A
Other languages
Japanese (ja)
Other versions
JP4304975B2 (en
Inventor
Masahito Senda
仁人 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002366236A priority Critical patent/JP4304975B2/en
Publication of JP2004199977A publication Critical patent/JP2004199977A/en
Application granted granted Critical
Publication of JP4304975B2 publication Critical patent/JP4304975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost fuel cell generator, and its operation method, with an excellent maintenance property by preventing high CO-concentration reformed gas from diffusing to a fuel cell main body. <P>SOLUTION: The device is to be provided with a reformer 3, the fuel cell main body 1, an exhaust hydrogen supply line 19, a reformed gas bypass line 18 having a battery bypass valve 10, a water sealing unit 12 consisting of a water storage part and a gas space part fitted in its upward, and a switching control device of gas flow channels drawn out from the fuel cell main body. The gas flow channels drawn out from the fuel cell main body in the exhaust hydrogen supply line are shut off by water of the water storage part of the water sealing unit before start of power generation, and are made communicated with a burner for the reformer via the gas space part of the water sealing unit after the start of the power generation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、炭化水素系原燃料ガスを触媒により水素リッチな改質ガスに変換する改質器を備える燃料電池発電装置、特に、改質ガスバイパスラインを設けた固体高分子電解質型燃料電池とその運転方法に関する。
【0002】
【従来の技術】
燃料電池発電装置に組み込まれる燃料電池としては、電解質の種類、改質原料の種類等によって異なる種々のタイプがあるが、例えば、固体高分子膜を電解質として用い、その運転温度が約80℃と比較的低いタイプの燃料電池として、固体高分子電解質型燃料電池がよく知られている。
【0003】
この固体高分子電解質型燃料電池は、リン酸型燃料電池と同様に、例えばメタンガス(都市ガス)等の炭化水素系原燃料を水蒸気改質して得られた燃料ガス中の水素と空気中の酸素とを、燃料電池の燃料極および空気極にそれぞれ供給し、電気化学反応に基づいて発電を行うものである。
【0004】
また、原燃料を燃料ガスへ改質するに際しては、原燃料に水蒸気を加え燃料改質器で触媒により改質を促進する方法が採られているが、改質を定常的に行なうには所要の水蒸気量を定常的に補給する必要があり、水蒸気の供給装置には、これに対応した水を常時補給する必要がある。なお、使用する水は高純度の水であることが必要であり、イオン交換式の水処理装置で不純物を除去したイオン交換水が用いられるのが通例である。
【0005】
一方、燃料電池の電気化学反応では発電生成水が生じ、また燃料改質器では吸熱反応である水蒸気改質反応を定常的に行なうための触媒加熱用の燃焼に伴い燃焼生成水が生じるが、これらの生成水は通常の水道水に比べて不純物が少なく、これらの生成水を原水として用いれば、水処理装置の負荷を軽減することができるため、回収水タンクおよび排ガス冷却器を付加して、これらの生成水を回収して改質水蒸気発生用の供給水とする方法が、通常採用されている。
【0006】
また、燃料電池の電気化学反応では反応に伴って熱が発生し、この排熱エネルギーの一部は、貯湯槽に温水として貯え、給湯もしくは暖房に供される。
【0007】
図5は、都市ガスを原燃料とする従来の固体高分子電解質型燃料電池発電装置の一例を示す系統図である。
【0008】
図5において、模式的に示した燃料電池1は、燃料極1aと空気極1bとを有する単位セルを複数個重ねる毎に、図示しない冷却管または冷却溝を有する冷却板1cを配設,積層することにより構成されている。
【0009】
原燃料はまず改質用水蒸気とともに改質器3に供給され、以下の反応により、水素と一酸化炭素に改質される。改質用の触媒としては、貴金属系触媒またはニッケル系触媒が用いられる。
【0010】
CH4+H2O→3H2+CO (吸熱反応)
その後、この改質ガスは、CO変成器4に供給され、以下の反応により、改質ガス中の―酸化炭素は1%程度まで低減される。CO変成用触媒としては、貴金属系触媒または銅−亜鉛系触媒が用いられる。
【0011】
CO+H2O→H2+CO2 (発熱反応)
その後、さらにCO除去器5に供給され、ブロアによって供給された空気によりCOを選択酸化する以下の反応により、改質ガス中の一酸化炭素は10ppm程度まで低減された後、燃料電池の燃料極1aに供給される。
【0012】
CO+1/2O2→CO2 (発熱反応)
上記の如く、改質器3において改質反応を行う場合、水蒸気を供給する必要があり、固体高分子型燃料電池発電装置では、その熱源として改質器3の燃焼排ガスの顕熱,CO変成器4及びCO除去器5の反応熱を利用するのが一般的である。そのため、電池冷却水循環ポンプ54にて供給される改質用水を、CO変成器4,CO除去器5,水蒸気発生器24の各反応器を直列に順次流すための改質用水蒸気供給ライン25を設け、前記各反応器から熱を受けて水蒸気とし、この水蒸気と原燃料とを混合して、改質用水蒸気供給ライン25から改質器3へ導入する構成としている。なお、図5においては、CO変成器4,CO除去器5への前記改質用水の通流ラインを省略している。
【0013】
又、上記の各反応器は触媒による化学反応を行うため、燃料電池発電装置の起動時には、適正な温度に予め昇温する必要がある。
各反応器の適正な温度は以下のとおりである。改質器:500〜700℃、CO変成器:200〜300℃、CO除去器:100〜250゜Cである。
【0014】
このため、改質器3は、燃料電池の排水素供給ライン19から供給される水素を改質器内に設置されているバーナで燃焼させることで、通常時は加熱されているが、起動時には原燃料をバーナで燃焼させることにより昇温している。また、改質器の燃焼排ガスにより水蒸気発生器24も昇温している。一方、CO変成器4とCO除去器5とは、それぞれが個々に備える図示しない電気ヒータにより昇温している。前記バーナには、燃焼空気ブロア6により、燃焼用空気が導入される。なお、7は、燃料電池本体の空気極に反応用の空気およびCO除去器におけるCO選択酸化用の空気を供給するための反応空気ブロアである。
【0015】
また、都市ガスは、都市ガス昇圧ブロア27により、まず脱硫器2へ導入され、都市ガス内に含まれる硫黄成分が除去された後、改質器3の触媒反応器へ導入され、前記燃焼排ガスにより熱の供給を受けながら改質され、水素リッチな燃料ガスとなる。
【0016】
次に、図5における燃料電池の冷却水系機器50および回収水系機器30について以下に述べる。冷却水系機器50は、電池冷却水冷却器51と、カソードオフガス冷却器52と、燃焼排ガスの排ガス冷却器53と、純水タンク55と、電池冷却水循環ポンプ54、その他配管等を含む。
【0017】
燃料電池1は、前述のように約80℃で運転され、前記電池冷却水循環ポンプ54によって、純水タンク55から通流される水によって冷却され、電池冷却水冷却器51によって除熱される。電池冷却水冷却器51には、図5には図示しない貯湯槽に接続される循環水導出ライン56から供給される、例えば約50℃の水が導入され、ここで電池冷却水を冷却した水は、その後、カソードオフガス冷却器52および燃焼排ガスの排ガス冷却器53を経由して、例えば約60℃に昇温されて、循環水導出ライン57から前記貯湯槽に還流する。前記純水タンク55には、液面計が設けてあり、液面が下限に到達した際には、後述する回収水が、水処理装置35を介して、間歇的に補給される。
