JP2004198075A - Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor - Google Patents

Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor Download PDF

Info

Publication number
JP2004198075A
JP2004198075A JP2002370325A JP2002370325A JP2004198075A JP 2004198075 A JP2004198075 A JP 2004198075A JP 2002370325 A JP2002370325 A JP 2002370325A JP 2002370325 A JP2002370325 A JP 2002370325A JP 2004198075 A JP2004198075 A JP 2004198075A
Authority
JP
Japan
Prior art keywords
combustion
sensor element
current type
limiting current
type oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002370325A
Other languages
Japanese (ja)
Inventor
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002370325A priority Critical patent/JP2004198075A/en
Publication of JP2004198075A publication Critical patent/JP2004198075A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion system of excellent safety capable of easily checking whether or not the combustion operation and the operation of a limiting current type oxygen sensor element are normal. <P>SOLUTION: A sensor output abnormality determination means 14 reads the sensor output (A) when a limiting current type oxygen sensor element 11 is exposed to combustion exhaust gas, and determines that the combustion operation is a normal one in which the exhaust gas is burned in a normal oxygen concentration range if the sensor output is in a predetermined range, or that the combustion operation is an abnormal one in which the exhaust gas is burned in a different oxygen concentration range if the sensor output is not in the predetermined range. Therefore, the combustion state can be easily inspected. Similarly, the sensor output abnormality determination means reads the sensor output (B) when the sensor element is exposed to the atmosphere, and determines that the combustion operation is a normal one if the sensor output is in a predetermined range, or determines that the combustion operation is an abnormal one if the sensor output is not in the predetermined range. Therefore, the limiting current type oxygen sensor element 11 can be easily inspected. A combustion system of excellent safety can be provided thereby. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、限界電流式酸素センサ素子を用いた燃焼システムに関し、特に燃焼運転動作および限界電流式酸素センサ素子の動作が正常か否かを簡単に検査できる安全性に優れた燃焼システムと、この燃焼システムに使用できる耐久性に優れた限界電流式酸素センサ素子の製造方法とその加熱駆動方法を提供することを目的とする。
【0002】
【従来の技術】
従来の限界電流式酸素センサ素子を用いた燃焼システムを図8を用いて説明する。図8(a)は、従来の限界電流式酸素センサ素子を用いた燃焼システムの構成図であり、図8(b)はその限界電流式酸素センサ素子の効果特性図である。燃焼が行われるバーナ1と、バーナ1に空気を供給する空気供給ファン2と、バーナ1に燃料を供給する燃料供給ポンプ3と、バーナ1からの燃焼排ガスを排出する燃焼排ガス通路4と、燃焼排ガス通路4の流路内に配置された限界電流式酸素センサ素子5と、限界電流式酸素センサ素子5を駆動させそのセンサ出力を検出するために燃焼排ガス通路4の流路外に配置されたセンサ制御回路6とから構成されている。
【0003】
使用初期は、酸素濃度とセンサ出力(この素子の場合は電流である)が直線関係にあるが、経年変化すると正常劣化挙動の様に酸素濃度とセンサ出力(電流)の直線関係の傾きが変化する。そこで、燃焼開始前もしくは燃焼終了後に大気に晒した際のセンサ出力(電流)を読み取り、この値より酸素濃度とセンサ出力の傾きを補正している。
【0004】
一方、限界電流式酸素センサ素子に用いる電極は、白金などの貴金属もしくは酸素イオン伝導性金属酸化物などの種々の材料が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平05−164322号公報
【0006】
【発明が解決しようとする課題】
しかしながら、限界電流式酸素センサ素子のセンサ出力の経年変化は、正常劣化挙動だけでない。例えば、図8(b)に記載した様に、低酸素濃度領域では酸素濃度とセンサ出力(電流)の傾きが大きく変化するうえに、酸素20%の大気濃度近辺ではセンサ出力(電流)が酸素濃度に変化に追随せずほぼ一定という異常劣化挙動を示すことが時々有る。限界電流式酸素センサ素子が異常劣化挙動を示すと、大気に晒した際のセンサ出力値(電流値)より酸素濃度とセンサ出力の傾きを補正する従来方法は、正しく補正ができない課題があった。
【0007】
この限界電流式酸素センサ素子の異常劣化挙動は、電極の劣化が主原因である。しかしながら、電極の劣化を防止するために混合する副成分の材質とこれを用いた電極の製造方法は開示されていないため、電極の劣化防止ができない課題があった。
【0008】
本発明は、上記した従来の課題を解決し、燃焼運転動作および限界電流式酸素センサ素子の動作が正常か否かを簡単に検査する安全性に優れた燃焼システムと、この燃焼システムに使用できる耐久性に優れた限界電流式酸素センサ素子の製造方法とその加熱駆動方法を提供する。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するために、燃焼が行われる燃焼部と、前記燃焼部に燃料を供給する燃料供給手段と、前記燃焼部に空気を供給する空気供給手段と、前記燃焼部からの燃焼排ガスを排出する排ガス流路と、前記排ガス流路の流路内に配置された限界電流式酸素センサ素子と、前記限界電流式酸素センサ素子を駆動させそのセンサ出力を検出するために前記排ガス流路の流路外に配置された駆動検出回路とを少なくとも備えており、前記燃焼部もしくは前記燃料供給手段に併設されており燃焼運転動作の有無を判断する燃焼運転判断手段と、前記駆動検出回路で検出されたセンサ出力が正常か異常かを判断するセンサ出力異常判断手段と、前記センサ出力異常判断手段で異常と判断された場合に作動して警報を発する警報発生手段とを併設して、前記燃焼運転判断手段によって燃焼運転動作中と判断されて燃焼排ガスに晒された際のセンサ出力(A)と、前記燃焼運転判断手段によって燃焼運転停止と判断されて大気に晒した際のセンサ出力(B)を、前記センサ出力異常判断手段が読み取って少なくとも片方を異常と判断した場合、前記警報発生手段が警報を発する限界電流式酸素センサ素子を用いた燃焼システムとした。
【0010】
この燃焼システムは、酸素濃度5〜10%の燃焼排ガスに晒された際のセンサ出力(A)を読み取り、所定領域内なら燃焼運転動作は正しい酸素濃度領域で燃焼している正常燃焼動作と判断でき、所定領域外なら燃焼運転動作は異なる酸素濃度領域で燃焼している異常燃焼動作と判断できるため、燃焼状態の検査が簡単にできる。そしてまた、酸素濃度約20%の大気に晒した際のセンサ出力(B)を読み取り、所定領域内なら限界電流式酸素センサ素子は正常動作と判断でき、所定領域外なら限界電流式酸素センサ素子は異常動作と判断できるため、限界電流式酸素センサ素子の検査が簡単にできる。以上のことより、安全性に優れた燃焼システムを提供することができる。
【0011】
【発明の実施の形態】
本発明は、各請求項に記載した発明の形態で実施することができる。
【0012】
すなわち、請求項1に記載の発明は、燃焼が行われる燃焼部と、前記燃焼部に燃料を供給する燃料供給手段と、前記燃焼部に空気を供給する空気供給手段と、前記燃焼部からの燃焼排ガスを排出する排ガス流路と、前記排ガス流路の流路内に配置された限界電流式酸素センサ素子と、前記限界電流式酸素センサ素子を駆動させそのセンサ出力を検出するために前記排ガス流路の流路外に配置された駆動検出回路とを少なくとも備えており、前記燃焼部もしくは前記燃料供給手段に併設されており燃焼運転動作の有無を判断する燃焼運転判断手段と、前記駆動検出回路で検出されたセンサ出力が正常か異常かを判断するセンサ出力異常判断手段と、前記センサ出力異常判断手段で異常と判断された場合に作動して警報を発する警報発生手段とを併設して、前記燃焼運転判断手段によって燃焼運転動作中と判断されて燃焼排ガスに晒された際のセンサ出力(A)と、前記燃焼運転判断手段によって燃焼運転停止と判断されて大気に晒した際のセンサ出力(B)を、前記センサ出力異常判断手段が読み取って少なくとも片方を異常と判断した場合、前記警報発生手段が警報を発する限界電流式酸素センサ素子を用いた燃焼システムとした。
【0013】
酸素濃度5〜10%の燃焼排ガスに晒された際のセンサ出力(A)を読み取り、所定領域内なら燃焼運転動作は正しい酸素濃度領域で燃焼している正常燃焼動作と判断でき、所定領域外なら燃焼運転動作は異なる酸素濃度領域で燃焼している異常燃焼動作と判断できるため、燃焼状態の検査が簡単にできる。そしてまた、酸素濃度約20%の大気に晒した際のセンサ出力(B)を読み取り、所定領域内なら限界電流式酸素センサ素子は正常動作と判断でき、所定領域外なら限界電流式酸素センサ素子は異常動作と判断できるため、限界電流式酸素センサ素子の検査が簡単にできる。以上のことより、安全性に優れた燃焼システムを提供することができる。
【0014】
請求項2に記載の発明は、請求項1記載の燃焼システムで用いる燃料供給手段に、炭化水素系の燃料を水蒸気改質反応で水素リッチな燃料ガスに改質する燃料改質装置と、前記燃料改質装置で得た水素リッチな燃料ガスを原料ガスとして使用する燃料電池とを少なくとも併設し、燃料電池で使用されずに残存する水素リッチな燃料ガスを、燃焼部で燃焼させるとした。
【0015】
この燃焼システムは、炭化水素系の燃料を水蒸気改質反応で改質して水素リッチな燃料ガスにして、燃料電池に供給して電気を起こす燃料電池併用型であり、燃料電池で使用されずに残存する水素リッチな燃料ガスは、燃焼部で燃焼させるシステムである。そのため、燃焼部に供給させる水素燃料が変動して空燃比が変動し易いのだが、限界電流式酸素センサ素子を用いて空燃比制御しているので空燃比が一定となり、一酸化炭素を生成することがない安全性に優れた燃焼システムを提供することができる。
【0016】
請求項3に記載の発明は、請求項2記載の燃焼システムにおいて燃料改質装置を、燃焼部で発生する燃焼熱で加熱する構成とした。
【0017】
燃料改質装置を燃焼部で加熱しているため、水蒸気改質反応に必要な熱が回収でき、燃焼システムの効率が高まる効果が有る。
【0018】
請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の燃焼システムで用いる限界電流式酸素センサ素子は、酸素イオン伝導性固体電解質板と、前記酸素イオン伝導性固体電解質板の表面に形成した一対の電極膜と、前記片側の電極膜を囲み前記酸素イオン伝導性固体電解質板に接合される酸素拡散制限体とで少なくとも構成され、前記電極膜は、貴金属または酸素イオン伝導性金属酸化物からなる電気伝導性材料を主成分として酸化ビスマスを少なくとも少量含有した組成であり、前記酸素拡散制限体は、850〜1050℃で溶融焼成する硝子膜を介して前記酸素イオン伝導性固体電解質板に接合される製造方法とした。
【0019】
後工程で形成する酸素拡散制限体の硝子膜の焼成条件を、前工程で形成する電極膜に含有される酸化ビスマスの融点とその溶解に起因する耐久信頼性を考慮して最適化しているので、前工程の電極膜は最適条件で焼成される。そのため、電極膜の劣化を低減して耐久信頼性を向上させた限界電流式酸素センサ素子が得られる。
【0020】
請求項5に記載の発明は、請求項4に記載の限界電流式酸素センサ素子の製造方法において、電極膜を770〜950℃で予め焼成した後、硝子膜を溶融焼成する製造方法とした。
【0021】
前工程の電極膜をその中に含有される酸化ビスマスの融点近辺で予め焼成した後に、後工程の硝子膜を溶融焼成する製造方法としているため、電極膜は、電流値のばらつきが小さくしかもその劣化が低減される。そのため、耐久信頼性を向上させた限界電流式酸素センサ素子が得られる。
【0022】
請求項6に記載の発明は、請求項4又は5記載の限界電流式酸素センサ素子の製造方法において、電極膜に含有される酸化ビスマスは、ジルコニアを主成分とするゾルゲル液に予め浸漬されている製造方法とした。
【0023】
電極膜に含有される酸化ビスマスは、硫黄酸化物の吸収除去性に優れたジルコニア(ZrO2、もしくは含水Zr(OH)2)を主成分とするゾルゲル液に予め浸漬されているため、電極膜の劣化を加速する硫黄酸化物が多量含まれる燃焼排ガス中に長期間晒されても、電極膜の劣化を著しく低減する効果を有する。そのため、耐久信頼性を一層向上させた限界電流式酸素センサ素子が得られる。
【0024】
請求項7に記載の発明は、請求項4〜6記載の限界電流式酸素センサ素子の製造方法において、硝子膜を溶融焼成した後、リード線固定部を最大温度650〜750℃で焼成して、リード線を電極膜に固定した製造方法とした。
【0025】
リード線固定部の焼成は、電極膜に含有される酸化ビスマスの融点と結晶構造の変化挙動に起因する耐久信頼性を考慮して、最適化している。そのため、電極膜の劣化を低減して耐久信頼性を一層向上させた限界電流式酸素センサ素子が得られる。
【0026】
請求項8に記載の発明は、請求項7記載の限界電流式酸素センサ素子の製造方法において、リード線固定部は、貴金属または電気伝導性金属酸化物を主成分として硝子を少なくとも少量含有した組成品と、前記組成品の上部に積層した硝子もしくは無機接着材とからなる製造方法とした。
【0027】
この製造方法とすることで、接着強度の優れたリード線固定部となり、リード線を強く引っ張ったりしてもリード線外れが生じない。そのため、通常の取り扱いで充分であり、作業性や生産性が大幅に向上した。
【0028】
請求項9に記載の発明は、請求項1〜3のいずれか1項に記載の燃焼システムで用いる限界電流式酸素センサ素子は、酸素イオン伝導性固体電解質板と、前記酸素イオン伝導性固体電解質板の表面に形成した一対の電極膜と、前記片側の電極膜を囲む酸素拡散制限体とから少なくとも構成されており、前記電極膜は、チタンもしくはクロムもしくはジルコニウムの少なくとも1種からなる補助材料と、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料からなり、少なくとも前記補助材料は下層に前記主材料は上層に配置され気相析出法で形成される製造方法とした。
【0029】
電極膜は、酸素イオン伝導性固体電解質板に、接合性の優れたチタン(Ti)もしくはクロム(Cr)もしくはジルコニウム(Zr)の少なくとも1種からなる補助材料を介して、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料を、接合している。そのため、長時間使用により電極膜が剥離して電流が低下することが防止され、耐久信頼性を向上させた限界電流式酸素センサ素子が得られる。
【0030】
請求項10に記載の発明は、請求項9記載の限界電流式酸素センサ素子の製造方法において、主材料は、主ピークに配向した結晶構造である製造方法とした。
【0031】
主材料は、主ピークに配向した結晶構造の電極膜としたため、補助材料との接合性が一層向上し、耐久信頼性を一層向上させた限界電流式酸素センサ素子が得られる。
【0032】
請求項11に記載の発明は、請求項1〜3のいずれか1項に記載の燃焼システムに用いる限界電流式酸素センサ素子において、酸素拡散制限体に併設したヒータは、その閉回路に配置したヒータ加熱用直流電源により、暖気ウオーミング時は温度を階段状に上昇される加熱駆動方法とした。
【0033】
ヒータはその温度を階段状に上昇させて加熱駆動されるので、電極膜は、緩やかに温度上昇して熱衝撃が低減し、剥離して電流が低下することが防止される。そのため、耐久信頼性を向上させた限界電流式酸素センサ素子が得られる。
【0034】
【実施例】
以下、本発明の実施例を添付図面に基づいて説明する。
