JP2004198246A - Method for diagnosing load state of bearing - Google Patents

Method for diagnosing load state of bearing Download PDF

Info

Publication number
JP2004198246A
JP2004198246A JP2002366875A JP2002366875A JP2004198246A JP 2004198246 A JP2004198246 A JP 2004198246A JP 2002366875 A JP2002366875 A JP 2002366875A JP 2002366875 A JP2002366875 A JP 2002366875A JP 2004198246 A JP2004198246 A JP 2004198246A
Authority
JP
Japan
Prior art keywords
raceway
bearing
eddy current
load state
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366875A
Other languages
Japanese (ja)
Other versions
JP4013056B2 (en
Inventor
Sadayuki Tanaka
貞幸 田中
Masao Ito
正夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002366875A priority Critical patent/JP4013056B2/en
Publication of JP2004198246A publication Critical patent/JP2004198246A/en
Application granted granted Critical
Publication of JP4013056B2 publication Critical patent/JP4013056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for diagnosing the load state of a bearing capable of numerically diagnosing (judging) the load state of the bearing. <P>SOLUTION: A coil is provided and an exciting current is allowed to flow to the coil to guide an eddy current into the surface of the track of a rotary track wheel made of steel, the surface of the track of a fixed track wheel made of steel and the tumbling surface of a tumbling body made of steel. An eddy current sensor for detecting a change in the impedance generated in the coil by an eddy current is used to measure the reduction quantity of residual austenite due to the texture change in steel accompanied by the advance of fatigue of the surface of the track of the heat-treated rotary track wheel, the surface of the track of the fixed track wheel and the tumbling surface of the tumbling body. The fatigue tendency of those surfaces of the tracks and the tumbling surface is grasped from the measured result. Then, the mechanical contact theory related to those surfaces is collated with the grasped fatigue tendency data to diagnose the load state of the bearing. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、単列や複列の例えば、円筒ころ軸受、円錐ころ軸受、自動調心ころ軸受、深溝玉軸受、アンギュラ玉軸受、等といった転がり軸受の熱処理された鋼製回転軌道輪および鋼製固定軌道輪(即ち、内輪および外輪)の軌道面(『走行面』や『レース面』等とも称される。)、および熱処理された鋼製転動体(即ち、ころ又は玉)の転動面(『走行面』等とも称される。)の負荷状態を非破壊にて診断する軸受負荷状態診断方法に関する。
【0002】
【従来の技術】
転がり軸受(以下、単に『軸受』と称す。)は、例えば回転軸とハウジングとの間、即ち、一方の構成要素が他方の構成要素に対して回転するような当該構成要素間の摩擦を減少させるために軌道輪(即ち、内外輪)上の軌道面に沿って転動する転動体を有する。
【0003】
軸受は、疲労によって寿命に達して損傷に至るものが一般的には多い。しかし、過大な荷重が軸受に負荷されたり、軸受の取付け先(例えば、回転軸やハウジング)の精度の劣化によりミスアライメントが生じたりすると早期剥離や焼付き等の予期せぬトラブルを引き起こすことがある。
【0004】
このような予期せぬトラブルが生じた場合、原因の推定のために外輪や内輪の軌道面における転動体の走行跡を点検して負荷状態を判断したとしても、外観点検での判断であるため、十分な負荷状態観察ができない。
【0005】
一方、軸受の軌道面に沿って移動する光センサを用いて非破壊で当該軸受の軌道面を検査する方法が知られている(例えば、特許文献1参照)。
【0006】
また、軸受の疲労前に対する疲労後の残留オーステナイトの減少量をX線解析装置を用いて測定して、当該軸受の疲労度を測定する方法も知られている(例えば、特許文献2参照)。
【0007】
また、焼入れ鋼に切削加工または研削加工を施すことによって発生する加工変質層の深さを非破壊で検出する渦電流方式の非破壊検出方法も知られている(例えば、特許文献3参照)。
【0008】
渦電流方式の非破壊検出方法には、コイルに励磁電流を流して測定対象金属内に渦電流を誘導し、その渦電流によって当該コイルに生じるインピーダンスの変化を検出する所謂渦電流センサが用いられる。当該渦電流センサを用いれば、熱処理された浸炭層の深さの測定、金属組織変化(例えば、残留オーステナイトの減少量)の測定、等も行なえることは知られている。
【0009】
【特許文献1】
特開平7−167790号公報(第2〜3頁、図1)
【特許文献2】
特公昭63−34423号公報(第2頁、図1)
【特許文献3】
特開平10−206395号公報(第2〜3頁)
【0010】
【発明が解決しようとする課題】
特許文献1に係る方法は、軸受の軌道面における表面欠陥を検査するための方法であるため、軌道輪内部や転動体内部の疲労による状態の変化を検出することには不向きである。
【0011】
また、特許文献2に係る方法は、軌道輪内部や転動体内部の疲労による状態の変化(即ち、残留オーステナイト量の変化)を検出できる点優れているが、測定対象となる軌道輪や転動体を研削して被測定面を露出させねばならないことから、非破壊検査には不向きである。
【0012】
一方、特許文献3に係る方法では、渦電流センサを用いて軸受の疲労による鋼中の残留オーステナイトの減少量を測定することのみによって、当該軸受の疲労度を直接診断したり、当該軸受の余寿命を判定したりすることは非常に困難である。
【0013】
その理由としては、渦電流は鋼中の残留オーステナイト量に比例し、そしてカーボン量に反比例するが、軸受には種々の鋼が採用され且つ、各鋼によって熱処理も異なり、鋼中のカーボン量は軸受の種類によって異なってくることから、残留オーステナイトの変化量とカーボン量との関係だけを捉えても定量的な疲労度の診断ができないからである。
【0014】
更に、軸受寿命との関係を捉える場合も、使用される設備固有の使用条件が複雑であり実用的ではないことが理由として挙げられる。
