JP2004197664A - Exhaust gas heat exchanger and refrigerating plant - Google Patents

Exhaust gas heat exchanger and refrigerating plant Download PDF

Info

Publication number
JP2004197664A
JP2004197664A JP2002367760A JP2002367760A JP2004197664A JP 2004197664 A JP2004197664 A JP 2004197664A JP 2002367760 A JP2002367760 A JP 2002367760A JP 2002367760 A JP2002367760 A JP 2002367760A JP 2004197664 A JP2004197664 A JP 2004197664A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
heat
transfer tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002367760A
Other languages
Japanese (ja)
Inventor
Hiroshi Arai
浩士 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002367760A priority Critical patent/JP2004197664A/en
Publication of JP2004197664A publication Critical patent/JP2004197664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive exhaust gas heat exchanger well workable in assembly and easy to recycle after damping and an energy saving refrigerating plant with the exhaust gas heat exchanger. <P>SOLUTION: The exhaust gas heat exchanger comprises a heat exchange part 35 for heat exchange between exhaust gas and cooling water, a turbulent flow accelerating plate 33 provided in a heat transfer tube 34 thereof for distributing outside gas into the heat transfer tube 34 and and exhaust gas to the outer periphery of the heat transfer tube 34, and a barrel part 30 formed into a single tube. Thus, the exhaust gas heat exchanger 1 has simplified construction, which is inexpensive, well workable in assembly and smaller. Furthermore, the exhaust gas heat exchanger 1 is constituted by members having materials unified into the same material and assembled with fastening and fixing work including welding, caulking and solid diffusion joint, and so it is easy to recycle after dumping. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
内燃機関から排出される排気ガスを冷却水に熱交換させる排気ガス熱交換器、および、この排気ガス熱交換器を用いて構成される排気系を備えた冷凍装置に関する。
【0002】
【従来の技術】
これまでのガスエンジンヒートポンプなど、内燃機関の駆動力で圧縮機を運転する冷凍装置では、前記内燃機関から排出された排気ガスを、前記内燃機関を冷却する冷却水と排気ガス熱交換器で熱交換させ、前記排気ガスの温度を低下させて大気へと排出している。
【0003】
この排気ガス熱交換器は、例えば、円柱形状をした内筒および外筒から成る2重管構造となっており、前記外筒には、延伸方向の両端部にそれぞれ側板が液密に設けられており、前記内燃機関を冷却する冷却水が流通するための冷却水入口管と、冷却水出口管とが設けられている。
【0004】
また、前記外筒内に備えられた前記内筒には、前記内燃機関から排出された排気ガスが流通するための排気ガス入口管と排気ガス出口管とが前記外筒を貫通して設けられ、内部には、前記排気ガスと前記冷却水との熱交換を行わせる熱交換部が設けられておる。この熱交換部には、前記排気ガス入口管より導入された前記排気ガスが、この熱交換部内をジグザグに流通する様、前記内筒内へ互い違いに連通口を形成する複数枚の仕切板と、これら仕切板を貫通して前記内筒の前記側板上に開口された複数本の伝熱管とが備えられている。そして、前記外筒と前記内筒との間には、環状空間が形成されたものとなっている。
【0005】
前記内燃機関から排出された前記排気ガスは、前記排気ガス入口管より、前記熱交換部へと導入され、前記内筒の内壁、および、前記伝熱管外周に接しながら、前記連通口に沿って、前記熱交換部内をジグザグに流通し、前記排気ガス出口管より導出されている。
【0006】
また、前記内燃機関を冷却する前記冷却水は、前記冷却水入口より流入し、外筒と内筒との間に形成された前記環状空間、および、前記伝熱管内を流通して、前記排気ガスからの熱回収を行ない、前記冷却水出口から流出するものとなっている。
【0007】
これにより、前記排気ガスの熱は、前記熱交換部を介して前記冷却水へと熱交換され、前記排気ガスの温度は低下させられるものとなっていた。
【0008】
さらに、この排気ガス熱交換器を、前記外筒と前記内筒との間へ前記冷却水を流通させる構造とすることにより、この冷凍装置のメンテナンス作業などを行なう作業者が、誤って前記熱交換部に触れてしまう危険を防止していた(特許文献1参照)。
【0009】
また、前記伝熱管内に乱流促進板を設けて前記冷却水を流通させ、前記熱交換部内に設けた前記仕切板にルーバや、スリットなどを設けて熱交換効率を向上させ、小型化したものもある(特許文献2参照)。
【0010】
【特許文献1】
特開平8−49534(第3−4頁、第1図)
【0011】
【特許文献2】
特開2001−65339(第1図、第4頁、第7図)
【0012】
【発明が解決しようとする課題】
しかしながら、特許文献1、或いは、特許文献2で示される前記排気ガス熱交換器の胴部は、上述の様に、排気ガス熱交換器を外筒と内筒とからなる2重構造として前記外筒と前記内筒とで形成される前記環状空間には、前記内燃機関を冷却する前記冷却水を流通させていることから、前記環状空間からその外部、或いは、前記熱交換部へ、前記冷却水が漏洩してしまうこと防がねばならず、このため、前記環状空間の前記内筒側、および、前記外筒側のそれぞれを液密構造としなければならなかった。
【0013】
また、前記内筒は、500℃から600℃程度となる前記排気ガスと、80℃前後となる前記冷却水とに接するため、この排気ガス熱交換器の前記内筒および前記外筒の組立て作業においては、高度な溶接技術が要求されるものとなっており、前記排気ガス熱交換器の組立てについては、前記外筒および前記内筒ともに、非常に難しく手間がかかり、コストもかかるものとなっていた。
【0014】
そして、特許文献2に示される様な排気ガス熱交換器は、前記胴部を一重管として構成することができるものの、この場合、高温の前記排気ガスが、前記胴部内を流通させるため、この排気ガス熱交換器全体を断熱材などで覆わなければ、上記メンテナンスなどを行なう作業者の安全性は確保されなかった。
【0015】