【0035】
(実施例1)
図1は、本発明の第1実施例である燃焼システムの構成図である。燃焼システムは、燃焼が行われる燃焼部7と、燃焼部7に空気を供給する空気供給手段8と、燃焼部7に燃料を供給する燃料供給手段9と、燃焼部7からの燃焼排ガスを排出する排ガス流路10と、排ガス流路10の流路内に配置された限界電流式酸素センサ素子11と、限界電流式酸素センサ素子11を駆動させそのセンサ出力を検出するために排ガス流路10の流路外に配置された駆動検出回路12とを少なくとも備えている。そして、燃焼部7もしくは燃料供給手段9には、その運転状態から燃焼運転動作の有無を判断する燃焼運転判断手段13が接続されている。駆動検出回路12には、ここで検出されたセンサ出力が正常か異常かを判断するセンサ出力異常判断手段14が接続され、さらにセンサ出力異常判断手段14には、センサ出力が異常と判断された場合に作動して警報を発する警報発生手段15とが接続されている。
【0036】
図2は、本発明の実施例である燃焼システムの動作を示すフローチャートである。スタートのボタンが押される(S1)と、燃焼システムが起動して(S2)、空気供給手段8と燃料供給手段9が始動して燃焼部7が燃焼を始めると同時に、限界電流式酸素センサ素子11の駆動が始まる。そして、所定時間(t)が経過する(S3)と燃焼状態およびセンサ出力が安定するので、燃焼運転判断手段13は、燃焼部7に設置された火炎検出装置などの検出手段(記載せず)の燃焼信号による燃焼動作状態、もしくは燃料供給手段9の燃料供給状態を確認しにゆき、燃焼運転動作の有無の判断を行う(S4)。
【0037】
燃焼運転中と判断されると、燃焼排ガスに晒された限界電流式酸素センサ素子11のセンサ出力(A)が読み取られ(S5)、このセンサ出力(A)と、予め記憶されたセンサ出力(I)および(II)の比較がなされる(S6)。一方、燃焼運転動作が停止と判断された場合、燃焼システムの再起動が始まる。
【0038】
そして、I≦A≦IIならセンサ出力(A)は正常と判断され、燃焼運転判断手段13が燃焼停止信号を受けて燃焼停止と判断を行う(S8)まで、この作業は繰り替える。一方、II<AもしくはI>Aならセンサ出力(A)は異常と判断され、警報発生手段15が警報を発する(S7)。予め記憶されたセンサ出力(I)および(II)は、良好な燃焼状態の燃焼排ガス中に晒された際のセンサ出力の下限値と上限値である。そのため、センサ出力(A)が、この範囲中に有ることは一酸化炭素生成量が少ない良好な燃焼状態であると同時に、限界電流式酸素センサ素子が正常動作していることを意味する。一方、センサ出力(A)がこの範囲外に有ることは、燃焼部は一酸化炭素生成量が多い異常燃焼状態もしくは、限界電流式酸素センサ素子の劣化を意味する。センサ出力(A)が正常と判断されると、空燃比制御もしくは酸素濃度監視が行われる。空燃比制御を行う場合、予め設定した目標センサ出力値となる様に、空気供給手段8もしくは燃料供給手段9の制御を行う。
【0039】
さて、燃焼運転停止のボタンが押されると燃焼停止と判断されるので、燃料供給手段9が運転停止して燃焼部7は燃焼停止となるが、空気供給手段9はさらに運転を継続して、限界電流式酸素センサ素子11に大気を供給する(S9)。そして、所定時間(T)が経過する(S10)とセンサ出力が安定するので、大気に晒された際のセンサ出力(B)が読み取られ(S11)、このセンサ出力(B)と、予め記憶されたセンサ出力(X)および(Y)の比較がなされる(S12)。そして、X≦B≦Yならセンサ出力(B)は正常と判断され、燃焼システムは停止して空気供給手段8と限界電流式酸素センサ素子11はその駆動を停止する(S13)。一方、Y<BもしくはX>Bならセンサ出力(B)は異常と判断され、警報発生手段15が警報を発する(S14)と同時に前述の燃焼システムの停止を命じる。なお、予め記憶されたセンサ出力(X)および(Y)は、酸素約20%の大気に晒された際のセンサ出力の下限値と上限値である。そのため、センサ出力(A)が、この範囲中に有ることは限界電流式酸素センサ素子が正常動作していることを意味し、この範囲外に有ることは限界電流式酸素センサ素子が劣化していることを意味する。
【0040】
警報発生手段15は、警報を1回発しても、燃焼システムは次回の駆動が正常に行える様にしているが、警報を複数回発するとその旨が燃焼システムの運転状態表示板に表示され、その点検修理を行うことを勧告して、安全性を高める様にしても良い。
【0041】
(実施例2)
図3は、本発明の第2実施例である燃焼システムの構成図である。実施例1の図1と異なる点は、燃料供給手段9に、炭化水素系の燃料を水蒸気改質反応で水素リッチな燃料ガスに改質する燃料改質装置16と、燃料改質装置16で得た水素リッチな燃料ガスを原料ガスとして使用する燃料電池17とを少なくとも併設し、燃料電池17で使用されずに残存する水素リッチな燃料ガスを燃焼部7で燃焼させるとした点である。
【0042】
この燃料電池併用型の燃焼システムは、燃料改質装置16において炭化水素系の燃料を水蒸気改質反応で改質して得られる炭酸ガス混合の水素リッチな燃料ガスのうち、フッ素樹脂系イオン交換膜の固体高分子やりん酸などの水素イオン荷電担体を用いた燃料電池17で使用されずに残存するガス分を、燃焼させている。そのため、燃焼部7に供給される水素リッチな燃料ガス量は、燃料改質装置16での変換効率と、燃料電池17での使用効率に、大きく依存する。そのため、燃焼部7に供給される燃料ガス量はこれらの効率に依存して変動し易いが、限界電流式酸素センサ素子11を用いて空燃比を最適に制御しているため、一酸化炭素を生成することがなく燃焼させることができ、安全性に優れた燃焼システムを提供することができる。なお、この燃焼システムに用いる燃料は、都市ガスやプロパンガスさらに灯油でも良い。
【0043】
(実施例3)
実施例3は、図3記載の実施例2の燃焼システムにおいて燃料改質装置16を、燃焼部7で発生する燃焼熱で加熱する構成とした実施例である。
【0044】
燃料改質装置16を燃焼部7で加熱しているため、水蒸気改質反応に必要な熱が回収でき、燃焼システムの効率が高まる効果が有る。
【0045】
(実施例4)
図4は、本発明の燃焼システムで用いる限界電流式酸素センサ素子の実施例の断面図であり、限界電流式酸素センサ素子11と、これを駆動させそのセンサ出力を検出する駆動検出回路12からなる。
【0046】
限界電流式酸素センサ素子11は、酸素イオン伝導性固体電解質板18と、酸素イオン伝導性固体電解質板18の表面に形成した一対の電極膜19、20と、片側の電極膜19を囲む硝子膜21を介して接合させた酸素拡散制限体22とから少なくとも構成される。
【0047】
限界電流式酸素センサ素子11は、酸素イオン伝導性固体電解質板18の両面に、一対の電極膜19、20を厚膜印刷される工程から製造が始まる。この一対の電極膜19、20は、貴金属または酸素イオン伝導性金属酸化物からなる電気伝導性材料23を主成分として、酸化ビスマス24を少なくとも少量含有した組成であり、厚膜印刷したのち乾燥したまま、またはさらに溶融焼成することで形成される。その後、酸素イオン伝導性固体電解質板18の片面に硝子膜21を厚膜印刷したのち、酸素拡散制限体22の構成部材をその上部に積層し、溶融焼成する。さらに後工程において、貴金属または電気伝導性材料を主成分とし硝子を少量含有した組成のリード線固定部25、26を溶融焼成して、一対のリード線27、28と一対の電極膜19、20を接続して、基本構造が完成する。
【0048】
本発明の限界電流式酸素センサ素子11を試作して、その効果の確認を行った。
【0049】
酸素イオン伝導性固体電解質板18は、イットリウム(Y23)の8モル%とジルコニア(ZrO2)の92モル%を固溶化させた安定化ジルコニアの焼成板である。
【0050】
一対の電極膜19、20は、90vol%の白金からなる電気伝導性材料23に、10vol%の酸化ビスマス24を混合した組成であり、前述の酸素イオン伝導性固体電解質板18の両面に厚膜印刷される。
【0051】
酸素拡散制限体22は、螺旋型形状の硝子膜21とその上部に積層した焼成フォルステライト製のシ−ル板29で構成させる。製法について説明する。まず、螺旋型形状の硝子膜21を、前述の予め酸素イオン伝導性固体電解質板18に厚膜印刷された電極膜19の周囲を囲む様に厚膜印刷する。そして、この厚膜印刷膜の上部にシ−ル板29を積層して溶融焼成する。すると、酸素イオン伝導性固体電解質板18とシ−ル板29が接合され、これらの板および螺旋型形状の硝子膜21の間に、微小寸法の拡散制限孔(記載せず)が形成される。また同時に、電極膜19、20の焼成も行なわれる。
【0052】
リード線固定部25、26は、白金の90vol%に硝子の10vol%を混合した組成である。この組成品を700℃で溶融焼成して、白金からなる一対のリード線27、28と前述の一対の電極膜19、20を接続する。そして、この組成品の上に無機接着材を積層して500℃で硬化させ、リード線の接続を強固にした。
【0053】
この700℃焼成は、電極膜19、20に混合されている酸化ビスマスの融点が820℃であり、リード線固定部25、26の焼成によって、電極膜19、20の物性が影響されないとの観点より、酸化ビスマスの融点820℃より遥かに低い温度の700℃を選択した理由に基づく。
【0054】
なお、シ−ル板29には、予め白金のヒータ30を形成されている。そして、このヒータ30と、白金からなる一対のヒータ用リード線31、32を、ヒータ用リード線固定部33、34の700℃溶融焼成を介して接続した。このヒータ用リード線固定部33、34は、白金の90vol%に硝子の10vol%を混合した組成品であり、この700℃溶融焼成は、リード線固定部25、26の700℃溶融焼成と同時に行っている。そして、この組成品の上に無機接着材を積層して500℃で硬化させ、リード線の接続を強固にした。
【0055】
駆動検出回路12は、素子駆動用直流電源35と電流検出部36とヒータ加熱用直流電源37を少なくとも備えている。素子駆動用直流電源35および電流検出部36は、一対のリード線27、28および一対の電極膜19、20と閉回路を構成している。電流検出部36は、素子駆動用直流電源35で印加される電圧によって発生する電流値をセンサ出力として検出するものである。一方、ヒータ加熱用直流電源37は、ヒータ30および一対のヒータ用リード線31、32と閉回路を構成している。
【0056】
限界電流式酸素センサ素子11の動作原理を説明する。ヒータ加熱用直流電源37によって電圧が印加させるとヒータ膜30が発熱し、酸素イオン伝導性固体電解質板18が500℃に加熱される。すると、酸素イオン伝導性固体電解質板18を酸素イオンが伝導し易くなり、素子駆動用直流電源35で印加される電圧により下記の酸素ポンピング作用が生じる。つまり、空気中の酸素分子は、酸素拡散制限体22に設けられた微小寸法の拡散制限孔(記載せず)を経由して電極膜19に到達した後、電圧印加による電子を授受して酸素イオンとなって酸素イオン伝導性固体電解質板18を通過し、電極膜20で電子が奪われて再び酸素分子となって空気中に戻る。この酸素分子の移動によって電流が流れるが、微小寸法の拡散制限孔によって酸素分子の流入が制限され、酸素濃度に対応した酸素量しか流入移動しないため、流れる電流は酸素濃度に比例した関係が得られる。この関係を利用し、電流値から酸素濃度が判別できる訳である。
【0057】
この限界電流式酸素センサ素子11の排気中における耐久信頼性評価を行なった。耐久信頼性は、ヒータ加熱用直流電源37による電圧印加によってヒータ30を加熱して、酸素イオン伝導性固体電解質板18を500℃に加熱した状態で行なった。そして、素子駆動用直流電源35によって電極膜19、20に0.5Vを印加して、流れる電流の過渡変化を測定した。この印加電圧0.5Vは、電流値の電圧依存性が無くなる限界電流特性が得られ始める臨界電圧値であり、電極膜19、20の耐久信頼性の良否に起因する電流値の低下度合いが顕著に観察できる電圧値である。
【0058】
図5(a)は、白金からなる電気伝導性材料の90vol%に酸化ビスマスの10vol%を混合した組成の電極膜において、初期電流値と電圧印加300時間後電流を、硝子膜の焼成温度ごとにプロットした図である。図5(a)から判る様に、硝子膜18を850〜1050℃で焼成した限界電流式酸素センサ素子は、高い電流値と優れた耐久信頼性を有した。この理由は、硝子膜21を焼成することで電極膜19、20も同時に焼成される訳であるが、電極膜20、21は、その中に混合されている酸化ビスマスの融点820℃より30〜230℃高い温度で焼成されることで、酸素イオン伝導性固体電解質板18に強固に密着してその接合抵抗が小さく、電圧印加しても接合抵抗が変化しないため、電流値が変化しないためと思われる。特に、硝子膜21を850〜970℃で焼成した限界電流式酸素センサ素子は、極めて高い電流値と優れた耐久信頼性を示し、最も最適であった。
【0059】
一方、1050℃を超えて焼成した硝子膜21は、所期電流値が非常に小さいため、限界電流式酸素センサ素子を構成するに必要な大電流値が確保できず、不適格であった。この理由は、電極膜19、20を1100℃等の高温で焼成したため、その中に混合されている酸化ビスマスと白金が反応して酸素非吸着性の電極膜が得られ、酸素の移動に起因する電流が得られないためである。また、硝子膜21が流動し過ぎて、電極膜19、20を覆ってしまいその面積が低下して電流が小さくなる弊害も生じていた。
【0060】
また、850℃未満で焼成した硝子膜21も、耐久信頼性が悪く不適格であった。この理由は、電極膜19、20を、その中に混合されている酸化ビスマスの融点820℃とほぼ同温度もしくはそれ以下で焼成しているため、酸素イオン伝導性固体電解質板18に電極膜19、20が充分に密着できず、電圧印加すると次第に接合抵抗が大きくなるためと思われる。また特に、750℃以下で焼成した硝子膜21は、初期電流値が極端に小さく、一層不適格であった。これは、電極膜の中に混合されている酸化ビスマスの焼成が不充分であるため、酸素イオン伝導性固体電解質板18に電極膜19、20が全く密着せず、その接合抵抗が非常に大きいためである。
【0061】
図5(b)は、化学組成La1-xSrxCoO3の酸素イオン伝導性金属酸化物からなる電気伝導性材料の90vol%に酸化ビスマスの10vol%を混合した組成の電極膜において、初期電流値と電圧印加300時間後電流を、硝子膜の焼成温度ごとにプロットした図である。図5(b)から判る様に、硝子膜21を850〜1050℃で焼成した限界電流式酸素センサ素子は、高い電流値と優れた耐久信頼性を有した。
【0062】
以上のことより、限界電流式酸素センサ素子を構成するに必要な大電流値が確保できしかもその耐久信頼性が優れた硝子膜21の焼成温度は、850〜1050℃であり、特に850〜970℃は極めて高い電流値と優れた耐久信頼性を示して最も最適であった。
【0063】
酸素イオン伝導性固体電解質板18は、ジルコニア(ZrO2)に少量のイットリウム(Y23)を固溶化させたジルコニア系イオン伝導性体、(CeO20.8(SmO1.50.2や(CeO20.8(GdO1.50.2などのイットリウム系イオン伝導性体が使用可能である。これら材料は、その表面粗さRaが、0.05〜0.3μmとなる様に研磨して、電極膜19、20が強固に密着する様にした。
【0064】
電極膜19、20に混合される電気伝導性材料は、白金や金さらに銀などの貴金属、化学組成La1-xSrxCoO3やLaCoO3さらにLaMnO3などの酸素イオン伝導性金属酸化物が使用される。また、電極膜19、20に混合される酸化ビスマスは、3〜15vol%が最適であり、この組成を重量比で表現すると例えば白金の電気伝導性材料の場合、白金の95〜99wt%と酸化ビスマスの1〜5wt%である。この組成は、結合材である酸化ビスマスが微少だと電極膜が酸素イオン伝導性固体電解質板に密着しないため電流が確保できないこと、半導体である酸化ビスマスが多量だと電極膜が電子不伝導性となり電流が確保できないことの観点から実験的に得られる組成である。さらに、電極膜16、17には、上記の電気伝導性材料と酸化ビスマス以外に、酸化銅や酸化カドミニウム、ジルコニア(ZrO2、もしくは含水Zr(OH)2)を主成分とするゾルゲル液の混合が有効であり、これら金属酸化物系材料は酸化ビスマスとの合計総量において最大25vol%まで混合可能である。これは、半導体であるこれら金属酸化物系材料と酸化ビスマスが多量だと、電極膜が電子不伝導性となり電流が確保できないことの観点から実験的に得られる組成である。
【0065】
酸素拡散制限体22は、下記の3つの構成が使用可能である。第1の構成は、拡散制限孔を形成した螺旋型形状の硝子膜21と、その上部に積層したシ−ル板29の構成である。第2の構成は、角状または円状からなる内部中空形状の硝子膜21と、その上部に積層した微小寸法の拡散制限孔を有する多孔質なシール板29の構成である。第3の構成は、角状または円状からなる内部中空形状の硝子膜21と、その上部に積層した拡散制限孔を形成した複数積層板からなるシール板29(微小寸法の穴を有するシール板Aと、拡散制限孔を形成するための螺旋型形状の硝子膜と、シ−ル板Bを順々に積層した積層板)の構成である。
【0066】
硝子膜21は、酸素イオン伝導性固体電解質板18とその上部に積層したシ−ル板29と熱膨張係数が±10%以内で同じであり、その溶融温度が850〜1050℃で特に850〜970℃が最適であり、この材料だと耐久信頼性に問題が生じなかった。例えば、酸化アルミナが3〜7wt%、酸化ホウ素が3〜7wt%、酸化カルシウムが1〜2wt%、酸化ストロンチウムが4〜6wt%、酸化バリウムが0.2〜1.5wt%、酸化ナトリウムが10〜13wt%、酸化カリウムが4〜8wt%、酸化チタンが6〜9wt%、残部が酸化珪素の組成品は、特に最適であり本検討実験で使用した。
【0067】
リード線固定部25、26の主成分は、白金や金さらに銀などの貴金属、化学組成YBaCu37などが使用される。そして、この貴金属または電気伝導性金属酸化物の85〜97vol%に、硝子の3〜15vol%が混合される。
【0068】
(実施例5)
電極膜19、20と硝子膜21を同時焼成した限界電流式酸素センサ素子11は、得られる初期電流値がばらつく課題がある。そこで、実施例5は、電極膜19、20を予め焼成した後に硝子膜21を焼成する製法を採用し、初期電流値のばらつき低減が図れる電極膜19、20の焼成温度について検討した。検討は、下記記載の2点以外は、実施例4の場合と同じである。実施例4と異なる1点目は、安定化ジルコニアの酸素イオン伝導性固体電解質板18に、焼成温度を異ならせて予め電極膜19、20を焼成した後、硝子膜21をその最適焼成温度920℃で焼成したことである。実施例4と異なる2点目は、同一製法の限界電流式酸素センサ素子11を5個試作し、その初期値のバラツキを測定したことである。
