JP2004197402A - Earthquake control structural building - Google Patents

Earthquake control structural building Download PDF

Info

Publication number
JP2004197402A
JP2004197402A JP2002366590A JP2002366590A JP2004197402A JP 2004197402 A JP2004197402 A JP 2004197402A JP 2002366590 A JP2002366590 A JP 2002366590A JP 2002366590 A JP2002366590 A JP 2002366590A JP 2004197402 A JP2004197402 A JP 2004197402A
Authority
JP
Japan
Prior art keywords
beams
frame
earthquake control
layer
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002366590A
Other languages
Japanese (ja)
Inventor
Okimori Sato
起司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2002366590A priority Critical patent/JP2004197402A/en
Publication of JP2004197402A publication Critical patent/JP2004197402A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an earthquake control structural building obtaining a simply clear and sufficient effect of earthquake control. <P>SOLUTION: In the earthquake control structural building installing earthquake control dampers 4 operating when up and down beams forming a frame make relative story displacements to the inside of the frame 3 composed of a column 1 and the beams 2, the connection of the column and the beams is substantially made by a relatively rotatable pin joint in the frame installing the vibration control dampers. When the earthquake control dampers are fixed to both up and down beams to enable the beams to make relative story displacements, a substance composed of a pair of steel plates laminated at an interval so as to make in-plane relative deformation, and a viscoelastic body interposed between the steel plates in an adhered state and exhibiting a damping force by a viscous resistance force receiving shear deformation by the in-plane relative deformation between the steel plates can be suitably adopted. When the earthquake control damper is installed to each layer, it is desirable that an installation position of the earthquake control damper in each layer is shifted sideways every layer to zigzag arrangement as the whole. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建物の振動を吸収し減衰させるための制震ダンパーを設置した制震構造建物に関する。
【0002】
【従来の技術】
周知のように、制震構造建物とは、建物内の要所に各種の制震ダンパーを設置することにより地震時の振動エネルギーを吸収して振動を減衰させる構造のもので、近年、広く普及する気運にある。
【0003】
この種の制震構造建物の一例を図5〜図7に示す。これは、図5に示すように建物の主架構である柱1と梁2とにより構成されるフレーム3の内側に、粘弾性壁と称される制震ダンパー4を壁の形態で設置したものである。その制震ダンパー4は、図6に示すように、上側の梁2の下面側に固定されて立ち下げられた1枚の鋼板5と、下側の梁2の上面側に固定されて立ち上げられた2枚の鋼板6とを、若干の間隙をおいて面内相対変形可能な状態で積層し、それら鋼板5と鋼板6との間にたとえばゴムアスファルトやシリコーンゴム等の粘弾性体7を接着状態で挟み込んだもので、薄型で簡便な構成でありながら大減衰力が得られるものである。
【0004】
上記の制震ダンパー4は、たとえば図7に示すように建物内の要所にスパン方向と桁行き方向の双方に所要台数ずつ配置されて設置される。これにより、地震時に建物が振動して上下の梁2が水平方向にずれるような層間変位を生じると、各制震ダンパー4は双方の鋼板5,6が面内で左右にずれるような変形が生じ、それによって鋼板5,6間に介装されている粘弾性体7が剪断変形を受け、その粘性抵抗により振動が吸収され減衰されて制震効果を発揮するものである。
【0005】
ところで、上記のような層間変位により作動する形式の制震ダンパー4は、建物に加わる水平力が梁2を介して伝達されるものであるから、制震ダンパー4を梁2に対して充分に強固に接合する必要があることはもとより、梁2自体が充分な曲げ剛性を有することが必要である。特に、図5や図7に示すようにフレーム3内に通路等の開口部を確保するために制震ダンパー4の幅寸法が梁スパンの半分程度とされる場合にあっては、梁2の半分程度が非拘束状態となっていることからその曲げ変形が生じ易いものとなるが、梁2が曲げ変形を生じてしまうと制震ダンパー4に対して地震力が有効に伝達されなくなって制震ダンパー4が有効に機能しないものとなるから、そのような場合においては梁2の断面を大きくしてその曲げ剛性を充分に高めておく必要がある。
【0006】
しかし、梁2の断面を大きくすると建物は必然的に高剛性化かつ短周期化することになり、それにより建物に入力される地震力が益々大きくなってフレーム3に地震力が集中し、梁2の曲げ変形がさらに生じ易くなる、という悪循環を生じる。また、梁2の大断面化により層剛性が必要以上に大きくなると、建物全体の変形が剪断変形よりも曲げ変形が卓越するものとなるので、制震ダンパー4を作動させるための層間変位が生じ難くなり、この点においても制震ダンパー4が有効に機能しなくなるという逆効果を生じる。
【0007】
そのため、この種の制震ダンパー4を有効に機能させるための構造として、たとえば特許文献1には、柱の曲げ剛性を低下させることにより建物の層剛性を低下させるという制震構造が提案されている。
【0008】
【特許文献1】
特開2000−54678号公報
【0009】
【発明が解決しようとする課題】
しかし、特許文献1に示される制震構造は、柱先行降伏形の架構を前提として柱断面を充分に小さくした細柱を採用するという特殊な構造形式を基本とするものであって、必ずしも一般に広く採用し得るようなものではなく、より単純にして明快な構造で充分に効果的な制震構造の開発が望まれていた。
【0010】
【課題を解決するための手段】
上記事情に鑑み、請求項1の発明は、柱と梁とにより構成されるフレームの内側に、そのフレームを構成している上下の梁が層間変位した際に作動する制震ダンパーを設置した制震構造建物であって、制震ダンパーを設置したフレームにおいては、その柱と梁との接合を実質的に相対回転可能なピン接合としたことを特徴とする。
【0011】
請求項2の発明は、請求項1の発明において、制震ダンパーは、上下の梁に対してそれぞれ固定されてそれら梁が層間変位した際に面内相対変形するように間隙をおいて積層された対の鋼板と、それら鋼板間に接着状態で介装されて鋼板どうしの面内相対変形により剪断変形を受けて粘性抵抗力により減衰力を発揮する粘弾性体から構成されていることを特徴とする。
【0012】
請求項3の発明は、請求項1または2の発明において、制震ダンパーを各層に設置するとともに、各層における制震ダンパーの設置位置を1層ごとに側方にずらして全体として千鳥配置としたことを特徴とする。
【0013】
【発明の実施の形態】