【0015】
本発明は、前述した課題に鑑みてなされたものであり、その目的は、軸受に異常な負荷状態が生じた場合でも、渦電流センサを用いて軸受鋼中の疲労による残留オーステナイトの減少量を測定することで当該負荷状態の数値診断(判断)を可能にする軸受負荷状態診断方法を提供することにある。
【0016】
【課題を解決するための手段】
前述した目的を達成するために、本発明に係る軸受負荷状態診断方法は、請求項1に記載したように、
コイルを備え、当該コイルに励磁電流を流して、鋼製回転軌道輪の軌道面内部、鋼製固定軌道輪の軌道面内部、または鋼製転動体の転動面内部に渦電流を誘導し、その渦電流によって前記コイルに生じるインピーダンスの変化を検出する渦電流センサを用いて、熱処理された前記回転軌道輪の軌道面、前記固定軌道輪の軌道面、または前記転動体の転動面の疲労進行に伴う鋼中の組織変化による残留オーステナイトの減少量を測定し、
その測定結果から前記回転軌道輪の軌道面、前記固定軌道輪の軌道面、または前記転動体の転動面の疲労傾向を把握し、そして、
当該把握した疲労傾向情報に前記回転軌道輪の軌道面、前記固定軌道輪の軌道面、および前記転動体の転動面に係る機械的な接触理論を突き合わせて軸受の負荷状態を診断する
ことを特徴としている。
【0017】
請求項1に記載の発明によれば、軸受の負荷状態(特に、疲労度)を数値診断(即ち、数値で判断)することが可能となり、軸受の早期剥離等の損傷原因を究明したり、ユーザの設備上の問題を究明したり、その改善方法を見出したりする手段として利用できる。よって、軸受使用現場での直接診断が可能となり、軸受事故に対する予防保全を行なうことが可能となる。
【0018】
【実施例】
以下、本発明に係る好適な実施例を添付図面を参照しながら詳細に説明する。
【0019】
はじめに、本発明に係る軸受負荷状態診断方法は、単列や複列の例えば、円筒ころ軸受、円錐ころ軸受、自動調心ころ軸受、深溝玉軸受、アンギュラ玉軸受、等といった軸受の回転軌道輪(例えば、内輪)の軌道面、固定軌道輪(回転軌道輪が例えば内輪の場合、外輪)の軌道面、および回転軌道輪と固定軌道輪との間で周方向に転動自在に配設された複数の転動体(即ち、ころ又は玉)の転動面、の疲労進行に伴う残留オーステナイト量の変化(即ち、減少量)を前述した渦電流センサを用いて測定する。
【0020】
そして、その測定結果から軸受の各測定面の疲労傾向を把握し、当該把握した疲労傾向情報に軌道面と転動面との機械的な接触理論を突き合わせて軸受の負荷状態を数値で診断する。
【0021】
図1は、本発明に係る軸受負荷状態診断方法の診断ステップ(S4)に至るまでの論理フローを示す図である。
【0022】
図1に示されるように、先ず、外輪および内輪の軌道面およびころの転動面の残留オーステナイトの変化量が渦電流センサで検出され且つ情報化される(即ち、ステップS1)。このとき、当該渦電流センサからは内部増幅・処理回路等を介して疲労度を無次元化した値が算出および生成され、これらの値を基に数値変化情報が形成される。
【0023】
一方、機械的な接触理論に基づく該当する軸受の負荷状態に対する疲労パターンの数値化されたデータテーブルが用意される(即ち、ステップS2)。そして、ステップS1からの情報とステップS2からの情報との突き合わせが実行される(即ち、ステップS3)。このとき、ステップS3にて該当する軸受の負荷状態に対する疲労パターン情報が前述のデータテーブルから選択される。
【0024】
そして、ステップS3で選択された疲労パターン情報(数値化されたもの)を基に、(1)上述のミスアライメントによる偏荷重分布、(2)エッジロード分布、(3)複列の軸受の各列間の荷重分担崩れ度合い、(4)異常アキシャル荷重負荷分布、等といった軸受の負荷状態の診断が為される(即ち、ステップS4)。
【0025】
尚、これらのステップにおける一連の情報処理ならびに診断はパーソナルコンピュータ等といったコンピュータにより実行できる。当該コンピュータは、前述のデータテーブルや軸受負荷状態診断を実行するための処理プログラムが記録されている記録媒体としてROM(即ち、Read Only Memory)と、処理プログラムのワーク領域を有し、渦電流センサの検出情報を記録可能な記録媒体としてRAM(即ち、Random Access Memory)と、ROMおよびRAMの記録情報に基づいて演算処理を実行し、最終的には軸受負荷状態診断結果を、数値、当該数値を表わすグラフ、等や、更には必要に応じて荷重負荷分布イメージとしてCRT(即ち、Cathode Ray Tube)ディスプレイ、LCD(即ち、Liquid Crystal Display)、プリンタ、等の画像表示装置に表示させるCPU(即ち、Central Processing Unit)と、を備えている。
【0026】
次に、各種軸受に応じた渦電流センサによる測定の仕方について図2(A)〜図2(D)を参照して説明する。基本的に渦電流センサは軸受負荷位置の軌道面に沿って走査させられ、図2(A)〜図2(D)に示されるように円周上の各位置や軸方向に移動させられて、疲労による残留オーステナイト量の変化分布を検出する。尚、図2(A)〜図2(D)には単列の軸受が示されているが、複列の軸受の場合も同様に各列測定する。
【0027】
図2(A)および図2(B)には円筒ころ軸受の場合の渦電流センサによる軌道面の走査例が示されている。図2(A)は軸の長手方向と平行な方向に切断した場合の内外輪の縦断面図であり、渦電流センサが内外輪の軌道面に沿って軸の長手方向と平行な方向に移動する例が示されている。また、図2(B)は、図2(A)のII(B)−II(B)矢視断面図であり、渦電流センサが外輪の軌道面(内周面)に沿って周方向に移動する例が示されている(尚、内輪の場合は、軌道面(外周面)に沿って移動することになる)。
【0028】
図2(C)および図2(D)には円錐ころ軸受の場合の渦電流センサによる軌道面の走査例が示されている。図2(C)は軸の長手方向と平行な方向に切断した場合の内外輪の縦断面図であり、渦電流センサが内外輪の軌道面に沿って軸の長手方向と平行な方向に移動する例が示されている。また、図2(D)は、図2(A)のII(D)−II(D)矢視断面図であり、渦電流センサが外輪の軌道面(内周面)に沿って周方向に移動する例が示されている(尚、内輪の場合は、軌道面(外周面)に沿って移動することになる)。
【0029】
(第1診断例)
次に、本発明に係る軸受負荷状態診断方法による第1診断例として、円筒ころ軸受のミスアライメントによる偏荷重分布の診断例を図3(A)〜図3(C)を参照して説明する。尚、第1診断例は図3(A)に示されるように外輪の軌道面を渦電流センサにより走査した場合の診断例であり、図3(A)中▲1▼は渦電流センサによる負荷圏の測定、そして▲2▼は渦電流センサによる非負荷圏(▲1▼の180°位置)の測定を示している。
【0030】
そして、その測定結果例、当該測定結果例に対応する前述のデータテーブルからの疲労パターン情報に基づいた負荷状態の推定、そして当該負荷状態の推定に基づいた判定が図3(B)および図3(C)には示されている。図3(B)では正常な負荷分布であることが判定された例が示され、そして図3(C)ではミスアライメントが作用した状態(即ち、異常負荷状態)であることが判定された例が示されている。尚、測定部位は、内輪またはころ転動面を測定しても同様な評価ができる。
【0031】
(第2診断例)
次に、本発明に係る軸受負荷状態診断方法による第2診断例として、複列円錐ころ軸受のミスアライメントによる偏荷重分布の診断例を図4(A)〜図4(C)を参照して説明する。尚、第2診断例は図4(A)に示されるように内外輪の軌道面を渦電流センサにより走査した場合の診断例であり、図4(A)中▲1▼は渦電流センサによるA列非負荷圏の測定、▲2▼は渦電流センサによるB列非負荷圏の測定、▲3▼は渦電流センサによるA列負荷圏(▲1▼の180°位置)の測定、そして▲4▼は渦電流センサによるB列負荷圏(▲2▼の180°位置)の測定を示している。
【0032】
そして、その測定結果例、当該測定結果例に対応する前述のデータテーブルからの疲労パターン情報に基づいた負荷状態の推定、そして当該負荷状態の推定に基づいた判定が図4(B)および図4(C)には示されている。図4(B)では正常な負荷分布であることが判定された例が示され、そして図4(C)ではミスアライメントが作用した状態(即ち、異常負荷状態)であることが判定された例が示されている。尚、測定部位は、ころ転動面を測定しても同様な評価ができる。
【0033】
(第3診断例)