【0069】
図6は、電極膜の焼成温度と初期電流値の関係を測定した特性図であり、5個の試作における最大値と平均値と最低値をパラメータにして整理している。図6(a)は、白金からなる電気伝導性材料の90vol%に酸化ビスマスの10vol%を混合した組成の電極膜である。図6(b)は、化学組成La1-xSrxCoO3の酸素イオン伝導性金属酸化物からなる電気伝導性材料の90vol%に酸化ビスマスの10vol%を混合した組成の電極膜である。
【0070】
図6から判る様に、電極膜を770〜950℃で予め焼成した素子は、全体的に高い電流値を維持することがわかる。一方、950℃を超えた焼成は、全体的に電流値が低下しており不適格であった。これは、電極膜が、後工程の硝子膜920℃焼成により再焼成されるため、その中に混合されている酸化ビスマスと白金が反応して酸素非吸着性の電極膜が得られ、酸素の移動に起因する電流が得られにくくなるためである。また、770℃未満の焼成は、得られる初期電流値がばらつき、不適格であった。これは、電極膜は、最初の焼成においてはその中に混合されている酸化ビスマスの焼成が不充分であるため酸素イオン伝導性固体電解質板に密着しない状態となっており、後工程の硝子膜920℃焼成により再焼成されるため、その密着性にばらつきが生じるためと思われる。
【0071】
以上のことより、電流値のばらつきが小さい限界電流式酸素センサ素子を製造するために、電極膜を予め770〜950℃で焼成した後に硝子膜を焼成する製法とした。また、この限界電流式酸素センサ素子は、耐久信頼性が優れる利点も有る。
【0072】
この結果は、電気伝導性材料として、白金や金さらに銀などの貴金属、化学組成La1-xSrxCoO3やLaCoO3さらにLaMnO3などの酸素イオン伝導性金属酸化物が使用され、酸化ビスマスが3〜15vol%混合された電極膜19、20でも、同様であった。
【0073】
(実施例6)
硫黄酸化物が多量含まれる燃焼排ガスに長期間晒されると、限界電流式酸素センサ素子11の電極膜19、20は、その値が徐々に小さくなって耐久信頼性が低下する課題がある。そこで、実施例6は、ジルコニアを主成分とするゾルゲル液に予め浸漬された酸化ビスマス24を含有する電極膜19、20を使用し、硫黄酸化物が多量含まれる燃焼排ガスに長期間晒されても、電流低下の少ない限界電流式酸素センサ素子11の実現を試みた。検討は、下記記載の2点以外は、実施例4および実施例5の場合と同じである。実施例4および実施例5と異なる1点目は、安定化ジルコニアの酸素イオン伝導性固体電解質板18に、ジルコニア(ZrO2)を主成分とするゾルゲル液に予め浸漬された酸化ビスマス24を含有する電極膜19、20を予め820℃で焼成した後、硝子膜21をその最適焼成温度920℃で焼成したことである。実施例4および実施例5と異なる2点目は、この限界電流式酸素センサ素子11の耐久信頼性評価を、硫黄酸化物が20ppm含まれる排気中で行って流れる電流の過渡変化を測定したことである。
【0074】
発明1は、白金からなる電気伝導性材料の90vol%に、ジルコニアを主成分とするゾルゲル液に予め浸漬された酸化ビスマスの10vol%を混合した組成の電極膜である。発明2は、化学組成La1-xSrxCoO3の酸素イオン伝導性金属酸化物からなる電気伝導性材料の90vol%に、ジルコニアを主成分とするゾルゲル液に予め浸漬された酸化ビスマスの10vol%を混合した組成の電極膜である。一方、比較1は、白金からなる電気伝導性材料の90vol%に、酸化ビスマスの10vol%を混合した組成の電極膜である。比較2は、化学組成La1-xSrxCoO3の酸素イオン伝導性金属酸化物からなる電気伝導性材料の90vol%に、酸化ビスマスの10vol%を混合した組成の電極膜である。(表1)にその検討結果を示す。
【0075】
【表1】

Figure 2004198075
【0076】
本発明品は、優れた耐久特性を有することがわかる。この理由は、ジルコニアを主成分とするゾルゲル液に予め浸漬された酸化ビスマスが、硫黄酸化物を吸収除去し、主成分の電気伝導性材料の劣化を抑制するためと思われる。
【0077】
ジルコニアを主成分とするゾルゲル液は、ジルコニア(ZrO2)の単独ゾルゲル溶液、ジルコニアが60部以上含有されておりシリカ(SiO2)などの他酸化物が残部で存在するゾルゲル溶液が有効であった。また、含水Zr(OH)2と表示される溶液もジルコニアゾルゲル溶液と呼ばれていて有効であり、前述組成のゾルゲル溶液が効果が有った。ゾルゲル液に予め浸漬された酸化ビスマスを電極膜に混合する方法は、次の2方法が有る。第1方法は、このゾルゲル液を白金など電気伝導性材料と酸化ビスマスを混合して電極膜の印刷ペーストを調合する際に、印刷ペーストに混合して酸化ビスマスに浸漬する方法である。第2方法は、予めゾルゲル液に浸漬した酸化ビスマスを使用して、電極膜の印刷ペーストを調合する方法である。
【0078】
(実施例7)
限界電流式酸素センサ素子11の酸素拡散制限体22は、高度な気密シールを必要とするため、その製法に厳密な管理を必要とする。そのため厳密な管理を必要とする酸素拡散制限体22の形成と複雑な製法を必要とするリード線の固定を同一工程で実施することは、複雑な製法と厳密な管理と必要とし、実用的でない。そこで、実施例7は、酸素拡散制限体22を形成した後にリード線を固定する製法を採用した際のリード線を固定するための焼成温度について検討した。
【0079】
図5および図6より判る様に、電極膜は、750℃未満で焼成すると焼成不充分となり、発生電流値が非常に小さくなる。そこで、リード線の焼成上限は750℃として、その焼成によって、電極膜が再溶解してその電流値に影響を与えられない様にした。一方、電極膜に混合されている酸化ビスマスは、650℃で結晶構造が大きく変化し始める挙動を示すので、電極膜の耐久信頼性確保の観点から、動作温度は650℃を超えない様にする必要が有る。そこで、リード線の焼成は、結晶構造が変化し始める650℃以上とし、電極膜の動作温度を650℃以下とすることで、耐久信頼性に影響を与えられない様にした。
【0080】
以上のことより、その電流値および耐久信頼性が優れた限界電流式酸素センサ素子を製造するために、硝子膜を溶融焼成した後、リード線を最大650〜750℃で焼成して電極膜に固定する製法とした。
【0081】
(実施例8)
実施例8は、リード線固定部25、26の材質について検討した。貴金属または電子伝導性金属酸化物を主成分として硝子を少なくとも少量含有した組成品だけでは、接着強度が不充分であり、センサ素子の取り扱い作業中にリード線を強く引っ張ったりするとリード線外れが生じるためである。そのため、慎重な取り扱いが必要とされ、作業性や生産性が悪い課題があった。
【0082】
その点、リード線固定部25、26は、貴金属または電子伝導性金属酸化物を主成分として硝子を少なくとも少量含有した組成品と、この組成品の上部に積層した硝子もしくは無機接着材とすると、接着強度の優れたリード線固定部となり、リード線を強く引っ張ったりしてもリード線外れが生じなかった。そのため、通常の取り扱いで充分であり、作業性や生産性が大幅に向上した。
【0083】
(実施例9)
気相析出法で形成される貴金属もしくは酸素イオン伝導性金属酸化物の電極膜は、酸素イオン伝導性固体電解質板に良好に密着するため、良好な電流特性を示すが、電流印加に起因する耐久信頼特性に乏しい課題が有る。そこで、実施例9は、耐久信頼性に優れた限界電流式酸素センサを得るためのこの種の電極膜の材料について構成した。
【0084】
図7は本発明の実施例の製造方法を用いた限界電流式酸素センサ素子の断面図である。この限界電流式酸素センサ素子38に関し、図4との相違点のみ説明する。電極膜39、40は、チタンもしくはクロムもしくはジルコニウムの少なくとも1種からなる補助材料41と、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料42からなる。そして、少なくとも補助材料41は下層に、主材料42は上層に配置され、気相析出法で形成される。
【0085】
本発明の限界電流式酸素センサ素子を試作して、その効果の確認を行った。実施例4との相違点と材料に関する重要事項のみ記載する。酸素イオン伝導性固体電解質板18は、イットリウム(Y23)の8モル%とジルコニア(ZrO2)の92モル%を固溶化させた安定化ジルコニアの焼成板である。この酸素イオン伝導性固体電解質板18に、スパッタ法を用いて、チタンもしくはクロムもしくはジルコニウムの少なくとも1種からなる補助材料41の0.01μm膜厚を下層に、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料42の0.5μmを上層にした構成の電極膜39、40を形成した。
その耐久信頼性決果を(表2)に示す。
【0086】
【表2】
Figure 2004198075
【0087】
チタンもしくはクロムもしくはジルコニウムの少なくとも1種からなる補助材料41を下層に、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料42を上層にした電極膜39、40は、優れた耐久特性を有することが分かる。なお、補助材料41の膜厚は0.003〜0.04μm、主材料42の膜厚は0.3〜1.0μmが最適であり、スパッタ法やEB法などの気相析出法で形成される。また、補助材料41と主材料42は混合物として良い。
貴金属もしくは酸素イオン導電性金属酸化物を主成分とした主材料42は、白金や金さらに銀などの貴金属、化学組成La1-xSrxCoO3やLaCoO3さらにLaMnO3などの酸素イオン伝導性金属酸化物が使用される。
【0088】
酸素イオン伝導性固体電解質板18は、ジルコニア(ZrO2)に少量のイットリウム(Y23)を固溶化させたジルコニア系イオン伝導性体、(CeO20.8(SmO1.50.2や(CeO20.8(GdO1.50.2などのイットリウム系イオン伝導性体が使用可能である。これら材料は、その表面粗さRaが、0.05〜0.3μmとなる様に研磨して、電極膜39、40が強固に密着する様にした。
【0089】
(実施例10)
実施例10は、一層耐久信頼性に優れた限界電流式酸素センサ素子を得るため、実施例9で使用する電極膜39、40の結晶構造について検討した。
本発明の限界電流式酸素センサ素子11を試作して、その効果の確認を行った。実施例9との相違点は、スパッタ条件を異ならせて、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料42の結晶構造を変化させ、X線回折機器で解析した際に主ピークに配向した結晶構造が得られる様に、電極膜39、40をしたことである。その耐久信頼性決果を(表3)に示す。
【0090】
【表3】
Figure 2004198075
【0091】
主材料42が主ピークに配向した結晶構造の電極膜39、40は、優れた耐久性を有することが分かる。
【0092】
(実施例11)
実施例11は、一層耐久信頼性に優れた限界電流式酸素センサ素子を得るため、暖気ウオーミング時の加熱駆動方法について検討した。
【0093】
本発明の限界電流式酸素センサ素子とこのセンサ素子を加熱駆動する駆動検出回路を試作して、その効果の確認を行った。検討は、下記記載の2点以外は、実施例4〜10の場合と同じである。異なる1点目は、限界電流式酸素センサ素子11、38の酸素拡散制限体22に併設したヒータ30を、印加電圧値を階段状に印加させるヒータ加熱用直流電源37により、暖気ウオーミング時は温度を階段状に上昇されたことである。異なる2点目は、この駆動検出回路の耐久信頼性評価を、5分間加熱通電と5分間非加熱通電の間欠駆動で行い、流れる電流の過渡変化を測定したことである。
【0094】
発明品は、500℃加熱に必要な所定電圧をヒータ加熱用直流電源37によりヒータ30に5分間印加するに際し、1分間はその50%値印加し残り4分間はその100%値を印加する加熱通電モードであり、約3分で500℃に到達した。そして、この5分間加熱通電(電源ON)と5分間非加熱通電(電源OFF)の間欠駆動を行った。一方、比較品は、500℃加熱に必要な所定電圧をヒータ30に5分間印加するに際し、5分間その100%値を印加する加熱通電モードであり、約2分で500℃に到達した。そして、この5分間加熱通電(電源ON)と5分間非加熱通電(電源OFF)の間欠駆動を行った。
【0095】
発明1および比較1は、白金からなる電気伝導性材料の90vol%に、ジルコニウムを主成分とするゾルゲル液に予め浸漬された酸化ビスマスの10vol%を混合した組成の電極膜19、20である。発明2および比較2は、化学組成La1-xSrxCoO3の酸素イオン伝導性金属酸化物からなる電気伝導性材料の90vol%に、ジルコニウムを主成分とするゾルゲル液に予め浸漬された酸化ビスマスの10vol%を混合した組成の電極膜19、20である。発明3および比較3は、クロムの補助材料41の0.01μm膜厚を下層に、白金の主材料42の0.5μmを上層にした構成の電極膜39、40である。発明4および比較4は、チタンの補助材料41の0.01μm膜厚を下層に、化学組成La1-xSrxCoO3の酸素イオン伝導性金属酸化物42の0.5μmを上層にした構成の電極膜39、40である。発明5および比較5は、ジルコニウムの補助材料41の0.01μm膜厚を下層に、配向したLa1-xSrxCoO3の酸素イオン伝導性金属酸化物42の0.5μmを上層にした構成の電極膜39、40である。
【0096】
その耐久信頼性決果を(表4)に示す。
【0097】
【表4】
Figure 2004198075
【0098】
ヒータはその温度を階段状に上昇させて加熱駆動されるので、電極膜は、緩やかに温度上昇して熱衝撃が低減し、剥離して電流が低下することが防止される。そのため、耐久信頼性を向上させた限界電流式酸素センサ素子が得られる。
【0099】
【発明の効果】
以上のように、請求項1〜3に記載の燃焼システムは、燃焼排ガスを排出する排ガス流路内に配置した限界電流式酸素センサ素子の燃焼排ガスに晒された際のセンサ出力(A)と大気に晒した際のセンサ出力(B)を読み取って少なくとも片方を異常と判断した場合に警報を発するとしている。そのため、酸素濃度5〜10%の燃焼排ガスに晒された際のセンサ出力(A)が、所定領域内なら燃焼運転動作は正しい酸素濃度領域で燃焼している正常燃焼動作と判断でき、所定領域外なら燃焼運転動作は異なる酸素濃度領域で燃焼している異常燃焼動作と判断できるため、燃焼状態の検査が簡単にできる。また、酸素濃度約20%の大気に晒した際のセンサ出力(B)が、所定領域内なら限界電流式酸素センサ素子は正常動作と判断でき、所定領域外なら限界電流式酸素センサ素子は異常動作と判断できるため、センサ素子の検査が簡単にできる。そのため、安全性に優れた燃焼システムを提供する効果が得られる。
【0100】
また、本発明4〜10記載の限界電流式酸素センサ素子は、その耐久信頼性が高まる製造方法とし、本発明11記載の限界電流式酸素センサ素子の加熱駆動方法は、その耐久信頼性が高まる加熱駆動方法としているので、この製造方法と加熱駆動方法を用いた限界電流式酸素センサ素子を用いた燃焼システムは、優れた安全性を長期間維持する効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1における限界電流式酸素センサ素子を用いた燃焼システムの構成図
【図2】本発明の実施例1における限界電流式酸素センサ素子を用いた燃焼システムの動作を示すフローチャート
【図3】本発明の実施例2における限界電流式酸素センサ素子を用いた燃焼システムの構成図
【図4】本発明の実施例4における製造方法を用いた限界電流式酸素センサ素子の構成図
【図5】本発明の実施例4における製造方法を用いた限界電流式酸素センサ素子の効果特性図(硝子膜の焼成温度と電流の関係)
(a)白金と酸化ビスマスからなる電極膜の効果特性図
(b)La1-xSrxCoO3と酸化ビスマスからなる電極膜の効果特性図
【図6】本発明の実施例5における製造方法を用いた限界電流式酸素センサ素子の効果特性図(電極膜の焼成温度と電流の関係)
(a)白金と酸化ビスマスからなる電極膜の効果特性図
(b)La1-xSrxCoO3と酸化ビスマスからなる電極膜の効果特性図
【図7】本発明の実施例9における製造方法を用いた限界電流式酸素センサ素子の構成図
【図8】(a)従来の限界電流式酸素センサ素子を用いた燃焼システムの構成図
(b)従来の限界電流式酸素センサ素子の効果特性図(酸素濃度とセンサ出力(電流))
【符号の説明】
7 燃焼部
8 空気供給手段
9 燃料供給手段
10 排ガス流路
11 限界電流式酸素センサ素子
12 駆動検出回路
13 燃焼運転判断手段
14 センサ出力異常判断手段
15 警報発生手段
16 燃料改質装置
17 燃料電池
18 酸素イオン伝導性固体電解質板
19、20 電極膜
21 硝子膜
22 酸素拡散制限体
23 電気伝導性材料
24 酸化ビスマス
25、26 リード線固定部
27、28 リード線
30 ヒータ
37 ヒータ加熱用直流電源
38 限界電流式酸素センサ素子
39、40 電極膜
41 補助材料
42 主材料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combustion system using a limiting current type oxygen sensor element, and in particular, to a combustion system excellent in safety that can easily inspect whether a combustion operation operation and an operation of the limiting current type oxygen sensor element are normal, An object of the present invention is to provide a method of manufacturing a limiting current type oxygen sensor element having excellent durability that can be used in a combustion system, and a method of heating and driving the element.