【0018】
次に、回収水系機器30について述べる。回収水系機器30は、回収水タンク31と、回収水ポンプ33と、回収水冷却器34等からなる。前記回収水タンク31の上部には、カソードオフガス冷却器52および燃焼排ガスの排ガス冷却器53により冷却されたオフ空気および燃焼排ガスが導入され、空気およびガス中の含有水分を、上部に設けた散水装置から冷却水を散布することにより凝縮して、回収水タンク31の下部に回収する。この回収水を、回収水冷却器34により冷却して、前記散水装置に導入する。この散水装置の後段には、ラシヒリング等の充填層を備えた冷却水直接接触式凝縮器を設ける場合もある。
【0019】
この場合、水蒸気を含むオフ空気と燃焼排ガスを、図5には図示しない充填層下部から上方に通流し、一方、上部から回収水冷却器34で冷却された40℃程度の回収水を散水して、充填層部分でガスと冷却水を直接接触させながら、空気およびガス中の水蒸気分を凝縮・回収するものであり、簡単な構造で、回収効率が向上する利点がある。
【0020】
上記回収水は、前述のように、水処理装置で純化され補給水として用いられる。なお、回収水タンク31の下部にも液面計が設けられ、回収水タンク内の水が不足した場合には、補給水として市水(水道水)が供給され、この市水は水処理装置で純化される。
【0021】
ところで、上記のような燃料電池発電装置を起動,発電する際には、改質器,燃料電池本体等の温度を昇温させた後に発電を開始する必要がある。改質系の昇温,定常運転に至る概略の工程を以下に列記する。
▲1▼都市ガス等の原燃料をバーナで燃焼させて得る熱と、電気ヒータの通電により得る熱で、改質系機器の触媒を昇温。
▲2▼改質系触媒が一定値まで昇温した後、改質系触媒に都市ガス等の原燃料を導入し、生成された改質ガス(水素リッチガス)を改質器のバーナで燃焼させつつ、各改質系触媒を発電に好適なガスが生成される温度まで昇温させる。このとき、生成される改質ガスは、燃料電池本体をバイパスする。
▲3▼各改質系触媒,燃料電池本体等の温度が発電に適切である事を検知した後、改質ガスを燃料電池本体に導入し、発電状態に至る。
【0022】
なお、前記▲2▼において、燃料電池本体をバイパスして改質ガスを改質器バーナに導入する理由は、この時点における改質ガスが、昇温途上の改質系機器を通過しているため、十分にガス組成が整っておらず、ガス中に燃料電池触媒の被毒物質である一酸化炭素COが数%から数千ppmの高い濃度で含まれているためである。COは、数10ppmオーダーでも燃料電池本体の白金触媒に作用して発電性能を著しく阻害するため、通常は燃料電池本体をバイパスする改質ガスバイパスラインを設け、昇温途上の改質系機器を通過した高CO濃度改質ガスが、燃料電池本体に導入されないよう設計されている。
【0023】
しかしながら、前記改質ガスバイパスラインは、改質器のバーナ部もしくはその手前で、燃料電池本体の燃料極出口配管と合流しているため、燃料極出口配管を通じて、高CO濃度ガスが拡散し、この拡散ガスが電池本体に到達した場合には、発電性能への悪影響が避けられない。そこで、この拡散を防止するために、燃料電池本体の燃料極出口配管において、燃料電池本体の燃料極出口と改質ガスバイパスライン合流部までの間に、窒素等の不活性ガスを導入する構造もしくは、電磁弁で閉止する構造を設けるのが一般的である。
【0024】
図3は、前記不活性ガスを導入する従来の燃料電池発電装置の概略システム構成の一例を示し、図4は、前記電磁弁で閉止する概略システム構成の一例を示す。図3および図4において、図5における構成部材と同一機能を有する部材には同一番号を付して、その詳細説明を省略する。また、図5における冷却水系機器や回収水系機器等々、その一部を簡略化して示す。
【0025】
図3において、図5と異なる構成部材は、電池バイパス弁10、改質ガスバイパスライン18、CO拡散防止窒素導入ライン13、水位のレベル計を備える凝縮水排出器14、貯留水排出弁17である。前記凝縮水排出器14は、水貯留部とその上方に設けたガス空間部とからなり、燃料電池本体1から排出される排水素を改質器3用のバーナに供給する排水素供給ライン19上に設けられ、前記貯留水排出弁17により、レベル計の信号に基き、排水素中の凝縮水を系外に排出する機能を備える(前記凝縮水排出器を備える燃料電池発電装置の構成については、例えば特許文献1参照)。
【0026】
また、CO拡散防止窒素導入ライン13は、図示のように、排水素供給ライン19に接続され、燃料電池本体1から排出される排水素は、前記凝縮水排出器14のガス空間部を経由して、改質器3用のバーナに供給されるように構成されている。
【0027】
上記構成において、改質系機器昇温途上に生成される高CO濃度改質ガスは、電池バイパス弁10により燃料電池本体1をバイパスし、改質器3のバーナ部へ導入されるが、CO拡散防止窒素導入ライン13から窒素等の不活性ガスを微量パージすることにより、燃料電池本体1の燃料極1a出口部に、高CO濃度改質ガスがガス拡散するのを防止することができる。
【0028】
次に、図4について述べる。図4において図3と相違点するは、図3におけるCO拡散防止窒素導入ライン13に代えて、排水素供給ライン19上に、図示のようにCO拡散防止弁15および安全弁16を設けた点である。図4においては、CO拡散防止弁15(電磁弁)により、燃料電池本体1の燃料極1a出口部に、高CO濃度改質ガスがガス拡散するのを防止することができる。なお、前記安全弁16は、CO拡散防止弁15の動作不良時等に燃料電池本体に過大圧が加わる恐れがあるので、燃料電池本体1の保全および発電装置保安確保の観点から設けられる。
【0029】
【特許文献1】
特開平8−185883号公報(第5−7頁、図1)
【0030】
【発明が解決しようとする課題】
ところで、図3や図4に示すような従来の燃料電池発電装置においては、下記のような問題点があった。
【0031】
前記従来装置の場合には、高CO濃度改質ガスの拡散から燃料電池本体を保護するために、不活性ガス設備の設置や高価な安全弁の設置が必要であり、また、これらはいずれも定期的なメンテナンスが必要となる。そのため、今後に燃料電池発電装置の普及が見込まれる家庭や小規模店舗等の燃料電池発電装置の設置を想定した場合、前記不活性ガス設備や安全弁の設置およびメンテナンスに関わるコストならびにメンテナンス体制の整備が問題となり、これらが、普及を阻害する要因となる恐れがある。
【0032】
この発明は、上記問題点に鑑みてなされたもので、この発明の課題は、高CO濃度改質ガスの燃料電池本体への拡散を防止し、かつ、メンテナンス性に優れて安価な燃料電池発電装置とその運転方法を提供することにある。
【0033】
【課題を解決するための手段】
前述の課題を解決するために、この発明においては、炭化水素系原燃料ガスを触媒により水素リッチな改質ガスに変換する改質器と、前記改質ガスと酸化剤ガスとの電気化学反応に基づいて発電する燃料電池本体と、燃料電池本体から排出される排水素を前記改質器用のバーナに供給する排水素供給ラインと、発電開始前において高濃度のCOを含む改質ガスを燃料電池本体に導入しないように燃料電池本体をバイパスさせるために設けた改質ガスバイパスラインとを有し、前記バイパスした改質ガスを前記排水素供給ラインに導入する構成を備えた燃料電池発電装置の運転方法において、
前記排水素供給ライン上であって前記バイパスした改質ガスの導入部より燃料電池本体側に、水貯留部とその上方に設けたガス空間部とからなる水封器を設け、前記排水素供給ラインにおける燃料電池本体から導出したガス流路を、発電開始前は前記水封器の水貯留部の水により遮断し、発電開始以降は、前記水封器のガス空間部を経由して改質器用バーナに連通させる(請求項1の発明)。
【0034】
また、上記方法を実施するための装置としては、下記請求項2ないし6の発明が好ましい。即ち、請求項1に記載の運転方法を実施するための燃料電池発電装置であって、前記改質器と、燃料電池本体と、排水素供給ラインと、電池バイパス弁を有する改質ガスバイパスラインと、水貯留部とその上方に設けたガス空間部とからなる水封器と、燃料電池本体から導出したガス流路の切り替え制御装置とを備えるものとする(請求項2の発明)。
【0035】
上記のように、この発明においては、高CO濃度改質ガスの拡散から燃料電池本体を保護するために、水封器を用いることにより、発電システムをメンテナンス性に優れたものとし、また低コストとすることができる。
【0036】
また前記請求項2の発明の実施態様としては、下記請求項3の発明が好ましい。即ち、請求項2に記載の燃料電池発電装置において、前記ガス流路の切り替え制御装置は、前記電池バイパス弁の弁切り替え制御に連動して、前記燃料電池本体から導出したガス流路の切り替え制御を行なう電磁三方弁もしくは電磁二方弁を備えるものとする(請求項3の発明)。
【0037】