次に、本発明に係る軸受負荷状態診断方法による第3診断例として、円筒ころ軸受の内輪軌道面のエッジロード分布の診断例を図5(A)および図5(B)を参照して説明する。尚、第3診断例は図5(A)に示されるように内輪の軌道面を渦電流センサにより走査した場合の診断例であり、特に図示しないが、正常な負荷分布の内輪Aの軌道面の渦電流センサによる測定(▲1▼)、そして負荷荷重が過大な内輪Bの軌道面の渦電流センサによる測定(▲2▼)が実施されている。
【0034】
そして、その測定結果例、当該測定結果例に対応する前述のデータテーブルからの疲労パターン情報に基づいた負荷状態の推定、そして当該負荷状態の推定に基づいた判定が図5(B)には示されている。図5(B)では正常な負荷分布であることが判定された例と負荷荷重が過大であることが判定された例の両方が示されている。尚、その他、円錐ころ軸受においても同様な測定により異常な負荷状態の有無を診断できる。また、測定部位は、外輪またはころ転動面を測定しても同様な評価ができる。
【0035】
(第4診断例)
次に、本発明に係る軸受負荷状態診断方法による第4診断例として、複列(本例では4列)の円筒ころ軸受の各列間の荷重分担崩れの診断例を図6(A)〜図6(C)を参照して説明する。尚、第4診断例は図6(A)に示されるように内輪または外輪の軌道面を渦電流センサにより走査した場合の診断例であり、図6(A)中、渦電流センサによるA列の内輪または外輪の軌道面の測定、渦電流センサによるB列の内輪または外輪の軌道面の測定、渦電流センサによるC列の内輪または外輪の軌道面の測定、そして渦電流センサによるD列の内輪または外輪の軌道面の測定が示されている。
【0036】
そして、その測定結果例、当該測定結果例に対応する前述のデータテーブルからの疲労パターン情報に基づいた負荷状態の推定、そして当該負荷状態の推定に基づいた判定が図6(B)および図6(C)には示されている。図6(B)では列荷重分担崩れが大きいことが判定された例が示され、そして図6(C)では略均等な荷重分担で異常が無いことが判定された例が示されている。尚、その他、複列の円錐ころ軸受においても同様な測定により異常な負荷状態の有無を診断できる。また、測定部位は、ころ転動面を測定しても同様な評価ができる。
【0037】
(第5診断例)
最後に、本発明に係る軸受負荷状態診断方法による第5診断例として、複列(本例では4列)の円錐ころ軸受の異常アキシャル荷重負荷分布の診断例を図7(A)〜図7(C)を参照して説明する。尚、第5診断例は図7(A)に示されるように外輪の軌道面を渦電流センサにより走査した場合の診断例であり、図7(A)中、渦電流センサによるA列の外輪の軌道面の測定、渦電流センサによるB列の外輪の軌道面の測定、渦電流センサによるC列の外輪の軌道面の測定、そして渦電流センサによるD列の外輪の軌道面の測定が示されている。
【0038】
そして、その測定結果例、当該測定結果例に対応する前述のデータテーブルからの疲労パターン情報に基づいた負荷状態の推定、そして当該負荷状態の推定に基づいた判定が図7(B)および図7(C)には示されている。図7(B)では異常なアキシャル荷重が作用していることが判定された例が示され、そして図7(C)では略均等な荷重分担で異常が無いことが判定された例が示されている。尚、その他、複列の円筒ころ軸受においても同様な測定により異常なアキシャル負荷状態を診断できる。また、測定部位は、内輪またはころ転動面を測定しても同様な評価ができる。
【0039】
尚、本発明は、前述した実施例に限定されるものではなく、適宜、変形,改良,等が可能である。勿論、本発明の軸受負荷状態診断方法は、自動調心ころ軸受等のころ軸受や、深溝玉軸受、アンギュラ玉軸受、等の玉軸受にも適用可能である。例えば、複列の自動調心ころ軸受の場合は、各列の走行面を測定して列間の負荷状態(例えば、過大な(即ち、異常な)アキシャル荷重負荷作用の有無)を診断することも可能である。また、深溝玉軸受やアンギュラ玉軸受の場合も同様に各レース面を測定して負荷状態(例えば、ミスアライメント作用の有無)を診断することもできる。
【0040】
【発明の効果】
以上、説明したように、本発明によれば、軸受の負荷状態(特に、疲労度)を数値診断(即ち、数値で判断)することが可能となり、軸受の早期剥離等の損傷原因を究明したり、ユーザの設備上の問題を究明したり、その改善方法を見出したりする手段として利用できる。よって、軸受使用現場での直接診断が可能となり、軸受事故に対する予防保全を行なうことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る軸受負荷状態診断方法の診断ステップ(S4)に至るまでの論理フローを示す図である。
【図2】円筒ころ軸受の場合の渦電流センサによる軌道面の走査例を示す図である。
【図3】第1診断例を示す図である。
【図4】第2診断例を示す図である。
【図5】第3診断例を示す図である。
【図6】第4診断例を示す図である。
【図7】第5診断例を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a single-row or double-row, for example, a heat-treated steel rolling race and a steel rolling bearing ring of a rolling bearing such as a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a deep groove ball bearing, an angular ball bearing, and the like. The raceway surfaces (also referred to as "running surfaces", "race surfaces", etc.) of the fixed races (i.e., the inner and outer races) and the rolling surfaces of the heat-treated steel rolling elements (i.e., rollers or balls). The present invention relates to a bearing load state diagnosis method for non-destructively diagnosing a load state of a (running surface) or the like.
[0002]
[Prior art]
BACKGROUND ART Rolling bearings (hereinafter, simply referred to as “bearings”) reduce friction between, for example, a rotating shaft and a housing, that is, one component rotates with respect to the other component. And a rolling element that rolls along the raceway surface on the raceway ring (that is, the inner and outer races).
[0003]
In general, bearings often reach the end of their life due to fatigue, leading to damage. However, if an excessive load is applied to the bearing or misalignment occurs due to deterioration of the accuracy of the mounting destination of the bearing (for example, the rotating shaft or the housing), unexpected troubles such as early peeling and seizure may be caused. is there.
[0004]
When such unexpected troubles occur, even if the running state of the rolling elements on the raceway surface of the outer ring or the inner ring is checked to determine the load state by estimating the cause, the judgment is based on the appearance inspection. , It is not possible to observe the load state sufficiently.