本発明の一実施形態を図1〜図2に示す。本実施形態の制震構造建物は、図6に示した公知の粘弾性壁タイプの制震ダンパー4を柱1と梁2とによるフレーム3の内側に設置したものであるが、この建物では主架構を単なるラーメン架構とするのではなく、制震ダンパー4を設置しているフレーム3においては、図1にシンボル化して示しているように柱1に対する梁2の接合を実質的にピン接合により行うものとしている。すなわち、従来一般のラーメン架構では梁2と柱1とが剛接合されてそれらの相対回転は拘束されるのであるが、本実施形態ではラーメン架構を基本としつつも、制震ダンパー4を設置するフレーム3においては梁2を柱1に対して少なくとも鉛直面内において相対回転可能な状態で接合するものとしている。なお、図2では柱1と梁2と通常の剛接合としている接合部を●、制震ダンパー4を設置して実質的にピン接合としている接合部を○として示している。
【0014】
このように、制震ダンパー4を設置するフレーム3においては梁2と柱1とを実質的にピン接合することにより、梁2と柱1とを剛接合する通常のラーメン構造の場合に比較して各層の層剛性が低下し、したがって地震時に建物が水平力を受けた際には層間変形が生じ易くなり、その層間変形により制震ダンパー4が効率的に作動するものとなる。
【0015】
すなわち、この建物が地震時に水平力を受けると、柱1に対する梁2の鉛直面内の相対回転が許容されることから、フレーム3が側方に倒れ込むような変形、つまり上下の梁2が水平方向に相対変位する層間変形が許容されるから、それら上下の梁2間に設置されている制震ダンパー4に確実に地震力が伝達され、それにより制震ダンパー4が確実かつ効率的に作動して振動を吸収して速やかに減衰させ、優れた制震効果が得られる。
【0016】
また、層剛性が低下することから建物全体が長周期化し、それによって建物への地震入力が自ずと低減されるという相乗効果も得られるし、さらに、フレーム3の変形は曲げ変形よりも剪断変形が卓越したものとなり、したがって梁2自体には過大な曲げモーメントが作用しないものとなるので、従来の制震構造における梁の大断面化とそれによる制震効果の低下という悪循環を断ち切ることができる。勿論、梁2と柱1とを従来の剛接合からピン接合に変更するだけでフレームに対する制震ダンパーの負担割合を上げる形式なので、フレームについてのコストダウンを図ることが可能であるし、制震ダンパーが効率的に作動することからそのコストダウンも図ることが可能である。
【0017】
なお、柱1と梁2との接合は文字どうりピンを用いての本来のピン接合とすることでも良いが、構造的にピン接合と見なせる(言い換えると剛接合とは見なせない)疑似ピン接合であっても良く、その限りにおいてたとえば簡易な溶接や簡易なボルト締結による接合も採用可能であるので、そのような接合形式を採用することが好適であり現実的である。
【0018】
また、制震ダンパー4としては上記のように鋼板5,6間に粘弾性体7を介装したいわゆる粘弾性壁タイプのものを採用することが好ましいが、本発明はそのような制震ダンパー4を採用することに限らず、上下の梁2の層間変位により作動して優れた制震効果が得られるものであれば、たとえばブレースタイプの制震ダンパー等の他の形式のものも採用可能である。
【0019】
また、制震ダンパー4を設置するフレーム3以外は基本的には通常のラーメン架構とすれば良いが、制震ダンパー4を有効に機能させることができ、構造安全性を確保できるものである限りにおいては特に限定されることはなく、必要に応じて他の制震要素や耐震要素を組み込むことは任意であるし、たとえば上述したような細柱の採用等により柱1の曲げ剛性を低下させて層剛性を一層低下させることも考えられる。
【0020】
また、制震ダンパー4の設置位置は建物の規模や形態、要求される制震性能に応じて決定すれば良いが、平面計画上は設置スペースを比較的確保し易く、かつ短スパンとされることも多いコア部に制震ダンパー4を集約配置することが現実的である。図2は建物の片側にコア部を設けた片コアタイプの建物への適用例であり、図3はセンターコアタイプの建物への適用例であるが、いずれも制震ダンパー4をコア部に集約配置する他、必要に応じて外周部にも設ければ良い。
【0021】
なお、制震ダンパー4を建物の各層に設置する場合には、たとえば図4(a)に示すように各層の制震ダンパー4を上下方向に連続しているフレーム3内に設けることでも良いが、(b)に示すように制震ダンパー4の設置位置を1層ごとに側方にずらして全体として千鳥配置とすれば、建物の各部の変形が均等化されるばかりでなく制震ダンパー4の緩み(制震ダンパー4や梁2自体の変形、あるいは梁2と制震ダンパー4の接合部での変形等に起因する機能低下)も生じ難くなるので、そのような千鳥配置とすることがより好ましい。勿論、いずれの場合においても、制震ダンパー4を設置するフレーム3では、図4に○として示しているように梁2と柱1とを実質的にピン接合すれば良い。
【0022】
【発明の効果】
請求項1の発明は、制震ダンパーを設置したフレームではその柱と梁との接合を実質的に相対回転可能なピン接合としたので、層剛性が低下して上下の梁の間で層間変位が生じ易くなり、制震ダンパーが確実かつ効率的に作動して優れた制震効果が得られ、また建物が長周期化することで地震入力が低下し、梁の曲げ剛性を低下させ得て小断面化を図ることができるという相乗効果も得られる。
【0023】
請求項2の発明は、鋼板間に粘弾性体を介装した構成の制震装置を採用したので、簡便な構造で大減衰力が得られ、優れた制震効果が得られる。
【0024】
請求項3の発明は、各層における制震ダンパーの設置位置を1層ごとに側方にずらして全体として千鳥配置としたので、建物全体の変形が均等化されるとともに、制震ダンパーの緩みが生じ難い効果がある。
【図面の簡単な説明】
【図1】本発明の制震構造建物の一実施形態を示す部分軸組図図である。
【図2】同、制震ダンパーの配置例を示す梁伏図である。
【図3】同、他の配置例を示す梁伏図である。
【図4】同、各層への制震ダンパーの配置例を示す図である。
【図5】従来の制震構造の一例を示す図である。
【図6】同、粘弾性壁タイプの制震ダンパーの一例を示す図である。
【図7】同、制震ダンパーの配置例を示す図である。
【符号の説明】
1 柱
2 梁
3 フレーム
4 制震ダンパー
5,6 鋼板
7 粘弾性体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration control structure building provided with a vibration control damper for absorbing and attenuating the vibration of the building.
[0002]
[Prior art]
As is well known, seismic control structures are structures that absorb vibration energy during earthquakes to attenuate vibrations by installing various vibration dampers at key points in the building. I am in the mood to do it.
[0003]
FIGS. 5 to 7 show an example of this type of building with a vibration control structure. As shown in FIG. 5, a vibration damper 4 called a viscoelastic wall is installed in the form of a wall inside a frame 3 composed of columns 1 and beams 2 which are main frames of the building as shown in FIG. It is. As shown in FIG. 6, the vibration damper 4 is fixed to the lower surface of the upper beam 2 and lowered, and is fixed to the upper surface of the lower beam 2 and raised. The two steel plates 6 thus obtained are laminated with a slight gap therebetween so as to be in-plane relative deformable, and a viscoelastic body 7 such as rubber asphalt or silicone rubber is interposed between the steel plates 5 and 6. It is sandwiched in an adhered state, and can provide a large damping force while having a thin and simple structure.
[0004]