さらに、上記のような通常の電磁弁によるガス流路の切り替え制御方式に代えて、水封器内の水のレベル制御によりガス流路の切り替えを行なう下記請求項4の発明のようにすることもできる。即ち、請求項1に記載の運転方法を実施するための燃料電池発電装置であって、前記改質器と、燃料電池本体と、排水素供給ラインと、電池バイパス弁を有する改質ガスバイパスラインと、水貯留部とその上方に設けたガス空間部とからなる水封器とを備え、前記水封器は、水貯留部における水のレベルを検出する液面レベル計と、この液面レベル計の信号に基き、水を排出もしくは注入することにより、水封する水のレベルを前記発電開始前もしくは発電開始以降に応じて所定レベルに切り替える制御装置とを備え、前記水封器の水のレベルの切り替えにより、前記排水素供給ラインにおける燃料電池本体から導出したガス流路の遮断または連通の切り替えを行なうものする。これにより、電磁弁よりは信頼性が高く、メンテナンス性がさらに向上する。
【0038】
また、前記請求項2ないし4のいずれか1項に記載の燃料電池発電装置において、前記水封器の貯留水として、水封用水供給弁を介して、電池冷却水等の燃料電池発電装置システムにおける系内の水を注入する構成を備えるものとする(請求項5の発明)。これにより、水封用水の供給とその制御が簡便となる。
【0039】
さらにまた、前記請求項2ないし5のいずれか1項に記載の燃料電池発電装置において、前記排水素中の凝縮水を系外に排出するために、前記排水素供給ラインに設けた凝縮水自動排出器を備え、かつ前記水封器は、前記凝縮水自動排出器の機能を兼ね備える構成とする(請求項6の発明)。これにより、より合理的な燃料電池発電装置が実現できる。
【0040】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0041】
図1は、この発明に関わる実施例を示す概略システム系統図であり、図3と同じ機能を有する構成部材には同一の番号を付して、その詳細説明を省略する。
【0042】
図1と図3との相違点は、図1においては、排水素供給ライン19上に、図3における凝縮水排出器14に代えて、水封器兼凝縮水排出器12を設け、CO拡散防止窒素導入ライン13を削除した点と、電池冷却水ラインから水封用水供給弁11を介して、水封器兼凝縮水排出器12に水を供給できるように構成した点である。
【0043】
図1において、水封器兼凝縮水排出器12には、水封する水のレベルを制御するレベル計を設け、高CO濃度改質ガスが生じる発電前の改質系機器昇温工程の間は、水封容器に水を導入し、燃料極出口配管と改質器バーナ部へ向かう管路とを水封することにより、高CO濃度改質ガスの燃料電池本体へのガス拡散を防止する。なお、ガス拡散を防止する水封器の水位レベルは、燃料電池本体1の燃料極出口配管の水封器合流点を数mm上回るレベルで十分であり、この状態であれば、万一、燃料極1a側に圧力が加わっても、即座に水封が破られるので、燃料電池本体等を損傷する事態を避けることが可能である。
【0044】
また発電開始時には、貯留水を排出する電磁弁としての貯留水排出弁17を開閉制御し、水封器兼凝縮水排出器12の水位レベルを所定の設定レベルまで低下・維持させ、燃料極出口配管と改質器バーナ部へ向かう管路との合流点を水位以上とすることにより、水封による圧力損失を回避したガス通路が容易に確保可能である。
【0045】
上記構成および水位制御により、メンテナンスが必要である不活性ガスの設置、同じくメンテナンスが必要でかつ高価な安全弁の設置を実施することなく、安全で信頼性の高い燃料電池発電装置の供給が可能となる。
【0046】
さらに、図1の水封器兼凝縮水排出器12は、燃料電池本体の燃料極出口配管に通常設けられ、前記特許文献1に記載されたような凝縮水自動排出器(オートドレン装置)を兼用しており、これにより合理的な燃料電池発電装置が実施可能である。
【0047】
なお、図1に示すシステムは、前記請求項4の発明に関わる実施例を示すが、請求項3の発明のようにすることもできる。図2は、請求項3の発明の実施例を示す図であり、図1と異なる部分のみ抜粋した概略図である。本実施例の場合、図2(a)のごとく排水素供給ライン19a上の燃料極出口配管部に、電池バイパス弁10と同様の電磁三方弁を設け、三方の内、一方を燃料極出口配管に、他の二方の内、片方を水封器兼凝縮水排出器12のガス空間部に接続し他方を水貯留部に接続する分岐配管19bに接続し、水封器の水位は一定のまま前記電池バイパス弁10の弁切り替え制御に連動して、燃料電池本体1の燃料極出口配管から導出したガス流路の切り替え制御を行なう。また、前記電磁三方弁に代えて、図2(b)のごとく電磁二方弁を使用した構成とすることもできる。
【0048】
【発明の効果】
上記のとおり、この発明によれば、炭化水素系原燃料ガスを触媒により水素リッチな改質ガスに変換する改質器と、前記改質ガスと酸化剤ガスとの電気化学反応に基づいて発電する燃料電池本体と、燃料電池本体から排出される排水素を前記改質器用のバーナに供給する排水素供給ラインと、発電開始前において高濃度のCOを含む改質ガスを燃料電池本体に導入しないように燃料電池本体をバイパスさせるために設けた改質ガスバイパスラインとを有し、前記バイパスした改質ガスを前記排水素供給ラインに導入する構成を備えた燃料電池発電装置の運転方法において、前記排水素供給ライン上であって前記バイパスした改質ガスの導入部より燃料電池本体側に、水貯留部とその上方に設けたガス空間部とからなる水封器を設け、前記排水素供給ラインにおける燃料電池本体から導出したガス流路を、発電開始前は前記水封器の水貯留部の水により遮断し、発電開始以降は、前記水封器のガス空間部を経由して改質器用バーナに連通させることとし、
また、前記運転方法を実施するための装置として、前記改質器と、燃料電池本体と、排水素供給ラインと、電池バイパス弁を有する改質ガスバイパスラインと、水貯留部とその上方に設けたガス空間部とからなる水封器と、燃料電池本体から導出したガス流路の切り替え制御装置とを備えるものとしたので、
高CO濃度改質ガスの燃料電池本体への拡散を防止し、かつ、メンテナンス性に優れて安価な燃料電池発電装置とその運転方法を提供することができる。
【図面の簡単な説明】
【図1】この発明の燃料電池発電装置の実施例に関わる概略システム系統図
【図2】この発明の別の実施例に関わる概略図
【図3】従来の燃料電池発電装置の一例を示す概略システム系統図
【図4】従来の異なる燃料電池発電装置の一例を示す概略システム系統図
【図5】従来の固体高分子電解質型燃料電池発電装置の一例を示す系統図
【符号の説明】
1:燃料電池本体、3:改質器、10:電池バイパス弁、11:水封用水供給弁、12:水封器兼凝縮水排出器、17:貯留水排出弁、18:改質ガスバイパスライン、19:排水素供給ライン。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell power generator including a reformer for converting a hydrocarbon-based raw fuel gas into a hydrogen-rich reformed gas by a catalyst, particularly a solid polymer electrolyte fuel cell provided with a reformed gas bypass line. It relates to the driving method.
[0002]
[Prior art]
There are various types of fuel cells to be incorporated in the fuel cell power generation device, which vary depending on the type of electrolyte, the type of reforming raw material, and the like.For example, a solid polymer membrane is used as the electrolyte, and the operating temperature is about 80 ° C. As a relatively low-type fuel cell, a solid polymer electrolyte fuel cell is well known.
[0003]
As in the case of the phosphoric acid type fuel cell, this solid polymer electrolyte type fuel cell is composed of hydrogen in the fuel gas obtained by steam reforming a hydrocarbon-based raw fuel such as methane gas (city gas) and hydrogen in the air. Oxygen is supplied to the fuel electrode and the air electrode of the fuel cell, respectively, to generate power based on an electrochemical reaction.