[0005]
On the other hand, a method of nondestructively inspecting the raceway surface of a bearing using an optical sensor that moves along the raceway surface of the bearing is known (for example, see Patent Document 1).
[0006]
There is also known a method of measuring the amount of reduction of retained austenite after fatigue with respect to before bearing fatigue using an X-ray analyzer to measure the degree of fatigue of the bearing (for example, see Patent Document 2).
[0007]
Further, there is also known an eddy current non-destructive detection method for non-destructively detecting a depth of a deteriorated layer generated by performing cutting or grinding on hardened steel (for example, see Patent Document 3).
[0008]
In the non-destructive detection method of the eddy current method, a so-called eddy current sensor is used in which an exciting current is passed through a coil to induce an eddy current in a metal to be measured, and a change in impedance generated in the coil due to the eddy current is used. . It is known that the eddy current sensor can be used to measure the depth of the carburized layer that has been heat-treated, to measure the change in the metal structure (for example, to reduce the amount of retained austenite), and the like.
[0009]
[Patent Document 1]
JP-A-7-167790 (pages 2-3, FIG. 1)
[Patent Document 2]
JP-B-63-34423 (page 2, FIG. 1)
[Patent Document 3]
JP-A-10-206395 (pages 2-3)
[0010]
[Problems to be solved by the invention]
The method according to Patent Literature 1 is a method for inspecting a surface defect on a raceway surface of a bearing, and thus is not suitable for detecting a change in state due to fatigue inside a raceway ring and inside a rolling element.
[0011]
Further, the method according to Patent Document 2 is excellent in that it can detect a change in state due to fatigue inside the raceway ring and the inside of the rolling element (that is, a change in the amount of retained austenite). Must be ground to expose the surface to be measured, which is not suitable for nondestructive inspection.
[0012]
On the other hand, in the method according to Patent Document 3, the degree of fatigue of the bearing is directly diagnosed only by measuring the amount of reduction of retained austenite in the steel due to the fatigue of the bearing using the eddy current sensor, It is very difficult to determine the life.
[0013]
The reason is that the eddy current is proportional to the amount of retained austenite in the steel and inversely proportional to the amount of carbon.However, various steels are used for the bearings, and the heat treatment differs depending on the steel. This is because the degree of fatigue cannot be quantitatively diagnosed even if only the relationship between the amount of change in retained austenite and the amount of carbon is grasped, since the relationship varies depending on the type of bearing.
[0014]
Furthermore, when grasping the relationship with the bearing life, the reason is that the use conditions specific to the equipment used are complicated and impractical.
[0015]
The present invention has been made in view of the above-described problem, and has as its object to reduce the amount of retained austenite due to fatigue in bearing steel using an eddy current sensor even when an abnormal load condition occurs in the bearing. It is an object of the present invention to provide a bearing load state diagnosis method that enables a numerical diagnosis (judgment) of the load state by measuring.
[0016]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a bearing load state diagnosing method according to the present invention has the following features.