As shown in FIG. 7, for example, as shown in FIG. 7, the required number of the vibration dampers 4 are arranged in required places in the building in both the span direction and the girder direction. Accordingly, when the building vibrates during an earthquake and causes an interlayer displacement such that the upper and lower beams 2 are displaced in the horizontal direction, each damping damper 4 is deformed such that both the steel plates 5 and 6 are displaced left and right in the plane. As a result, the viscoelastic body 7 interposed between the steel plates 5 and 6 undergoes shear deformation, and the vibration is absorbed and attenuated by the viscous resistance, thereby exhibiting a vibration damping effect.
[0005]
By the way, in the vibration damper 4 of the type operated by the interlayer displacement as described above, since the horizontal force applied to the building is transmitted through the beam 2, the vibration damper 4 is sufficiently moved with respect to the beam 2. Not only does it need to be firmly joined, but the beam 2 itself must have sufficient bending rigidity. In particular, as shown in FIGS. 5 and 7, when the width of the damping damper 4 is set to about half the beam span in order to secure an opening such as a passage in the frame 3, the beam 2 Since about half is in an unconstrained state, the bending deformation is likely to occur. However, if the beam 2 bends, the seismic force is not effectively transmitted to the damping damper 4 and the beam is controlled. Since the seismic damper 4 does not function effectively, in such a case, it is necessary to enlarge the cross section of the beam 2 to sufficiently increase its bending rigidity.
[0006]
However, if the cross section of the beam 2 is enlarged, the building will necessarily have high rigidity and a short period, whereby the seismic force input to the building will increase and the seismic force will be concentrated on the frame 3, A vicious cycle occurs in that bending deformation 2 is more likely to occur. Also, if the layer stiffness becomes unnecessarily large due to the large cross section of the beam 2, the deformation of the entire building becomes more bending than shearing, so interlayer displacement for operating the vibration damper 4 occurs. This also has the adverse effect that the damper 4 does not function effectively in this regard.
[0007]
Therefore, as a structure for making this type of vibration damper 4 function effectively, for example, Patent Literature 1 proposes a vibration control structure in which the bending stiffness of a column is reduced to lower the layer stiffness of a building. I have.
[0008]
[Patent Document 1]
JP 2000-54678 A
[Problems to be solved by the invention]
However, the vibration control structure disclosed in Patent Document 1 is based on a special structural form in which a narrow column having a sufficiently small column cross section is adopted on the premise of a column-type yielding type frame. There was a need for a simpler, clearer, and more effective damping structure that was not widely adopted.
[0010]
[Means for Solving the Problems]
In view of the above circumstances, the invention of claim 1 provides a damping system in which a vibration damper that operates when upper and lower beams forming the frame are displaced between layers is provided inside a frame formed by columns and beams. In a seismic structure building, in a frame in which a damping damper is installed, a joint between a column and a beam is a pin joint that can be substantially rotated relatively.
[0011]
According to a second aspect of the present invention, in the first aspect, the damping dampers are fixed to the upper and lower beams, respectively, and are stacked with a gap therebetween so that the beams are deformed in-plane relative to each other when the beams are displaced between layers. It is composed of a pair of steel plates and a viscoelastic body that is interposed in an adhesive state between the steel plates and undergoes shear deformation due to in-plane relative deformation between the steel plates and exerts damping force by viscous resistance. And