また、排気ガス熱交換器は、前記排気ガスの高温と耐食性との面から耐熱ステンレス鋼などの部材が用いられることが多いが、組立て性の面から、例えば、特許文献1で示した熱交換部内の仕切板や、特許文献2で示した伝熱管内の乱流促進板の取付けなどは、上記溶接以外に、銅ロー付けによる組立ても行なわれていた。
【0016】
このため、前記銅ロー付けによるステンレス粒界に侵入した前記銅により、前記耐熱ステンレス鋼の耐食性が低下してしまったり、前記銅ロー付け部が、高温の前記排気ガスの腐食環境にさらされることにより、前記銅が溶解してしまうことなどの不具合点が生じこともあり、更には、廃棄時に前記耐熱ステンレス鋼と前記銅とを分離することができないため、再利用が困難になるという問題も残されていた。
【0017】
このことより、本願発明の目的は、組立て作業性が良く、廃棄後の再利用が容易で安価な排気ガス熱交換器、および、省スペース化を可能とした排気ガス熱交換器を備えた冷凍装置を提供することにある。
【0018】
【課題を解決するための手段】
請求項1に記載の発明は、伝熱管を備えた熱交換部を胴部内に収納して、内燃機関から排出される排気ガスと、前記内燃機関を冷却する冷却水との熱交換を行なわせて前記排気ガスの温度を低下させる排気ガス熱交換器において、前記排気ガス熱交換器を構成する全ての部材を、耐熱ステンレス鋼など同一の耐熱性金属で統一された材質のものとし、これら部材を組み付けて構成するとともに、前記伝熱管内へ乱流促進板を備え、前記伝熱管内に前記排気ガスを流通させ、前記伝熱管外周に前記冷却水を流通させたことを特徴とするものである。
【0019】
請求項2に記載の発明は、請求項1に記載のものにおいて、前記部材の組み付けを溶接、カシメおよび固体拡散接合を含む固着固定にて行い、前記乱流促進板の固定を、前記伝熱管の全長の少なくとも一部外周を縮管させることにより行ったことを特徴とするものである。
【0020】
請求項3に記載の発明は、請求項1または2に記載のものにおいて、前記胴部の両端部へ前記排気ガスのみが流通する排気ガス流通部をそれぞれ配設し、前記排気ガス流通部の間に前記熱交換部を設けたことを特徴とするものである。
【0021】
請求項4に記載の発明は、請求項1乃至3のいずれかに記載のものにおいて、前記排気ガス流通部の少なくとも前記排気ガスの入口側となる一方の前記排気ガス流通部を収納した前記胴部の外周上を断熱材により断熱したことを特徴とするものである。
【0022】
請求項5に記載の発明は、請求項1乃至4のいずれかに記載のものにおいて、前記排気ガス熱交換器の胴部形状を、略円柱形状とし、前記排気ガスが流入する入口側を略円錐形状としたことを特徴とするものである。
【0023】
請求項6に記載の発明は、内燃機関で圧縮機を駆動して冷媒を循環させ、前記内燃機関の排気ガスを、前記内燃機関を冷却する冷却水と排気ガス熱交換器で熱交換させて前記排気ガスの温度を低下させ、大気へ排出する冷凍装置において、前記排気ガス熱交換器を、耐熱ステンレス鋼など同一の耐熱性金属からなる材質の部材により組立てられたものとするとともに、前記排気ガス熱交換器内に備える前記伝熱管内へ乱流促進板を備え、この伝熱管内に前記排気ガスを流通させ、前記伝熱管外周に前記冷却水を流通させたことを特徴とするものである。
【0024】
請求項7に記載の発明は、請求項6に記載のものにおいて、前記部材の組み付けを溶接、カシメおよび固体拡散接合を含む固着固定にて行い、前記乱流促進板の固定を、前記伝熱管の全長の少なくとも一部外周を縮管させることにより行ったことを特徴とするものである。
【0025】
請求項8に記載の発明は、請求項6または7に記載のものにおいて、前記排気ガス熱交換器を、その胴部両端に前記排気ガスのみが流通する排気ガス流通部が配設され、前記排気ガス流通部の間に前記伝熱管を備えた熱交換部が配設されたものとしたことを特徴とするものである。
【0026】
請求項9に記載の発明は、請求項6乃至8のいずれかに記載のものにおいて、前記排気ガス流通部の少なくとも前記排気ガスの入口側となる一方の前記排気ガス流通部を収納した前記胴部の外周上を断熱材により断熱したことを特徴とするものである。
【0027】
請求項10に記載の発明は、請求項6乃至9のいずれかに記載のものにおいて、前記排気ガス熱交換器の胴部形状を、円柱形状とし、前記排気ガスが流入する入口側を略円錐形状としたことを特徴とするものである。
【0028】
【発明の実施の形態】
以下、本願発明の一実施の形態について、図を参照しながら説明する。
【0029】
図1は、本願発明による組立て作業性が良く、廃棄後の再利用が容易な排気ガス熱交換器1を備えた冷凍装置3のブロック図である。
【0030】
この冷凍装置3は、例えば、熱源機4と放熱器5とが冷媒配管6a、6bで接続されて構成されている。
【0031】
一方の熱源機4は、内燃機関2と、この内燃機関2へ天然ガスなどの燃料を供給する燃料系7と、大気をろ過して吸引し、前記燃料系7より供給される前記燃料と混合させた混合ガスを内燃機関2へ供給する給気系8と、内燃機関2で燃焼させた燃焼ガスを排気ガスとして排出する排気系10と、内燃機関2を冷却する冷却系11と、内燃機関2の駆動力で冷媒を圧縮し、放熱器5へ循環させる冷媒系9とにより構成されている。
【0032】
また、他方の放熱器5は、室内熱交換器25と、この室内熱交換器25への送風を行なう室内送風機26とで構成されており、放熱器5が設置された空間の冷房、或いは、冷凍冷蔵、または、暖房や、加温などを行なうことが出来るものと成っている。
【0033】
熱源機4の燃料系7には、図示しない燃料遮断弁と、ゼロガバナとが備えられており、内燃機関2の運転能力に応じて、安定した燃料の供給を行なうとともに、内燃機関2の停止時、或いは、異常発生時には、内燃機関2へ供給する前記燃料を遮断できるものとなっている。
【0034】
給気系8には、図示しないろ過装置と、燃料系7から供給される燃料を、この給気系8で吸入された空気と混合させ、混合ガスを生成する混合装置とが備えられており、内燃機関2の運転能力に応じた前記混合ガスの供給が行なえるものとなっている。
【0035】
冷媒系9には、圧縮機12と四方弁13と室外熱交換器14と減圧弁15とアキュームレータ16とが冷媒配管で接続されて備えられるとともに、室外熱交換器14への送風を行なう冷媒送風機17が備えられている。圧縮機12は、内燃機関2の駆動力により駆動される圧縮機であり、該内燃機関2の駆動軸の一端に接続されている。四方弁13は、上記放熱器5の運転状態により圧縮機12で圧縮された冷媒の循環方向を反転するものとなっており、例えば、放熱器5が冷房、或いは、冷凍冷蔵を行なっていれば、圧縮機12で圧縮された冷媒は、四方弁13を経由して室外熱交換器14で、冷媒送風機17からの送風を受けて大気への放熱を行ない、減圧弁15で減圧されて冷媒配管6aを経由し、上記放熱器5を流通して、再度、四方弁13を経由し、アキュームレータ16へと戻る順路で循環させる。また、例えば、放熱器5が暖房、或いは、加温を行なうものであれば、圧縮機12で圧縮された前記冷媒は、四方弁13を経由して上記放熱器52を流通し、減圧弁15を経由して室外熱交換器14で、冷媒送風機17からの送風を受けて大気からの吸熱を行ない、再度、四方弁13を経由し、アキュームレータ16へと戻る順路で循環させる。
【0036】
排気系10には、浄化装置18と排気ガス熱交換器1と消音装置19と排気トップ20とが備えられており、内燃機関2内で燃焼させた前記燃焼ガスを排気ガスとして排出して浄化装置4で浄化し、排気ガス熱交換器1で、この内燃機関2を冷却する冷却水との熱交換を行なわせ、消音装置19により前記排気ガスのドラフト音などの消音を行って、排気トップ20から大気へ前記排気ガスを排出している。また、この排気系10には、図示してはいないが、排気ガス熱交換器1で冷却され、結露した前記排気ガス中に含まれる水分を中和して排水する中和装置が備えられている。
【0037】
冷却系11には、排気ガス熱交換器1と冷却水ポンプ21と三方弁22とラジエータ23とが冷却水配管で接続されて備えられるとともに、ラジエータ23への送風を行なうラジエータ送風機24が備えられている。そして、内燃機関2の運転開始時など前記冷却水の温度が低い状態では、前記冷却水は、冷却水ポンプ21と排気ガス熱交換器1と内燃機関2と三方弁22とを循環する経路で循環し、内燃機関2の暖気運転を行う様になっており、前記冷却水の温度が所定の温度(例えば、70℃)まで達すると、三方弁22での前記冷却水の流通方向が切り替わり、冷却水ポンプ21と排気ガス熱交換器1と内燃機関2と三方弁22とラジエータ23とを循環する経路で循環するものとなっている。