A coil is provided, and an exciting current is supplied to the coil to induce an eddy current inside the raceway surface of the steel rotating raceway, inside the raceway surface of the steel fixed raceway, or inside the rolling surface of the steel rolling element, Using an eddy current sensor that detects a change in impedance generated in the coil due to the eddy current, fatigue of the raceway surface of the rotating raceway ring, the raceway surface of the fixed raceway ring, or the rolling surface of the rolling element that has been heat-treated. Measure the amount of retained austenite decrease due to structural change in steel with progress,
From the measurement results, the raceway surface of the rotating raceway, the raceway surface of the fixed raceway, or grasp the fatigue tendency of the rolling surface of the rolling element, and
Diagnosing the load state of the bearing by comparing the obtained fatigue tendency information with the mechanical contact theory relating to the raceway surface of the rotating raceway, the raceway surface of the fixed raceway, and the rolling surface of the rolling element. Features.
[0017]
According to the first aspect of the invention, it is possible to make a numerical diagnosis (that is, judge by a numerical value) of the load state (particularly, the degree of fatigue) of the bearing, to investigate a cause of damage such as early peeling of the bearing, It can be used as a means for investigating problems on the user's equipment and finding ways to improve them. Therefore, direct diagnosis can be performed at the bearing use site, and preventive maintenance against a bearing accident can be performed.
[0018]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0019]
First, the bearing load state diagnosing method according to the present invention is applied to a single-row or double-row bearing raceway ring such as a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a deep groove ball bearing, an angular ball bearing, or the like. (For example, an inner ring), a raceway surface of a fixed raceway (an outer race when the rotation raceway is, for example, an inner raceway), and a circumferentially rollable arrangement between the rotation raceway and the fixed raceway. The change in the amount of retained austenite (i.e., the amount of decrease) accompanying the progress of fatigue on the rolling surfaces of the plurality of rolling elements (i.e., rollers or balls) is measured using the eddy current sensor described above.
[0020]
Then, the fatigue tendency of each measurement surface of the bearing is grasped from the measurement result, and the load state of the bearing is numerically diagnosed by matching the mechanical contact theory between the raceway surface and the rolling surface with the grasped fatigue tendency information. .
[0021]
FIG. 1 is a diagram showing a logical flow up to a diagnosis step (S4) of the bearing load state diagnosis method according to the present invention.
[0022]
As shown in FIG. 1, first, the amount of change in the retained austenite on the raceway surfaces of the outer ring and the inner ring and the rolling surfaces of the rollers is detected by the eddy current sensor and is digitized (that is, step S1). At this time, the dimensionless fatigue values are calculated and generated from the eddy current sensor via an internal amplification / processing circuit and the like, and numerical change information is formed based on these values.
[0023]
On the other hand, a numerical data table of the fatigue pattern for the load state of the corresponding bearing based on the mechanical contact theory is prepared (that is, step S2). Then, the information from step S1 and the information from step S2 are matched (that is, step S3). At this time, in step S3, fatigue pattern information corresponding to the load state of the corresponding bearing is selected from the above-described data table.
[0024]
Then, based on the fatigue pattern information (quantified) selected in step S3, each of (1) the uneven load distribution due to the misalignment described above, (2) the edge load distribution, and (3) the double row bearing Diagnosis of the load state of the bearing such as the degree of load sharing collapse between rows, (4) abnormal axial load distribution, and the like is performed (that is, step S4).
[0025]
A series of information processing and diagnosis in these steps can be executed by a computer such as a personal computer. The computer has a ROM (that is, Read Only Memory) as a recording medium on which a processing program for executing the above-mentioned data table and the bearing load state diagnosis is recorded, and a work area for the processing program. RAM (ie, Random Access Memory) as a recording medium on which the detection information can be recorded, and arithmetic processing is executed based on the recording information in the ROM and RAM, and finally the bearing load state diagnosis result is represented by a numerical value, the numerical value CPU (ie, a CRT (i.e., Cathode Ray Tube) display, LCD (i.e., Liquid Crystal Display), printer, or other image display device) as a graph representing, for example, a load distribution image if necessary. , Central Processing Unit).
[0026]
Next, a method of measurement by the eddy current sensor corresponding to various bearings will be described with reference to FIGS. 2 (A) to 2 (D). Basically, the eddy current sensor is scanned along the track surface of the bearing load position, and is moved in each position on the circumference and in the axial direction as shown in FIGS. 2 (A) to 2 (D). In addition, the change distribution of the amount of retained austenite due to fatigue is detected. 2 (A) to 2 (D) show a single-row bearing. However, in the case of a double-row bearing, each row is measured in the same manner.
[0027]
FIGS. 2A and 2B show an example of scanning the track surface by an eddy current sensor in the case of a cylindrical roller bearing. FIG. 2A is a longitudinal sectional view of the inner and outer rings when cut in a direction parallel to the longitudinal direction of the shaft, and the eddy current sensor moves in a direction parallel to the longitudinal direction of the shaft along the raceway surface of the inner and outer rings. An example is shown. FIG. 2B is a cross-sectional view taken along the line II (B) -II (B) of FIG. 2A, in which the eddy current sensor extends in the circumferential direction along the raceway surface (inner circumferential surface) of the outer ring. An example of movement is shown (in the case of an inner ring, the object moves along a raceway surface (outer peripheral surface)).
[0028]
FIGS. 2C and 2D show an example of scanning the track surface by an eddy current sensor in the case of a tapered roller bearing. FIG. 2C is a longitudinal sectional view of the inner and outer races when cut in a direction parallel to the longitudinal direction of the shaft. The eddy current sensor moves along the raceway surface of the inner and outer races in a direction parallel to the longitudinal direction of the shaft. An example is shown. FIG. 2D is a cross-sectional view taken along the line II (D) -II (D) of FIG. 2A, in which the eddy current sensor extends in the circumferential direction along the raceway surface (inner circumferential surface) of the outer ring. An example of movement is shown (in the case of an inner ring, the object moves along a raceway surface (outer peripheral surface)).
[0029]
(First diagnosis example)
Next, as a first diagnosis example by the bearing load state diagnosis method according to the present invention, a diagnosis example of an uneven load distribution due to misalignment of a cylindrical roller bearing will be described with reference to FIGS. 3A to 3C. . Note that the first diagnosis example is a diagnosis example in which the raceway surface of the outer ring is scanned by the eddy current sensor as shown in FIG. 3A, and {circle around (1)} in FIG. Measurement of the sphere and (2) show measurement of the non-load sphere (180 ° position of (1)) by the eddy current sensor.