[0012]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the damping dampers are installed in each layer, and the installation positions of the damping dampers in the respective layers are shifted laterally for each layer to form a staggered arrangement as a whole. It is characterized by the following.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention is shown in FIGS. The damping structure building according to the present embodiment has a well-known viscoelastic wall type damping damper 4 shown in FIG. 6 installed inside a frame 3 formed by columns 1 and beams 2. In the frame 3 on which the damping damper 4 is installed, the frame 2 is not simply a ramen frame, but as shown in FIG. Shall do. That is, in the conventional general frame frame, the beam 2 and the column 1 are rigidly joined and their relative rotation is restricted, but in the present embodiment, the vibration damper 4 is installed while the frame frame is basically used. In the frame 3, the beam 2 is joined to the column 1 so as to be relatively rotatable at least in a vertical plane. In FIG. 2, a joint that forms a normal rigid connection between the column 1 and the beam 2 is indicated by ●, and a joint that is substantially pin-joined by installing the vibration damper 4 is indicated by ○.
[0014]
As described above, in the frame 3 on which the vibration damper 4 is installed, the beam 2 and the column 1 are substantially pin-joined to each other in comparison with the case of the ordinary rigid frame structure in which the beam 2 and the column 1 are rigidly joined. As a result, the layer rigidity of each layer is reduced, so that when the building is subjected to horizontal force during an earthquake, interlayer deformation is likely to occur, and the vibration damper 4 operates efficiently due to the interlayer deformation.
[0015]
That is, when this building receives horizontal force during an earthquake, relative rotation of the beam 2 in the vertical plane with respect to the column 1 is allowed, so that deformation such that the frame 3 falls down to the side, that is, the upper and lower beams 2 are horizontal. The seismic force is reliably transmitted to the vibration damper 4 installed between the upper and lower beams 2 because the interlayer deformation that is relatively displaced in the direction is allowed, so that the vibration damper 4 operates reliably and efficiently. As a result, the vibration is absorbed and attenuated quickly, resulting in an excellent vibration damping effect.
[0016]
In addition, since the layer rigidity is reduced, the entire building is prolonged in period, whereby a synergistic effect that the earthquake input to the building is naturally reduced is obtained. In addition, the deformation of the frame 3 is more shearing than bending. Since the beam 2 is excellent, and no excessive bending moment acts on the beam 2 itself, it is possible to cut off the vicious cycle of increasing the cross section of the beam in the conventional vibration control structure and reducing the vibration control effect. Of course, by changing the beam 2 and the column 1 from the conventional rigid connection to the pin connection, the burden ratio of the vibration damper to the frame is increased, so that the cost of the frame can be reduced, and the vibration can be reduced. Since the damper operates efficiently, the cost can be reduced.
[0017]
In addition, the joint between the column 1 and the beam 2 may be an original pin joint using a character pin, but a pseudo pin that can be structurally regarded as a pin joint (in other words, cannot be regarded as a rigid joint) Joining may be used, and for example, joining by simple welding or simple bolting can be adopted as long as such joining is adopted. Therefore, adopting such a joining type is preferable and practical.
[0018]
As the vibration damper 4, it is preferable to use a so-called viscoelastic wall type in which the viscoelastic body 7 is interposed between the steel plates 5 and 6 as described above. Not only the type 4 but also other types, such as a brace type vibration damper, can be used as long as they operate by the interlayer displacement of the upper and lower beams 2 and provide an excellent damping effect. It is.
[0019]