[0002]
[Prior art]
A conventional combustion system using a limiting current type oxygen sensor element will be described with reference to FIG. FIG. 8A is a configuration diagram of a combustion system using a conventional limiting current type oxygen sensor element, and FIG. 8B is an effect characteristic diagram of the limiting current type oxygen sensor element. A burner 1 for performing combustion, an air supply fan 2 for supplying air to the burner 1, a fuel supply pump 3 for supplying fuel to the burner 1, a combustion exhaust gas passage 4 for discharging combustion exhaust gas from the burner 1, A limiting current type oxygen sensor element 5 disposed in the flow path of the exhaust gas passage 4, and a limiting current type oxygen sensor element 5 disposed outside the combustion exhaust path 4 to drive the limiting current type oxygen sensor element 5 and detect the sensor output thereof And a sensor control circuit 6.
[0003]
In the initial stage of use, the oxygen concentration and the sensor output (in this case, the current is linear) have a linear relationship, but as time passes, the slope of the linear relationship between the oxygen concentration and the sensor output (current) changes as in normal deterioration behavior. I do. Therefore, the sensor output (current) at the time of exposure to the atmosphere before the start of combustion or after the end of combustion is read, and the oxygen concentration and the slope of the sensor output are corrected from this value.
[0004]
On the other hand, various materials such as a noble metal such as platinum or an oxygen ion conductive metal oxide have been proposed for an electrode used in a limiting current type oxygen sensor element (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP 05-164322 A
[0006]
[Problems to be solved by the invention]
However, the aging of the sensor output of the limiting current type oxygen sensor element is not limited to the normal deterioration behavior. For example, as shown in FIG. 8B, the gradient between the oxygen concentration and the sensor output (current) changes greatly in the low oxygen concentration region, and the sensor output (current) decreases around the atmospheric concentration of 20% oxygen. Occasionally, the concentration does not follow the change and exhibits an abnormal deterioration behavior that is almost constant. When the limiting current type oxygen sensor element shows abnormal deterioration behavior, the conventional method of correcting the oxygen concentration and the inclination of the sensor output from the sensor output value (current value) when exposed to the atmosphere has a problem that it cannot correct correctly. .
[0007]
The abnormal deterioration behavior of the limiting current type oxygen sensor element is mainly caused by deterioration of the electrodes. However, since there is no disclosure of the material of the subcomponent to be mixed to prevent the deterioration of the electrode and the method of manufacturing the electrode using the same, there is a problem that the deterioration of the electrode cannot be prevented.
[0008]
The present invention solves the above-mentioned conventional problems, and provides a highly safe combustion system that easily checks whether the combustion operation operation and the operation of the limiting current type oxygen sensor element are normal, and can be used for the combustion system. Provided are a method of manufacturing a limiting current type oxygen sensor element having excellent durability and a method of heating and driving the same.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a combustion unit in which combustion is performed, a fuel supply unit that supplies fuel to the combustion unit, an air supply unit that supplies air to the combustion unit, An exhaust gas flow path for discharging combustion exhaust gas, a limiting current type oxygen sensor element disposed in the flow path of the exhaust gas flow path, and the exhaust gas for driving the limiting current type oxygen sensor element and detecting a sensor output thereof. At least a drive detection circuit arranged outside the flow path of the flow path, a combustion operation determination means provided in the combustion unit or the fuel supply means and configured to determine the presence or absence of a combustion operation operation; A sensor output abnormality determining unit that determines whether the sensor output detected by the circuit is normal or abnormal; and an alarm generating unit that operates and issues an alarm when the sensor output abnormality determining unit determines that the sensor output is abnormal. The sensor output (A) when the combustion operation is determined to be in operation by the combustion operation determining means and is exposed to the combustion exhaust gas, and the combustion operation is determined to be stopped by the combustion operation determining means and the air is exposed to the atmosphere. The sensor output (B) at this time is read by the sensor output abnormality determination means, and when at least one of the sensor outputs is determined to be abnormal, the warning generation means issues a warning to use a limiting current type oxygen sensor element as a combustion system.
[0010]
This combustion system reads a sensor output (A) when exposed to a combustion exhaust gas having an oxygen concentration of 5 to 10%, and if it is within a predetermined region, determines that the combustion operation is a normal combustion operation in which combustion is performed in a correct oxygen concentration region. If it is outside the predetermined range, the combustion operation can be determined to be an abnormal combustion operation burning in a different oxygen concentration range, so that the combustion state can be easily inspected. Also, the sensor output (B) when the sensor is exposed to the atmosphere having an oxygen concentration of about 20% is read, and if it is within a predetermined area, the limiting current type oxygen sensor element can be determined to be normal operation. Can be determined to be an abnormal operation, and the inspection of the limiting current type oxygen sensor element can be easily performed. As described above, a combustion system with excellent safety can be provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention can be embodied in the form of the invention described in each claim.
[0012]
That is, the invention according to claim 1 includes a combustion section in which combustion is performed, fuel supply means for supplying fuel to the combustion section, air supply means for supplying air to the combustion section, An exhaust gas flow path for discharging combustion exhaust gas, a limiting current type oxygen sensor element disposed in the flow path of the exhaust gas flow path, and the exhaust gas for driving the limiting current type oxygen sensor element and detecting a sensor output thereof. At least a drive detection circuit arranged outside the flow path of the flow path, a combustion operation determination means provided in the combustion unit or the fuel supply means and configured to determine the presence or absence of a combustion operation operation; A sensor output abnormality determining unit that determines whether the sensor output detected by the circuit is normal or abnormal; and an alarm generating unit that operates and issues an alarm when the sensor output abnormality determining unit determines that the sensor output is abnormal. The sensor output (A) when the combustion operation is determined to be in operation by the combustion operation determining means and is exposed to the combustion exhaust gas, and the combustion operation is determined to be stopped by the combustion operation determining means and the air is exposed to the atmosphere. The sensor output (B) at this time is read by the sensor output abnormality determination means, and when at least one of the sensor outputs is determined to be abnormal, the warning generation means issues a warning to use a limiting current type oxygen sensor element as a combustion system.