【0038】
そして、排気ガス熱交換器1は、図2の外観図に示す様に、例えば、円錐形状の部材aと円筒形状の部材bと前記部材bの一端部を閉塞する部材cとからなる円柱形状の胴部30を有し、この胴部30の部材aの頂部へフランジ部36aを有した排気ガス入口管36が設けられ、部材cへ排気ガス出口管37とドレン排水口41とが設けられている。また、部材b上の部材cに近い位置へは、冷却水入口管38が設けられ、この冷却水入口管38と対向し、部材a付近の部材b上の位置には、冷却水出口管39が設けられている。
【0039】
さらに、図3の断面図に示す様に、排気ガス入口管36、および、部材aの外周上は、例えば、セラミック繊維などの断熱材40で覆われている。この排気ガス入口管36、および、後述する排気ガス流通部32aを収納する部材aを断熱材40を覆う理由は、当然、この排気ガス流通部32a内を流通する内燃機関2から排出された前記排気ガスは、500℃から600℃にも達する高温となっているため、メンテナンスなどの作業を行なう作業者が、誤って、これら部分に触れ、火傷などを負ってしまうことを防止するためである。
【0040】
この排気ガス熱交換器1の内部について説明すると、胴部30は、一重管となっており、部材bの部材a側の一端部には間板31aが、部材bの部材c側の他端部の付近には間板31bが、それぞれ液密に溶接されて設けられており、この間板31aと部材aで囲われた空間は、内燃機関2から排出された排気ガスのみが流通する排気ガス流通部32aが設けられ、間板31bと部材bおよび部材cと囲われた空間は、排気ガス流通部32bが設けられている。
【0041】
ここで、部材aを円錐形状としている理由は、前記排気ガスが、排気ガス入口管36から排気ガス流通部32aへと導入した際、この排気ガス流通部32aの入口での乱流発生を抑え、熱交換部35の間板31a上へスムーズに拡散させる様にするためのものである。
【0042】
そして、複数本の伝熱管34が、前記排気ガス流通部32aと前記排気ガス流通部32bとを連通する様、間板31a、31b上に開口されて液密に設けられている。また、伝熱管34内には、乱流促進板33が嵌入されて設けられている。
【0043】
さらに、この排気ガス熱交換器1を構成する部材の材質は、耐熱ステンレス鋼などの耐食性のある同一の金属(例えば、SUS316L)で統一されており、伝熱管34内に嵌入された乱流促進板33の固定以外は、全て溶接により固定されたものとなっているが、カシメ接合や固体拡散接合を含む固着固定でも良い。
【0044】
乱流促進板33は、図4に示す様に、伝熱管34内へ挿入されたあと、この伝熱管34の全長の少なくとも一部外周上を、全外周方向からの圧縮による縮管により固定されている。これは、上述の様に、乱流促進板33、および、伝熱管34が、同一の材質により構成されており、熱による膨張係数も同一となるため、銅ロー付けや、溶接などの作業を行なわなくとも固定することができる。更には、上記銅ロー付けによる固定を行なわないため、廃棄時に分別する必要が無く、また、再生利用が容易に行なえる。
【0045】
そして、排気ガス入口管36のフランジ部36aが浄化装置18へと接続され、内燃機関2から排出された前記排気ガスは、図5の実線矢印で示す様に、排気ガス入口管36から排気ガス流通部32aを経由して、伝熱管34内へと導入し、乱流促進板33により前記排気ガスに乱流が発生する。これにより、前記排気ガスは、伝熱管34の内周面へ満遍なく接触しながら、この伝熱管34内を流通し、排気ガス流通部32bを経由して、排気ガス出口管37より導出される。
【0046】
これに対し、内燃機関2を冷却する前記冷却水は、図5の破線矢印で示す様に、冷却水入口管38より胴部30内へと流入し、熱交換部35の伝熱管34の外周に接しながら、前記排気ガスの流通方向と対向する方向へ流通し、冷却水出口管39より流出する。
【0047】
これは、前記冷却水の温度に対し、前記排気ガスの温度が高温であるため、熱交換部35内を流通することにより、一方の前記冷却水の温度は、前記排気ガスからの熱回収を行ない上昇し、他方の前記排気ガスの温度は、前記冷却水への熱供給を行なって低下する訳であるが、例えば、前記排気ガスの流通方向と、前記冷却水の流通方向とを同じ方向とした場合、熱交換部35の入口付近では、前記排気ガスと前記冷却水との温度差に大差があるため、前記排気ガスから前記冷却水への熱回収が十分に行なえるが、熱交換部35の出口付近では、上述の様に、前記排気ガスの温度は低下し、前記冷却水の温度は上昇してしまって双方の温度差が小さくなってしまうため、十分な熱回収が行なえない様になってしまうことから、熱交換部35内での熱交換効率に不均衡が生じてしまう。また、熱交換部35の入口付近では、前記排気ガスと、前記冷却水との温度差が大きいことから、それだけ前記排気ガスと前記冷却水との温度差による熱影響を受けることとなるため十分な強度を備えた構造としなければならなくなる。
【0048】
このため、前記排気ガスと前記冷却水との流通方向を、対向する方向として流通させ、熱交換部35を流通する前記排気ガスと前記冷却水との温度差が、ある程度保たれる様にすることにより、熱交換部35全体での熱交換効率が改善されるとともに、前記排気ガスと前記冷却水との温度差を、なるべく小さい状態として熱交換を行なわせることができるため、熱交換部35で受ける上記熱影響を最小限とすることができる。
【0049】
これにより、熱交換部35での熱交換性能を向上させられるため、この排気ガス熱交換器1を小型化することが可能となり、これを図1で示した内燃機関2の排気系10へ組み込むことにより、熱源機4の省スペース化を行なうことができる。さらに、排気ガス熱交換器1の胴部30の内壁に接して流通するものは、前記冷却水であるため、この胴部30の外周表面は、前記冷却水の温度が熱伝達されるのみとなり、この排気ガス熱交換器1全体を断熱材40で覆う、或いは、前記胴部30を2重管としなくとも、前記作業者の安全が確保されることとなる。また、構造的にも簡単と成るためコストの低減も行なえる。
【0050】
なお、本実施の形態では、排気ガス熱交換器1の部材bへ熱交換部35を設けているため、部材a内は排気ガス流通部32aとして、前記排気ガスが流通するのみとなっている。このため、部材a内は空洞となるため、この部材a内へ図1で示した浄化装置18を組込むことも可能となり、更に、熱源機4の小型を行なうことも可能となる。
【0051】
【発明の効果】
以上の説明より、排気ガス熱交換器を、乱流促進板を有した伝熱管内へ内燃機関から排出される排気ガスを流通させ、前記伝熱管の外周に前記内燃機関を冷却する冷却水を流通させて、排気ガス熱交換器の胴部を一重管とすることにより、小型で組立て作業性が良く、安価な排気ガス熱交換器とすることが可能となる。さらに、排気ガス熱交換器を構成する部材の材質を統一し、前記排気ガス熱交換器の組立てを溶接、カシメおよび固体拡散接合を含む固着固定により行なわれるものとすることにより、廃棄後の再生利用も容易となる。
【図面の簡単な説明】
【図1】本願発明による安全で、安価な排気ガス熱交換器1を備えた冷凍装置3のブロック図である。
【図2】排気ガス熱交換器1の胴部30の一部を透過表示した外観斜視図である。
【図3】排気ガス熱交換器1の側面断面図である。
【図4】排気ガス熱交換器1内に備えられた伝熱管34について示した斜視図である。
【図5】排気ガス熱交換器1内を流通する内燃機関2から排出された排気ガスと、前記内燃機関2を冷却する冷却水との流れについて示した図である。
【符号の説明】
1 排気ガス熱交換器
2 内燃機関
3 冷凍装置
12 圧縮機
30 胴部
31a、31b 間板
32a、32b 排気ガス流通部
33 乱流促進板
34 伝熱管
35 熱交換部
36 排気ガス入口管
37 排気ガス出口管
38 冷却水入口管
39 冷却水出口管
40 断熱材
41 ドレン排水口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas heat exchanger for exchanging heat of exhaust gas discharged from an internal combustion engine with cooling water, and a refrigeration system including an exhaust system configured using the exhaust gas heat exchanger.