In addition, except for the frame 3 on which the vibration damper 4 is installed, it is basically sufficient to use a normal frame structure. However, as long as the vibration damper 4 can function effectively and structural safety can be ensured. Is not particularly limited, and it is optional to incorporate other damping elements and seismic elements as necessary. For example, the bending rigidity of the column 1 is reduced by adopting the above-described thin column. It is also conceivable that the layer stiffness is further reduced.
[0020]
Further, the installation position of the vibration damper 4 may be determined according to the size and form of the building and the required vibration damping performance. However, in the floor plan, the installation space is relatively easily secured and the span is set to be short. It is realistic to collectively arrange the vibration dampers 4 in the core part, which often occurs. FIG. 2 shows an example of application to a single-core type building in which a core is provided on one side of the building, and FIG. 3 shows an example of application to a center-core type building. In addition to the centralized arrangement, it may be provided on the outer periphery as needed.
[0021]
When the damping dampers 4 are installed on each layer of the building, for example, as shown in FIG. 4A, the damping dampers 4 of each layer may be provided in the vertically continuous frame 3. (B), if the installation position of the vibration damper 4 is shifted side by side for each layer to form a zigzag arrangement as a whole, not only the deformation of each part of the building is equalized, but also the vibration damper 4 (Deformation of the damping damper 4 or the beam 2 itself, or functional deterioration due to deformation at the joint between the beam 2 and the damping damper 4) is unlikely to occur. More preferred. Of course, in any case, in the frame 3 on which the vibration damper 4 is installed, the beam 2 and the column 1 may be substantially pin-joined as indicated by a circle in FIG.
[0022]
【The invention's effect】
According to the first aspect of the invention, in the frame in which the damping damper is installed, the joint between the column and the beam is substantially a pin joint that can be relatively rotated, so that the layer rigidity is reduced and the interlayer displacement between the upper and lower beams is reduced. The vibration control damper operates reliably and efficiently to obtain an excellent vibration control effect, and the longer period of the building reduces the earthquake input and lowers the bending rigidity of the beam. A synergistic effect that a small cross section can be achieved is also obtained.
[0023]
The invention of claim 2 employs a vibration damping device having a configuration in which a viscoelastic body is interposed between steel plates, so that a large damping force can be obtained with a simple structure, and an excellent vibration damping effect can be obtained.
[0024]
According to the third aspect of the present invention, since the installation position of the vibration damper in each layer is shifted sideways for each layer and the entire structure is arranged in a staggered manner, the deformation of the entire building is equalized and the vibration damper is not loosened. There is an effect that hardly occurs.
[Brief description of the drawings]
FIG. 1 is a partial frame diagram showing one embodiment of a vibration control structure building of the present invention.
FIG. 2 is a beam plan view showing an example of an arrangement of a vibration damper.
FIG. 3 is a beam plan view showing another example of arrangement.
FIG. 4 is a diagram showing an example of the arrangement of vibration dampers on each layer.
FIG. 5 is a diagram showing an example of a conventional vibration control structure.
FIG. 6 is a diagram showing an example of a viscoelastic wall type vibration damper.
FIG. 7 is a diagram showing an example of the arrangement of a vibration damper.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Column 2 Beam 3 Frame 4 Damping damper 5, 6 Steel plate 7 Viscoelastic body