[0030]
Then, the measurement result example, the estimation of the load state based on the fatigue pattern information from the aforementioned data table corresponding to the measurement result example, and the determination based on the estimation of the load state are performed as shown in FIGS. (C) is shown. FIG. 3 (B) shows an example in which it is determined that the load distribution is normal, and FIG. 3 (C) shows an example in which it is determined that misalignment has occurred (ie, an abnormal load state). It is shown. The same evaluation can be performed for the measurement site by measuring the inner race or the roller rolling surface.
[0031]
(Second diagnosis example)
Next, as a second diagnosis example according to the bearing load state diagnosis method according to the present invention, a diagnosis example of an eccentric load distribution due to misalignment of a double row tapered roller bearing will be described with reference to FIGS. 4 (A) to 4 (C). explain. The second diagnostic example is a diagnostic example in which the trajectory surfaces of the inner and outer rings are scanned by the eddy current sensor as shown in FIG. 4A. In FIG. Measurement of row A non-load zone, (2) measurement of row B non-load zone by eddy current sensor, (3) measurement of row A load zone (180 ° position of (1)) by eddy current sensor, and ▲ 4 indicates the measurement of the B-row load zone (180 ° position of (2)) by the eddy current sensor.
[0032]
4 (B) and FIG. 4 show the measurement result example, the estimation of the load state based on the fatigue pattern information from the data table corresponding to the measurement result example, and the estimation based on the estimation of the load state. (C) is shown. FIG. 4B shows an example in which it is determined that the load distribution is normal, and FIG. 4C shows an example in which it is determined that a misalignment has occurred (that is, an abnormal load state). It is shown. In addition, the same evaluation can be performed for the measurement site by measuring the roller rolling surface.
[0033]
(Third diagnosis example)
Next, as a third diagnosis example by the bearing load state diagnosis method according to the present invention, a diagnosis example of the edge load distribution on the inner raceway surface of the cylindrical roller bearing will be described with reference to FIGS. 5 (A) and 5 (B). I do. The third diagnosis example is a diagnosis example in which the raceway surface of the inner race is scanned by the eddy current sensor as shown in FIG. 5A. Although not particularly shown, the raceway plane of the inner race A having a normal load distribution is illustrated. (1), and measurement (2) of the raceway surface of the inner race B with an excessively large load by the eddy current sensor.
[0034]
FIG. 5B shows the measurement result example, the estimation of the load state based on the fatigue pattern information from the data table corresponding to the measurement result example, and the determination based on the estimation of the load state. Have been. FIG. 5B shows both an example in which it is determined that the load distribution is normal and an example in which it is determined that the applied load is excessive. In addition, it is possible to diagnose the presence or absence of an abnormal load state in the tapered roller bearing by the same measurement. The same evaluation can be performed for the measurement site by measuring the outer ring or the roller rolling surface.
[0035]
(4th diagnosis example)
Next, as a fourth diagnosis example according to the bearing load state diagnosis method according to the present invention, FIGS. 6A to 6C show examples of diagnosing load sharing collapse between rows of a double row (four rows in this example) cylindrical roller bearing. This will be described with reference to FIG. The fourth diagnostic example is a diagnostic example in which the trajectory surface of the inner ring or the outer ring is scanned by the eddy current sensor as shown in FIG. 6A. In FIG. Measurement of the raceway surface of the inner or outer ring of, measurement of the raceway surface of the inner or outer ring in row B by an eddy current sensor, measurement of the raceway surface of the inner or outer ring in row C by an eddy current sensor, and measurement of the row D by an eddy current sensor The measurement of the raceway surface of the inner or outer ring is shown.
[0036]
6B and FIG. 6, the estimation of the load state based on the fatigue pattern information from the above-described data table corresponding to the measurement result example, and the estimation based on the estimation of the load state. (C) is shown. FIG. 6B shows an example in which it is determined that the row load sharing collapse is large, and FIG. 6C shows an example in which it is determined that there is no abnormality with substantially equal load sharing. In addition, the same measurement can be used to diagnose the presence or absence of an abnormal load condition in double-row tapered roller bearings. The same evaluation can be performed for the measurement site by measuring the roller rolling surface.
[0037]
(Fifth diagnosis example)
Finally, as a fifth diagnosis example by the bearing load state diagnosis method according to the present invention, a diagnosis example of an abnormal axial load distribution of a double row (four rows in this example) tapered roller bearing is shown in FIGS. This will be described with reference to FIG. The fifth diagnostic example is a diagnostic example in which the raceway surface of the outer ring is scanned by the eddy current sensor as shown in FIG. 7A. In FIG. Shows the measurement of the raceway surface of the outer ring in row B using the eddy current sensor, the measurement of the raceway surface of the outer ring in row C using the eddy current sensor, and the measurement of the raceway surface of the outer ring in row D using the eddy current sensor. Have been.
[0038]
7B and FIG. 7 are based on the measurement result example, the estimation of the load state based on the fatigue pattern information from the aforementioned data table corresponding to the measurement result example, and the estimation of the load state. (C) is shown. FIG. 7B shows an example in which it is determined that an abnormal axial load is acting, and FIG. 7C shows an example in which it is determined that there is no abnormality with substantially equal load sharing. ing. In addition, an abnormal axial load state can be diagnosed by the same measurement in a double-row cylindrical roller bearing. The same evaluation can be performed for the measurement site by measuring the inner race or the roller rolling surface.
[0039]
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like. Of course, the bearing load state diagnosing method of the present invention is also applicable to roller bearings such as self-aligning roller bearings and ball bearings such as deep groove ball bearings and angular ball bearings. For example, in the case of a double-row spherical roller bearing, it is necessary to measure the running surface of each row to diagnose a load condition between rows (for example, whether an excessive (that is, abnormal) axial load is applied). Is also possible. Also, in the case of a deep groove ball bearing or an angular ball bearing, the load state (for example, the presence or absence of a misalignment effect) can be diagnosed by measuring each race surface in the same manner.