[0002]
[Prior art]
In a refrigerating apparatus that operates a compressor with the driving force of an internal combustion engine, such as a conventional gas engine heat pump, exhaust gas discharged from the internal combustion engine is heated by a cooling water for cooling the internal combustion engine and an exhaust gas heat exchanger. The temperature of the exhaust gas is reduced and the exhaust gas is discharged to the atmosphere.
[0003]
This exhaust gas heat exchanger has, for example, a double-pipe structure including a cylindrical inner cylinder and an outer cylinder, and the outer cylinder is provided with side plates at both ends in the extending direction in a liquid-tight manner. A cooling water inlet pipe through which cooling water for cooling the internal combustion engine flows, and a cooling water outlet pipe.
[0004]
In the inner cylinder provided in the outer cylinder, an exhaust gas inlet pipe and an exhaust gas outlet pipe through which the exhaust gas discharged from the internal combustion engine flows are provided through the outer cylinder. Inside, a heat exchanging section for exchanging heat between the exhaust gas and the cooling water is provided. In the heat exchange section, the exhaust gas introduced from the exhaust gas inlet pipe flows in a zigzag manner in the heat exchange section, and a plurality of partition plates alternately forming a communication port in the inner cylinder. And a plurality of heat transfer tubes that penetrate these partition plates and are opened on the side plates of the inner cylinder. An annular space is formed between the outer cylinder and the inner cylinder.
[0005]
The exhaust gas discharged from the internal combustion engine is introduced from the exhaust gas inlet pipe to the heat exchange section, and is in contact with the inner wall of the inner cylinder, and the outer circumference of the heat transfer pipe, and along the communication port. The gas flows in a zigzag manner in the heat exchange section and is led out from the exhaust gas outlet pipe.
[0006]
Further, the cooling water for cooling the internal combustion engine flows from the cooling water inlet, flows through the annular space formed between the outer cylinder and the inner cylinder, and the inside of the heat transfer tube, and exhausts the exhaust gas. Heat is recovered from the gas and flows out from the cooling water outlet.
[0007]
As a result, the heat of the exhaust gas is exchanged with the cooling water through the heat exchange unit, and the temperature of the exhaust gas is reduced.
[0008]
Further, the exhaust gas heat exchanger has a structure in which the cooling water is circulated between the outer cylinder and the inner cylinder. The risk of touching the replacement unit has been prevented (see Patent Document 1).
[0009]
In addition, a turbulence promoting plate is provided in the heat transfer tube to allow the cooling water to flow, and a louver or a slit is provided in the partition plate provided in the heat exchange unit to improve heat exchange efficiency and reduce the size. Some are also available (see Patent Document 2).
[0010]
[Patent Document 1]
JP-A-8-49534 (page 3-4, FIG. 1)
[0011]
[Patent Document 2]
JP-A-2001-65339 (FIG. 1, page 4, FIG. 7)
[0012]
[Problems to be solved by the invention]
However, as described above, the body of the exhaust gas heat exchanger disclosed in Patent Literature 1 or Patent Literature 2 has the exhaust gas heat exchanger having a double structure including an outer cylinder and an inner cylinder. Since the cooling water for cooling the internal combustion engine is circulated in the annular space formed by the cylinder and the inner cylinder, the cooling water is cooled from the annular space to the outside or to the heat exchange unit. It was necessary to prevent water from leaking, and therefore, the inner cylinder side and the outer cylinder side of the annular space had to have a liquid-tight structure.
[0013]
Also, since the inner cylinder is in contact with the exhaust gas at about 500 ° C. to 600 ° C. and the cooling water at about 80 ° C., the assembling work of the inner cylinder and the outer cylinder of the exhaust gas heat exchanger is performed. In the above, advanced welding technology is required, and assembling of the exhaust gas heat exchanger, both the outer cylinder and the inner cylinder are extremely difficult, time-consuming, and costly. I was
[0014]
And although the exhaust gas heat exchanger as shown in patent document 2 can comprise the said trunk | drum as a single pipe, in this case, since the said high temperature exhaust gas circulates in the said trunk | drum, this Unless the entire exhaust gas heat exchanger is covered with a heat insulating material or the like, the safety of the operator performing the above maintenance and the like cannot be ensured.
[0015]
Further, in the exhaust gas heat exchanger, a member such as heat-resistant stainless steel is often used from the viewpoint of the high temperature and corrosion resistance of the exhaust gas. Attachment of a partition plate in the section or a turbulence promoting plate in the heat transfer tube disclosed in Patent Document 2 has been performed by copper brazing in addition to the above welding.
[0016]
For this reason, the corrosion resistance of the heat-resistant stainless steel is reduced due to the copper penetrating into the stainless steel grain boundary by the copper brazing, or the copper brazed portion is exposed to a high-temperature corrosive environment of the exhaust gas. Thereby, there may be a problem that the copper is dissolved, and further, since the heat-resistant stainless steel and the copper cannot be separated at the time of disposal, there is also a problem that reuse becomes difficult. Was left.