[0004]
When reforming raw fuel into fuel gas, a method is used in which steam is added to the raw fuel to promote reforming with a catalyst in a fuel reformer. It is necessary to steadily replenish the amount of water vapor, and it is necessary to constantly replenish the water supply device with water corresponding to this. The water used must be high-purity water, and ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment apparatus is generally used.
[0005]
On the other hand, in the electrochemical reaction of the fuel cell, water generated by power generation is generated, and in the fuel reformer, water generated by combustion is generated by combustion for heating the catalyst to perform a steam reforming reaction that is an endothermic reaction steadily. These generated waters have less impurities than ordinary tap water, and if these generated waters are used as raw water, the load on the water treatment equipment can be reduced. A method of recovering the generated water and using it as feed water for generating reformed steam is usually employed.
[0006]
Further, in the electrochemical reaction of the fuel cell, heat is generated with the reaction, and a part of the exhaust heat energy is stored as hot water in a hot water tank and supplied to hot water supply or heating.
[0007]
FIG. 5 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell power generator using city gas as a raw fuel.
[0008]
In the fuel cell 1 schematically shown in FIG. 5, a cooling plate 1c having a cooling pipe or a cooling groove (not shown) is disposed and stacked every time a plurality of unit cells having a fuel electrode 1a and an air electrode 1b are stacked. It is constituted by doing.
[0009]
The raw fuel is first supplied to the reformer 3 together with the reforming steam, and is reformed into hydrogen and carbon monoxide by the following reaction. As a reforming catalyst, a noble metal catalyst or a nickel catalyst is used.
[0010]
CH 4 + H 2 O → 3H 2 + CO (endothermic reaction)
Thereafter, the reformed gas is supplied to the CO converter 4, and the following reaction reduces the carbon dioxide in the reformed gas to about 1%. As the CO conversion catalyst, a noble metal-based catalyst or a copper-zinc-based catalyst is used.
[0011]
CO + H 2 O → H 2 + CO 2 (exothermic reaction)
After that, the carbon monoxide in the reformed gas is further reduced to about 10 ppm by the following reaction of selectively oxidizing CO with the air supplied by the blower, after being supplied to the CO remover 5. 1a.
[0012]
CO + 1 / 2O 2 → CO 2 (exothermic reaction)
As described above, when the reforming reaction is performed in the reformer 3, it is necessary to supply steam. In the polymer electrolyte fuel cell power generator, the sensible heat of the combustion exhaust gas of the reformer 3 and CO conversion are used as heat sources. Generally, the reaction heat of the reactor 4 and the CO remover 5 is used. Therefore, the reforming steam supply line 25 for sequentially flowing the reforming water supplied by the battery cooling water circulation pump 54 through the reactors of the CO shift converter 4, the CO remover 5, and the steam generator 24 in series is provided. The steam is received from each of the reactors to form steam, and the steam and the raw fuel are mixed and introduced into the reformer 3 from the reforming steam supply line 25. In FIG. 5, a flow line for the reforming water flowing to the CO converter 4 and the CO remover 5 is omitted.
[0013]
In addition, since each of the above-mentioned reactors performs a chemical reaction using a catalyst, it is necessary to raise the temperature in advance to an appropriate temperature when the fuel cell power generator is started.
The appropriate temperatures for each reactor are as follows. Reformer: 500-700 ° C, CO converter: 200-300 ° C, CO remover: 100-250 ° C.