[0040]
【The invention's effect】
As described above, according to the present invention, the load state (particularly, the degree of fatigue) of the bearing can be numerically diagnosed (that is, determined by a numerical value), and the cause of damage such as early peeling of the bearing can be determined. It can also be used as a means for investigating problems on the user's equipment or finding ways to improve them. Therefore, direct diagnosis can be performed at the bearing use site, and preventive maintenance against a bearing accident can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a logical flow up to a diagnosis step (S4) of a bearing load state diagnosis method according to the present invention.
FIG. 2 is a diagram showing an example of scanning a track surface by an eddy current sensor in the case of a cylindrical roller bearing.
FIG. 3 is a diagram showing a first diagnostic example.
FIG. 4 is a diagram showing a second diagnostic example.
FIG. 5 is a diagram showing a third diagnostic example.
FIG. 6 is a diagram showing a fourth diagnostic example.
FIG. 7 is a diagram showing a fifth diagnostic example.

Claims (1)

コイルを備え、当該コイルに励磁電流を流して、鋼製回転軌道輪の軌道面内部、鋼製固定軌道輪の軌道面内部、または鋼製転動体の転動面内部に渦電流を誘導し、その渦電流によって前記コイルに生じるインピーダンスの変化を検出する渦電流センサを用いて、熱処理された前記回転軌道輪の軌道面、前記固定軌道輪の軌道面、または前記転動体の転動面の疲労進行に伴う鋼中の組織変化による残留オーステナイトの減少量を測定し、
その測定結果から前記回転軌道輪の軌道面、前記固定軌道輪の軌道面、または前記転動体の転動面の疲労傾向を把握し、そして、
当該把握した疲労傾向情報に前記回転軌道輪の軌道面、前記固定軌道輪の軌道面、および前記転動体の転動面に係る機械的な接触理論を突き合わせて軸受の負荷状態を診断する
ことを特徴とする軸受負荷状態診断方法。
A coil is provided, and an exciting current is passed through the coil to induce an eddy current inside the raceway surface of the steel rotating raceway, inside the raceway surface of the steel fixed raceway, or inside the rolling surface of the steel rolling element, Using an eddy current sensor that detects a change in impedance generated in the coil due to the eddy current, fatigue of the raceway surface of the rotating raceway ring, the raceway surface of the fixed raceway ring, or the rolling surface of the rolling element that has been heat-treated. Measure the amount of retained austenite reduction due to structural change in steel with progress,
From the measurement results, the raceway surface of the rotating raceway, the raceway surface of the fixed raceway, or grasp the fatigue tendency of the rolling surface of the rolling element, and
Diagnosing the load condition of the bearing by comparing the obtained fatigue tendency information with the mechanical contact theory relating to the raceway surface of the rotating raceway, the raceway surface of the fixed raceway, and the rolling surface of the rolling element. Characteristic method of diagnosing bearing load.
JP2002366875A 2002-12-18 2002-12-18 Bearing load condition diagnosis method Expired - Lifetime JP4013056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366875A JP4013056B2 (en) 2002-12-18 2002-12-18 Bearing load condition diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366875A JP4013056B2 (en) 2002-12-18 2002-12-18 Bearing load condition diagnosis method

Publications (2)

Publication Number Publication Date
JP2004198246A true JP2004198246A (en) 2004-07-15
JP4013056B2 JP4013056B2 (en) 2007-11-28

Family

ID=32763948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366875A Expired - Lifetime JP4013056B2 (en) 2002-12-18 2002-12-18 Bearing load condition diagnosis method

Country Status (1)

Country Link
JP (1) JP4013056B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074654A1 (en) * 2009-12-17 2011-06-23 日本精工株式会社 Remaining life prediction method and remaining life diagnostic device of bearing, and bearing diagnostic system
DE102013106470A1 (en) * 2013-06-20 2014-12-24 Intelligendt Systems & Services Gmbh Device and method for nondestructive testing of a component of a rolling bearing
JP2018194433A (en) * 2017-05-17 2018-12-06 日本精工株式会社 Rotating body supporting device, and diagnosis system and diagnosis method thereof
JP2019184540A (en) * 2018-04-17 2019-10-24 日本精工株式会社 Method and system for diagnosing abnormality of bearing
JP2020024172A (en) * 2018-08-08 2020-02-13 日本精工株式会社 Nondegradable diagnostic method for bearing or direct-acting device
JP7255768B1 (en) * 2021-12-09 2023-04-11 日本精工株式会社 How to identify bearing damage
WO2023105886A1 (en) * 2021-12-09 2023-06-15 日本精工株式会社 Method for understanding damage of bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634786B2 (en) * 2015-11-18 2020-01-22 日本精工株式会社 Rolling bearing inspection parts for multi-high rolling mill, and method for detecting damage to roll bearing for multi-high rolling mill

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466863A (en) * 1990-07-09 1992-03-03 Toyota Motor Corp Residual stress measuring method by steel working
JPH04233451A (en) * 1990-12-28 1992-08-21 Aichi Steel Works Ltd Residual austenite quantity measuring apparatus
JPH0792140A (en) * 1993-09-27 1995-04-07 Toyota Motor Corp Method for evaluating fatigue strength of steel member
JPH08114577A (en) * 1994-10-13 1996-05-07 Daio Koukiyuu Seizo Kk Inspection device for bearing rolling body utilizing eddy current
JPH08248004A (en) * 1995-03-10 1996-09-27 Toyota Central Res & Dev Lab Inc Apparatus for measuring extent of fatigue
JPH10206395A (en) * 1997-01-24 1998-08-07 Ntn Corp Nondestructive detecting method of eddy current system
JP2002286031A (en) * 2001-03-27 2002-10-03 Koyo Seiko Co Ltd Bearing life recognizing method, bearing life recognizing index, bearing life recognizing program, recording medium recording bearing life recognizing program, transmitting medium transmitting bearing life recognizing program, and bearing life recognizing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466863A (en) * 1990-07-09 1992-03-03 Toyota Motor Corp Residual stress measuring method by steel working