[0017]
Accordingly, an object of the present invention is to provide an inexpensive exhaust gas heat exchanger that has good assembling workability, is easy to reuse after disposal, and a refrigeration system equipped with an exhaust gas heat exchanger that enables space saving. It is to provide a device.
[0018]
[Means for Solving the Problems]
According to the first aspect of the present invention, a heat exchange section provided with a heat transfer tube is housed in a body portion, and heat exchange between exhaust gas discharged from the internal combustion engine and cooling water for cooling the internal combustion engine is performed. In the exhaust gas heat exchanger for lowering the temperature of the exhaust gas, all the members constituting the exhaust gas heat exchanger are made of the same material of the same heat-resistant metal such as heat-resistant stainless steel, and these members are used. And a turbulence promoting plate is provided in the heat transfer tube, the exhaust gas is circulated in the heat transfer tube, and the cooling water is circulated in the heat transfer tube outer periphery. is there.
[0019]
According to a second aspect of the present invention, in the first aspect, the member is assembled by fixing including welding, caulking and solid diffusion bonding, and the turbulence promoting plate is fixed by the heat transfer tube. Characterized in that the outer circumference of at least a part of the entire length is reduced.
[0020]
According to a third aspect of the present invention, in the first or second aspect, exhaust gas circulation sections through which only the exhaust gas flows are disposed at both ends of the body, and It is characterized in that the heat exchange part is provided between the two.
[0021]
The invention according to claim 4 is the cylinder according to any one of claims 1 to 3, wherein at least one of the exhaust gas passages on the exhaust gas inlet side of the exhaust gas passage is housed. The outer periphery of the portion is insulated by a heat insulating material.
[0022]
According to a fifth aspect of the present invention, in the one of the first to fourth aspects, the body shape of the exhaust gas heat exchanger is substantially cylindrical, and the inlet side into which the exhaust gas flows is substantially formed. It has a conical shape.
[0023]
According to a sixth aspect of the present invention, the compressor is driven by the internal combustion engine to circulate the refrigerant, and the exhaust gas of the internal combustion engine is heat-exchanged with the cooling water for cooling the internal combustion engine by the exhaust gas heat exchanger. In a refrigeration system for lowering the temperature of the exhaust gas and discharging the exhaust gas to the atmosphere, the exhaust gas heat exchanger is assembled with a member made of the same heat-resistant metal such as heat-resistant stainless steel, and the exhaust gas is exchanged. A turbulence promoting plate is provided in the heat transfer tube provided in the gas heat exchanger, the exhaust gas is circulated in the heat transfer tube, and the cooling water is circulated around the heat transfer tube. is there.
[0024]
According to a seventh aspect of the present invention, in the sixth aspect, the assembly of the members is performed by fixation including welding, caulking, and solid diffusion bonding, and the turbulence promoting plate is fixed by the heat transfer tube. Characterized in that the outer circumference of at least a part of the entire length is reduced.
[0025]
According to an eighth aspect of the present invention, there is provided the exhaust gas heat exchanger according to the sixth or seventh aspect, wherein an exhaust gas circulating portion through which only the exhaust gas circulates is disposed at both ends of the body portion, A heat exchange section provided with the heat transfer tube is disposed between the exhaust gas circulation sections.
[0026]
According to a ninth aspect of the present invention, in the cylinder according to any one of the sixth to eighth aspects, the cylinder housing at least one of the exhaust gas circulation portions on the exhaust gas inlet side of the exhaust gas circulation portion is housed. The outer periphery of the portion is insulated by a heat insulating material.
[0027]
According to a tenth aspect of the present invention, there is provided the exhaust gas heat exchanger according to any one of the sixth to ninth aspects, wherein a body of the exhaust gas heat exchanger has a cylindrical shape, and an inlet side into which the exhaust gas flows has a substantially conical shape. It is characterized by having a shape.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0029]
FIG. 1 is a block diagram of a refrigerating apparatus 3 having an exhaust gas heat exchanger 1 according to the present invention, which has good assembling workability and is easy to reuse after disposal.
[0030]
The refrigeration apparatus 3 is configured, for example, by connecting a heat source device 4 and a radiator 5 with refrigerant pipes 6a and 6b.
[0031]
One heat source unit 4 includes an internal combustion engine 2, a fuel system 7 for supplying a fuel such as natural gas to the internal combustion engine 2, and a filter that sucks the air and mixes the fuel with the fuel supplied from the fuel system 7. An air supply system 8 for supplying the mixed gas to the internal combustion engine 2, an exhaust system 10 for discharging combustion gas burned in the internal combustion engine 2 as exhaust gas, a cooling system 11 for cooling the internal combustion engine 2, And a refrigerant system 9 which compresses the refrigerant with the driving force of 2 and circulates the refrigerant to the radiator 5.
[0032]
The other radiator 5 includes an indoor heat exchanger 25 and an indoor blower 26 that blows air to the indoor heat exchanger 25, and cools a space in which the radiator 5 is installed, or Freezing and refrigeration, heating, heating, etc. can be performed.
[0033]
The fuel system 7 of the heat source unit 4 is provided with a fuel cut-off valve and a zero governor (not shown) to supply a stable fuel according to the operating capacity of the internal combustion engine 2 and to stop the internal combustion engine 2 when the internal combustion engine 2 is stopped. Alternatively, when an abnormality occurs, the fuel supplied to the internal combustion engine 2 can be shut off.
[0034]
The air supply system 8 includes a filtration device (not shown) and a mixing device that mixes the fuel supplied from the fuel system 7 with the air sucked in the air supply system 8 to generate a mixed gas. In addition, the supply of the mixed gas according to the operation capability of the internal combustion engine 2 can be performed.
[0035]
The refrigerant system 9 includes a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, a pressure reducing valve 15, and an accumulator 16 which are connected by refrigerant piping, and a refrigerant blower that blows air to the outdoor heat exchanger 14. 17 are provided. The compressor 12 is a compressor driven by the driving force of the internal combustion engine 2, and is connected to one end of a drive shaft of the internal combustion engine 2. The four-way valve 13 reverses the circulation direction of the refrigerant compressed by the compressor 12 depending on the operation state of the radiator 5. For example, if the radiator 5 performs cooling or freezing / refrigeration. The refrigerant compressed by the compressor 12 passes through the four-way valve 13, receives air from the refrigerant blower 17, and radiates heat to the atmosphere in the outdoor heat exchanger 14, and is decompressed by the pressure reducing valve 15 so that the refrigerant pipe After passing through the radiator 5 via 6 a, the heat is circulated again through the four-way valve 13 and back to the accumulator 16. Further, for example, if the radiator 5 performs heating or heating, the refrigerant compressed by the compressor 12 flows through the radiator 52 via the four-way valve 13 and the pressure reducing valve 15. Then, the air is received from the refrigerant blower 17 by the outdoor heat exchanger 14 to absorb heat from the atmosphere, and is again circulated through the four-way valve 13 and back to the accumulator 16.