[0013]
The sensor output (A) when exposed to combustion exhaust gas having an oxygen concentration of 5 to 10% is read, and if it is within a predetermined region, the combustion operation can be determined to be a normal combustion operation burning in a correct oxygen concentration region. If this is the case, the combustion operation can be judged as an abnormal combustion operation burning in a different oxygen concentration region, so that the combustion state can be easily inspected. Also, the sensor output (B) when the sensor is exposed to the atmosphere having an oxygen concentration of about 20% is read, and if it is within a predetermined area, the limiting current type oxygen sensor element can be determined to be normal operation. Can be determined to be an abnormal operation, and the inspection of the limiting current type oxygen sensor element can be easily performed. As described above, a combustion system with excellent safety can be provided.
[0014]
According to a second aspect of the present invention, there is provided a fuel reforming apparatus for reforming a hydrocarbon-based fuel into a hydrogen-rich fuel gas by a steam reforming reaction in a fuel supply means used in the combustion system according to the first aspect, At least a fuel cell using the hydrogen-rich fuel gas obtained by the fuel reformer as a raw material gas is provided, and the remaining hydrogen-rich fuel gas not used in the fuel cell is burned in the combustion section.
[0015]
This combustion system is a fuel cell combined type that reforms a hydrocarbon-based fuel by a steam reforming reaction into a hydrogen-rich fuel gas, and supplies the fuel gas to the fuel cell to generate electricity. Is a system that burns the hydrogen-rich fuel gas remaining in the combustion section. Therefore, the hydrogen fuel supplied to the combustion unit fluctuates, and the air-fuel ratio easily fluctuates. However, since the air-fuel ratio is controlled using the limiting current type oxygen sensor element, the air-fuel ratio becomes constant, and carbon monoxide is generated. It is possible to provide a combustion system which is excellent in safety without any problem.
[0016]
According to a third aspect of the present invention, in the combustion system according to the second aspect, the fuel reformer is configured to be heated by combustion heat generated in a combustion section.
[0017]
Since the fuel reformer is heated in the combustion section, heat required for the steam reforming reaction can be recovered, and the effect of increasing the efficiency of the combustion system is obtained.
[0018]
According to a fourth aspect of the present invention, there is provided a limiting current type oxygen sensor element used in the combustion system according to any one of the first to third aspects, wherein an oxygen ion conductive solid electrolyte plate and the oxygen ion conductive solid electrolyte are provided. A pair of electrode films formed on the surface of the plate, and at least an oxygen diffusion restrictor surrounding the electrode film on one side and bonded to the oxygen ion conductive solid electrolyte plate, wherein the electrode film is a noble metal or an oxygen ion A composition containing at least a small amount of bismuth oxide containing an electrically conductive material composed of a conductive metal oxide as a main component, wherein the oxygen diffusion restrictor is provided with a glass substrate that is melted and fired at 850 to 1050 ° C. The manufacturing method was to be joined to a conductive solid electrolyte plate.
[0019]
Since the firing conditions for the glass film of the oxygen diffusion restrictor formed in the subsequent process are optimized in consideration of the melting point of bismuth oxide contained in the electrode film formed in the previous process and the durability reliability caused by its dissolution. The electrode film in the previous step is fired under optimum conditions. Therefore, a limiting current type oxygen sensor element in which the deterioration of the electrode film is reduced and the durability reliability is improved can be obtained.
[0020]
According to a fifth aspect of the present invention, in the method for manufacturing a limiting current type oxygen sensor element according to the fourth aspect, the electrode film is preliminarily fired at 770 to 950 ° C., and then the glass film is melted and fired.
[0021]
After the electrode film of the previous process is pre-fired near the melting point of bismuth oxide contained therein, and then the glass film of the subsequent process is melt-fired, the electrode film has a small variation in the current value and the Deterioration is reduced. Therefore, a limiting current type oxygen sensor element having improved durability reliability can be obtained.
[0022]
According to a sixth aspect of the present invention, in the method for manufacturing a limiting current type oxygen sensor element according to the fourth or fifth aspect, the bismuth oxide contained in the electrode film is preliminarily immersed in a sol-gel liquid containing zirconia as a main component. Manufacturing method.
[0023]
Bismuth oxide contained in the electrode film is made of zirconia (ZrO 2) having excellent sulfur oxide absorption and removal properties. Two Or hydrous Zr (OH) Two ) Is preliminarily immersed in a sol-gel liquid, so that the electrode film is significantly degraded even when exposed to combustion exhaust gas containing a large amount of sulfur oxide which accelerates the deterioration of the electrode film for a long time. Having. Therefore, a limiting current type oxygen sensor element with further improved durability reliability can be obtained.
[0024]
According to a seventh aspect of the present invention, in the method for manufacturing a limiting current type oxygen sensor element according to the fourth to sixth aspects, after melting and firing the glass film, the lead wire fixing portion is fired at a maximum temperature of 650 to 750 ° C. And a manufacturing method in which the lead wire is fixed to the electrode film.
[0025]
The firing of the lead wire fixing portion is optimized in consideration of the melting point of bismuth oxide contained in the electrode film and the durability reliability caused by the change behavior of the crystal structure. Therefore, a limiting current type oxygen sensor element in which the deterioration of the electrode film is reduced and the durability reliability is further improved can be obtained.
[0026]
According to an eighth aspect of the present invention, in the method of manufacturing a limiting current type oxygen sensor element according to the seventh aspect, the lead wire fixing portion contains at least a small amount of glass containing a noble metal or an electrically conductive metal oxide as a main component. And a glass or inorganic adhesive laminated on top of the composition.
[0027]
With this manufacturing method, the lead wire fixing portion has excellent adhesive strength, and the lead wire does not come off even if the lead wire is pulled strongly. Therefore, ordinary handling was sufficient, and workability and productivity were greatly improved.
[0028]
According to a ninth aspect of the present invention, there is provided a limiting current type oxygen sensor element used in the combustion system according to any one of the first to third aspects, wherein an oxygen ion conductive solid electrolyte plate and the oxygen ion conductive solid electrolyte are provided. A pair of electrode films formed on the surface of the plate, and at least an oxygen diffusion restrictor surrounding the one-side electrode film, wherein the electrode film includes an auxiliary material comprising at least one of titanium, chromium, and zirconium; And a main material containing a noble metal or an oxygen ion conductive metal oxide as a main component, wherein at least the auxiliary material is disposed in a lower layer and the main material is disposed in an upper layer.
[0029]
The electrode film is made of a noble metal or an oxygen-ion-conductive solid electrolyte plate via an auxiliary material made of at least one of titanium (Ti), chromium (Cr), or zirconium (Zr) having excellent bonding properties. A main material mainly composed of a metal oxide is joined. Therefore, it is possible to prevent the electrode film from peeling off due to long-term use and to prevent the current from decreasing, and to obtain a limiting current type oxygen sensor element with improved durability reliability.
[0030]
According to a tenth aspect of the present invention, in the method for manufacturing a limiting current type oxygen sensor element according to the ninth aspect, the main material has a crystal structure oriented to a main peak.
[0031]
Since the main material is an electrode film having a crystal structure oriented to the main peak, the junction current with the auxiliary material is further improved, and a limiting current type oxygen sensor element with further improved durability reliability can be obtained.
[0032]
According to an eleventh aspect of the present invention, in the limiting current type oxygen sensor element used in the combustion system according to any one of the first to third aspects, the heater provided in addition to the oxygen diffusion restrictor is disposed in a closed circuit thereof. A heating drive method is used in which the temperature is raised stepwise during warm-up warming by a DC power supply for heater heating.
[0033]
Since the heater is heated and driven by raising its temperature in a stepwise manner, the temperature of the electrode film is gradually increased to reduce the thermal shock, and it is possible to prevent the electrode film from peeling and reducing the current. Therefore, a limiting current type oxygen sensor element having improved durability reliability can be obtained.
[0034]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0035]
(Example 1)
FIG. 1 is a configuration diagram of a combustion system according to a first embodiment of the present invention. The combustion system includes a combustion unit 7 in which combustion is performed, an air supply unit 8 that supplies air to the combustion unit 7, a fuel supply unit 9 that supplies fuel to the combustion unit 7, and discharges combustion exhaust gas from the combustion unit 7. Exhaust gas flow path 10, a limiting current type oxygen sensor element 11 arranged in the flow path of the exhaust gas flow path 10, and an exhaust gas flow path 10 for driving the limiting current type oxygen sensor element 11 and detecting its sensor output. And a drive detection circuit 12 arranged outside the flow path. The combustion section 7 or the fuel supply means 9 is connected to a combustion operation judging means 13 for judging the presence or absence of a combustion operation from the operation state. The drive detection circuit 12 is connected to a sensor output abnormality determining means 14 for determining whether the detected sensor output is normal or abnormal, and the sensor output abnormality determining means 14 determines that the sensor output is abnormal. An alarm generating means 15 which is activated when the alarm is generated, is connected.
[0036]
FIG. 2 is a flowchart showing the operation of the combustion system according to the embodiment of the present invention. When the start button is pressed (S1), the combustion system is activated (S2), the air supply means 8 and the fuel supply means 9 are started, and the combustion section 7 starts burning, and at the same time, the limiting current type oxygen sensor element is started. The drive of No. 11 starts. Then, after a predetermined time (t) has elapsed (S3), the combustion state and the sensor output are stabilized, so that the combustion operation determining means 13 detects the combustion means 7 with a detection means such as a flame detection device (not shown). Then, the combustion operation state based on the combustion signal or the fuel supply state of the fuel supply means 9 is checked, and the presence or absence of the combustion operation operation is determined (S4).
[0037]
If it is determined that the combustion operation is being performed, the sensor output (A) of the limiting current type oxygen sensor element 11 exposed to the combustion exhaust gas is read (S5), and the sensor output (A) and the previously stored sensor output ( A comparison between I) and (II) is made (S6). On the other hand, when it is determined that the combustion operation is stopped, the restart of the combustion system starts.
[0038]
If I.ltoreq.A.ltoreq.II, the sensor output (A) is determined to be normal, and this operation is repeated until the combustion operation determining means 13 receives the combustion stop signal and determines that the combustion has stopped (S8). On the other hand, if II <A or I> A, the sensor output (A) is determined to be abnormal, and the alarm generation means 15 issues an alarm (S7). The sensor outputs (I) and (II) stored in advance are the lower limit value and the upper limit value of the sensor output when exposed to the combustion exhaust gas in a good combustion state. Therefore, when the sensor output (A) is within this range, it means that the combustion state is in a good combustion state with a small amount of carbon monoxide generated, and that the limiting current type oxygen sensor element is operating normally. On the other hand, when the sensor output (A) is outside this range, it means that the combustion section is in an abnormal combustion state where the amount of generated carbon monoxide is large, or that the limiting current type oxygen sensor element is deteriorated. If the sensor output (A) is determined to be normal, air-fuel ratio control or oxygen concentration monitoring is performed. When the air-fuel ratio control is performed, the control of the air supply means 8 or the fuel supply means 9 is performed so that a preset target sensor output value is obtained.
[0039]
When the button for stopping the combustion operation is pressed, it is determined that the combustion is stopped. Therefore, the operation of the fuel supply unit 9 is stopped and the combustion of the combustion unit 7 is stopped. However, the air supply unit 9 continues to operate. The atmosphere is supplied to the limiting current type oxygen sensor element 11 (S9). Then, after a predetermined time (T) has elapsed (S10), the sensor output becomes stable, so the sensor output (B) when exposed to the atmosphere is read (S11), and this sensor output (B) is stored in advance. The sensor outputs (X) and (Y) thus obtained are compared (S12). If X ≦ B ≦ Y, the sensor output (B) is determined to be normal, the combustion system is stopped, and the air supply means 8 and the limiting current type oxygen sensor element 11 stop driving (S13). On the other hand, if Y <B or X> B, the sensor output (B) is determined to be abnormal, and the alarm generating means 15 issues an alarm (S14), and at the same time, instructs the above-described combustion system to stop. The sensor outputs (X) and (Y) stored in advance are the lower limit value and the upper limit value of the sensor output when exposed to the atmosphere of about 20% oxygen. Therefore, if the sensor output (A) is within this range, it means that the limiting current type oxygen sensor element is operating normally, and if it is outside this range, the limiting current type oxygen sensor element deteriorates. Means that
[0040]
The alarm generating means 15 allows the combustion system to perform the next drive normally even if the alarm is issued once. However, when the alarm is issued a plurality of times, the fact is displayed on the operation state display board of the combustion system, It may be recommended to perform the inspection and repair so as to enhance safety.
[0041]
(Example 2)
FIG. 3 is a configuration diagram of a combustion system according to a second embodiment of the present invention. The difference between the first embodiment and FIG. 1 is that the fuel supply means 9 includes a fuel reformer 16 for reforming a hydrocarbon-based fuel into a hydrogen-rich fuel gas by a steam reforming reaction, and a fuel reformer 16. At least a fuel cell 17 that uses the obtained hydrogen-rich fuel gas as a source gas is provided at least, and the remaining hydrogen-rich fuel gas not used in the fuel cell 17 is burned in the combustion unit 7.
[0042]
This fuel cell combined-type combustion system uses a fluororesin ion-exchanged hydrogen-rich fuel gas mixture of carbon dioxide gas obtained by reforming a hydrocarbon-based fuel by a steam reforming reaction in a fuel reformer 16. The gas remaining without being used in the fuel cell 17 using a hydrogen ion charge carrier such as solid polymer or phosphoric acid for the membrane is burned. Therefore, the amount of hydrogen-rich fuel gas supplied to the combustion unit 7 greatly depends on the conversion efficiency in the fuel reformer 16 and the usage efficiency in the fuel cell 17. Therefore, the amount of fuel gas supplied to the combustion unit 7 tends to fluctuate depending on these efficiencies. However, since the air-fuel ratio is controlled optimally using the limiting current type oxygen sensor element 11, the amount of carbon monoxide is reduced. It is possible to provide a combustion system that can be burned without generation and has excellent safety. The fuel used in this combustion system may be city gas, propane gas, or kerosene.
[0043]
(Example 3)
The third embodiment is an embodiment in which the fuel reforming apparatus 16 in the combustion system of the second embodiment shown in FIG.
[0044]
Since the fuel reformer 16 is heated by the combustion unit 7, heat required for the steam reforming reaction can be recovered, and there is an effect that the efficiency of the combustion system is increased.
[0045]
(Example 4)
FIG. 4 is a cross-sectional view of an embodiment of the limiting current type oxygen sensor element used in the combustion system of the present invention. The limiting current type oxygen sensor element 11 and a drive detection circuit 12 for driving the same and detecting the sensor output are shown. Become.