Claims (3)

柱と梁とにより構成されるフレームの内側に、そのフレームを構成している上下の梁が層間変位した際に作動する制震ダンパーを設置した制震構造建物であって、制震ダンパーを設置したフレームにおいては、その柱と梁との接合を実質的に相対回転可能なピン接合としたことを特徴とする制震構造建物。A seismic control structure building with a damping damper installed inside a frame consisting of columns and beams that operates when the upper and lower beams that make up the frame are displaced between layers. In the frame, the joint between the column and the beam is a pin joint that can be rotated substantially relative to each other. 制震ダンパーは、上下の梁に対してそれぞれ固定されてそれら梁が層間変位した際に面内相対変形するように間隙をおいて積層された対の鋼板と、それら鋼板間に接着状態で介装されて鋼板どうしの面内相対変形により剪断変形を受けて粘性抵抗力により減衰力を発揮する粘弾性体から構成されていることを特徴とする請求項1記載の制震構造建物。The damping dampers are fixed to the upper and lower beams, respectively, and a pair of steel plates stacked with a gap so that the beams are deformed in-plane relative to each other when the beams are displaced between layers. 2. The vibration control structure building according to claim 1, wherein the building is formed of a viscoelastic body which is mounted and undergoes shear deformation due to in-plane relative deformation between steel plates and exhibits damping force by viscous resistance. 制震ダンパーを各層に設置するとともに、各層における制震ダンパーの設置位置を1層ごとに側方にずらして全体として千鳥配置としたことを特徴とする請求項1または2記載の制震構造建物。3. The vibration control structure building according to claim 1 or 2, wherein the vibration dampers are installed in each layer, and the installation positions of the vibration dampers in each layer are shifted side by side for each layer to form a zigzag arrangement as a whole. .
JP2002366590A 2002-12-18 2002-12-18 Earthquake control structural building Withdrawn JP2004197402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366590A JP2004197402A (en) 2002-12-18 2002-12-18 Earthquake control structural building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366590A JP2004197402A (en) 2002-12-18 2002-12-18 Earthquake control structural building