[0036]
The exhaust system 10 is provided with a purifier 18, an exhaust gas heat exchanger 1, a silencer 19, and an exhaust top 20. The exhaust gas purifies the exhaust gas by burning the combustion gas burned in the internal combustion engine 2 as exhaust gas. The exhaust gas is exchanged with the cooling water for cooling the internal combustion engine 2 in the exhaust gas heat exchanger 1 and the exhaust gas heat exchanger 1 is silenced by the silencer 19 to reduce the exhaust gas draft and the like. The exhaust gas is discharged from 20 to the atmosphere. Although not shown, the exhaust system 10 is provided with a neutralization device that neutralizes water contained in the exhaust gas that has been cooled and condensed by the exhaust gas heat exchanger 1 and drains the water. I have.
[0037]
The cooling system 11 includes an exhaust gas heat exchanger 1, a cooling water pump 21, a three-way valve 22, and a radiator 23 connected by a cooling water pipe, and a radiator blower 24 that blows air to the radiator 23. ing. When the temperature of the cooling water is low, such as at the start of operation of the internal combustion engine 2, the cooling water is circulated through the cooling water pump 21, the exhaust gas heat exchanger 1, the internal combustion engine 2, and the three-way valve 22. When the temperature of the cooling water reaches a predetermined temperature (for example, 70 ° C.), the flow direction of the cooling water in the three-way valve 22 is switched, The cooling water pump 21, the exhaust gas heat exchanger 1, the internal combustion engine 2, the three-way valve 22, and the radiator 23 circulate in a circulating path.
[0038]
As shown in the external view of FIG. 2, the exhaust gas heat exchanger 1 has, for example, a cylindrical shape including a conical member a, a cylindrical member b, and a member c for closing one end of the member b. An exhaust gas inlet pipe 36 having a flange 36a is provided on the top of the member a of the body 30. An exhaust gas outlet pipe 37 and a drain outlet 41 are provided on the member c. ing. A cooling water inlet pipe 38 is provided at a position on the member b close to the member c, and is opposed to the cooling water inlet pipe 38, and a cooling water outlet pipe 39 is provided at a position on the member b near the member a. Is provided.
[0039]
Further, as shown in the cross-sectional view of FIG. 3, the exhaust gas inlet pipe 36 and the outer periphery of the member a are covered with a heat insulating material 40 such as a ceramic fiber. The reason for covering the heat insulating material 40 with the exhaust gas inlet pipe 36 and the member a for accommodating the later-described exhaust gas flow portion 32a is, of course, the reason that the exhaust gas is discharged from the internal combustion engine 2 flowing through the exhaust gas flow portion 32a. Since the exhaust gas has a high temperature of 500 ° C. to 600 ° C., it is intended to prevent a worker performing maintenance or the like from accidentally touching these parts and causing a burn or the like. .
[0040]
The inside of the exhaust gas heat exchanger 1 will be described. The body 30 is a single tube, and an intermediate plate 31a is provided at one end of the member b on the member a side, and the other end of the member b is provided on the member c side. An intermediate plate 31b is provided in the vicinity of the portion by welding in a liquid-tight manner, and a space surrounded by the intermediate plate 31a and the member a is an exhaust gas through which only exhaust gas discharged from the internal combustion engine 2 flows. An exhaust gas circulation section 32b is provided in a space provided with the circulation section 32a and surrounded by the intermediate plate 31b, the members b and c.
[0041]
Here, the reason why the member a is formed in a conical shape is that when the exhaust gas is introduced from the exhaust gas inlet pipe 36 into the exhaust gas flowing portion 32a, the occurrence of turbulent flow at the inlet of the exhaust gas flowing portion 32a is suppressed. This is for smoothly diffusing the heat exchange section 35 onto the inter-plate 31a.
[0042]
A plurality of heat transfer tubes 34 are provided on the intermediate plates 31a and 31b in a liquid-tight manner so as to communicate the exhaust gas flow portion 32a and the exhaust gas flow portion 32b. Further, a turbulence promoting plate 33 is fitted and provided in the heat transfer tube 34.
[0043]
Further, the material of the members constituting the exhaust gas heat exchanger 1 is unified with the same corrosion-resistant metal such as heat-resistant stainless steel (for example, SUS316L). Except for fixing the plate 33, all are fixed by welding. However, fixed fixing including caulking bonding or solid diffusion bonding may be used.
[0044]
After the turbulence promoting plate 33 is inserted into the heat transfer tube 34 as shown in FIG. 4, at least a part of the entire length of the heat transfer tube 34 is fixed on the outer circumference by a contraction tube by compression from the entire outer circumference direction. ing. This is because, as described above, the turbulence promoting plate 33 and the heat transfer tube 34 are made of the same material and have the same expansion coefficient due to heat. It can be fixed without performing. Further, since the fixing by the copper brazing is not performed, there is no need to separate at the time of disposal, and the recycling can be performed easily.
[0045]
Then, the flange portion 36a of the exhaust gas inlet pipe 36 is connected to the purification device 18, and the exhaust gas discharged from the internal combustion engine 2 is discharged from the exhaust gas inlet pipe 36 as shown by a solid line arrow in FIG. The exhaust gas is introduced into the heat transfer tube 34 via the flow portion 32a, and turbulence is generated in the exhaust gas by the turbulence promoting plate 33. Thus, the exhaust gas flows through the heat transfer tube 34 while uniformly contacting the inner peripheral surface of the heat transfer tube 34, and is led out of the exhaust gas outlet tube 37 via the exhaust gas flow portion 32 b.
[0046]
On the other hand, the cooling water for cooling the internal combustion engine 2 flows into the body 30 through the cooling water inlet pipe 38 as shown by a broken arrow in FIG. The exhaust gas flows in a direction opposite to the flow direction of the exhaust gas, and flows out of the cooling water outlet pipe 39.
[0047]
This is because the temperature of the exhaust gas is higher than the temperature of the cooling water. Therefore, by flowing through the heat exchange unit 35, the temperature of the one of the cooling water reduces the heat recovery from the exhaust gas. And the temperature of the other exhaust gas is lowered by supplying heat to the cooling water. For example, the flowing direction of the exhaust gas and the flowing direction of the cooling water are the same. In the vicinity of the inlet of the heat exchange unit 35, there is a large difference in the temperature difference between the exhaust gas and the cooling water, so that heat can be sufficiently recovered from the exhaust gas to the cooling water. In the vicinity of the outlet of the part 35, as described above, the temperature of the exhaust gas decreases, and the temperature of the cooling water increases, and the temperature difference between the two decreases, so that sufficient heat recovery cannot be performed. In the heat exchange section 35 Imbalance occurs in the heat exchange efficiency. Further, since the temperature difference between the exhaust gas and the cooling water is large near the inlet of the heat exchange unit 35, the temperature difference between the exhaust gas and the cooling water is affected by the heat, so that it is sufficient. It is necessary to have a structure with high strength.
[0048]
For this reason, the flow direction of the exhaust gas and the cooling water is made to flow in opposite directions, so that the temperature difference between the exhaust gas flowing through the heat exchange section 35 and the cooling water is maintained to some extent. Thereby, the heat exchange efficiency of the entire heat exchange unit 35 is improved, and the heat exchange can be performed with the temperature difference between the exhaust gas and the cooling water as small as possible. The above-mentioned thermal influence received by the above can be minimized.