[0046]
The limiting current type oxygen sensor element 11 includes an oxygen ion conductive solid electrolyte plate 18, a pair of electrode films 19, 20 formed on the surface of the oxygen ion conductive solid electrolyte plate 18, and a glass film surrounding one of the electrode films 19. And at least an oxygen diffusion restricting body 22 joined through the intermediary 21.
[0047]
The production of the limiting current type oxygen sensor element 11 starts from a process in which a pair of electrode films 19 and 20 are printed on both surfaces of the oxygen ion conductive solid electrolyte plate 18 in a thick film. The pair of electrode films 19 and 20 have a composition containing, as a main component, an electrically conductive material 23 made of a noble metal or an oxygen ion conductive metal oxide and at least a small amount of bismuth oxide 24. It is formed as it is or by further melting and firing. After that, a thick glass film 21 is printed on one surface of the oxygen ion conductive solid electrolyte plate 18, and then the constituent members of the oxygen diffusion restricting body 22 are laminated on the upper portion thereof and melt-fired. Further, in a later step, the lead wire fixing portions 25 and 26 having a composition containing a noble metal or an electrically conductive material as a main component and a small amount of glass are melted and fired to form a pair of lead wires 27 and 28 and a pair of electrode films 19 and 20. To complete the basic structure.
[0048]
A limit current type oxygen sensor element 11 of the present invention was prototyped, and its effect was confirmed.
[0049]
The oxygen ion conductive solid electrolyte plate 18 is made of yttrium (Y Two O Three ) And zirconia (ZrO) Two ) Is a fired plate of stabilized zirconia obtained by dissolving 92 mol% of the zirconia.
[0050]
The pair of electrode films 19 and 20 has a composition in which an electrically conductive material 23 made of 90 vol% of platinum is mixed with 10 vol% of bismuth oxide 24, and a thick film is formed on both surfaces of the oxygen ion conductive solid electrolyte plate 18. Printed.
[0051]
The oxygen diffusion restricting body 22 is composed of a spiral shaped glass film 21 and a fired forsterite seal plate 29 laminated on the glass film 21. The production method will be described. First, a spiral-shaped glass film 21 is thick-film-printed so as to surround the electrode film 19 previously thick-film-printed on the oxygen-ion-conductive solid electrolyte plate 18 described above. Then, a seal plate 29 is stacked on the thick print film and melt-fired. Then, the oxygen ion conductive solid electrolyte plate 18 and the seal plate 29 are joined, and a small-sized diffusion limiting hole (not shown) is formed between these plates and the spiral-shaped glass film 21. . At the same time, firing of the electrode films 19 and 20 is also performed.
[0052]
The lead wire fixing portions 25 and 26 have a composition in which 90 vol% of platinum is mixed with 10 vol% of glass. This composition is melted and fired at 700 ° C. to connect the pair of lead wires 27 and 28 made of platinum to the pair of electrode films 19 and 20 described above. Then, an inorganic adhesive was laminated on the composition and cured at 500 ° C. to strengthen the connection of the lead wires.
[0053]
In this firing at 700 ° C., the melting point of bismuth oxide mixed in the electrode films 19 and 20 is 820 ° C., and the firing of the lead wire fixing portions 25 and 26 does not affect the physical properties of the electrode films 19 and 20. This is based on the reason that 700 ° C., which is much lower than the melting point of bismuth oxide, 820 ° C., was selected.
[0054]
The seal plate 29 is provided with a platinum heater 30 in advance. Then, the heater 30 was connected to a pair of heater lead wires 31 and 32 made of platinum via a 700 ° C. fusion firing of the heater lead wire fixing portions 33 and 34. The heater lead wire fixing portions 33 and 34 are compositions in which 90 vol% of platinum and 10 vol% of glass are mixed, and this 700 ° C. melting and firing is performed simultaneously with the 700 ° C. melting and firing of the lead wire fixing portions 25 and 26. Is going. Then, an inorganic adhesive was laminated on the composition and cured at 500 ° C. to strengthen the connection of the lead wires.
[0055]
The drive detection circuit 12 includes at least an element drive DC power supply 35, a current detection unit 36, and a heater heating DC power supply 37. The element driving DC power supply 35 and the current detecting unit 36 form a closed circuit with the pair of lead wires 27 and 28 and the pair of electrode films 19 and 20. The current detector 36 detects a current value generated by a voltage applied by the element driving DC power supply 35 as a sensor output. On the other hand, the heater heating DC power supply 37 forms a closed circuit with the heater 30 and the pair of heater leads 31 and 32.
[0056]
The operation principle of the limiting current type oxygen sensor element 11 will be described. When a voltage is applied by the heater heating DC power supply 37, the heater film 30 generates heat, and the oxygen ion conductive solid electrolyte plate 18 is heated to 500 ° C. Then, oxygen ions are easily conducted through the oxygen ion conductive solid electrolyte plate 18, and the following oxygen pumping action is caused by the voltage applied by the element driving DC power supply 35. That is, the oxygen molecules in the air reach the electrode film 19 via the micro-sized diffusion limiting holes (not shown) provided in the oxygen diffusion limiting body 22, and then transfer electrons by applying a voltage, thereby As ions, they pass through the oxygen ion conductive solid electrolyte plate 18, electrons are deprived by the electrode film 20, and return to the air as oxygen molecules again. Although the current flows due to the movement of the oxygen molecules, the inflow of the oxygen molecules is restricted by the diffusion limiting holes having minute dimensions, and only the amount of oxygen corresponding to the oxygen concentration flows in, so that the flowing current has a relationship proportional to the oxygen concentration. Can be Using this relationship, the oxygen concentration can be determined from the current value.
[0057]
The endurance reliability of the limiting current type oxygen sensor element 11 in exhaust gas was evaluated. The durability reliability was measured in a state where the heater 30 was heated by applying a voltage from the heater heating DC power supply 37 and the oxygen ion conductive solid electrolyte plate 18 was heated to 500 ° C. Then, 0.5 V was applied to the electrode films 19 and 20 by the element driving DC power supply 35, and a transient change in the flowing current was measured. The applied voltage of 0.5 V is a critical voltage value at which a limit current characteristic at which the voltage dependence of the current value is eliminated starts to be obtained, and the degree of decrease in the current value due to the durability durability of the electrode films 19 and 20 is remarkable. Is a voltage value that can be observed at
[0058]
FIG. 5A shows the initial current value and the current after 300 hours of voltage application in an electrode film having a composition in which 90 vol% of an electrically conductive material made of platinum and 10 vol% of bismuth oxide are mixed, for each firing temperature of the glass film. FIG. As can be seen from FIG. 5A, the limiting current type oxygen sensor element in which the glass film 18 was fired at 850 to 1050 ° C. had a high current value and excellent durability reliability. The reason for this is that the electrode films 19 and 20 are simultaneously fired by firing the glass film 21, and the electrode films 20 and 21 are 30 to 30 ° C. higher than the melting point of 820 ° C. of bismuth oxide mixed therein. By baking at a high temperature of 230 ° C., it tightly adheres to the oxygen-ion-conductive solid electrolyte plate 18 and its joining resistance is small. Even if a voltage is applied, the joining resistance does not change, so that the current value does not change. Seem. In particular, the limiting current type oxygen sensor element in which the glass film 21 was fired at 850 to 970 ° C. showed an extremely high current value and excellent durability reliability, and was the most optimal.
[0059]
On the other hand, the glass film 21 fired at more than 1050 ° C. has a very small expected current value, so that a large current value required for forming the limiting current type oxygen sensor element could not be secured, and was not suitable. The reason for this is that the electrode films 19 and 20 are fired at a high temperature such as 1100 ° C., so that bismuth oxide and platinum mixed therein react with each other to obtain an oxygen non-adsorbing electrode film. This is because a sufficient current cannot be obtained. In addition, the glass film 21 flows too much and covers the electrode films 19 and 20, so that the area thereof is reduced and the current is reduced.
[0060]
Further, the glass film 21 fired at a temperature lower than 850 ° C. also had poor durability reliability and was unsuitable. The reason for this is that the electrode films 19 and 20 are fired at a temperature substantially equal to or lower than the melting point of 820 ° C. of bismuth oxide mixed therein, so that the electrode films 19 and 20 are formed on the oxygen ion conductive solid electrolyte plate 18. , 20 cannot be sufficiently adhered to each other, and the junction resistance gradually increases when a voltage is applied. In particular, the glass film 21 fired at 750 ° C. or lower had an extremely small initial current value and was more unsuitable. This is because the electrode films 19 and 20 do not adhere to the oxygen ion conductive solid electrolyte plate 18 at all because the sintering of bismuth oxide mixed in the electrode film is insufficient, and the joining resistance is extremely large. That's why.
[0061]
FIG. 5B shows the chemical composition La. 1-x SrxCoO Three The initial current value and the current after 300 hours of voltage application were measured for the electrode film having a composition in which 90 vol% of an electrically conductive material composed of an oxygen ion conductive metal oxide was mixed with 10 vol% of bismuth oxide for each firing temperature of the glass film. FIG. As can be seen from FIG. 5B, the limiting current type oxygen sensor element in which the glass film 21 was fired at 850 to 1050 ° C. had a high current value and excellent durability reliability.
[0062]
From the above, the firing temperature of the glass film 21 which can secure a large current value necessary for forming the limiting current type oxygen sensor element and has excellent durability reliability is 850 to 1050 ° C., and particularly 850 to 970. C was the most optimal because it showed an extremely high current value and excellent durability reliability.
[0063]
The oxygen ion conductive solid electrolyte plate 18 is made of zirconia (ZrO). Two ) With a small amount of yttrium (Y Two O Three ), A zirconia-based ion-conductive material obtained by solid solution of (CeO) Two ) 0.8 (SmO 1.5 ) 0.2 Ya (CeO Two ) 0.8 (GdO 1.5 ) 0.2 For example, an yttrium-based ion conductor such as the above can be used. These materials were polished so that the surface roughness Ra was 0.05 to 0.3 μm, so that the electrode films 19 and 20 were firmly adhered.
[0064]
The electrically conductive material mixed in the electrode films 19 and 20 is a noble metal such as platinum, gold or silver, and a chemical composition La. 1-x SrxCoO Three And LaCoO Three Furthermore, LaMnO Three For example, an oxygen ion conductive metal oxide such as is used. The optimum amount of bismuth oxide mixed in the electrode films 19 and 20 is 3 to 15 vol%. When this composition is expressed in terms of weight ratio, for example, in the case of an electrically conductive material of platinum, 95 to 99 wt% of platinum is oxidized. It is 1 to 5 wt% of bismuth. This composition is that if the amount of bismuth oxide as the binder is small, the electrode film does not adhere to the oxygen-ion conductive solid electrolyte plate, so that current cannot be secured. The composition is experimentally obtained from the viewpoint that a current cannot be secured. Further, in addition to the above-described electrically conductive material and bismuth oxide, the electrode films 16 and 17 may be made of copper oxide, cadmium oxide, zirconia (ZrO 2). Two Or hydrous Zr (OH) Two ) Is effective, and these metal oxide materials can be mixed up to a maximum of 25 vol% in the total amount with bismuth oxide. This is a composition obtained experimentally from the viewpoint that if the amount of these metal oxide-based materials and bismuth oxide, which are semiconductors, is large, the electrode film becomes electronically non-conductive and a current cannot be secured.
[0065]
The following three configurations can be used for the oxygen diffusion restricting body 22. The first configuration is a configuration in which a spiral-shaped glass film 21 having a diffusion limiting hole formed thereon and a seal plate 29 laminated thereon. The second configuration is a configuration in which a glass film 21 having an inner hollow shape formed of a square or a circle and a porous sealing plate 29 having a diffusion limiting hole of a minute size laminated thereon are provided. A third configuration is a seal plate 29 (a seal plate having a hole of a minute size) consisting of a square or circular inner hollow glass film 21 and a plurality of laminated plates formed with diffusion limiting holes laminated thereon. A, a spiral-shaped glass film for forming a diffusion limiting hole, and a seal plate B in this order.
[0066]
The glass film 21 has the same thermal expansion coefficient as that of the oxygen ion conductive solid electrolyte plate 18 and the seal plate 29 laminated thereon, within ± 10%, and has a melting temperature of 850 to 1050 ° C. and particularly 850 to 850 ° C. 970 ° C. is optimal, and this material did not cause a problem in durability reliability. For example, alumina oxide is 3 to 7 wt%, boron oxide is 3 to 7 wt%, calcium oxide is 1 to 2 wt%, strontium oxide is 4 to 6 wt%, barium oxide is 0.2 to 1.5 wt%, and sodium oxide is 10 to 10 wt%. Compositions of 1313 wt%, potassium oxide of 4-8 wt%, titanium oxide of 6-9 wt%, and the balance of silicon oxide are particularly optimal and used in this study.
[0067]
The main components of the lead wire fixing portions 25 and 26 are precious metals such as platinum, gold and silver, and the chemical composition is YBaCu. Three O 7 Are used. Then, 3 to 15 vol% of the glass is mixed with 85 to 97 vol% of the noble metal or the electrically conductive metal oxide.
[0068]
(Example 5)
The limiting current type oxygen sensor element 11 in which the electrode films 19 and 20 and the glass film 21 are simultaneously fired has a problem that the obtained initial current value varies. Thus, in Example 5, a manufacturing method in which the glass films 21 were fired after the electrode films 19 and 20 had been fired in advance was employed, and the firing temperature of the electrode films 19 and 20 that could reduce the variation in the initial current value was examined. The study is the same as in Example 4 except for the following two points. The first different point from Example 4 is that the electrode films 19 and 20 are preliminarily fired on the stabilized zirconia oxygen ion conductive solid electrolyte plate 18 at different firing temperatures, and then the glass film 21 is heated to the optimum firing temperature 920. That is, it was baked at ℃. The second difference from the fourth embodiment is that five limit current type oxygen sensor elements 11 having the same manufacturing method were prototyped, and the variation of the initial value was measured.
[0069]
FIG. 6 is a characteristic diagram in which the relationship between the firing temperature of the electrode film and the initial current value is measured. The maximum value, the average value, and the minimum value of five prototypes are arranged as parameters. FIG. 6A shows an electrode film having a composition in which 90 vol% of an electrically conductive material made of platinum is mixed with 10 vol% of bismuth oxide. FIG. 6B shows the chemical composition La. 1-x SrxCoO Three An electrode film having a composition in which 90 vol% of an electrically conductive material composed of an oxygen ion conductive metal oxide and 10 vol% of bismuth oxide are mixed.