[0014]
For this reason, the reformer 3 is normally heated by burning the hydrogen supplied from the exhaust hydrogen supply line 19 of the fuel cell with the burner installed in the reformer, but is started at the time of startup. The temperature is raised by burning the raw fuel with a burner. The temperature of the steam generator 24 is also increased by the combustion exhaust gas of the reformer. On the other hand, the temperature of the CO converter 4 and the CO remover 5 is increased by an electric heater (not shown) provided individually. Combustion air is introduced into the burner by a combustion air blower 6. Reference numeral 7 denotes a reaction air blower for supplying the air for reaction and the air for selective oxidation of CO in the CO remover to the air electrode of the fuel cell body.
[0015]
The city gas is first introduced into the desulfurizer 2 by the city gas pressurizing blower 27, and after the sulfur component contained in the city gas is removed, the city gas is introduced into the catalytic reactor of the reformer 3 and the combustion exhaust gas is removed. The fuel gas is reformed while receiving heat supply, and becomes a hydrogen-rich fuel gas.
[0016]
Next, the cooling water system device 50 and the recovered water system device 30 of the fuel cell in FIG. 5 will be described below. The cooling water system device 50 includes a battery cooling water cooler 51, a cathode offgas cooler 52, an exhaust gas cooler 53 for combustion exhaust gas, a pure water tank 55, a battery cooling water circulation pump 54, and other piping.
[0017]
The fuel cell 1 is operated at about 80 ° C. as described above, is cooled by the water flowing from the pure water tank 55 by the battery cooling water circulation pump 54, and heat is removed by the battery cooling water cooler 51. The battery cooling water cooler 51 is supplied with, for example, water of about 50 ° C., which is supplied from a circulating water outlet line 56 connected to a hot water storage tank (not shown in FIG. 5). Thereafter, the temperature is increased to, for example, about 60 ° C. via the cathode off-gas cooler 52 and the exhaust gas cooler 53 for the combustion exhaust gas, and is returned from the circulating water outlet line 57 to the hot water storage tank. The pure water tank 55 is provided with a liquid level gauge. When the liquid level reaches the lower limit, the recovered water described later is intermittently supplied via the water treatment device 35.
[0018]
Next, the recovered water system 30 will be described. The recovered water system device 30 includes a recovered water tank 31, a recovered water pump 33, a recovered water cooler 34, and the like. Off air and combustion exhaust gas cooled by a cathode off gas cooler 52 and an exhaust gas cooler 53 for combustion exhaust gas are introduced into the upper portion of the recovered water tank 31, and water contained in air and gas is sprayed on the upper portion. The cooling water is sprayed from the device to be condensed and collected in the lower part of the recovered water tank 31. The recovered water is cooled by a recovered water cooler 34 and introduced into the water sprinkler. In some cases, a cooling water direct contact condenser provided with a packed bed such as a Raschig ring is provided at a stage subsequent to the water sprinkler.
[0019]
In this case, the off-air containing steam and the flue gas flow upward from the lower portion of the packed bed not shown in FIG. 5, while the recovered water of about 40 ° C. cooled by the recovered water cooler 34 is sprinkled from the upper portion. Thus, the air and the water vapor in the gas are condensed and recovered while the gas and the cooling water are brought into direct contact with each other in the packed bed portion, and there is an advantage that the recovery efficiency is improved with a simple structure.
[0020]
As described above, the recovered water is purified by a water treatment device and used as makeup water. In addition, a liquid level gauge is also provided at the lower part of the recovered water tank 31, and when water in the recovered water tank runs short, city water (tap water) is supplied as makeup water, and the city water is supplied to a water treatment device. Purified by.
[0021]
By the way, when starting up the above-described fuel cell power generator and generating power, it is necessary to start power generation after raising the temperature of the reformer, the fuel cell body, and the like. The general steps leading to the temperature rise and steady operation of the reforming system are listed below.
(1) The temperature of the catalyst of the reforming equipment is increased by the heat obtained by burning raw fuel such as city gas with a burner and the heat obtained by energizing an electric heater.
(2) After the temperature of the reforming catalyst rises to a certain value, raw fuel such as city gas is introduced into the reforming catalyst, and the generated reformed gas (hydrogen-rich gas) is burned by the burner of the reformer. Meanwhile, the temperature of each reforming catalyst is raised to a temperature at which a gas suitable for power generation is generated. At this time, the generated reformed gas bypasses the fuel cell body.
{Circle around (3)} After detecting that the temperatures of the respective reforming catalysts, the fuel cell main body, and the like are appropriate for power generation, the reformed gas is introduced into the fuel cell main body to reach a power generation state.
[0022]
In the above (2), the reason for introducing the reformed gas into the reformer burner by bypassing the fuel cell main body is that the reformed gas at this point is passing through the reforming system device during the temperature rise. Therefore, the gas composition is not sufficiently adjusted, and carbon monoxide CO, which is a poisoning substance of the fuel cell catalyst, is contained in the gas at a high concentration of several percent to several thousand ppm. Even in the order of tens of ppm, CO acts on the platinum catalyst of the fuel cell body and significantly impairs the power generation performance.Therefore, usually, a reformed gas bypass line that bypasses the fuel cell body is provided, and the reforming equipment during the temperature rise is It is designed so that the high CO concentration reformed gas that has passed is not introduced into the fuel cell body.
[0023]
However, since the reformed gas bypass line merges with the fuel electrode outlet pipe of the fuel cell body at or before the burner portion of the reformer, the high CO concentration gas diffuses through the fuel electrode outlet pipe, When the diffusion gas reaches the battery body, an adverse effect on the power generation performance is inevitable. Therefore, in order to prevent this diffusion, a structure in which an inert gas such as nitrogen is introduced between the fuel electrode outlet of the fuel cell body and the junction of the reformed gas bypass line in the fuel electrode outlet pipe of the fuel cell body. Alternatively, a structure that is closed by an electromagnetic valve is generally provided.
[0024]
FIG. 3 shows an example of a schematic system configuration of a conventional fuel cell power generation device for introducing the inert gas, and FIG. 4 shows an example of a schematic system configuration of closing by the electromagnetic valve. 3 and 4, members having the same functions as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. Also, a part of the cooling water system equipment, the collected water system equipment, and the like in FIG.
[0025]
3, the components different from those in FIG. 5 are a battery bypass valve 10, a reformed gas bypass line 18, a CO diffusion preventing nitrogen introduction line 13, a condensed water discharger 14 having a water level meter, and a stored water discharge valve 17. is there. The condensed water discharger 14 includes a water storage section and a gas space section provided above the water storage section, and a hydrogen supply line 19 for supplying discharged hydrogen discharged from the fuel cell body 1 to a burner for the reformer 3. And a function of discharging the condensed water in the exhausted hydrogen to the outside of the system based on the signal of the level meter by the stored water discharge valve 17 (for the configuration of the fuel cell power generator including the condensed water discharger). For example, see Patent Document 1.)
[0026]
The CO diffusion preventing nitrogen introduction line 13 is connected to an exhaust hydrogen supply line 19 as shown in the figure, and the exhaust hydrogen discharged from the fuel cell body 1 passes through the gas space of the condensed water discharger 14. And is supplied to a burner for the reformer 3.