Publications (1)

Publication Number Publication Date
JP2004197402A true JP2004197402A (en) 2004-07-15

Family

ID=32763751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366590A Withdrawn JP2004197402A (en) 2002-12-18 2002-12-18 Earthquake control structural building

Country Status (1)

Country Link
JP (1) JP2004197402A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048217A1 (en) * 2005-10-26 2007-05-03 Yolles Partnership Inc. Fork configuration dampers and method of using same
JP2013253473A (en) * 2013-08-05 2013-12-19 Oiles Ind Co Ltd Seismic control structure
US8881491B2 (en) 2011-01-14 2014-11-11 Constantin Christopoulos Coupling member for damping vibrations in building structures
WO2015051464A1 (en) * 2013-10-11 2015-04-16 The Governing Council Of The University Of Toronto Viscous wall coupling damper for use in an outrigger building configuration

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048217A1 (en) * 2005-10-26 2007-05-03 Yolles Partnership Inc. Fork configuration dampers and method of using same
US7987639B2 (en) 2005-10-26 2011-08-02 The Governing Council Of The University Of Toronto Fork configuration dampers and method of using same
US8881491B2 (en) 2011-01-14 2014-11-11 Constantin Christopoulos Coupling member for damping vibrations in building structures
JP2013253473A (en) * 2013-08-05 2013-12-19 Oiles Ind Co Ltd Seismic control structure
WO2015051464A1 (en) * 2013-10-11 2015-04-16 The Governing Council Of The University Of Toronto Viscous wall coupling damper for use in an outrigger building configuration
EP3055464A4 (en) * 2013-10-11 2017-11-01 The Governing Council of the University of Toronto Viscous wall coupling damper for use in an outrigger building configuration
EP3569787A1 (en) * 2013-10-11 2019-11-20 The Governing Council of the University of Toronto Viscous wall coupling damper for use in an outrigger building configuration

Similar Documents

Publication Publication Date Title
JP2008286384A (en) Damping apparatus
JP4070117B2 (en) Vibration control device
JP2015078498A (en) Bridge vibration control structure
JP2004197402A (en) Earthquake control structural building
JP2019120050A (en) Vibration control unit, vibration control device, and building
JP2010203150A (en) Seismic response control frame
JP3377770B2 (en) How to build a damping structure
KR101070257B1 (en) Structure for Seismic Strengthening of Building Structures
JP2006249756A (en) Frame structure of building
KR101070258B1 (en) Structure for Seismic Strengthening of Building Structures Using Tendon
JP2004285599A (en) Vibration control structure of structure
JP2001182361A (en) Damper for building and vibration control construction for building using the same
JP3248684B2 (en) Damping structure
JP5682035B2 (en) Vibration control structure
JP2002030828A (en) Brace damper
JP5348860B2 (en) Damping structure
JP2007239967A (en) Vibration control device, unit building and building using same
JP4368504B2 (en) Vibration control device for column beam frame
JP5447974B2 (en) Damping floor beam
JP3020089B2 (en) Damping structure beam
JP3204095B2 (en) Seismic control structure of non-installed layer in two-layer or multi-layer oil damper installation
JP2011132690A (en) Vibration control structure
JP5363183B2 (en) Seismic control device for wooden buildings
JP2001182193A (en) Method for controlling vibration of house
JP2003097085A (en) Vibration control structure of building

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307