[0070]
As can be seen from FIG. 6, it can be seen that the element in which the electrode film is pre-baked at 770 to 950 ° C. maintains a high current value as a whole. On the other hand, firing at a temperature higher than 950 ° C. was not suitable because the current value was reduced as a whole. This is because the electrode film is refired by baking the glass film at 920 ° C. in a later process, so that bismuth oxide and platinum mixed therein react with each other to obtain an oxygen non-adsorbing electrode film, and oxygen is absorbed. This is because it becomes difficult to obtain a current due to the movement. In addition, firing at a temperature lower than 770 ° C. was unsuitable because the obtained initial current value varied. This is because the electrode film does not adhere to the oxygen ion conductive solid electrolyte plate in the first firing because the firing of bismuth oxide mixed therein is insufficient, and the glass film in the subsequent process This is probably because the re-firing at 920 ° C. causes variations in adhesion.
[0071]
As described above, in order to manufacture a limiting current type oxygen sensor element having a small variation in the current value, the manufacturing method is such that the electrode film is fired at 770 to 950 ° C. in advance and then the glass film is fired. Further, this limiting current type oxygen sensor element also has an advantage of excellent durability reliability.
[0072]
This result shows that as the electrically conductive material, noble metals such as platinum, gold and silver, and the chemical composition La 1-x SrxCoO Three And LaCoO Three Furthermore, LaMnO Three The same applies to the electrode films 19 and 20 in which an oxygen ion conductive metal oxide such as the above is used and bismuth oxide is mixed at 3 to 15 vol%.
[0073]
(Example 6)
When exposed to combustion exhaust gas containing a large amount of sulfur oxide for a long period of time, the electrode films 19 and 20 of the limiting current type oxygen sensor element 11 have a problem that the value thereof gradually decreases and durability durability decreases. Therefore, Example 6 uses the electrode films 19 and 20 containing bismuth oxide 24 pre-soaked in a sol-gel solution containing zirconia as a main component, and is exposed to combustion exhaust gas containing a large amount of sulfur oxide for a long time. Also tried to realize a limiting current type oxygen sensor element 11 with a small current drop. The study is the same as in Examples 4 and 5, except for the following two points. The first different point from the fourth and fifth embodiments is that the oxygen ion conductive solid electrolyte plate 18 made of stabilized zirconia is provided with zirconia (ZrO 2). Two ), The electrode films 19 and 20 containing bismuth oxide 24 preliminarily immersed in a sol-gel solution were fired at 820 ° C. in advance, and then the glass film 21 was fired at its optimum firing temperature of 920 ° C. The second difference from the fourth and fifth embodiments is that the endurance reliability of the limiting current type oxygen sensor element 11 was evaluated by measuring a transient change of a current flowing in exhaust gas containing 20 ppm of sulfur oxide. It is.
[0074]
Invention 1 is an electrode film having a composition in which 90 vol% of an electrically conductive material made of platinum is mixed with 10 vol% of bismuth oxide previously immersed in a sol-gel liquid containing zirconia as a main component. Invention 2 has a chemical composition La 1-x SrxCoO Three The electrode film has a composition in which 90 vol% of an electrically conductive material composed of an oxygen ion conductive metal oxide described above is mixed with 10 vol% of bismuth oxide previously immersed in a sol-gel solution containing zirconia as a main component. On the other hand, Comparative Example 1 is an electrode film having a composition in which 90 vol% of an electrically conductive material made of platinum and 10 vol% of bismuth oxide are mixed. Comparative 2 shows the chemical composition La 1-x SrxCoO Three The electrode film has a composition in which 90 vol% of an electrically conductive material composed of an oxygen ion conductive metal oxide of the above is mixed with 10 vol% of bismuth oxide. (Table 1) shows the results of the study.
[0075]
[Table 1]
Figure 2004198075
[0076]
It can be seen that the product of the present invention has excellent durability characteristics. This is presumably because bismuth oxide which has been previously immersed in a sol-gel solution containing zirconia as a main component absorbs and removes sulfur oxides and suppresses deterioration of the main component of the electrically conductive material.
[0077]
The sol-gel liquid containing zirconia as a main component is zirconia (ZrO Two ) Alone, a sol-gel solution containing at least 60 parts of zirconia and containing silica (SiO Two ), A sol-gel solution in which other oxides were present in the remainder was effective. In addition, hydrous Zr (OH) Two The solution indicated as "Zirconia sol-gel solution" was also effective, and the sol-gel solution having the above-mentioned composition was effective. There are the following two methods for mixing bismuth oxide, which has been immersed in a sol-gel solution, in the electrode film. The first method is a method of mixing this sol-gel liquid with a printing paste when mixing an electrically conductive material such as platinum with bismuth oxide to prepare a printing paste for an electrode film, and immersing it in bismuth oxide. The second method is a method of preparing a printing paste for an electrode film using bismuth oxide previously immersed in a sol-gel solution.
[0078]
(Example 7)
Since the oxygen diffusion restricting body 22 of the limiting current type oxygen sensor element 11 requires a high degree of hermetic sealing, strict management is required for its manufacturing method. Therefore, it is not practical to form the oxygen diffusion restricting body 22 requiring strict control and to fix the lead wire which requires a complicated manufacturing method in the same process, which requires a complicated manufacturing method and strict control, and is not practical. . Therefore, in Example 7, the firing temperature for fixing the lead wire when the manufacturing method of fixing the lead wire after forming the oxygen diffusion restricting body 22 was examined.
[0079]
As can be seen from FIGS. 5 and 6, when the electrode film is fired at a temperature lower than 750 ° C., the firing becomes insufficient, and the generated current value becomes extremely small. Therefore, the upper limit of the firing of the lead wire was set to 750 ° C., so that the firing did not redissolve the electrode film and affect the current value. On the other hand, bismuth oxide mixed in the electrode film exhibits a behavior in which the crystal structure starts to change greatly at 650 ° C., and from the viewpoint of ensuring the durability and reliability of the electrode film, the operating temperature should not exceed 650 ° C. There is a need. Therefore, the firing of the lead wire is performed at 650 ° C. or higher at which the crystal structure starts to change, and the operating temperature of the electrode film is set at 650 ° C. or lower so that the durability reliability is not affected.
[0080]
From the above, in order to manufacture a limiting current type oxygen sensor element having excellent current value and durability reliability, after melting and firing a glass film, a lead wire is fired at a maximum of 650 to 750 ° C. to form an electrode film. The manufacturing method was fixed.
[0081]
(Example 8)
In Example 8, the material of the lead wire fixing portions 25 and 26 was examined. Only a composition containing at least a small amount of glass containing a noble metal or an electron conductive metal oxide as a main component has insufficient bonding strength, and the lead wire may come off if the lead wire is pulled strongly during handling of the sensor element. That's why. Therefore, careful handling was required, and there was a problem that workability and productivity were poor.
[0082]
In that regard, when the lead wire fixing portions 25 and 26 are made of a composition containing noble metal or electron conductive metal oxide as a main component and containing at least a small amount of glass, and a glass or inorganic adhesive laminated on top of this composition, The lead wire fixing portion was excellent in adhesive strength, and the lead wire did not come off even if the lead wire was pulled strongly. Therefore, ordinary handling was sufficient, and workability and productivity were greatly improved.
[0083]
(Example 9)
The noble metal or oxygen ion conductive metal oxide electrode film formed by the vapor deposition method has good current characteristics because it adheres well to the oxygen ion conductive solid electrolyte plate. There is a problem with poor reliability characteristics. In view of this, the ninth embodiment is concerned with this kind of electrode film material for obtaining a limiting current type oxygen sensor having excellent durability reliability.
[0084]
FIG. 7 is a sectional view of a limiting current type oxygen sensor element using the manufacturing method according to the embodiment of the present invention. Regarding the limiting current type oxygen sensor element 38, only differences from FIG. 4 will be described. The electrode films 39 and 40 are made of an auxiliary material 41 made of at least one of titanium, chromium, and zirconium, and a main material 42 mainly containing a noble metal or an oxygen ion conductive metal oxide. Then, at least the auxiliary material 41 is disposed in the lower layer and the main material 42 is disposed in the upper layer, and is formed by a vapor deposition method.
[0085]
The limiting current type oxygen sensor element of the present invention was prototyped and its effect was confirmed. Only differences from Example 4 and important matters concerning materials are described. The oxygen ion conductive solid electrolyte plate 18 is made of yttrium (Y Two O Three ) And zirconia (ZrO) Two ) Is a fired plate of stabilized zirconia obtained by dissolving 92 mol% of the zirconia. The oxygen ion conductive solid electrolyte plate 18 is formed by sputtering a noble metal or an oxygen ion conductive metal oxide with a 0.01 μm film thickness of an auxiliary material 41 made of at least one of titanium, chromium, and zirconium as a lower layer. The electrode films 39 and 40 having a configuration in which 0.5 μm of the main material 42 mainly composed of was formed as an upper layer were formed.
The results of the durability reliability are shown in (Table 2).
[0086]
[Table 2]
Figure 2004198075
[0087]
The electrode films 39 and 40 having a lower layer of an auxiliary material 41 made of at least one of titanium, chromium or zirconium and an upper layer of a main material 42 mainly containing a noble metal or an oxygen ion conductive metal oxide have excellent durability characteristics. It can be seen that The thickness of the auxiliary material 41 is optimally 0.003 to 0.04 μm, and the thickness of the main material 42 is optimally 0.3 to 1.0 μm, and is formed by a vapor deposition method such as a sputtering method or an EB method. You. Further, the auxiliary material 41 and the main material 42 may be a mixture.
The main material 42 mainly composed of a noble metal or an oxygen ion conductive metal oxide is made of a noble metal such as platinum, gold or silver, and a chemical composition La. 1-x SrxCoO Three And LaCoO Three Furthermore, LaMnO Three For example, an oxygen ion conductive metal oxide such as is used.
[0088]
The oxygen ion conductive solid electrolyte plate 18 is made of zirconia (ZrO). Two ) With a small amount of yttrium (Y Two O Three ), A zirconia-based ion-conductive material obtained by solid solution of (CeO) Two ) 0.8 (SmO 1.5 ) 0.2 Ya (CeO Two ) 0.8 (GdO 1.5 ) 0.2 For example, an yttrium-based ion conductor such as the above can be used. These materials were polished so that the surface roughness Ra became 0.05 to 0.3 μm, so that the electrode films 39 and 40 adhered firmly.
[0089]
(Example 10)
In Example 10, the crystal structure of the electrode films 39 and 40 used in Example 9 was studied in order to obtain a limiting current type oxygen sensor element having more excellent durability reliability.
A limit current type oxygen sensor element 11 of the present invention was prototyped, and its effect was confirmed. The difference from the ninth embodiment is that when the sputtering conditions are changed to change the crystal structure of the main material 42 containing a noble metal or an oxygen ion conductive metal oxide as a main component and analyzed by an X-ray diffraction instrument. That is, the electrode films 39 and 40 are formed so that a crystal structure oriented to the peak is obtained. The results of the durability reliability are shown in (Table 3).
[0090]
[Table 3]
Figure 2004198075
[0091]
It can be seen that the electrode films 39 and 40 having a crystal structure in which the main material 42 is oriented at the main peak have excellent durability.
[0092]
(Example 11)
In Example 11, in order to obtain a limiting current type oxygen sensor element having more excellent durability reliability, a heating drive method during warm-up warming was studied.
[0093]
A limit current type oxygen sensor element of the present invention and a drive detection circuit for heating and driving the sensor element were prototyped, and their effects were confirmed. The study is the same as in Examples 4 to 10, except for the following two points. The first difference is that a heater 30 provided in the oxygen diffusion restrictor 22 of the limiting current type oxygen sensor elements 11 and 38 has a heater heating DC power supply 37 for applying an applied voltage value in a stepwise manner. That is, it was raised in steps. The second difference is that the endurance reliability of the drive detection circuit is evaluated by intermittent driving for 5 minutes with heating and non-heating for 5 minutes, and a transient change in flowing current is measured.
[0094]
In the invention, when a predetermined voltage required for heating at 500 ° C. is applied to the heater 30 for 5 minutes by the DC power supply 37 for heating, the 50% value is applied for 1 minute and the 100% value is applied for the remaining 4 minutes. This is the energization mode, and reached 500 ° C. in about 3 minutes. Then, the intermittent driving was performed for the heating energization (power ON) for 5 minutes and the non-heating energization (power OFF) for 5 minutes. On the other hand, the comparative product is a heating and energizing mode in which a predetermined voltage required for heating at 500 ° C. is applied to the heater 30 for 5 minutes, and the 100% value is applied for 5 minutes, and the temperature reached 500 ° C. in about 2 minutes. Then, the intermittent driving was performed for the heating energization (power ON) for 5 minutes and the non-heating energization (power OFF) for 5 minutes.
[0095]
Inventive Example 1 and Comparative Example 1 are the electrode films 19 and 20 having a composition in which 90 vol% of an electrically conductive material made of platinum is mixed with 10 vol% of bismuth oxide previously immersed in a sol-gel solution containing zirconium as a main component. Invention 2 and Comparative 2 have a chemical composition La 1-x SrxCoO Three The electrode films 19 and 20 have a composition in which 90 vol% of the electrically conductive material made of the oxygen ion conductive metal oxide described above is mixed with 10 vol% of bismuth oxide previously immersed in a sol-gel solution containing zirconium as a main component. Invention 3 and Comparative Example 3 are electrode films 39 and 40 having a structure in which the chromium auxiliary material 41 has a thickness of 0.01 μm as a lower layer and the platinum main material 42 has an upper layer of 0.5 μm. Invention 4 and Comparative 4 are based on the assumption that the titanium auxiliary material 41 has a chemical composition La 1-x SrxCoO Three The electrode films 39 and 40 have a configuration in which 0.5 μm of the oxygen ion conductive metal oxide 42 of FIG. Inventive 5 and Comparative 5 show that the 0.01 μm film thickness of the zirconium auxiliary material 41 is 1-x SrxCoO Three The electrode films 39 and 40 have a configuration in which 0.5 μm of the oxygen ion conductive metal oxide 42 of FIG.
[0096]
The results of the durability reliability are shown in (Table 4).
[0097]
[Table 4]
Figure 2004198075
[0098]
Since the heater is heated and driven by raising its temperature in a stepwise manner, the temperature of the electrode film is gradually increased to reduce the thermal shock, and it is possible to prevent the electrode film from peeling and reducing the current. Therefore, a limiting current type oxygen sensor element having improved durability reliability can be obtained.