[0027]
In the above configuration, the high CO concentration reformed gas generated during the heating of the reforming system equipment bypasses the fuel cell body 1 by the battery bypass valve 10 and is introduced into the burner of the reformer 3. By purging a small amount of an inert gas such as nitrogen from the diffusion preventing nitrogen introduction line 13, it is possible to prevent the high CO concentration reformed gas from diffusing into the outlet of the fuel electrode 1a of the fuel cell body 1.
[0028]
Next, FIG. 4 will be described. 4 differs from FIG. 3 in that a CO diffusion prevention valve 15 and a safety valve 16 are provided on the exhaust hydrogen supply line 19 as shown in FIG. 3 instead of the CO diffusion prevention nitrogen introduction line 13 in FIG. is there. In FIG. 4, the CO diffusion prevention valve 15 (electromagnetic valve) can prevent the high CO concentration reformed gas from diffusing into the outlet of the fuel electrode 1a of the fuel cell body 1. The safety valve 16 is provided from the viewpoint of maintaining the fuel cell body 1 and ensuring the safety of the power generation device, since excessive pressure may be applied to the fuel cell body when the operation of the CO diffusion prevention valve 15 is defective.
[0029]
[Patent Document 1]
JP-A-8-185883 (page 5-7, FIG. 1)
[0030]
[Problems to be solved by the invention]
By the way, the conventional fuel cell power generators shown in FIGS. 3 and 4 have the following problems.
[0031]
In the case of the conventional apparatus, in order to protect the fuel cell main body from the diffusion of the high CO concentration reformed gas, it is necessary to install an inert gas facility or an expensive safety valve, and these are all periodic. Maintenance is required. Therefore, if it is assumed that fuel cell generators will be installed in homes and small stores where the spread of fuel cell generators is expected in the future, the cost and maintenance system related to the installation and maintenance of the inert gas equipment and safety valves will be improved. Is a problem, and these may be factors that hinder the spread.
[0032]
The present invention has been made in view of the above problems, and an object of the present invention is to prevent the diffusion of a high CO concentration reformed gas into a fuel cell main body, and at the same time, to provide an inexpensive fuel cell power generation with excellent maintainability. An object of the present invention is to provide a device and a method of operating the device.
[0033]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a reformer for converting a hydrocarbon-based raw fuel gas into a hydrogen-rich reformed gas by a catalyst, and an electrochemical reaction between the reformed gas and an oxidizing gas. A fuel cell main body that generates electric power based on the fuel cell, an exhaust hydrogen supply line that supplies exhaust hydrogen discharged from the fuel cell main body to the burner for the reformer, and a reformed gas containing high-concentration CO before the start of power generation. A fuel cell power generator, comprising: a reformed gas bypass line provided to bypass the fuel cell body so as not to be introduced into the cell body; and a configuration for introducing the bypassed reformed gas into the exhaust hydrogen supply line. In the driving method of
A water sealer comprising a water storage unit and a gas space provided above the water storage unit is provided on the exhaust hydrogen supply line and closer to the fuel cell body than the bypass reformed gas introduction unit. Before the start of power generation, the gas flow path derived from the fuel cell body in the line is shut off by the water in the water storage unit of the water sealer, and after the start of power generation, reformed via the gas space of the water sealer. It communicates with the dexterity burner (the invention of claim 1).
[0034]
Further, as an apparatus for performing the above method, the following inventions 2 to 6 are preferable. That is, a fuel cell power generator for implementing the operation method according to claim 1, wherein the reformer, a fuel cell main body, a hydrogen supply line, and a reformed gas bypass line having a battery bypass valve. And a water sealing device including a water storage portion and a gas space portion provided above the water storage portion, and a switching control device for switching a gas flow path derived from the fuel cell main body (the invention of claim 2).
[0035]
As described above, in the present invention, a water sealer is used to protect the fuel cell body from the diffusion of the high CO concentration reformed gas, thereby making the power generation system excellent in maintainability and low in cost. It can be.
[0036]
As an embodiment of the invention of claim 2, the following invention of claim 3 is preferable. That is, in the fuel cell power generator according to claim 2, the gas flow path switching control device controls the gas flow path switching derived from the fuel cell main body in conjunction with the valve switching control of the battery bypass valve. (A third aspect of the present invention).
[0037]
Further, instead of the above-described control method for switching the gas flow path by the normal electromagnetic valve, the gas flow path is switched by controlling the level of water in the water sealer as in the invention of the following claim 4. You can also. That is, a fuel cell power generator for implementing the operation method according to claim 1, wherein the reformer, a fuel cell main body, a hydrogen supply line, and a reformed gas bypass line having a battery bypass valve. And a water sealing device comprising a water storage portion and a gas space portion provided above the water storage portion, wherein the water sealing device detects a water level in the water storage portion, and a liquid level meter. A control device for switching the level of water to be sealed to a predetermined level before or after the start of power generation by discharging or injecting water based on the signal of the meter, By switching the level, the gas flow path derived from the fuel cell body in the exhaust hydrogen supply line is cut off or the communication is switched. As a result, the reliability is higher than the solenoid valve, and the maintenance is further improved.
[0038]
The fuel cell power generation system according to any one of claims 2 to 4, wherein the water stored in the water sealing device is a fuel cell power generation system such as a battery cooling water via a water sealing water supply valve. (Invention of claim 5). Thereby, the supply and control of the water for water sealing are simplified.
[0039]
Furthermore, in the fuel cell power generator according to any one of claims 2 to 5, the condensed water automatic line provided in the discharged hydrogen supply line for discharging the condensed water in the discharged hydrogen to the outside of the system. A water discharger is provided, and the water sealer also has a function of the condensed water automatic discharger (the invention of claim 6). Thereby, a more rational fuel cell power generator can be realized.
[0040]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0041]
FIG. 1 is a schematic system diagram showing an embodiment according to the present invention. Components having the same functions as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0042]
The difference between FIG. 1 and FIG. 3 is that, in FIG. 1, a water sealer / condensed water discharger 12 is provided on the discharged hydrogen supply line 19 instead of the condensed water discharger 14 in FIG. The point is that the preventive nitrogen introduction line 13 is eliminated, and that water is supplied from the battery cooling water line to the water sealer / condensed water discharger 12 via the water seal water supply valve 11.
[0043]
In FIG. 1, the water sealer / condensate discharger 12 is provided with a level meter for controlling the level of water to be sealed, and during a temperature raising step of the reforming system equipment before power generation in which a high CO concentration reformed gas is generated. Prevents water diffusion of a high CO concentration reformed gas into a fuel cell body by introducing water into a water sealed container and water sealing a fuel electrode outlet pipe and a pipe line toward a reformer burner section. . The level of the water level of the water sealer for preventing gas diffusion is sufficient to be a level several mm higher than the junction of the water sealer at the fuel electrode outlet pipe of the fuel cell main body 1. Even if pressure is applied to the pole 1a, the water seal is immediately broken, so that it is possible to avoid a situation where the fuel cell body or the like is damaged.