[0049]
As a result, the heat exchange performance of the heat exchange section 35 can be improved, so that the exhaust gas heat exchanger 1 can be downsized, and this can be incorporated into the exhaust system 10 of the internal combustion engine 2 shown in FIG. Thereby, space saving of the heat source device 4 can be performed. Further, since the cooling water flows in contact with the inner wall of the body portion 30 of the exhaust gas heat exchanger 1, the outer peripheral surface of the body portion 30 only receives the heat transfer of the temperature of the cooling water. Even if the entire exhaust gas heat exchanger 1 is not covered with the heat insulating material 40, or the body 30 is not formed as a double pipe, the safety of the worker is ensured. Further, since the structure is simple, the cost can be reduced.
[0050]
In the present embodiment, since the heat exchange unit 35 is provided on the member b of the exhaust gas heat exchanger 1, the inside of the member a serves as the exhaust gas circulation unit 32a, and only the exhaust gas flows. . For this reason, since the inside of the member a is hollow, the purifying device 18 shown in FIG. 1 can be incorporated into the member a, and the heat source unit 4 can be downsized.
[0051]
【The invention's effect】
From the above description, the exhaust gas heat exchanger allows the exhaust gas discharged from the internal combustion engine to flow into the heat transfer tube having the turbulence promoting plate, and the cooling water for cooling the internal combustion engine is provided around the heat transfer tube. By making the body part of the exhaust gas heat exchanger circulated to be a single pipe, it is possible to make the exhaust gas heat exchanger small in size, good in assembling workability, and inexpensive. Further, by unifying the materials of the members constituting the exhaust gas heat exchanger and assembling the exhaust gas heat exchanger by fixing including welding, caulking and solid diffusion bonding, it is possible to recycle after disposal. It is easy to use.
[Brief description of the drawings]
FIG. 1 is a block diagram of a refrigeration system 3 including a safe and inexpensive exhaust gas heat exchanger 1 according to the present invention.
FIG. 2 is an external perspective view in which a part of a body 30 of the exhaust gas heat exchanger 1 is transparently displayed.
FIG. 3 is a side sectional view of the exhaust gas heat exchanger 1.
FIG. 4 is a perspective view showing a heat transfer tube 34 provided in the exhaust gas heat exchanger 1.
FIG. 5 is a diagram showing flows of exhaust gas discharged from the internal combustion engine 2 flowing in the exhaust gas heat exchanger 1 and cooling water for cooling the internal combustion engine 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exhaust gas heat exchanger 2 Internal combustion engine 3 Refrigerator 12 Compressor 30 Body part 31a, 31b Interplate 32a, 32b Exhaust gas circulation part 33 Turbulence promoting plate 34 Heat transfer tube 35 Heat exchange part 36 Exhaust gas inlet pipe 37 Exhaust gas Outlet pipe 38 Cooling water inlet pipe 39 Cooling water outlet pipe 40 Insulation material 41 Drain outlet

Claims (10)

伝熱管を備えた熱交換部を胴部内に収納して、内燃機関から排出される排気ガスと、前記内燃機関を冷却する冷却水との熱交換を行なわせて前記排気ガスの温度を低下させる排気ガス熱交換器において、
前記排気ガス熱交換器を構成する全ての部材を、耐熱ステンレス鋼など同一の耐熱性金属で統一された材質のものとし、これら部材を組み付けて構成するとともに、前記伝熱管内へ乱流促進板を備え、前記伝熱管内に前記排気ガスを流通させ、前記伝熱管外周に前記冷却水を流通させたことを特徴とする排気ガス熱交換器。
A heat exchange section provided with a heat transfer tube is housed in the body, and heat exchange between exhaust gas discharged from the internal combustion engine and cooling water for cooling the internal combustion engine is performed to lower the temperature of the exhaust gas. In the exhaust gas heat exchanger,
All the members that constitute the exhaust gas heat exchanger are made of the same material with the same heat-resistant metal such as heat-resistant stainless steel, and these members are assembled and configured, and the turbulent flow promotion plate is inserted into the heat transfer tube. Wherein the exhaust gas is circulated in the heat transfer tube, and the cooling water is circulated around the heat transfer tube.
前記部材の組み付けを溶接、カシメおよび固体拡散接合を含む固着固定にて行い、前記乱流促進板の固定を、前記伝熱管の全長の少なくとも一部外周を縮管させることにより行ったことを特徴とする請求項1に記載の排気ガス熱交換器。The assembly of the members is performed by fixing, including welding, caulking and solid diffusion bonding, and the fixing of the turbulence promoting plate is performed by contracting at least a part of the entire length of the heat transfer tube. The exhaust gas heat exchanger according to claim 1, wherein 前記胴部の両端部へ前記排気ガスのみが流通する排気ガス流通部をそれぞれ配設し、前記排気ガス流通部の間に前記熱交換部を設けたことを特徴とする請求項1または2に記載の排気ガス熱交換器。The exhaust gas circulation section through which only the exhaust gas flows is disposed at both ends of the body section, and the heat exchange section is provided between the exhaust gas circulation sections. Exhaust gas heat exchanger as described. 前記排気ガス流通部の少なくとも前記排気ガスの入口側となる一方の前記排気ガス流通部を収納した前記胴部の外周上を断熱材により断熱したことを特徴とする請求項1乃至3のいずれかに記載の排気ガス熱交換器。4. An outer periphery of the trunk portion, which accommodates at least one of the exhaust gas flow portions on the exhaust gas flow portion on the exhaust gas inlet side, is insulated by a heat insulating material. An exhaust gas heat exchanger according to item 1. 前記排気ガス熱交換器の胴部形状を、略円柱形状とし、前記排気ガスが流入する入口側を略円錐形状としたことを特徴とする請求項1乃至4のいずれかに記載の排気ガス熱交換器。The exhaust gas heat according to any one of claims 1 to 4, wherein a body of the exhaust gas heat exchanger has a substantially cylindrical shape, and an inlet side into which the exhaust gas flows has a substantially conical shape. Exchanger. 内燃機関で圧縮機を駆動して冷媒を循環させ、前記内燃機関の排気ガスを、前記内燃機関を冷却する冷却水と排気ガス熱交換器で熱交換させて前記排気ガスの温度を低下させ、大気へ排出する冷凍装置において、
前記排気ガス熱交換器を、耐熱ステンレス鋼など同一の耐熱性金属からなる材質の部材により組立てられたものとするとともに、前記排気ガス熱交換器内に備える前記伝熱管内へ乱流促進板を備え、この伝熱管内に前記排気ガスを流通させ、前記伝熱管外周に前記冷却水を流通させたことを特徴とする冷凍装置。
Driving a compressor in the internal combustion engine to circulate a refrigerant, the exhaust gas of the internal combustion engine, heat exchange with cooling water and an exhaust gas heat exchanger for cooling the internal combustion engine to reduce the temperature of the exhaust gas, In a refrigeration system that discharges to the atmosphere,
The exhaust gas heat exchanger is assembled with a member made of the same heat-resistant metal such as heat-resistant stainless steel, and a turbulence promoting plate is provided in the heat transfer tube provided in the exhaust gas heat exchanger. A refrigerating apparatus, wherein the exhaust gas is circulated in the heat transfer tube, and the cooling water is circulated around the heat transfer tube.