[0099]
【The invention's effect】
As described above, in the combustion system according to claims 1 to 3, the sensor output (A) when exposed to the combustion exhaust gas of the limiting current type oxygen sensor element arranged in the exhaust gas flow path for discharging the combustion exhaust gas. The sensor output (B) at the time of exposure to the air is read, and if at least one of them is determined to be abnormal, an alarm is issued. Therefore, if the sensor output (A) when exposed to the combustion exhaust gas having an oxygen concentration of 5 to 10% is within a predetermined range, the combustion operation can be determined to be a normal combustion operation burning in the correct oxygen concentration range. Otherwise, the combustion operation can be determined to be an abnormal combustion operation burning in a different oxygen concentration region, so that the combustion state can be easily inspected. If the sensor output (B) when exposed to the atmosphere having an oxygen concentration of about 20% is within a predetermined range, the limiting current type oxygen sensor element can be determined to be operating normally. Since the operation can be determined, the inspection of the sensor element can be easily performed. Therefore, the effect of providing a combustion system with excellent safety can be obtained.
[0100]
Further, the limiting current type oxygen sensor element according to the fourth to tenth aspects of the present invention is a manufacturing method with high durability reliability, and the heating driving method of the limit current type oxygen sensor element according to the eleventh aspect has a high durability reliability. Since the heating driving method is used, the combustion system using the limiting current type oxygen sensor element using this manufacturing method and the heating driving method has an effect of maintaining excellent safety for a long time.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a combustion system using a limiting current type oxygen sensor element according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing the operation of the combustion system using the limiting current type oxygen sensor element in Embodiment 1 of the present invention.
FIG. 3 is a configuration diagram of a combustion system using a limiting current type oxygen sensor element according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a limiting current type oxygen sensor element using a manufacturing method according to a fourth embodiment of the present invention.
FIG. 5 is an effect characteristic diagram of a limiting current type oxygen sensor element using a manufacturing method according to a fourth embodiment of the present invention (relation between firing temperature of glass film and current).
(A) Effect characteristic diagram of electrode film composed of platinum and bismuth oxide
(B) La 1-x SrxCoO Three Of the effect characteristics of the electrode film composed of aluminum and bismuth oxide
FIG. 6 is an effect characteristic diagram of a limiting current type oxygen sensor element using a manufacturing method according to a fifth embodiment of the present invention (relation between firing temperature of electrode film and current).
(A) Effect characteristic diagram of electrode film composed of platinum and bismuth oxide
(B) La 1-x SrxCoO Three Of the effect characteristics of the electrode film composed of aluminum and bismuth oxide
FIG. 7 is a configuration diagram of a limiting current type oxygen sensor element using a manufacturing method according to a ninth embodiment of the present invention.
FIG. 8 (a) is a configuration diagram of a conventional combustion system using a limiting current type oxygen sensor element.
(B) Effect characteristic diagram of conventional limiting current type oxygen sensor element (oxygen concentration and sensor output (current))
[Explanation of symbols]
7 Burning part
8 Air supply means
9 Fuel supply means
10 Exhaust gas channel
11 Limit current type oxygen sensor element
12 Drive detection circuit
13 Combustion operation determination means
14 Sensor output abnormality judgment means
15 Alarm generation means
16 Fuel reformer
17 Fuel cell
18 Oxygen ion conductive solid electrolyte plate
19, 20 Electrode film
21 Glass film
22 Oxygen diffusion restrictor
23 Electrically conductive materials
24 Bismuth oxide
25, 26 Lead wire fixing part
27, 28 Lead wire
30 heater
37 DC power supply for heater heating
38 Limiting current type oxygen sensor element
39, 40 electrode film
41 Auxiliary materials
42 Main material

Claims (11)

燃焼が行われる燃焼部と、前記燃焼部に燃料を供給する燃料供給手段と、前記燃焼部に空気を供給する空気供給手段と、前記燃焼部からの燃焼排ガスを排出する排ガス流路と、前記排ガス流路の流路内に配置された限界電流式酸素センサ素子と、前記限界電流式酸素センサ素子を駆動させそのセンサ出力を検出するために前記排ガス流路の流路外に配置された駆動検出回路とを少なくとも備えており、前記燃焼部もしくは前記燃料供給手段に併設されており燃焼運転動作の有無を判断する燃焼運転判断手段と、前記駆動検出回路で検出されたセンサ出力が正常か異常かを判断するセンサ出力異常判断手段と、前記センサ出力異常判断手段で異常と判断された場合に作動して警報を発する警報発生手段とを併設して、前記燃焼運転判断手段によって燃焼運転動作中と判断されて燃焼排ガスに晒された際のセンサ出力(A)と、前記燃焼運転判断手段によって燃焼運転停止と判断されて大気に晒した際のセンサ出力(B)を、前記センサ出力異常判断手段が読み取って少なくとも片方を異常と判断した場合、前記警報発生手段が警報を発する限界電流式酸素センサ素子を用いた燃焼システム。A combustion section in which combustion is performed, fuel supply means for supplying fuel to the combustion section, air supply means for supplying air to the combustion section, an exhaust gas flow path for discharging combustion exhaust gas from the combustion section, A limiting current type oxygen sensor element disposed in a flow path of the exhaust gas flow path, and a drive disposed outside the flow path of the exhaust gas flow path to drive the limiting current type oxygen sensor element and detect the sensor output thereof A combustion operation judging means provided at least in the combustion section or the fuel supply means for judging the presence or absence of a combustion operation operation, and a sensor output detected by the drive detection circuit is normal or abnormal. Sensor output abnormality determining means for determining whether the combustion operation has been performed, and an alarm generating means that operates when the sensor output abnormality determining means determines that an abnormality has occurred, and issues an alarm. The sensor output (A) when it is determined that the combustion operation is being performed and is exposed to the combustion exhaust gas, and the sensor output (B) when it is determined that the combustion operation is stopped by the combustion operation determination means and is exposed to the atmosphere, A combustion system using a limiting current type oxygen sensor element in which the sensor output abnormality determining means reads and determines that at least one of them is abnormal, the alarm generating means issues an alarm. 燃料供給手段に、炭化水素系の燃料を水蒸気改質反応で水素リッチな燃料ガスに改質する燃料改質装置と、前記燃料改質装置で得た水素リッチな燃料ガスを原料ガスとして使用する燃料電池とを少なくとも併設し、前記燃料電池で使用されずに残存する水素リッチな燃料ガスを、燃焼部で燃焼させる請求項1記載の燃焼システム。As a fuel supply means, a fuel reformer for reforming a hydrocarbon-based fuel into a hydrogen-rich fuel gas by a steam reforming reaction, and using the hydrogen-rich fuel gas obtained by the fuel reformer as a source gas The combustion system according to claim 1, further comprising a fuel cell at least, and burning a hydrogen-rich fuel gas remaining without being used in the fuel cell in a combustion unit. 燃料改質装置を、燃焼部で発生する燃焼熱で加熱する請求項2記載の燃焼システム。The combustion system according to claim 2, wherein the fuel reformer is heated by combustion heat generated in the combustion section. 請求項1〜3のいずれか1項に記載の燃焼システムに用いる限界電流式酸素センサ素子は、酸素イオン伝導性固体電解質板と、前記酸素イオン伝導性固体電解質板の表面に形成した一対の電極膜と、前記片側の電極膜を囲み前記酸素イオン伝導性固体電解質板に接合される酸素拡散制限体とで少なくとも構成されており、前記電極膜は、貴金属または酸素イオン伝導性金属酸化物からなる電気伝導性材料を主成分として酸化ビスマスを少なくとも少量含有した組成であり、前記酸素拡散制限体は、850〜1050℃で溶融焼成する硝子膜を介して前記酸素イオン伝導性固体電解質板に接合される限界電流式酸素センサ素子の製造方法。The limiting current type oxygen sensor element used in the combustion system according to any one of claims 1 to 3, wherein the oxygen ion conductive solid electrolyte plate and a pair of electrodes formed on the surface of the oxygen ion conductive solid electrolyte plate. A membrane and at least an oxygen diffusion restrictor surrounding the electrode film on one side and bonded to the oxygen ion conductive solid electrolyte plate, wherein the electrode film is made of a noble metal or an oxygen ion conductive metal oxide. A composition containing an electrically conductive material as a main component and at least a small amount of bismuth oxide, wherein the oxygen diffusion restrictor is bonded to the oxygen ion conductive solid electrolyte plate via a glass film melt-fired at 850 to 1050 ° C. Of manufacturing a limiting current type oxygen sensor element. 電極膜を770〜950℃で予め焼成した後、硝子膜を溶融焼成する請求項4記載の限界電流式酸素センサ素子の製造方法。5. The method for manufacturing a limiting current type oxygen sensor element according to claim 4, wherein the electrode film is pre-fired at 770 to 950 [deg.] C., and then the glass film is melt-fired. 電極膜に含有される酸化ビスマスは、ジルコニアを主成分とするゾルゲル液に予め浸漬されている請求項4又は5記載の限界電流式酸素センサ素子の製造方法。6. The method according to claim 4, wherein the bismuth oxide contained in the electrode film is previously immersed in a sol-gel solution containing zirconia as a main component. 硝子膜を溶融焼成した後、リード線固定部を最大温度650〜750℃で焼成して、リード線を電極膜に固定した請求項4〜6のいずれか1項に記載の限界電流式酸素センサ素子の製造方法。The limiting current type oxygen sensor according to any one of claims 4 to 6, wherein after melting the glass film, the lead wire fixing portion is fired at a maximum temperature of 650 to 750 ° C to fix the lead wire to the electrode film. Device manufacturing method. リード線固定部は、貴金属または電気伝導性金属酸化物を主成分として硝子を少なくとも少量含有した組成品と、前記組成品の上部に積層した硝子もしくは無機接着材とからなる請求項7記載の限界電流式酸素センサ素子の製造方法。8. The limit according to claim 7, wherein the lead wire fixing portion is composed of a composition containing at least a small amount of glass containing a noble metal or an electrically conductive metal oxide as a main component, and a glass or inorganic adhesive laminated on the composition. A method for manufacturing a current-type oxygen sensor element. 請求項1〜3のいずれか1項に記載の燃焼システムに用いる限界電流式酸素センサ素子は、酸素イオン伝導性固体電解質板と、前記酸素イオン伝導性固体電解質板の表面に形成した一対の電極膜と、前記片側の電極膜を囲む酸素拡散制限体とから少なくとも構成されており、前記電極膜は、チタンもしくはクロムもしくはジルコニウムの少なくとも1種からなる補助材料と、貴金属もしくは酸素イオン伝導性金属酸化物を主成分とした主材料からなり、少なくとも前記補助材料は下層に前記主材料は上層に配置され気相析出法で形成される限界電流式酸素センサ素子の製造方法。The limiting current type oxygen sensor element used in the combustion system according to any one of claims 1 to 3, wherein the oxygen ion conductive solid electrolyte plate and a pair of electrodes formed on the surface of the oxygen ion conductive solid electrolyte plate. A film and an oxygen diffusion restrictor surrounding the electrode film on one side, wherein the electrode film is formed of an auxiliary material made of at least one of titanium, chromium, and zirconium, and a noble metal or an oxygen ion conductive metal oxide. A method of manufacturing a limiting current type oxygen sensor element comprising a main material mainly composed of a material, wherein at least the auxiliary material is disposed in a lower layer and the main material is disposed in an upper layer and formed by a vapor deposition method. 主材料は、主ピークに配向した結晶構造である請求項9記載の限界電流式酸素センサ素子の製造方法。10. The method for manufacturing a limiting current type oxygen sensor element according to claim 9, wherein the main material has a crystal structure oriented to a main peak. 請求項1〜3のいずれか1項に記載の燃焼システムの限界電流式酸素センサ素子において、酸素拡散制限体に併設したヒータは、その閉回路に配置したヒータ加熱用直流電源により、暖気ウオーミング時は温度を階段状に上昇される限界電流式酸素センサ素子の加熱駆動方法。The limiting current type oxygen sensor element for a combustion system according to any one of claims 1 to 3, wherein the heater attached to the oxygen diffusion restrictor is heated by warming DC power supply arranged in a closed circuit thereof during warm-up warming. Is a heating drive method for a limiting current type oxygen sensor element in which the temperature is raised stepwise.
JP2002370325A 2002-12-20 2002-12-20 Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor Withdrawn JP2004198075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370325A JP2004198075A (en) 2002-12-20 2002-12-20 Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370325A JP2004198075A (en) 2002-12-20 2002-12-20 Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor

Publications (1)

Publication Number Publication Date
JP2004198075A true JP2004198075A (en) 2004-07-15

Family

ID=32766274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370325A Withdrawn JP2004198075A (en) 2002-12-20 2002-12-20 Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor

Country Status (1)

Country Link
JP (1) JP2004198075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258039A (en) * 2006-03-24 2007-10-04 Aisin Seiki Co Ltd Control method of fuel cell system, and fuel cell system
DE112007000635T5 (en) 2006-03-27 2009-01-29 Toyota Jidosha Kabushiki Kaisha reformer
JP2010210569A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Device and method for controlling oxygen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258039A (en) * 2006-03-24 2007-10-04 Aisin Seiki Co Ltd Control method of fuel cell system, and fuel cell system
DE112007000635T5 (en) 2006-03-27 2009-01-29 Toyota Jidosha Kabushiki Kaisha reformer
JP2010210569A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Device and method for controlling oxygen sensor

Similar Documents

Publication Publication Date Title
US4859307A (en) Electrochemical gas sensor, and method for manufacturing the same
US4500412A (en) Oxygen sensor with heater
JP2002174618A (en) Solid electrolyte gas sensor
US8658013B2 (en) Sensor and sensing method
JPS61170650A (en) Oxygen concentration sensor
JP2011102797A (en) Gas sensor and method for manufacturing sensor element
JP2003247972A (en) Gas sensor element and method of manufacturing and reproducing the same
JP3534612B2 (en) Flat limit current sensor
CN108318563A (en) A kind of oxygenerator oxygen concentration detection sensor
JP4539040B2 (en) Fuel cell system
JP5312174B2 (en) Gas sensor and gas detector
JP2004198075A (en) Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor
KR0165651B1 (en) Electrochemical device
JP2004198369A (en) Manufacturing method for limiting current type oxygen sensor element, and sensor unit or combustion system using sensor element
JPH05180798A (en) Solid electrolyte gas sensor
JP4465677B2 (en) Hydrogen gas detector
JP2948124B2 (en) Oxygen sensor
JP3091689B2 (en) Manufacturing method of electrochemical device
JP2005221428A (en) Reducing gas detecting element, and reducing gas detector
JP2003262608A (en) Gas concentration detecting apparatus and gas sensor element used for the same
JPS61147154A (en) Thin-film oxygen sensor
JP3873753B2 (en) Gas sensor
JPH0989250A (en) Combustion apparatus
JP2002310980A (en) Sold electrolyte gas sensor
JPH07324733A (en) Combustion equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613