JPH04233451A (en) * 1990-12-28 1992-08-21 Aichi Steel Works Ltd Residual austenite quantity measuring apparatus
JPH0792140A (en) * 1993-09-27 1995-04-07 Toyota Motor Corp Method for evaluating fatigue strength of steel member
JPH08114577A (en) * 1994-10-13 1996-05-07 Daio Koukiyuu Seizo Kk Inspection device for bearing rolling body utilizing eddy current
JPH08248004A (en) * 1995-03-10 1996-09-27 Toyota Central Res & Dev Lab Inc Apparatus for measuring extent of fatigue
JPH10206395A (en) * 1997-01-24 1998-08-07 Ntn Corp Nondestructive detecting method of eddy current system
JP2002286031A (en) * 2001-03-27 2002-10-03 Koyo Seiko Co Ltd Bearing life recognizing method, bearing life recognizing index, bearing life recognizing program, recording medium recording bearing life recognizing program, transmitting medium transmitting bearing life recognizing program, and bearing life recognizing system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ТРУСОВА И И: "Неразрушающие методы контроля качества термической о", METALLOVED TERM OBRAB MET, JPN4007009431, 1980, pages 63 - 64, ISSN: 0000856053 *
ТРУСОВА И И: "Неразрушающие методы контроля качества термической о", METALLOVED TERM OBRAB MET, JPNX007043567, 1980, pages 63 - 64, ISSN: 0000883466 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751166B2 (en) * 2009-12-17 2015-07-22 日本精工株式会社 Bearing remaining life prediction method, remaining life diagnosis device, and bearing diagnosis system
DE112010000023B4 (en) 2009-12-17 2021-09-30 Nsk Ltd. A method for predicting a remaining life of a bearing, an apparatus for diagnosing a remaining life of a bearing and a bearing diagnostic system
DE112010000023T5 (en) 2009-12-17 2013-03-14 Nsk Ltd. A method for predicting a remaining life of a bearing, a device for diagnosing a remaining life of a bearing and bearing diagnostic system
JPWO2011074654A1 (en) * 2009-12-17 2013-04-25 日本精工株式会社 Bearing remaining life prediction method, remaining life diagnosis device, and bearing diagnosis system
US8593138B2 (en) 2009-12-17 2013-11-26 Nsk Ltd. Bearing residual life prediction method, bearing residual life diagnostic apparatus and bearing diagnostic system
CN102216862A (en) * 2009-12-17 2011-10-12 日本精工株式会社 Remaining life prediction method and remaining life diagnostic device of bearing, and bearing diagnostic system
CN105700503A (en) * 2009-12-17 2016-06-22 日本精工株式会社 Remaining life prediction method and remaining life diagnostic device of bearing, and bearing diagnostic system
WO2011074654A1 (en) * 2009-12-17 2011-06-23 日本精工株式会社 Remaining life prediction method and remaining life diagnostic device of bearing, and bearing diagnostic system
DE102013106470A1 (en) * 2013-06-20 2014-12-24 Intelligendt Systems & Services Gmbh Device and method for nondestructive testing of a component of a rolling bearing
JP2018194433A (en) * 2017-05-17 2018-12-06 日本精工株式会社 Rotating body supporting device, and diagnosis system and diagnosis method thereof
JP2019184540A (en) * 2018-04-17 2019-10-24 日本精工株式会社 Method and system for diagnosing abnormality of bearing
JP7095375B2 (en) 2018-04-17 2022-07-05 日本精工株式会社 Bearing abnormality diagnosis method and bearing abnormality diagnosis system
JP2020024172A (en) * 2018-08-08 2020-02-13 日本精工株式会社 Nondegradable diagnostic method for bearing or direct-acting device
JP7255768B1 (en) * 2021-12-09 2023-04-11 日本精工株式会社 How to identify bearing damage
WO2023105886A1 (en) * 2021-12-09 2023-06-15 日本精工株式会社 Method for understanding damage of bearing

Also Published As

Publication number Publication date
JP4013056B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
Adamczak et al. Influence of raceway waviness on the level of vibration in rolling-element bearings
JPH0961268A (en) Load measuring apparatus for bearing
JP6499946B2 (en) Machine tool bearing diagnostic device
JP2006077938A (en) Abnormality diagnosing device
US9074970B2 (en) Method for fatigue assessment of rolling bearing
JP4013056B2 (en) Bearing load condition diagnosis method
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP2008070305A (en) Method of measuring radial clearance of single-row radial ball bearing
JP4165260B2 (en) Rolling bearing unit with sensor
Abou El Anouar et al. A comparative experimental study of different methods in detection and monitoring bearing defects
JP7371708B2 (en) Fatigue diagnosis method and fatigue diagnosis system for rolling machine elements
JP4753654B2 (en) Evaluation method for rolling bearing parts
Zupan et al. EXPERIMENTAL DETERMINATION OF DAMAGE TO BEARING RACEWAYS IN ROLLING ROTATIONAL CONNECTIONS.
JP7351142B2 (en) Rolling bearing condition monitoring method and condition monitoring device
JP2020024172A (en) Nondegradable diagnostic method for bearing or direct-acting device
JPH112239A (en) Device to measure various property of rolling bearing
JP7095375B2 (en) Bearing abnormality diagnosis method and bearing abnormality diagnosis system
JP6128191B2 (en) Inspection method for wheel hub unit
JP2022062095A5 (en) Fatigue Diagnosis Method and Fatigue Diagnosis System for Rolling Machine Elements
KAKISHIMA et al. Measurement of acoustic emission and vibration of rolling bearings with an artificial defect
JP2004061151A (en) Contact angle measuring method and apparatus for bearing device
WO2019117297A1 (en) Method for inspecting rolling part and device for inspecting rolling part
JPS6031036A (en) Diagnostic method of rolling bearing
Hort et al. Application of acoustic emission for measuring of contact fatigue of axial bearing
Kholodilov Integrated approach to estimating the state of rolling bearings by physical methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350