[0044]
At the start of power generation, the storage water discharge valve 17 as an electromagnetic valve for discharging the storage water is controlled to open and close to lower and maintain the water level of the water sealer / condensate discharger 12 to a predetermined set level. By setting the confluence between the pipe and the pipe going to the reformer burner section to be equal to or higher than the water level, it is possible to easily secure a gas passage that avoids pressure loss due to a water seal.
[0045]
With the above configuration and water level control, it is possible to supply a safe and reliable fuel cell power generator without installing an inert gas that requires maintenance, and also installing an expensive safety valve that requires maintenance. Become.
[0046]
Further, the water sealer / condensate discharger 12 shown in FIG. 1 is usually provided on the fuel electrode outlet pipe of the fuel cell main body, and is provided with an automatic condensate discharger (auto drain device) as described in Patent Document 1. This also serves as a rational fuel cell power generation device.
[0047]
Although the system shown in FIG. 1 shows an embodiment relating to the invention of claim 4, the system can be configured as in the invention of claim 3. FIG. 2 is a diagram showing an embodiment of the third aspect of the present invention, and is a schematic diagram in which only portions different from FIG. 1 are extracted. In the case of the present embodiment, an electromagnetic three-way valve similar to the battery bypass valve 10 is provided at the fuel electrode outlet pipe on the exhaust hydrogen supply line 19a as shown in FIG. In addition, one of the other two is connected to a gas pipe of the water sealer / condensed water discharger 12 and the other is connected to a branch pipe 19b connecting to the water storage part, and the water level of the water sealer is constant. In tandem with the valve switching control of the battery bypass valve 10, switching control of the gas flow path derived from the fuel electrode outlet pipe of the fuel cell main body 1 is performed. Also, a configuration using an electromagnetic two-way valve as shown in FIG. 2B may be used instead of the electromagnetic three-way valve.
[0048]
【The invention's effect】
As described above, according to the present invention, a reformer for converting a hydrocarbon-based raw fuel gas into a hydrogen-rich reformed gas by a catalyst, and power generation based on an electrochemical reaction between the reformed gas and the oxidizing gas. Fuel cell main body, an exhaust hydrogen supply line for supplying exhaust hydrogen discharged from the fuel cell main body to the burner for the reformer, and a reformed gas containing high-concentration CO before the start of power generation is introduced into the fuel cell main body. And a reformed gas bypass line provided for bypassing the fuel cell body so as not to introduce the reformed gas into the exhaust hydrogen supply line. A water sealer comprising a water storage part and a gas space part provided above the water storage part on the exhaust hydrogen supply line and on the fuel cell body side from the bypass reformed gas introduction part, Before the start of power generation, the gas flow path derived from the fuel cell main body in the supply line is shut off by the water in the water storage section of the water sealer, and after the start of power generation, the gas flow path is modified via the gas space of the water sealer. To communicate with the burner for the porcelain,
Further, as an apparatus for carrying out the operation method, the reformer, a fuel cell main body, a hydrogen supply line, a reformed gas bypass line having a battery bypass valve, a water storage unit, and a water storage unit are provided. A water seal device comprising a gas space portion, and a switching control device for a gas flow path derived from the fuel cell body.
It is possible to provide an inexpensive fuel cell power generator that prevents high-CO-concentration reformed gas from diffusing into the fuel cell main body, is excellent in maintenance, and is inexpensive.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram according to an embodiment of a fuel cell power generator according to the present invention; FIG. 2 is a schematic diagram according to another embodiment of the present invention; FIG. 3 is a schematic diagram illustrating an example of a conventional fuel cell power generator; FIG. 4 is a schematic system diagram showing an example of a different conventional fuel cell power generator. FIG. 5 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell generator.
1: Fuel cell body, 3: Reformer, 10: Battery bypass valve, 11: Water supply valve for water seal, 12: Water sealer and condensed water discharger, 17: Storage water discharge valve, 18: Reformed gas bypass Line 19: Exhaust hydrogen supply line.

Claims (6)

炭化水素系原燃料ガスを触媒により水素リッチな改質ガスに変換する改質器と、前記改質ガスと酸化剤ガスとの電気化学反応に基づいて発電する燃料電池本体と、燃料電池本体から排出される排水素を前記改質器用のバーナに供給する排水素供給ラインと、発電開始前において高濃度のCOを含む改質ガスを燃料電池本体に導入しないように燃料電池本体をバイパスさせるために設けた改質ガスバイパスラインとを有し、前記バイパスした改質ガスを前記排水素供給ラインに導入する構成を備えた燃料電池発電装置の運転方法において、
前記排水素供給ライン上であって前記バイパスした改質ガスの導入部より燃料電池本体側に、水貯留部とその上方に設けたガス空間部とからなる水封器を設け、
前記排水素供給ラインにおける燃料電池本体から導出したガス流路を、発電開始前は前記水封器の水貯留部の水により遮断し、発電開始以降は、前記水封器のガス空間部を経由して改質器用バーナに連通させることを特徴とする燃料電池発電装置の運転方法。
A reformer that converts a hydrocarbon-based raw fuel gas into a hydrogen-rich reformed gas by a catalyst, a fuel cell body that generates power based on an electrochemical reaction between the reformed gas and an oxidizing gas, and a fuel cell body. An exhaust hydrogen supply line for supplying the exhaust hydrogen discharged to the burner for the reformer, and a fuel cell main body to bypass the reformed gas containing a high concentration of CO into the fuel cell main body before starting power generation. A method for operating a fuel cell power generator, comprising: a reformed gas bypass line provided in the apparatus; and a configuration for introducing the bypassed reformed gas into the exhaust hydrogen supply line.
A water seal device comprising a water storage portion and a gas space provided above the water storage portion is provided on the fuel cell body side from the introduction portion of the bypassed reformed gas on the exhaust hydrogen supply line,
Before the start of power generation, the gas flow path derived from the fuel cell main body in the exhaust hydrogen supply line is shut off by the water in the water storage unit of the water sealer, and after the start of power generation, passes through the gas space of the water sealer. A method for operating a fuel cell power generator, wherein the method is connected to a reformer burner.