前記部材の組み付けを溶接、カシメおよび固体拡散接合を含む固着固定にて行い、前記乱流促進板の固定を、前記伝熱管の全長の少なくとも一部外周を縮管させることにより行ったことを特徴とする請求項6に記載の冷凍装置。The assembly of the members is performed by fixing, including welding, caulking and solid diffusion bonding, and the fixing of the turbulence promoting plate is performed by contracting at least a part of the entire length of the heat transfer tube. The refrigeration apparatus according to claim 6, wherein 前記排気ガス熱交換器を、その胴部両端に前記排気ガスのみが流通する排気ガス流通部が配設され、前記排気ガス流通部の間に前記伝熱管を備えた熱交換部が配設されたものとしたことを特徴とする請求項6または7に記載の冷凍装置。In the exhaust gas heat exchanger, an exhaust gas circulation portion through which only the exhaust gas flows is disposed at both ends of the body portion, and a heat exchange portion including the heat transfer tube is arranged between the exhaust gas circulation portions. The refrigerating device according to claim 6 or 7, wherein the refrigerating device is provided. 前記排気ガス流通部の少なくとも前記排気ガスの入口側となる一方の前記排気ガス流通部を収納した前記胴部の外周上を断熱材により断熱したことを特徴とする請求項6乃至8のいずれかに記載の冷凍装置。9. The outer periphery of the body portion that houses at least one of the exhaust gas flow portions on the exhaust gas flow portion on the inlet side of the exhaust gas is insulated by a heat insulating material. 10. A refrigeration apparatus according to claim 1. 前記排気ガス熱交換器の胴部形状を、円柱形状とし、前記排気ガスが流入する入口側を略円錐形状としたことを特徴とする請求項6乃至9のいずれかに記載の冷凍装置。The refrigeration apparatus according to any one of claims 6 to 9, wherein the body shape of the exhaust gas heat exchanger has a cylindrical shape, and the inlet side into which the exhaust gas flows has a substantially conical shape.
JP2002367760A 2002-12-19 2002-12-19 Exhaust gas heat exchanger and refrigerating plant Pending JP2004197664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367760A JP2004197664A (en) 2002-12-19 2002-12-19 Exhaust gas heat exchanger and refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367760A JP2004197664A (en) 2002-12-19 2002-12-19 Exhaust gas heat exchanger and refrigerating plant

Publications (1)

Publication Number Publication Date
JP2004197664A true JP2004197664A (en) 2004-07-15

Family

ID=32764548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367760A Pending JP2004197664A (en) 2002-12-19 2002-12-19 Exhaust gas heat exchanger and refrigerating plant

Country Status (1)

Country Link
JP (1) JP2004197664A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082579A (en) * 2006-09-26 2008-04-10 Kyocera Corp Plate fin type heat exchanger and fuel cell system
JP2009518611A (en) * 2005-12-05 2009-05-07 シーメンス アクチエンゲゼルシヤフト Steam generating pipe, manufacturing method thereof, and once-through boiler
JP2009186063A (en) * 2008-02-05 2009-08-20 Tokyo Forming Kk Heat exchanger and its manufacturing method
CN1828036B (en) * 2006-04-05 2011-09-14 胡大业 Heat exchanger of composite circulating internal combustion engine
JP2012042069A (en) * 2010-08-16 2012-03-01 Atago Seisakusho:Kk Heat exchanger for waste heat recovery
CN102898220A (en) * 2012-11-13 2013-01-30 广州市凯米瑞化肥有限公司 Plate type water cooling device applicable to particle fertilizer
JP2013113512A (en) * 2011-11-29 2013-06-10 Atago Seisakusho:Kk Heat exchanger for waste heat recovery
US8714238B2 (en) 2009-11-11 2014-05-06 Hyundai Motor Company Heat exchanger
KR20170129428A (en) * 2016-05-17 2017-11-27 최준영 Humidifier for fuel cell system
KR20220117666A (en) * 2021-02-17 2022-08-24 엘지전자 주식회사 Enginue System

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518611A (en) * 2005-12-05 2009-05-07 シーメンス アクチエンゲゼルシヤフト Steam generating pipe, manufacturing method thereof, and once-through boiler
CN1828036B (en) * 2006-04-05 2011-09-14 胡大业 Heat exchanger of composite circulating internal combustion engine
JP2008082579A (en) * 2006-09-26 2008-04-10 Kyocera Corp Plate fin type heat exchanger and fuel cell system
JP2009186063A (en) * 2008-02-05 2009-08-20 Tokyo Forming Kk Heat exchanger and its manufacturing method
US8714238B2 (en) 2009-11-11 2014-05-06 Hyundai Motor Company Heat exchanger
JP2012042069A (en) * 2010-08-16 2012-03-01 Atago Seisakusho:Kk Heat exchanger for waste heat recovery
JP2013113512A (en) * 2011-11-29 2013-06-10 Atago Seisakusho:Kk Heat exchanger for waste heat recovery
CN102898220A (en) * 2012-11-13 2013-01-30 广州市凯米瑞化肥有限公司 Plate type water cooling device applicable to particle fertilizer
KR20170129428A (en) * 2016-05-17 2017-11-27 최준영 Humidifier for fuel cell system
KR20220117666A (en) * 2021-02-17 2022-08-24 엘지전자 주식회사 Enginue System
KR102504678B1 (en) * 2021-02-17 2023-02-28 엘지전자 주식회사 Enginue System

Similar Documents

Publication Publication Date Title
US7966979B2 (en) Mounting and cooling device for emissions system electronics
US20060144585A1 (en) Exhaust gas heat exchanger for cogeneration system
CN101389850A (en) Exhaust gas recirculation system
JP2004197664A (en) Exhaust gas heat exchanger and refrigerating plant
JP4660311B2 (en) Engine exhaust treatment device and engine driven heat pump device
JP2004028535A (en) Exhaust heat exchanger
JP2002350092A (en) Heat exchanger and gas turbine apparatus provided therewith
JP3494217B2 (en) Gas turbine device with heat exchanger
JP4896081B2 (en) Cogeneration equipment
JP2004190997A (en) Heat recovering system, waste gas heat exchanger, and refrigerating unit comprising exhaust gas heat exchanger
JP4010807B2 (en) Air conditioner
US4791887A (en) Boiler with rotatable heat exchanger
JP2001073874A (en) Exhaust heat recovery device of gas engine
JP7038773B1 (en) Waste heat recovery adapter
JPH068263Y2 (en) Exhaust heat recovery device for engine
JP2016056752A (en) Waste heat recovery device for engine
JP5372473B2 (en) Air conditioner
RU2293255C1 (en) System for air heating and ventilation
KR101595203B1 (en) Air conditioner
JP2003129838A (en) Outdoor device of engine drive air conditioner
JPH0540254Y2 (en)
JP2003113712A (en) Outdoor unit for engine-driven air conditioner
JP5449910B2 (en) Exhaust gas heat exchange device and air conditioner
JPH0552444A (en) Engine-driven heat pump device
JP2001201205A (en) Air conditioner