請求項1に記載の運転方法を実施するための燃料電池発電装置であって、前記改質器と、燃料電池本体と、排水素供給ラインと、電池バイパス弁を有する改質ガスバイパスラインと、水貯留部とその上方に設けたガス空間部とからなる水封器と、燃料電池本体から導出したガス流路の切り替え制御装置とを備えることを特徴とする燃料電池発電装置。A fuel cell power generator for performing the operation method according to claim 1, wherein the reformer, a fuel cell body, a hydrogen supply line, a reformed gas bypass line having a battery bypass valve, A fuel cell power generator, comprising: a water sealing device including a water storage part and a gas space provided above the water storage part; and a switching control device for a gas flow path derived from the fuel cell body. 請求項2に記載の燃料電池発電装置において、前記ガス流路の切り替え制御装置は、前記電池バイパス弁の弁切り替え制御に連動して、前記燃料電池本体から導出したガス流路の切り替え制御を行なう電磁三方弁もしくは電磁二方弁を備えることを特徴とする燃料電池発電装置。3. The fuel cell power generator according to claim 2, wherein the gas flow path switching control device performs switching control of a gas flow path derived from the fuel cell main body in conjunction with valve switching control of the battery bypass valve. A fuel cell power generator comprising an electromagnetic three-way valve or an electromagnetic two-way valve. 請求項1に記載の運転方法を実施するための燃料電池発電装置であって、前記改質器と、燃料電池本体と、排水素供給ラインと、電池バイパス弁を有する改質ガスバイパスラインと、水貯留部とその上方に設けたガス空間部とからなる水封器とを備え、
前記水封器は、水貯留部における水のレベルを検出する液面レベル計と、この液面レベル計の信号に基き、水を排出もしくは注入することにより、水封する水のレベルを前記発電開始前もしくは発電開始以降に応じて所定レベルに切り替える制御装置とを備え、前記水封器の水のレベルの切り替えにより、前記排水素供給ラインにおける燃料電池本体から導出したガス流路の遮断または連通の切り替えを行なうものとすることを特徴とする燃料電池発電装置。
A fuel cell power generator for performing the operation method according to claim 1, wherein the reformer, a fuel cell body, a hydrogen supply line, a reformed gas bypass line having a battery bypass valve, A water sealing device comprising a water storage part and a gas space part provided above the water storage part,
The water sealer includes a liquid level meter that detects the level of water in a water storage unit, and discharges or injects water based on a signal from the liquid level meter to generate the level of the water to be sealed to generate the power. A control device for switching to a predetermined level before the start or after the start of power generation, wherein the level of water in the water sealer is switched to shut off or communicate a gas flow path derived from a fuel cell body in the exhaust hydrogen supply line. A fuel cell power generator, characterized in that the switching of the fuel cell is performed.
請求項2ないし4のいずれか1項に記載の燃料電池発電装置において、前記水封器の貯留水として、水封用水供給弁を介して、電池冷却水等の燃料電池発電装置システムにおける系内の水を注入する構成を備えることを特徴とする燃料電池発電装置。The fuel cell power generator according to any one of claims 2 to 4, wherein the water stored in the water sealer is supplied via a water seal water supply valve, and is used in a fuel cell power generator system in a fuel cell power generator system. A fuel cell power generator, comprising a configuration for injecting water. 請求項2ないし5のいずれか1項に記載の燃料電池発電装置において、前記排水素中の凝縮水を系外に排出するために、前記排水素供給ラインに設けた凝縮水自動排出器を備え、かつ前記水封器は、前記凝縮水自動排出器の機能を兼ね備える構成とすることを特徴とする燃料電池発電装置。The fuel cell power generator according to any one of claims 2 to 5, further comprising: a condensed water automatic discharger provided in the discharged hydrogen supply line to discharge condensed water in the discharged hydrogen to the outside of the system. A fuel cell power generator, wherein the water sealer also has a function of the condensed water automatic discharger.
JP2002366236A 2002-12-18 2002-12-18 Fuel cell power generator Expired - Fee Related JP4304975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366236A JP4304975B2 (en) 2002-12-18 2002-12-18 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366236A JP4304975B2 (en) 2002-12-18 2002-12-18 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2004199977A true JP2004199977A (en) 2004-07-15
JP4304975B2 JP4304975B2 (en) 2009-07-29

Family

ID=32763500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366236A Expired - Fee Related JP4304975B2 (en) 2002-12-18 2002-12-18 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4304975B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087994A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2008300161A (en) * 2007-05-31 2008-12-11 Toshiba Corp Fuel cell power generation unit
KR101126665B1 (en) * 2007-03-09 2012-04-13 도요타 지도샤(주) Fuel cell system
WO2012132181A1 (en) * 2011-03-30 2012-10-04 パナソニック株式会社 Fuel cell system and method for operating same
JPWO2013157274A1 (en) * 2012-04-19 2015-12-21 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2020184454A (en) * 2019-05-08 2020-11-12 アイシン精機株式会社 Fuel cell system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509006B2 (en) 2005-02-18 2016-11-29 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
JPWO2006087994A1 (en) * 2005-02-18 2008-07-03 松下電器産業株式会社 Fuel cell system
JP4510877B2 (en) * 2005-02-18 2010-07-28 パナソニック株式会社 Fuel cell system
WO2006087994A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system
KR101126665B1 (en) * 2007-03-09 2012-04-13 도요타 지도샤(주) Fuel cell system
US8642194B2 (en) 2007-03-09 2014-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008300161A (en) * 2007-05-31 2008-12-11 Toshiba Corp Fuel cell power generation unit
WO2012132181A1 (en) * 2011-03-30 2012-10-04 パナソニック株式会社 Fuel cell system and method for operating same
JP5830667B2 (en) * 2011-03-30 2015-12-09 パナソニックIpマネジメント株式会社 Fuel cell system and operation method thereof
US9553322B2 (en) 2011-03-30 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and operation method thereof
JPWO2013157274A1 (en) * 2012-04-19 2015-12-21 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2020184454A (en) * 2019-05-08 2020-11-12 アイシン精機株式会社 Fuel cell system
JP7310278B2 (en) 2019-05-08 2023-07-19 株式会社アイシン fuel cell system

Also Published As

Publication number Publication date
JP4304975B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
KR100762685B1 (en) reformer and fuel cell system using the same
EP2351703B1 (en) Method of operating a hydrogen generator
JP4248182B2 (en) Fuel cell power generation system and fuel cell purging method
JP2005506659A (en) Method of purging a fuel cell system with an inert gas made from organic fuel
JP2006031989A (en) Method and system for power generation by solid oxide fuel cell
JP2003282114A (en) Stopping method of fuel cell power generating device
JP4463846B2 (en) Hydrogen production power generation system
JP4847117B2 (en) Fuel reforming system
JP4531800B2 (en) Hydrogen production power generation system and method for stopping the same
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP4304975B2 (en) Fuel cell power generator
JP2009104814A (en) Fuel cell power generation system
US7666537B2 (en) Fuel cell system for preventing hydrogen permeable metal layer degradation
JP2007194098A (en) Fuel cell power generation system
JP2009026510A (en) Fuel cell power generating system and fuel reforming method of fuel cell power generating system
JP2005063697A (en) Fuel cell power generating system
JP5389520B2 (en) Fuel cell reformer
JP4307766B2 (en) Fuel cell power generation system
JP4072725B2 (en) Operation method of fuel cell power generator
JP2008066096A (en) Fuel cell system
JP4003130B2 (en) Fuel cell power generator and its operation method
JP2003288936A (en) Fuel cell power generating system and its operation method
JP2008146851A (en) Shutdown method of fuel cell power generating device and fuel cell power generating device
JP2003100332A (en) Fuel cell power generation system
JP5001690B2 (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees