JP2004197220A - Electrolytic treatment device, and method therefor - Google Patents

Electrolytic treatment device, and method therefor Download PDF

Info

Publication number
JP2004197220A
JP2004197220A JP2003399443A JP2003399443A JP2004197220A JP 2004197220 A JP2004197220 A JP 2004197220A JP 2003399443 A JP2003399443 A JP 2003399443A JP 2003399443 A JP2003399443 A JP 2003399443A JP 2004197220 A JP2004197220 A JP 2004197220A
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrolytic
plating
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399443A
Other languages
Japanese (ja)
Other versions
JP2004197220A5 (en
Inventor
Natsuki Makino
夏木 牧野
Junji Kunisawa
淳次 國澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003399443A priority Critical patent/JP2004197220A/en
Publication of JP2004197220A publication Critical patent/JP2004197220A/en
Publication of JP2004197220A5 publication Critical patent/JP2004197220A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform CMP (Chemical Mechanical Polishing) working in a short time by improving the flatness of a plating film even if fine grooves and large grooves are coexistent on the surface of a substrate. <P>SOLUTION: The electrolytic treatment device is provided with: a substrate holding part 36 for holding a substrate; a first electrode 88 for supplying electric currents to the treatment face of the substrate; and an electrode head 28 having a second electrode 98 and a high resistance structure 110 arranged so as to be confronted with the substrate holding part 36 in order, and a polishing face 120a arranged at a position facing the substrate W held by the substrate holding part 36. The electrolytic treatment device is further provided with: an electrolytic solution injecting means of injecting an electrolytic solution into the space between the substrate held by the substrate holding part 36 and the second electrode 98; a relative movement mechanism of relatively moving the substrate holding part 36 and the electrode head 28; a pressing mechanism 122 of pressing the polishing face 120a of the electrode head 28 against the substrate W held by the substrate holding part 36; and a power source 114 of applying voltage in such a manner that the direction of the electric current is selectively switched between the first electrode 88 and the second electrode 98. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電解処理装置及びその方法に係り、特に半導体基板に形成された微細配線パターン(窪み)に銅(Cu)等の金属を埋込んで配線を形成するのに使用される電解処理装置及びその方法に関する。   The present invention relates to an electrolytic processing apparatus and a method thereof, and more particularly to an electrolytic processing apparatus used for forming a wiring by embedding a metal such as copper (Cu) in a fine wiring pattern (dent) formed on a semiconductor substrate. And its method.

近年、半導体基板上に配線回路を形成するための金属材料として、アルミニウムまたはアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋込むことによって一般に形成される。この銅配線を形成する方法としては、CVD、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜し、化学的機械的研磨(CMP)により不要の銅を除去するようにしている。   In recent years, as a metal material for forming a wiring circuit on a semiconductor substrate, a trend of using copper (Cu) having low electric resistivity and high electromigration resistance in place of aluminum or an aluminum alloy has become remarkable. This type of copper wiring is generally formed by embedding copper in a fine recess provided on the surface of a substrate. As a method of forming the copper wiring, there are methods such as CVD, sputtering and plating. In any case, copper is formed on almost the entire surface of the substrate, and unnecessary copper is formed by chemical mechanical polishing (CMP). Is to be removed.

図22は、この種の銅配線基板Wの製造例を工程順に示すもので、先ず、図22(a)に示すように、半導体素子を形成した半導体基材1上の導電層1aの上にSiOからなる酸化膜2を堆積し、リソグラフィ・エッチング技術によりコンタクトホール3と配線溝4を形成し、その上にTaN等からなるバリア層5、更にその上に電解めっきの給電層としてシード層7を形成する。 FIG. 22 shows a manufacturing example of this type of copper wiring board W in the order of steps. First, as shown in FIG. 22 (a), on a conductive layer 1a on a semiconductor substrate 1 on which a semiconductor element is formed. An oxide film 2 made of SiO 2 is deposited, a contact hole 3 and a wiring groove 4 are formed by lithography and etching technology, and a barrier layer 5 made of TaN or the like is further formed thereon, and a seed layer is formed thereon as a power supply layer for electrolytic plating. 7 is formed.

そして、図22(b)に示すように、基板Wの表面に銅めっきを施すことで、半導体基材1のコンタクトホール3及び配線溝4内に銅を充填するとともに、酸化膜2上に銅膜6を堆積する。その後、化学的機械的研磨(CMP)により、酸化膜2上の銅膜6及びバリア層5を除去して、コンタクトホール3及び配線溝4に充填させた銅膜6の表面と酸化膜2の表面とをほぼ同一平面にする。これにより、図22(c)に示すように銅膜6からなる配線が形成される。   Then, as shown in FIG. 22B, copper is applied to the surface of the substrate W to fill the contact holes 3 and the wiring grooves 4 of the semiconductor substrate 1 with copper, and the copper is formed on the oxide film 2. A film 6 is deposited. Thereafter, the copper film 6 and the barrier layer 5 on the oxide film 2 are removed by chemical mechanical polishing (CMP), and the surface of the copper film 6 filled in the contact holes 3 and the wiring grooves 4 and the surface of the oxide film 2 are removed. Make it almost flush with the surface. As a result, a wiring made of the copper film 6 is formed as shown in FIG.

ところで、図23に示すように、例えば、幅dが0.1μm以下の微細溝8と、幅dが100μm程度の大溝9とが混在する基板Wの表面に銅めっきを施して銅膜6を形成すると、めっき液や該めっき液に含有される添加剤の働きを最適化したとしても、微細溝8の上ではめっきの成長が促進されて銅膜6が盛り上がる傾向がある。一方、大溝9の内部ではレベリング性を高めためっきの成長を行うことができないため、結果として、基板W上に堆積した銅膜6には、微細溝8上の盛り上がり高さaと、大溝9上の凹み深さbとをプラスした段差a+bが残る。このため、微細溝8及び大溝9の内部に銅を埋込んだ状態で、基板Wの表面を平坦化させるには、銅膜6の膜厚を十分に厚くし、しかもCMPで前記段差a+b分余分に研磨する必要があった。 By the way, as shown in FIG. 23, for example, copper plating is performed on the surface of the substrate W in which the fine groove 8 having a width d 1 of 0.1 μm or less and the large groove 9 having a width d 2 of about 100 μm are mixed. When 6 is formed, even if the function of the plating solution and the additives contained in the plating solution is optimized, the growth of plating tends to be promoted on the fine grooves 8 and the copper film 6 tends to rise. On the other hand, it is impossible to grow the plating with enhanced leveling property inside the large groove 9, and as a result, the copper film 6 deposited on the substrate W has a raised height a on the fine groove 8 and a large groove 9. A step a + b, which is obtained by adding the upper recess depth b, remains. Therefore, in order to flatten the surface of the substrate W in a state in which copper is embedded in the fine grooves 8 and the large grooves 9, the thickness of the copper film 6 is made sufficiently large, and the step a + b is removed by CMP. Extra polishing was required.

しかし、めっき膜のCMP工程を考えた時、めっき膜厚を厚くして研磨量を多くすればする程、CMPの加工時間が延びてしまい、これをカバーするためにCMPレートを上げれば、CMP加工時に大溝でのディッシングが生じるといった問題があった。   However, when considering the CMP process of the plating film, the longer the polishing thickness and the greater the polishing amount, the longer the processing time of the CMP. If the CMP rate is increased to cover this, There is a problem that dishing occurs in a large groove during processing.

つまり、これらを解決するには、めっき膜厚を極力薄くし、基板表面に微細溝と大溝が混在しても、めっき膜の盛り上がりや凹みを無くして、平坦性を上げる必要があるが、例えば電解硫酸銅浴でめっき処理を行った場合、めっき液や添加剤の作用だけで盛り上がりを減らすことと、凹みを減らすことを両立することができないのが現状であった。また、積層中のめっき電源を一時逆電圧としたり、PRパルス電源としたりすることで盛り上がりを少なくすることは可能であるが、凹部の解消にはならず、加えて表面の膜質を劣とすることになっていた。   In other words, in order to solve these problems, it is necessary to reduce the plating film thickness as much as possible, and to eliminate the swelling and dents of the plating film and improve the flatness even if the fine grooves and the large grooves coexist on the substrate surface. At present, when plating treatment is performed in an electrolytic copper sulfate bath, it is impossible at the present time to reduce both swelling and dents only by the action of a plating solution or an additive. In addition, it is possible to reduce the swelling by temporarily setting the plating power supply during the lamination to a reverse voltage or using a PR pulse power supply, but it does not eliminate the concave portion and additionally deteriorates the surface film quality. Was supposed to.

さらに、化学的、機械的、電気的ポリッシングのように、めっきをしながらCMPで削るというプロセスも発表されているが、めっき成長面に機械加工が付加されることで、めっきの異常成長を促すことにもなり、膜質に問題を起こしていた。   In addition, there has been announced a process of polishing by CMP while plating, such as chemical, mechanical, and electrical polishing. However, the addition of machining to the plating growth surface promotes abnormal growth of plating. As a result, there was a problem with the film quality.

本発明は上記事情に鑑みて為されたもので、基板表面に微細溝と大溝が混在しても、めっき膜の平坦性を向上させて、その後のCMP加工をディッシングの発生を防止しつつ短時間で行うことができるようにした電解処理装置及びその方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. Even if fine grooves and large grooves are present on the substrate surface, the flatness of the plating film is improved, and the subsequent CMP processing is performed while preventing the occurrence of dishing. An object of the present invention is to provide an electrolytic treatment apparatus and a method thereof that can be performed in a short time.

請求項1に記載の発明は、基板を保持する基板保持部と、基板と接触して該基板の被処理面に通電させる第1の電極と、前記基板保持部に対向して順に配置された第2の電極及び高抵抗構造体と、前記基板保持部で保持した基板の被処理面に対峙する位置に配置された研磨面とを有する電極ヘッドと、前記基板保持部で保持した基板の被処理面と前記第2の電極との間に電解液を注入する電解液注入手段と、前記基板保持部と前記電極ヘッドとを相対移動させる相対移動機構と、前記電極ヘッドの研磨面を前記基板保持部で保持した基板に向けて押付ける押圧機構と、前記第1の電極と前記第2の電極との間に電流の方向を選択的に切換えて電圧を印加する電源を有することを特徴とする電解処理装置である。   According to the first aspect of the present invention, a substrate holding unit that holds a substrate, a first electrode that is in contact with the substrate and energizes a surface to be processed of the substrate, and is sequentially arranged facing the substrate holding unit. An electrode head having a second electrode, a high-resistance structure, and a polished surface disposed at a position facing the surface to be processed of the substrate held by the substrate holding unit; An electrolyte injection means for injecting an electrolyte between the processing surface and the second electrode, a relative movement mechanism for relatively moving the substrate holding unit and the electrode head, and a polishing surface of the electrode head for the substrate A pressing mechanism for pressing the substrate against the substrate held by the holding unit; and a power supply for selectively switching a current direction between the first electrode and the second electrode to apply a voltage. This is an electrolytic processing apparatus.

これにより、第1の電極をカソード、第2の電極をアノードとして電解めっきを行い、電源を介して電流の方向を逆にして、つまり第1の電極をアノード、第2の電極をカソードとして電解エッチングを行うことができる。この電解エッチングを、研磨面を基板の被処理面(めっき面)に押付けながら、研磨面と基板とを相対的に移動させて行うことで、例えば微細溝の上部に形成されるめっき膜の盛り上がった部分の最上層の薄膜をこすり取り、露出しためっき膜を選択的にエッチング除去して、めっき膜の平坦性を向上させることができる。   Thus, electrolytic plating is performed using the first electrode as a cathode and the second electrode as an anode, and the direction of current is reversed via a power supply, that is, the first electrode is used as an anode and the second electrode is used as a cathode. Etching can be performed. The electrolytic etching is performed by relatively moving the polished surface and the substrate while pressing the polished surface against the surface to be processed (plating surface) of the substrate, so that, for example, the swelling of the plating film formed above the fine grooves The uppermost thin film in the portion that has been rubbed is scraped off, and the exposed plating film is selectively removed by etching, so that the flatness of the plating film can be improved.

請求項2に記載の発明は、前記研磨面は、前記高抵抗構造体の基板対向面に取付けた研磨パッドの露出表面に設けられていることを特徴とする請求項1記載の電解処理装置である。
請求項3に記載の発明は、前記研磨面は、サポートで支持された研磨パッドの露出表面に設けられていることを特徴とする請求項1記載の電解処理装置である。
これにより、材質や形状が問われないサポートを介して研磨パッドを保持することで、研磨パッドを容易に保持して所定の位置に配置することができる。
The invention according to claim 2 is the electrolytic processing apparatus according to claim 1, wherein the polishing surface is provided on an exposed surface of a polishing pad attached to a substrate facing surface of the high resistance structure. is there.
The invention according to claim 3 is the electrolytic processing apparatus according to claim 1, wherein the polishing surface is provided on an exposed surface of a polishing pad supported by a support.
This allows the polishing pad to be easily held and arranged at a predetermined position by holding the polishing pad via a support of any material and shape.

請求項4に記載の発明は、前記研磨パッドは、柔軟性を有し、耐久性のある織布、不織布、樹脂または樹脂発泡体からなることを特徴とする請求項2または3記載の電解処理装置である。
この織布または不織布としては、重力に対しパッド内で液保持ができ、且つ電解液が通り抜けて電気を通す微細な連続気孔(連続気泡)を有するものが望ましいが、連続気孔を有していない場合は、上下に連通する細孔を設けることで、これに対処することができる。
The invention according to claim 4 is characterized in that the polishing pad is made of a flexible and durable woven cloth, nonwoven cloth, resin or resin foam. Device.
The woven or non-woven fabric is preferably one that can hold liquid in the pad against gravity and has fine continuous pores (open cells) through which the electrolyte passes and conducts electricity, but does not have continuous pores. In such a case, this can be dealt with by providing pores communicating vertically.

請求項5に記載の発明は、前記研磨面は、前記高抵抗構造体の一部または全部を改質または表面処理を施すことによって、前記高抵抗構造体の下面に設けられていることを特徴とする請求項1記載の電解処理装置である。
この改質または表面処理としては、例えば、高抵抗構造体の一部及び全部に対するコーティング、焼成または封孔処理等が挙げられる。
The invention according to claim 5 is characterized in that the polishing surface is provided on the lower surface of the high-resistance structure by modifying or surface-treating a part or the whole of the high-resistance structure. The electrolytic treatment apparatus according to claim 1, wherein
The modification or surface treatment includes, for example, coating, baking, or sealing treatment on a part or the whole of the high-resistance structure.

請求項6に記載の発明は、前記押圧機構は、ばね要素の付勢力を介して、基板の被処理面に対する押圧力を調整できるように構成されていることを特徴とする請求項1乃至5のいずれかに記載の電解処理装置である。
このばね要素としては、コイルばね等の固体弾性体の他に、圧縮空気を使用した流体弾性体が挙げられる。つまり、コイルばね及びサーボモータで押圧機構を構成してもよく、これらに代わり、空気圧を調整するアクチュエータを使用して押圧機構を構成しても良い。
The invention according to claim 6 is characterized in that the pressing mechanism is configured to be able to adjust the pressing force against the surface to be processed of the substrate via the urging force of a spring element. An electrolytic treatment apparatus according to any one of the above.
Examples of the spring element include a fluid elastic body using compressed air in addition to a solid elastic body such as a coil spring. That is, the pressing mechanism may be configured by a coil spring and a servomotor, and instead of this, the pressing mechanism may be configured by using an actuator that adjusts air pressure.

請求項7に記載の発明は、前記電解液は、めっき液、またはめっき液中に酸性液を含む溶液からなることを特徴とする請求項1乃至6のいずれかに記載の電解処理装置である。
これにより、電解液を変えることなく、例えば硫酸銅めっき液等のめっき液を用いためっき、このめっき液をエッチング液とした電解エッチングを行うことができる。
The invention according to claim 7 is the electrolytic processing apparatus according to any one of claims 1 to 6, wherein the electrolytic solution comprises a plating solution or a solution containing an acidic solution in the plating solution. .
This makes it possible to perform plating using a plating solution such as a copper sulfate plating solution and electrolytic etching using the plating solution as an etching solution without changing the electrolytic solution.

請求項8に記載の発明は、被処理面を上方に向けて基板を保持する基板保持部と、基板と接触して基板の被処理面に通電させる第1の電極と、前記基板保持部の上方に上下に配置された第2の電極及び高抵抗構造体と、前記基板保持部で保持した基板の被処理面に対峙する位置に配置された研磨面とを有する電極ヘッドと、前記基板保持部で保持した基板の被処理面と前記第2の電極との間に電解液を注入する電解液注入手段と、前記基板保持部と前記電極ヘッドとを相対移動させる相対移動機構と、前記電極ヘッドの研磨面を前記基板保持部で保持した基板に向けて押付ける押圧機構と、前記第1の電極と前記第2の電極との間に電流の方向を選択的に切換えて電圧を印加する電源を有することを特徴とする電解処理装置である。   The invention according to claim 8 is a substrate holding unit that holds the substrate with the surface to be processed facing upward, a first electrode that contacts the substrate and energizes the surface of the substrate to be processed, An electrode head having a second electrode and a high-resistance structure disposed vertically above and below, and a polishing surface disposed at a position facing a surface to be processed of the substrate held by the substrate holding unit; Electrolyte injection means for injecting an electrolyte between the processing target surface of the substrate held by the unit and the second electrode; a relative movement mechanism for relatively moving the substrate holding unit and the electrode head; A pressing mechanism for pressing the polished surface of the head toward the substrate held by the substrate holding unit, and applying a voltage by selectively switching a current direction between the first electrode and the second electrode; An electrolytic processing apparatus having a power supply.

請求項9に記載の発明は、基板を保持する基板保持部と、基板と接触して基板の被処理面に通電させる第1の電極と、前記基板保持部の上方に上下に配置された第2の電極と高抵抗構造体とをそれぞれ有する第1及び第2の電極ヘッドと、性質の異なる第1及び第2の電解液を個別に保持する電解液トレーを有し、前記基板保持部で保持した基板の被処理面に、前記第1の電解液と前記第1の電極ヘッドを使用した第1の電解処理と、前記第2の電解液と前記第2の電極ヘッドを使用した第2の電解処理を行うことを特徴とする電解処理装置である。
これにより、基板を搬送することなく、基板保持部で基板を保持した状態のままで、第1の電解液を使用した第1の電解処理と、第2の電解液を使用した第2の電解処理を連続して行うことができる。
According to a ninth aspect of the present invention, there is provided a substrate holding portion for holding a substrate, a first electrode for contacting the substrate and supplying a current to a surface to be processed of the substrate, and a first electrode disposed vertically above the substrate holding portion. First and second electrode heads each having a second electrode and a high-resistance structure, and an electrolyte tray for individually holding first and second electrolytes having different properties. A first electrolytic process using the first electrolytic solution and the first electrode head, and a second electrolytic process using the second electrolytic solution and the second electrode head are performed on the surface to be processed of the held substrate. An electrolytic treatment apparatus characterized in that the electrolytic treatment is performed.
Thus, the first electrolytic treatment using the first electrolytic solution and the second electrolytic treatment using the second electrolytic solution are performed without transporting the substrate and holding the substrate in the substrate holding unit. Processing can be performed continuously.

請求項10に記載の発明は、前記第1の電極ヘッド及び前記第2の電極ヘッドの少なくとも一方は、前記基板保持部で保持した基板の被処理面に対峙する位置に配置された研磨面と、前記研磨面を前記基板保持部で保持した基板に向けて押付ける押圧機構とを更に有することを特徴とする請求項9記載の電解処理装置である。   The invention according to claim 10, wherein at least one of the first electrode head and the second electrode head has a polishing surface disposed at a position facing a surface to be processed of the substrate held by the substrate holding unit. 10. The electrolytic processing apparatus according to claim 9, further comprising a pressing mechanism for pressing the polishing surface toward the substrate held by the substrate holding unit.

請求項11に記載の発明は、前記第1の電極ヘッドと前記第2の電極ヘッドは、単一の共通した電極ヘッドで構成されていることを特徴とする請求項9記載の電解処理装置である。
このように、第1の電極ヘッドと第2の電極ヘッドを共通化することで、構造の簡素化を図ることができる。
The invention according to claim 11 is the electrolytic processing apparatus according to claim 9, wherein the first electrode head and the second electrode head are constituted by a single common electrode head. is there.
In this way, the structure can be simplified by sharing the first electrode head and the second electrode head.

請求項12に記載の発明は、前記第1及び第2の電解液は、組成の異なるめっき液であることを特徴とする請求項9乃至11のいずれかに記載の電解処理装置である。
これにより、例えば、第1の電解液として、埋込み性に優れた、硫酸銅濃度が高く硫酸濃度が低いめっき液を使用し、第2の電解液として、めっき膜の平坦性に優れた、硫酸銅濃度が低く硫酸濃度が高いめっき液を使用することで、特性の異なる2種類のめっき液を用いためっきを、基板保持部で基板を保持したまま連続して行うことができる。
The invention according to claim 12 is the electrolytic processing apparatus according to any one of claims 9 to 11, wherein the first and second electrolytes are plating solutions having different compositions.
Thus, for example, a plating solution having a high copper sulfate concentration and a low sulfuric acid concentration, which is excellent in embedding properties, is used as the first electrolytic solution, and a sulfuric acid, which has excellent flatness of the plating film, is used as the second electrolytic solution. By using a plating solution having a low copper concentration and a high sulfuric acid concentration, plating using two types of plating solutions having different characteristics can be continuously performed while holding the substrate in the substrate holding portion.

請求項13に記載の発明は、前記第1及び第2の電解液の少なくとも一方は、エッチング液であることを特徴とする請求項1乃至11のいずれかに記載の電解処理装置である。
これにより、めっき処理とエッチング処理、または異なる電解液(エッチング液)を使用したエッチング処理を、基板保持部で基板を保持したまま連続して行うことができる。
The invention according to claim 13 is the electrolytic processing apparatus according to any one of claims 1 to 11, wherein at least one of the first and second electrolytes is an etchant.
Thus, the plating process and the etching process, or the etching process using a different electrolytic solution (etching solution) can be performed continuously while the substrate is held by the substrate holding unit.

請求項14に記載の発明は、被処理面を第1の電極に接触させて基板を保持し、この基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に電解液を満たしつつ電圧を印加して電解処理を行うに際し、前記第1の電極をカソード、第2の電極をアノードとし、基板の被処理面の上方あるいは下方に隙間を設けて電解めっきを行い、前記第1の電極をアノード、第2の電極をカソードとし、基板の被処理面を研磨面で擦り付けながら電解エッチングを行うことを特徴とする電解処理方法である。
請求項15に記載の発明は、基板と研磨面を相対移動させつつ電解処理を行うことを特徴とする請求項14記載の電解処理方法である。
According to a fourteenth aspect of the present invention, the substrate is held by bringing the surface to be processed into contact with the first electrode, and the high-resistance structure and the second electrode are sequentially arranged facing the substrate, and When performing an electrolytic treatment by applying a voltage while filling the electrolyte between the first electrode and the second electrode, the first electrode is used as a cathode, the second electrode is used as an anode, and the surface to be processed of the substrate is Electrolytic plating is performed by providing a gap above or below, and the first electrode is used as an anode, the second electrode is used as a cathode, and electrolytic etching is performed while rubbing the surface to be processed of the substrate with a polishing surface. Processing method.
The invention according to claim 15 is the electrolytic treatment method according to claim 14, wherein the electrolytic treatment is performed while the substrate and the polishing surface are relatively moved.

請求項16に記載の発明は、被処理面を第1の電極に接触させて基板を保持し、この基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に電解液を満たしつつ電圧を印加して電解処理を行うに際し、前記第1の電極をカソード、第2の電極をアノードとし、基板の被処理面に研磨面を接触させつつ電解めっきを行い、前記第1の電極をアノード、第2の電極をカソードとし、基板の被処理面を研磨面で擦り付けながら電解エッチングを行うことを特徴とする電解処理方法である。   According to a sixteenth aspect of the present invention, the substrate is held by bringing the surface to be processed into contact with the first electrode, and the high-resistance structure and the second electrode are arranged in this order in opposition to the substrate. When performing an electrolytic treatment by applying a voltage between the first electrode and the second electrode while filling the cell with an electrolytic solution, the first electrode is used as a cathode, the second electrode is used as an anode, and An electrolytic processing method comprising: performing electrolytic plating while bringing a polished surface into contact with each other; using the first electrode as an anode and the second electrode as a cathode; and performing electrolytic etching while rubbing a substrate to be processed with a polished surface. It is.

請求項17に記載の発明は、被処理面に第1の電極を接触させて基板を保持し、前記基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に第1の電解液を満たしつつ電圧を印加して第1の電解処理を行い、前記基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に第2の電解液を満たしつつ電圧を印加して第2の電解処理を行うことを特徴とする電解処理方法である。   The invention according to claim 17, wherein the first electrode is brought into contact with the surface to be processed, the substrate is held, and the high-resistance structure and the second electrode are sequentially arranged facing the substrate, and A first electrolytic treatment is performed by applying a voltage between the first electrode and the second electrode while filling the first electrolyte with the high-resistance structure and the second electrode facing the substrate. An electrolytic treatment method characterized by sequentially arranging and performing a second electrolytic treatment by applying a voltage while filling a second electrolytic solution between the first electrode and the second electrode.

請求項18に記載の発明は、前記第1の電解処理及び第2の電解処理は、電解液として異なる組成のめっき液を使用しためっき処理であることを特徴とする請求項17記載の電解処理方法である。
請求項19に記載の発明は、前記第1の電解処理及び第2の電解処理の少なくとも一方は、電解液としてエッチング液を使用したエッチング処理であることを特徴とする請求項17記載の電解処理方法である。
The invention according to claim 18 is characterized in that the first electrolytic treatment and the second electrolytic treatment are plating treatments using plating solutions having different compositions as the electrolytic solution. Is the way.
The invention according to claim 19, wherein at least one of the first electrolytic treatment and the second electrolytic treatment is an etching treatment using an etching solution as an electrolytic solution. Is the way.

本発明によれば、第1の電極をカソード、第2の電極をアノードとして電解めっきを行い、電源を介して電流の方向を逆して、つまり第1の電極をアノード、第2の電極をカソードとして電解エッチングを行うことができ、この電解エッチングを、研磨面を基板の被処理面(めっき面)に押付けながら、研磨面と基板と相対的に移動させて行うことで、例えば微細溝の上部に形成されるめっき膜の盛り上がった部分を選択的にエッチング除去して、めっき膜の平坦性を向上させることができる。これによって、その後のCMP加工をディッシングの発生を防止しつつ短時間で行うことができる。   According to the present invention, electrolytic plating is performed using a first electrode as a cathode and a second electrode as an anode, and the direction of current is reversed via a power supply, that is, the first electrode is an anode, and the second electrode is Electrolytic etching can be performed as a cathode, and the electrolytic etching is performed by relatively moving the polished surface and the substrate while pressing the polished surface against the surface to be processed (plated surface) of the substrate, for example, to form fine grooves. The raised portion of the plating film formed on the upper portion can be selectively removed by etching to improve the flatness of the plating film. As a result, the subsequent CMP processing can be performed in a short time while preventing the occurrence of dishing.

以下、本発明の実施の形態について説明する。この実施の形態は、半導体基板の表面に電解銅めっきと電解エッチングを任意に施して、基板表面に設けた配線用の微細窪みに銅を埋込んで銅層からなる配線を形成するようにした基板処理装置に適用した例を示しているが、他の基板処理装置にも適用できることは勿論である。   Hereinafter, embodiments of the present invention will be described. In this embodiment, the surface of a semiconductor substrate is arbitrarily subjected to electrolytic copper plating and electrolytic etching, and copper is buried in a fine recess for wiring provided on the substrate surface to form a wiring made of a copper layer. Although an example in which the present invention is applied to a substrate processing apparatus is shown, it is needless to say that the present invention can be applied to other substrate processing apparatuses.

図1は、本発明の実施の形態の電解処理装置を備えた基板処理装置の全体を示す平面図で、図1に示すように、この基板処理装置には、同一設備内に位置して、内部に複数の基板Wを収納する2基のロード・アンロード部10と、電解処理及びその付帯処理を行う2基の電解処理装置12と、ロード・アンロード部10と電解処理装置12との間で基板Wの受渡しを行う搬送ロボット14と、電解液タンク16を有する電解液供給設備18が備えられている。   FIG. 1 is a plan view showing an entire substrate processing apparatus including an electrolytic processing apparatus according to an embodiment of the present invention. As shown in FIG. 1, the substrate processing apparatus is located in the same facility, The two load / unload units 10 each accommodating a plurality of substrates W therein, two electrolytic processing devices 12 for performing an electrolytic process and ancillary processes, and a load / unload unit 10 and an electrolytic process device 12. A transfer robot 14 for transferring a substrate W between the two, and an electrolyte supply facility 18 having an electrolyte tank 16 are provided.

前記電解処理装置12には、図2に示すように、電解処理及びその付帯処理を行う基板処理部20が備えられ、この基板処理部20に隣接して、電解液を溜める電解液トレー22が配置されている。また、回転軸24を中心に揺動する揺動アーム26の先端に保持されて基板処理部20と電解液トレー22との間を揺動する電極ヘッド28を有する電極アーム部30が備えられている。更に、基板処理部20の側方に位置して、プレコート・回収アーム32と、純水やイオン水等の薬液、更には気体等を基板に向けて噴射する固定ノズル34が配置されている。この実施の形態にあっては、3個の固定ノズル34が備えられ、その内の1個を純水の供給用に用いている。   As shown in FIG. 2, the electrolytic processing apparatus 12 is provided with a substrate processing section 20 for performing an electrolytic processing and ancillary processing thereof, and an electrolytic solution tray 22 for storing an electrolytic solution is provided adjacent to the substrate processing section 20. Are located. Further, an electrode arm unit 30 having an electrode head 28 held between the substrate processing unit 20 and the electrolyte solution tray 22 and held at the tip of a swing arm 26 swinging about the rotation shaft 24 is provided. I have. Further, a pre-coat / recovery arm 32 and a fixed nozzle 34 for injecting a chemical such as pure water or ionized water, or a gas, etc., toward the substrate are disposed on the side of the substrate processing unit 20. In this embodiment, three fixed nozzles 34 are provided, one of which is used for supplying pure water.

基板処理部20には、図3に示すように、基板の表面(被処理面)を上向きにして基板Wを保持する基板保持部36と、この基板保持部36の上方に該基板保持部36の周縁部を囲繞するように配置された電極部38が備えられている。更に、基板保持部36の周囲を囲繞して処理中に用いる各種薬液の飛散を防止する有底略円筒状のカップ40が、エアシリンダ(図示せず)を介して上下動自在に配置されている。   As shown in FIG. 3, the substrate processing unit 20 includes a substrate holding unit 36 that holds the substrate W with the surface of the substrate (the surface to be processed) facing upward, and a substrate holding unit 36 above the substrate holding unit 36. Is provided with an electrode portion 38 arranged so as to surround the peripheral portion of the electrode portion. Further, a substantially cylindrical cup 40 with a bottom which surrounds the periphery of the substrate holding portion 36 and prevents scattering of various chemicals used during the processing is arranged to be vertically movable via an air cylinder (not shown). I have.

ここで、基板保持部36は、エアシリンダ44によって、下方の基板受渡し位置Aと、上方の電解処理位置Bと、これらの中間の前処理・洗浄位置Cとの間を昇降し、図示しない回転モータ及びベルトを介して、任意の加速度及び速度で第1の電極部38と一体に回転するように構成されている。この基板受渡し位置Aに対向して、電解処理装置12のフレーム側面の搬送ロボット14側には、基板搬出入口(図示せず)が設けられ、また基板保持部36が電解処理位置Bまで上昇した時に、基板保持部36で保持された基板Wの周縁部に下記の電極部38のシール材90と第1の電極88が当接するようになっている。一方、カップ40は、その上端が基板搬出入口下方に位置し、図3に仮想線で示すように、上昇した時に基板搬出入口を塞いで電極部38の上方に達するようになっている。   Here, the substrate holding unit 36 is moved up and down by an air cylinder 44 between a lower substrate transfer position A, an upper electrolytic processing position B, and a pre-processing / cleaning position C in the middle thereof, and a rotation (not shown). It is configured to rotate integrally with the first electrode unit 38 at an arbitrary acceleration and speed through a motor and a belt. A substrate loading / unloading port (not shown) is provided on the side of the transfer robot 14 on the side surface of the frame of the electrolytic processing apparatus 12 so as to face the substrate transfer position A, and the substrate holding unit 36 is raised to the electrolytic processing position B. At this time, a sealing material 90 of the below-described electrode portion 38 and a first electrode 88 come into contact with a peripheral portion of the substrate W held by the substrate holding portion 36. On the other hand, the upper end of the cup 40 is located below the substrate loading / unloading entrance, and as shown by the phantom line in FIG.

電解液トレー22は、電解処理を実施していない時に、電極アーム部30の下記の高抵抗構造体110及び第2の電極98を電解液で湿潤させるためのもので、この高抵抗構造体110が収容できる大きさに設定され、図示しない電解液供給口と電解液排水口を有している。また、フォトセンサが電解液トレー22に取付けられており、電解液トレー22内の電解液の満水、即ちオーバーフローと排水の検出が可能になっている。   The electrolyte tray 22 is for wetting the following high-resistance structure 110 and the second electrode 98 of the electrode arm 30 with the electrolyte when the electrolytic treatment is not performed. Is set to a size that can be accommodated, and has an electrolyte supply port and an electrolyte drain port (not shown). Further, a photosensor is attached to the electrolyte solution tray 22 so that the electrolyte solution inside the electrolyte solution tray 22 can be detected, that is, overflow and drainage can be detected.

電極アーム部30は、下記のように本実施例では、サーボモータからなる上下動モータ132とボールねじ134を介して上下動し、旋回モータを介して、電解液トレー22と基板処理部20との間を旋回(揺動)するようになっているが、空気圧アクチュエータを使用しても良い。   In the present embodiment, the electrode arm unit 30 moves up and down via a vertically moving motor 132 composed of a servomotor and a ball screw 134 as described below, and moves between the electrolytic solution tray 22 and the substrate processing unit 20 via a turning motor. It turns (swings) between them, but a pneumatic actuator may be used.

また、プレコート・回収アーム32は、図4に示すように、上下方向に延びる支持軸58の上端に連結されて、ロータリアクチュエータ60を介して旋回(揺動)し、エアシリンダ(図示せず)を介して上下動するよう構成されている。このプレコート・回収アーム32には、その自由端側にプレコート液吐出用のプレコートノズル64が、基端側に電解液回収用の電解液回収ノズル66がそれぞれ保持されている。そして、プレコートノズル64は、例えばエアシリンダによって駆動するシリンジに接続されて、プレコート液がプレコートノズル64から間欠的に吐出され、また、電解液回収ノズル66は、例えばシリンダポンプまたはアスピレータに接続されて、基板上の電解液が電解液回収ノズル66から吸引されるようになっている。   As shown in FIG. 4, the precoat / collection arm 32 is connected to the upper end of a support shaft 58 extending in the up-down direction, pivots (oscillates) via a rotary actuator 60, and an air cylinder (not shown). It is configured to move up and down via the. The precoat / recovery arm 32 has a precoat nozzle 64 for discharging the precoat liquid on its free end side and an electrolyte recovery nozzle 66 for recovering the electrolyte on its base end side. The precoat nozzle 64 is connected to, for example, a syringe driven by an air cylinder, and the precoat liquid is intermittently discharged from the precoat nozzle 64, and the electrolyte recovery nozzle 66 is connected to, for example, a cylinder pump or an aspirator. The electrolyte on the substrate is sucked from the electrolyte recovery nozzle 66.

前記基板保持部36は、図5乃至図7に示すように、円板状のステージ68を備え、このステージ68の周縁部の円周方向に沿った6カ所に、上面に基板Wを水平に載置して保持する支持腕70が立設されている。この支持腕70の1つの上端には、基板Wの端面に当接して位置決めする位置決め板72が固着され、この位置決め板72を固着した支持腕70に対向する支持腕70の上端には、基板Wの端面に当接し回動して基板Wを位置決め板72側に押付ける押付け片74が回動自在に支承されている。また、他の4個の支持腕70の上端には、回動して基板Wをこの上方から下方に押付けるチャック爪76が回動自在に支承されている。   As shown in FIGS. 5 to 7, the substrate holding unit 36 includes a disk-shaped stage 68, and the substrate W is horizontally placed on the upper surface at six positions along the circumferential direction of the peripheral edge of the stage 68. A support arm 70 to be placed and held is provided upright. At one upper end of the support arm 70, a positioning plate 72 that is positioned in contact with the end surface of the substrate W is fixed, and at the upper end of the support arm 70 facing the support arm 70 to which the positioning plate 72 is fixed, A pressing piece 74 that comes into contact with the end face of W and rotates to press the substrate W against the positioning plate 72 is rotatably supported. At the upper ends of the other four support arms 70, a chuck pawl 76 that pivots and presses the substrate W downward from above is rotatably supported.

ここで、押付け片74及びチャック爪76の下端は、コイルばね78を介して下方に付勢した押圧棒80の上端に連結されて、この押圧棒80の下動に伴って押付け片74及びチャック爪76が内方に回動して閉じるようになっており、ステージ68の下方には、押圧棒80に下面に当接してこれを上方に押上げる支持板82が配置されている。   Here, the lower end of the pressing piece 74 and the lower end of the chuck pawl 76 are connected to the upper end of a pressing rod 80 urged downward via a coil spring 78, and the pressing piece 74 and the chuck are A claw 76 is pivoted inward to close, and a support plate 82 is disposed below the stage 68 so as to contact the lower surface of the pressing rod 80 and push it upward.

これにより、基板保持部36が図3に示す基板受渡し位置Aに位置する時、押圧棒80は支持板82に当接し上方に押上げられて、押付け片74及びチャック爪76が外方に回動して開き、ステージ68を上昇させると、押圧棒80がコイルばね78の弾性力で下降して、押付け片74及びチャック爪76が内方に回転して閉じるようになっている。   Thus, when the substrate holding unit 36 is located at the substrate transfer position A shown in FIG. 3, the pressing rod 80 comes into contact with the support plate 82 and is pushed upward, and the pressing piece 74 and the chuck pawl 76 are turned outward. When the stage 68 is moved up and the stage 68 is raised, the pressing rod 80 is lowered by the elastic force of the coil spring 78, and the pressing piece 74 and the chuck pawl 76 are rotated inward and closed.

前記電極部38は、図8及び図9に示すように、支持板82(図7等参照)の周縁部に立設した支柱84の上端に固着した環状の枠体86と、この枠体86の下面に内方に突出させて取付けた、この例では6分割された第1の電極88と、この第1の電極88の上方を覆うように枠体86の上面に取付けた環状のシール材90とを有している。この第1の電極88は、電解めっきを行うときにはカソードとなり、電解エッチングを行うときにはアノードとなる。シール材90は、その内周縁部が内方に向け下方に傾斜し、かつ徐々に薄肉となって、内周端部が下方に垂下するように構成されている。   As shown in FIGS. 8 and 9, the electrode portion 38 includes an annular frame 86 fixed to the upper end of a column 84 erected on the periphery of a support plate 82 (see FIG. 7 and the like), and a frame 86. In this example, the first electrode 88 is divided into six parts and protrudes inward from the lower surface of the first electrode 88, and an annular sealing material is mounted on the upper surface of the frame 86 so as to cover the upper part of the first electrode 88. 90. The first electrode 88 serves as a cathode when performing electrolytic plating, and serves as an anode when performing electrolytic etching. The sealing material 90 is configured such that its inner peripheral edge is inclined inward and downward, and becomes gradually thinner so that its inner peripheral end hangs downward.

これにより、図3に示すように、基板保持部36が電解処理位置Bまで上昇した時に、この基板保持部36で保持した基板Wの周縁部に第1の電極88が押付けられて通電し、同時にシール材90の内周端部が基板Wの周縁部上面に圧接し、ここを水密的にシールして、基板の上面(被処理面)に供給された電解液が基板Wの端部から染み出すのを防止するとともに、電解液が第1の電極88を汚染することを防止するようになっている。
なお、この実施の形態において、電極部38は、上下動不能で基板保持部36と一体に回転するようになっているが、上下動自在で、下降した時にシール材90が基板Wの被処理面に圧接するように構成しても良い。
As a result, as shown in FIG. 3, when the substrate holding unit 36 has risen to the electrolytic processing position B, the first electrode 88 is pressed against the peripheral portion of the substrate W held by the substrate holding unit 36, and current is applied. At the same time, the inner peripheral end of the sealing material 90 presses against the upper surface of the peripheral edge of the substrate W, and seals it in a water-tight manner so that the electrolyte supplied to the upper surface (the surface to be processed) of the substrate W starts from the edge of the substrate W. This prevents leakage and prevents the electrolytic solution from contaminating the first electrode 88.
In this embodiment, the electrode portion 38 is not movable up and down and rotates integrally with the substrate holding portion 36. However, the electrode portion 38 is movable up and down, and when it is lowered, the sealing material 90 is applied to the substrate W to be processed. You may comprise so that a surface may be press-contacted.

前記電極アーム部30の電極ヘッド28は、図10乃至図12に示すように、揺動アーム26の自由端にボールベアリング92を介して連結したハウジング94と、このハウジング94の下端開口部を塞ぐように配置された高抵抗構造体110とを有している。すなわち、このハウジング94の下部には、内方に突出した内方突出部94aが、高抵抗構造体110の上部にはフランジ部110aがそれぞれ設けられ、このフランジ部110aを内方突出部94aに引っ掛け、更にスペーサ96を介装することで、ハウジング94に高抵抗構造体110が保持されている。これによって、ハウジング94の内部に中空の電解液室100が区画形成されている。   As shown in FIGS. 10 to 12, the electrode head 28 of the electrode arm 30 closes an opening at the lower end of the housing 94 connected to the free end of the swing arm 26 via a ball bearing 92. And a high-resistance structure 110 arranged as described above. That is, an inwardly protruding portion 94a protruding inward is provided at a lower portion of the housing 94, and a flange portion 110a is provided at an upper portion of the high-resistance structure 110, and the flange portion 110a is connected to the inwardly protruding portion 94a. The high resistance structure 110 is held in the housing 94 by hooking and further interposing the spacer 96. As a result, a hollow electrolytic solution chamber 100 is defined inside the housing 94.

この高抵抗構造体110は、アルミナ,SiC,ムライト,ジルコニア,チタニア,コージライト等の多孔質セラミックスまたはポリプロピレンやポリエチレンの焼結体等の硬質多孔質体、あるいはこれらの複合体、更には織布や不織布で構成される。例えば、アルミナ系セラミックスにあっては、ポア径30〜200μm、SiCにあっては、ポア径30μm以下、気孔率20〜95%、厚み1〜20mm、好ましくは5〜20mm、更に好ましくは8〜15mm程度のものが使用される。この例では、例えば気孔率30%、平均ポア径100μmでアルミナ製の多孔質セラミックス板から構成されている。そして、この内部に電解液を含有させることで、つまり多孔質セラミックス板自体は絶縁体であるが、この内部に電解液を複雑に入り込ませ、厚さ方向にかなり長い経路を辿らせることで、電解液の電気伝導率より小さい電気伝導率を有するように構成されている。   The high-resistance structure 110 is made of a porous ceramic such as alumina, SiC, mullite, zirconia, titania, cordierite, a hard porous body such as a sintered body of polypropylene or polyethylene, a composite thereof, or a woven fabric. And nonwoven fabric. For example, in the case of alumina ceramics, the pore diameter is 30 to 200 μm, in the case of SiC, the pore diameter is 30 μm or less, the porosity is 20 to 95%, the thickness is 1 to 20 mm, preferably 5 to 20 mm, more preferably 8 to 20 mm. Those having a size of about 15 mm are used. In this example, for example, a porous ceramic plate made of alumina having a porosity of 30% and an average pore diameter of 100 μm is used. Then, by allowing the electrolyte to be contained in this inside, that is, the porous ceramic plate itself is an insulator, but the electrolyte is complicatedly penetrated into this inside, and by following a considerably long path in the thickness direction, It is configured to have an electric conductivity smaller than the electric conductivity of the electrolytic solution.

このように高抵抗構造体110を電解液室100内に配置し、この高抵抗構造体110によって大きな抵抗を発生させることで、シード層7(図22参照)の抵抗の影響を無視できる程度となし、基板Wの表面の電気抵抗による電流密度の面内差を小さくして、めっき膜の面内均一性を向上させることができる。   By arranging the high-resistance structure 110 in the electrolytic solution chamber 100 and generating a large resistance by the high-resistance structure 110 in this manner, the influence of the resistance of the seed layer 7 (see FIG. 22) can be ignored. None, the in-plane difference in current density due to the electrical resistance of the surface of the substrate W can be reduced, and the in-plane uniformity of the plating film can be improved.

前記電解液室100内には、電解めっきのときはアノードとなり、電解エッチングのときはカソードとなる第2の電極98が、この上方に配置した電解液導入管104の下面に取付けられて配置されている。そして、この電解液導入管104には、電解液導入口104aが設けられ、この電解液導入口104aに電解液供給設備18(図1参照)から延びる電解液供給管102が接続され、更に、ハウジング94の上面に設けられた電解液排出口94bに電解液室100に連通する電解液排出管106が接続されている。   In the electrolytic solution chamber 100, a second electrode 98, which serves as an anode during electrolytic plating and a cathode during electrolytic etching, is attached to the lower surface of an electrolytic solution introducing tube 104 disposed above the second electrode 98. ing. The electrolyte inlet 104 is provided with an electrolyte inlet 104a, and the electrolyte inlet 104a is connected to an electrolyte supply pipe 102 extending from the electrolyte supply equipment 18 (see FIG. 1). An electrolytic solution discharge pipe 106 communicating with the electrolytic solution chamber 100 is connected to an electrolytic solution discharge port 94 b provided on the upper surface of the housing 94.

電解液導入管104は、基板の被処理面に均一に電解液を供給できるように、マニホールド構造が採用されている。即ち、その長手方向に沿った所定の位置に、この内部に連通する多数の細管112を連結している。そして、第2の電極98及び高抵抗構造体110のこの細管112に対応する位置には細孔が設けられ、細管112は、これらの細孔内を下方に延びて、高抵抗構造体110の下面乃至該下面付近に達するように構成されている。   The electrolyte introduction pipe 104 has a manifold structure so that the electrolyte can be uniformly supplied to the surface to be processed of the substrate. That is, a large number of thin tubes 112 communicating with the inside are connected to predetermined positions along the longitudinal direction. Then, pores are provided at positions of the second electrode 98 and the high-resistance structure 110 corresponding to the small tubes 112, and the small tubes 112 extend downward in these small holes and form the high-resistance structure 110. It is configured to reach the lower surface or the vicinity of the lower surface.

これにより、電解液供給管102から電解液導入管104に導入された電解液は、細管112を通過して高抵抗構造体110の下方に達し、この高抵抗構造体110の内部を通過して電解液室100内を満たして第2の電極98を電解液中に浸漬させ、電解液排出管106を吸引することで、電解液排出管106から排出されるようになっている。   As a result, the electrolytic solution introduced from the electrolytic solution supply tube 102 to the electrolytic solution introducing tube 104 passes through the thin tube 112 and reaches below the high-resistance structure 110, and passes through the inside of the high-resistance structure 110. The second electrode 98 is immersed in the electrolyte so as to fill the inside of the electrolyte chamber 100, and the electrolyte is discharged from the electrolyte discharge pipe 106 by sucking the electrolyte discharge pipe 106.

ここで、第2の電極98は、スライムの生成を抑制するため、含有量が0.03〜0.05%のリンを含む銅(含リン銅)で構成されているが、不溶解のものを使用してもよい。
また、第1の電極88は電源114の一方の電極に、第2の電極98は電源114の他方の電極にそれぞれ電気的に接続されており、この電源114は、流れる電流の向きを任意に変更できるようになっている。
Here, the second electrode 98 is made of copper containing phosphorus (phosphorus-containing copper) having a content of 0.03 to 0.05% in order to suppress generation of slime. May be used.
Further, the first electrode 88 is electrically connected to one electrode of the power supply 114, and the second electrode 98 is electrically connected to the other electrode of the power supply 114. It can be changed.

高抵抗構造体110の下面には、下面を研磨面120aとした研磨パッド120が、貼着等により取付けられている。この研磨パッド120は、電解エッチングの際に、この研磨面120aを基板の被処理面(めっき面)に向けて押圧しつつ擦り付けるためのもので、柔軟性を有し、耐久性のある織布、不織布、樹脂または樹脂発泡体からなり、電解液が通り抜ける連続気孔(連続気泡)を有するものが望ましい。この研磨パッド120としては、例えばCMPなどで広く使用されるロデール社製のポリテックス(Politex)等の不織布やIC1000のような発泡ウレタン等や、さらに柔軟性を持ったPVAやスポンジ等が用いられる。なお、連続気孔を有していない場合には、例えば0.5〜1mm間隔で、上下に連通する多数の細孔を設けることで、電解液が研磨パッド120の内部を通り抜け、電流が流れるようにすることができる。   A polishing pad 120 having a lower surface as a polishing surface 120a is attached to the lower surface of the high-resistance structure 110 by bonding or the like. The polishing pad 120 is used for rubbing while pressing the polishing surface 120a toward the surface to be processed (plated surface) of the substrate during electrolytic etching. , A nonwoven fabric, a resin or a resin foam having continuous pores (open cells) through which the electrolyte passes. As the polishing pad 120, for example, a nonwoven fabric such as Politex manufactured by Rodale, which is widely used in CMP or the like, a urethane foam such as IC1000, or a more flexible PVA or sponge is used. . In the case where there are no continuous pores, for example, by providing a large number of pores communicating vertically with an interval of 0.5 to 1 mm, the electrolytic solution passes through the inside of the polishing pad 120 and a current flows. Can be

更に、ボールベアリング92と揺動アーム26との間には、研磨パッド120の研磨面120aを基板Wの被処理面に向けて押付ける押圧機構122が設けられている。つまり、この押圧機構122は、互いに離間した位置に配置される一対の板体124,126間に配置される圧縮コイルばね128と、一端を一方の板体124に固着し、他端に設けた頭部130aを他方の板体126に当接させて、一対の板体124,126間の間隔が拡がることを規制するストッパ130とを有している。一方、揺動アーム26は、サーボモータからなる上下動モータ132とボールねじ134を介して上下動するように構成されている。この上下機構は空気圧アクチュエータであってもよい。   Further, a pressing mechanism 122 that presses the polishing surface 120a of the polishing pad 120 toward the processing surface of the substrate W is provided between the ball bearing 92 and the swing arm 26. In other words, the pressing mechanism 122 has a compression coil spring 128 disposed between a pair of plates 124 and 126 disposed at positions separated from each other, one end fixed to one plate 124, and provided at the other end. It has a stopper 130 that makes the head 130a abut on the other plate 126 to restrict the expansion of the space between the pair of plates 124,126. On the other hand, the swing arm 26 is configured to move up and down via a vertical motor 132 composed of a servomotor and a ball screw 134. The lifting mechanism may be a pneumatic actuator.

これにより、研磨パッド120の研磨面120aが基板Wの表面に当接しない間は、圧縮コイルばね128の弾性力を介して、電極ヘッド28は、揺動アーム26と一体に上下動(及び揺動)し、研磨パッド120の研磨面120aが基板Wの表面に当接した後、揺動アーム26を更に下降させると、この下降に伴って、圧縮コイルばね128が更に縮み、この圧縮コイルばね128の弾性力を研磨パッド120に作用させて、研磨面120aを基板の表面に押付け、しかも圧縮コイルばね128の縮み量(変位量)を制御することで、この押圧力を調整できるようになっている。この押圧力は、一般的には200g/cm以下、特に70g/cm程度が好ましい。この変位とばねの力は、空気圧アクチュエータを使用して上下動させるようにしたものから得るようにしても良い。なお、上記の例では、研磨パッド120を上下動させるようにしているが、基板保持部36側、または双方を上下動させるようにしても良い。 Thus, while the polishing surface 120a of the polishing pad 120 does not come into contact with the surface of the substrate W, the electrode head 28 vertically moves (and swings) integrally with the swing arm 26 via the elastic force of the compression coil spring 128. The swing arm 26 is further lowered after the polishing surface 120a of the polishing pad 120 comes into contact with the surface of the substrate W, and the compression coil spring 128 is further contracted with this lowering, and the compression coil spring 128 This pressing force can be adjusted by applying the elastic force of 128 to the polishing pad 120 to press the polishing surface 120a against the surface of the substrate and controlling the amount of contraction (displacement) of the compression coil spring 128. ing. The pressing force is generally 200 g / cm 2 or less, and preferably about 70 g / cm 2 . The displacement and the force of the spring may be obtained from a device which is moved up and down using a pneumatic actuator. In the above example, the polishing pad 120 is moved up and down. However, the polishing pad 120 or both sides may be moved up and down.

そして、電解めっきを行うときには、電源114を介して、第1の電極88をカソード、第2の電極98をアノードとなし、図11に示すように、基板保持部36が電解処理位置B(図3参照)にある時に、基板保持部36で保持した基板Wと研磨パッド120との隙間が、例えば0.1〜3mm程度となるまで電極ヘッド28を下降させ、この状態で、電解液供給管102から電解液(めっき液)を供給して、高抵抗構造体110に電解液を含ませながら、基板Wの上面(被処理面)から電解液室100の内部を電解液で満たす。これによって、基板Wの被処理面にめっきを施す。   Then, when performing the electrolytic plating, the first electrode 88 is set to the cathode and the second electrode 98 is set to the anode via the power supply 114, and as shown in FIG. 3), the electrode head 28 is lowered until the gap between the substrate W held by the substrate holding unit 36 and the polishing pad 120 becomes, for example, about 0.1 to 3 mm. An electrolytic solution (plating solution) is supplied from 102, and the inside of the electrolytic solution chamber 100 is filled with the electrolytic solution from the upper surface (the surface to be processed) of the substrate W while the high-resistance structure 110 contains the electrolytic solution. Thereby, plating is performed on the surface to be processed of the substrate W.

一方、電解エッチングを行うときには、電源114を介して、第1の電極88をアノード、第2の電極98をカソードとなし、図12に示すように、基板保持部36が電解処理位置B(図3参照)にある時に、研磨パッド120の研磨面120aが基板保持部36で保持した基板Wを所定の圧力で押圧するまで電極ヘッド28を下降させ、この状態で、電解液供給管102から電解液を供給して、高抵抗構造体110に電解液を含ませながら、基板Wの上面(被処理面)から電解液室100の内部を電解液で満たして、更に、基板保持部36を回転させて、研磨面120aを基板Wの被処理面(めっき面)に擦り付けながら、基板Wの被処理面(めっき面)にエッチングを施す。   On the other hand, when performing the electrolytic etching, the first electrode 88 is used as the anode and the second electrode 98 is used as the cathode via the power supply 114, and as shown in FIG. 3), the electrode head 28 is lowered until the polishing surface 120a of the polishing pad 120 presses the substrate W held by the substrate holding portion 36 with a predetermined pressure. The liquid is supplied to fill the inside of the electrolytic solution chamber 100 with the electrolytic solution from the upper surface (the surface to be processed) of the substrate W while the high-resistance structure 110 contains the electrolytic solution. Then, the polished surface 120a is etched on the processed surface (plated surface) of the substrate W while rubbing the processed surface (plated surface) of the substrate W.

次に、前記実施の形態の電解処理装置を備えた基板処理装置の操作について、図13及び図14を更に参照して説明する。なお、この例では、同じ電解液、例えば硫酸銅めっき液等の酸性めっき液や、添加剤を含んだめっき液に硫酸や硝酸などの酸性液を入れた溶液を使って電解めっきと電解エッチングを行うようにした例を示す。なお、電解めっきと電解エッチングとを電解液を変えて行うようにしても良いことは勿論である。その際は、液交換手段、液排出機構などが必要となる。   Next, the operation of the substrate processing apparatus including the electrolytic processing apparatus according to the above embodiment will be described with reference to FIGS. In this example, electrolytic plating and electrolytic etching were performed using the same electrolytic solution, for example, an acidic plating solution such as a copper sulfate plating solution, or a solution containing an acidic solution such as sulfuric acid or nitric acid in a plating solution containing additives. Here is an example of such a case. Of course, the electrolytic plating and the electrolytic etching may be performed by changing the electrolytic solution. In that case, a liquid exchange means, a liquid discharge mechanism and the like are required.

先ず、ロード・アンロード部10からめっき処理前の基板Wを搬送ロボット14で取出し、被処理面を上向きにした状態で、フレームの側面に設けられた基板搬出入口から一方の電解処理装置12の内部に搬送する。この時、基板保持部36は、下方の基板受渡し位置Aにあり、搬送ロボット14は、そのハンドがステージ68の真上に到達した後に、ハンドを下降させることで、基板Wを支持腕70上に載置する。そして、搬送ロボット14のハンドを、前記基板搬出入口を通って退去させる。   First, the substrate W before plating is taken out of the loading / unloading unit 10 by the transfer robot 14 and, with the surface to be processed facing upward, one of the electrolytic processing devices 12 is passed through the substrate loading / unloading port provided on the side surface of the frame. Carry inside. At this time, the substrate holding unit 36 is at the lower substrate transfer position A, and the transfer robot 14 lowers the hand after the hand reaches directly above the stage 68 so that the substrate W is placed on the support arm 70. Place on Then, the hand of the transfer robot 14 is retreated through the substrate transfer port.

搬送ロボット14のハンドの退去が完了した後、カップ40を上昇させ、同時に基板受渡し位置Aにあった基板保持部36を前処理・洗浄位置Cに上昇させる。この時、この上昇に伴って、支持腕70上に載置された基板は、位置決め板72と押付け片74で位置決めされ、チャック爪76で確実に把持される。   After the transfer of the hand of the transfer robot 14 is completed, the cup 40 is raised, and at the same time, the substrate holding unit 36 at the substrate transfer position A is raised to the preprocessing / cleaning position C. At this time, with the rise, the substrate placed on the support arm 70 is positioned by the positioning plate 72 and the pressing piece 74, and is reliably held by the chuck claws 76.

一方、電極アーム部30の電極ヘッド28は、この時点では電解液トレー22上の通常位置にあって、高抵抗構造体110あるいは第2の電極98が電解液トレー22内に位置しており、この状態でカップ40の上昇と同時に、電解液トレー22及び電極ヘッド28に電解液の供給を開始する。そして、基板のめっき工程に移るまで、新しい電解液を供給し、併せて電解液排出管106を通じた吸引を行って、高抵抗構造体110に含まれる電解液の交換と泡抜きを行う。なお、カップ40の上昇が完了すると、フレーム側面の基板搬出入口はカップ40で塞がれて閉じ、フレーム内外の雰囲気が遮断状態となる。   On the other hand, the electrode head 28 of the electrode arm 30 is at a normal position on the electrolyte tray 22 at this time, and the high-resistance structure 110 or the second electrode 98 is located in the electrolyte tray 22. In this state, the supply of the electrolytic solution to the electrolytic solution tray 22 and the electrode head 28 is started simultaneously with the rise of the cup 40. Then, a new electrolytic solution is supplied, and suction is performed through the electrolytic solution discharge pipe 106 to exchange the electrolytic solution contained in the high-resistance structure 110 and to remove bubbles until the process proceeds to the substrate plating step. When the lifting of the cup 40 is completed, the substrate loading / unloading port on the side surface of the frame is closed by the cup 40, and the atmosphere inside and outside the frame is shut off.

カップ40が上昇するとプレコート処理に移る。即ち、基板Wを受取った基板保持部36を回転させ、待避位置にあったプレコート・回収アーム32を基板と対峙する位置へ移動させる。そして、基板保持部36の回転速度が設定値に到達したところで、プレコート・回収アーム32の先端に設けられたプレコートノズル64から、例えば界面活性剤からなるプレコート液を基板の被処理面(被めっき面)に間欠的に吐出する。この時、基板保持部36が回転しているため、プレコート液は基板Wの被処理面の全面に行き渡る。次に、プレコート・回収アーム32を待避位置へ戻し、基板保持部36の回転速度を増して、遠心力により基板Wの被処理面のプレコート液を振り切って乾燥させる。   When the cup 40 is raised, the process proceeds to the precoating process. That is, the substrate holding unit 36 that has received the substrate W is rotated, and the pre-coat / collection arm 32 that has been in the retracted position is moved to a position facing the substrate. Then, when the rotation speed of the substrate holding unit 36 reaches the set value, a precoat liquid made of, for example, a surfactant is applied from the precoat nozzle 64 provided at the tip of the precoat / collection arm 32 to the surface of the substrate to be processed (plated surface). Surface) intermittently. At this time, since the substrate holding unit 36 is rotating, the precoat liquid spreads over the entire surface of the substrate W to be processed. Next, the precoat / collection arm 32 is returned to the retracted position, the rotation speed of the substrate holding unit 36 is increased, and the precoat liquid on the surface to be processed of the substrate W is shaken off by centrifugal force and dried.

プレコート完了後にめっき処理に移る。先ず、基板保持部36を、この回転を停止、若しくは回転速度をめっき時速度まで低下させた状態で、めっきを施す電解処理位置Bまで上昇させる。すると、基板Wの周縁部は、第1の電極88に接触して通電可能な状態となり、同時に基板Wの周縁部上面にシール材90が圧接して、基板Wの周縁部が水密的にシールされる。   After the completion of precoating, the process proceeds to plating. First, the substrate holding unit 36 is raised to the electrolytic processing position B where plating is performed, with the rotation stopped or the rotation speed reduced to the plating speed. Then, the peripheral portion of the substrate W comes into contact with the first electrode 88 and becomes energizable, and at the same time, the sealing material 90 is pressed against the upper surface of the peripheral portion of the substrate W, and the peripheral portion of the substrate W is sealed in a watertight manner. Is done.

一方、搬入された基板Wのプレコート処理が完了したという信号に基づいて、電極アーム部30を電解液トレー22上方から電解処理を施す位置の上方に電極ヘッド28が位置するように水平方向に旋回させ、この位置に到達した後に、電極ヘッド28を電極部38に向かって下降させる。この時、研磨パッド120を基板Wの被処理面(被めっき面)に接触することなく、0.1mm〜3mm程度に近接した位置とする。電極ヘッド28の下降が完了した時点で、第1の電極88をカソード、第2の電極98をアノードとしためっき電流を投入し、電解液供給管102から電解液を電極ヘッド28の内部に供給して、高抵抗構造体110に電解液を含ませながら、基板Wの上面(被処理面)から電解液室100の内部を電解液で満たし、これによって、基板Wの被処理面にめっきを施す。   On the other hand, based on the signal indicating that the pre-coating process of the loaded substrate W has been completed, the electrode arm 30 is turned horizontally so that the electrode head 28 is positioned above the position where the electrolytic process is performed from above the electrolytic solution tray 22. After reaching this position, the electrode head 28 is lowered toward the electrode section 38. At this time, the polishing pad 120 is set at a position close to about 0.1 mm to 3 mm without contacting the surface to be processed (the surface to be plated) of the substrate W. When the lowering of the electrode head 28 is completed, a plating current with the first electrode 88 serving as a cathode and the second electrode 98 serving as an anode is applied, and an electrolytic solution is supplied from the electrolytic solution supply pipe 102 into the electrode head 28. Then, while the high-resistance structure 110 contains the electrolytic solution, the inside of the electrolytic solution chamber 100 is filled with the electrolytic solution from the upper surface (the surface to be processed) of the substrate W, thereby plating the surface of the substrate W to be processed. Apply.

この時、例えば図13及び図14に示すように、液張りまで(t〜t)は、めっき電圧を一定(CV制御)にしておき、その後、電流を一定(CC制御)にして、電流を段階的に増加させながら第1段階のめっき(t〜t)、第2段階のめっき(t〜t)、第3段階のめっき(t〜t)を行う。この時、必要に応じて、基板保持部36を低速で回転させる。 At this time, for example, as shown in FIGS. 13 and 14, the plating voltage is kept constant (CV control) until the liquid is filled (t 0 to t 1 ), and then the current is kept constant (CC control). current first stage of plating while gradually increasing the (t 1 ~t 2), the plating of the second stage (t 2 ~t 3), plating (t 3 ~t 4) performs the third step. At this time, if necessary, the substrate holding unit 36 is rotated at a low speed.

次に、第1の電極88がアノード、第2の電極98がカソードとなるように電流(電圧)を切換え、更に、研磨パッド120の研磨面120aを基板保持部36で保持した基板Wに向けて所定の圧力で押圧しながら、基板保持部36を回転させて、研磨パッド120の研磨面120aを基板の被処理面(めっき面)に擦り付けながら第1段階の電解エッチングを行う(t〜t)。 Next, the current (voltage) is switched so that the first electrode 88 functions as an anode and the second electrode 98 functions as a cathode. Further, the polishing surface 120a of the polishing pad 120 is directed toward the substrate W held by the substrate holding unit 36. while pressing at a predetermined pressure Te, the substrate holder 36 is rotated, the polishing surface 120a of the polishing pad 120 performs electrolytic etching of the first step while rubbing against the surface of the substrate (plating surface) (t 4 ~ t 5).

そして、第1の電極88がカソード、第2の電極98がアノードとなるように電流(電圧)を切換え、研磨パッド120を基板Wの被処理面に接触することのない位置に戻し、更に前述の第3段階のめっきに比べてより増加させた一定電流を流しながら第4段階のめっきを行う(t〜t)。 Then, the current (voltage) is switched so that the first electrode 88 becomes the cathode and the second electrode 98 becomes the anode, and the polishing pad 120 is returned to a position where it does not come into contact with the surface to be processed of the substrate W. compared to the plating of the third stage of performing the fourth stage of the plating while flowing a constant current more increased (t 5 ~t 6).

次に、前述と同様に電流(電圧)を切換え、前述の第1段階のエッチングに比べて、より増加させた一定電流を流しながら、押圧力を高めた状態で第2段階の電解エッチングを行う(t〜t)。
更に、前述同様に電流(電圧)を切換え、研磨パッド120を基板Wの被処理面に接触することのない位置に戻し、更に前述の第4段階のめっきに比べてより増加させた一定電流を流しながら第5段階のめっきを行う(t〜t)。
Next, the current (voltage) is switched in the same manner as described above, and the second-stage electrolytic etching is performed in a state where the pressing force is increased while flowing a constant current which is larger than that in the first-stage etching. (t 6 ~t 7).
Further, the current (voltage) is switched in the same manner as described above to return the polishing pad 120 to a position where the polishing pad 120 does not come into contact with the surface to be processed of the substrate W. carrying out plating of the fifth stage while passing (t 7 ~t 8).

そして、前述と同様に電流(電圧)を切換え、前述の第2段階のエッチングに比べて、より減少させた一定電流を流しながら、押圧力を高めた状態で第3段階の電解エッチングを行い(t〜t)、これにより電解処理を完了する。
このように、めっき処理の合間に電解エッチングを行い、しかもこの電解エッチングを、研磨面120aを基板の被処理面(めっき面)に押付けながら、研磨面120aと基板Wと相対的に移動させて行うことで、例えば微細溝の上部に形成されるめっき膜の盛り上がった部分を選択的にエッチング除去して、めっき膜の平坦性を向上させることができる。
Then, the current (voltage) is switched in the same manner as described above, and the third-stage electrolytic etching is performed in a state where the pressing force is increased while flowing a constant current which is smaller than that in the above-described second-stage etching ( t 8 ~t 9), thus completing the electrolytic process.
As described above, electrolytic etching is performed between the plating processes, and the electrolytic etching is relatively moved between the polishing surface 120a and the substrate W while pressing the polishing surface 120a against the processing surface (plating surface) of the substrate. By doing so, for example, the raised portion of the plating film formed on the fine groove can be selectively removed by etching, so that the flatness of the plating film can be improved.

電解処理が完了すると、電極アーム部30を上昇させ旋回させて電解液トレー22上方へ戻し、通常位置へ下降させる。次に、プレコート・回収アーム32を待避位置から基板Wに対峙する位置へ移動させて下降させ、電解液回収ノズル66から基板W上の電解液の残液を回収する。この残液の回収が終了した後、プレコート・回収アーム32を待避位置へ戻し、基板のめっき面のリンスのために、純水用の固定ノズル34から基板Wの中央部に純水を吐出し、同時に基板保持部36をスピードを増して回転させて基板Wの表面の電解液を純水に置換する。このように、基板Wのリンスを行うことで、基板保持部36を電解処理位置Bから下降させる際に、電解液が跳ねて、電極部38の第1の電極88が汚染されることが防止される。   When the electrolytic treatment is completed, the electrode arm 30 is raised and turned to return to above the electrolytic solution tray 22 and is lowered to the normal position. Next, the precoat / recovery arm 32 is moved from the retreat position to a position facing the substrate W and lowered, and the remaining electrolyte solution on the substrate W is recovered from the electrolyte solution recovery nozzle 66. After the collection of the remaining liquid is completed, the precoat / collection arm 32 is returned to the retracted position, and pure water is discharged from the fixed nozzle 34 for pure water to the center of the substrate W for rinsing the plating surface of the substrate. At the same time, the substrate holder 36 is rotated at an increased speed to replace the electrolyte on the surface of the substrate W with pure water. By rinsing the substrate W in this manner, when the substrate holding unit 36 is lowered from the electrolytic processing position B, the electrolytic solution is prevented from splashing and the first electrode 88 of the electrode unit 38 is prevented from being contaminated. Is done.

リンス終了後に水洗工程に入る。即ち、基板保持部36を電解処理位置Bから前処理・洗浄位置Cへ下降させ、純水用の固定ノズル34から純水を供給しつつ基板保持部36及び電極部38を回転させて水洗を実施する。この時、電極部38に直接供給した純水、又は基板Wの面から飛散した純水によってシール材90及び第1の電極88も基板と同時に洗浄することができる。   After the rinsing, the washing process starts. That is, the substrate holding unit 36 is lowered from the electrolytic treatment position B to the pretreatment / cleaning position C, and the substrate holding unit 36 and the electrode unit 38 are rotated while supplying pure water from the fixed nozzle 34 for pure water to perform water washing. carry out. At this time, the sealing material 90 and the first electrode 88 can be cleaned simultaneously with the substrate by using pure water directly supplied to the electrode portion 38 or pure water scattered from the surface of the substrate W.

水洗完了後にドライ工程に入る。即ち、固定ノズル34からの純水の供給を停止し、更に基板保持部36及び電極部38の回転スピードを増して、遠心力により基板表面の純水を振り切って乾燥させる。併せて、シール材90及び第1の電極88も乾燥される。ドライ工程が完了すると基板保持部36及び電極部38の回転を停止させ、基板保持部36を基板受渡し位置Aまで下降させる。すると、チャック爪76による基板Wの把持が解かれ、基板Wは、支持腕70の上面に載置された状態となる。これと同時に、カップ40も下降させる。   After completion of washing, the drying process starts. That is, the supply of pure water from the fixed nozzle 34 is stopped, the rotation speed of the substrate holding unit 36 and the electrode unit 38 is further increased, and the pure water on the substrate surface is shaken off and dried by centrifugal force. At the same time, the sealing material 90 and the first electrode 88 are also dried. When the dry process is completed, the rotation of the substrate holding unit 36 and the electrode unit 38 is stopped, and the substrate holding unit 36 is lowered to the substrate transfer position A. Then, the gripping of the substrate W by the chuck claws 76 is released, and the substrate W is placed on the upper surface of the support arm 70. At the same time, the cup 40 is also lowered.

以上でめっき処理及びそれに付帯する前処理や洗浄・乾燥工程の全て工程を終了し、搬送ロボット14は、そのハンドを基板搬出入口から基板Wの下方に挿入し、そのまま上昇させることで、基板保持部36から処理後の基板Wを受取る。そして、搬送ロボット14は、この基板保持部36から受取った処理後の基板Wをロード・アンロード部10に戻す。   As described above, the plating process and all the pretreatment and cleaning / drying processes accompanying the plating process are completed, and the transfer robot 14 inserts the hand from the substrate loading / unloading port below the substrate W and raises the hand as it is to hold the substrate. The processed substrate W is received from the unit 36. Then, the transfer robot 14 returns the processed substrate W received from the substrate holding unit 36 to the load / unload unit 10.

なお、上記の例では、研磨パッド120の研磨面120aを基板Wの被処理面(被めっき面)に接触させることなく、両者の間に0.1mm〜3mm程度の隙間を設けた状態で、液張り及び各段階のめっきを行うようにした例を示しているが、図15に示すように、研磨パッド120の研磨面120aを基板Wの被処理面(被めっき面)に低圧力で接触させた状態で、液張り及び各段階のめっきを行うようにしてもよい。つまり、この例では、研磨パッド120の研磨面120aと基板Wの被処理面(被めっき面)とを低圧で互いに接触させた状態で、液張り(t〜t)、第1段階から第3段階のめっき(t〜t)、第4段階のめっき(t〜t)及び第5段階のめっき(t〜t)を行い、更に、第3段階の電解エッチング(t〜t)を終了した後、研磨パッド120の研磨面120aと基板Wの被処理面との間の圧力を低圧に戻し(t〜t10)、しかる後、研磨パッド120を基板Wから離すようにしている。 In the above example, the polishing surface 120a of the polishing pad 120 was not brought into contact with the surface to be processed (plated surface) of the substrate W, and a gap of about 0.1 mm to 3 mm was provided between the two. Although an example in which liquid filling and plating at each stage are performed is shown, as shown in FIG. 15, the polishing surface 120a of the polishing pad 120 is brought into contact with the surface to be processed (plated surface) of the substrate W at a low pressure. In this state, the plating and the plating at each stage may be performed. That is, in this example, the treatment surface of the polishing surface 120a and the substrate W of the polishing pad 120 and (plated surface) being in contact with each other at a low pressure, liquid-clad (t 0 ~t 1), from the first stage The third stage plating (t 1 to t 4 ), the fourth stage plating (t 5 to t 6 ) and the fifth stage plating (t 7 to t 8 ) are performed, and further, the third stage of electrolytic etching ( after completion of the t 8 ~t 9), the pressure between the target surface of the polishing surface 120a and the substrate W of the polishing pad 120 returned to the low pressure (t 9 ~t 10), after which the polishing pad 120 substrate Keep away from W.

このように、研磨パッド120の研磨面120aを基板Wの被処理面(被めっき面)に低圧力で接触させた状態で、液張り及び各段階のめっきを行うことで、めっきによって形成されるめっき膜の表面に生じる盛り上がりをより小さくすることができる。   In this manner, by performing liquid filling and plating at each stage in a state where the polishing surface 120a of the polishing pad 120 is brought into contact with the surface to be processed (the surface to be plated) of the substrate W at a low pressure, the polishing pad 120 is formed by plating. The bulge generated on the surface of the plating film can be further reduced.

図16は、本発明の他の実施の形態の電解処理装置の要部を示す。この例の、前記例と異なる点は、高抵抗構造体110をその周縁部をハウジング94で保持して、電解液室100の内部を横方向に跨るように配置し、更にフランジ140aを有するサポート140を備え、このサポート140をそのフランジ140aをハウジング94の内方突出部94aに引っ掛けて保持し、このサポート140の下面に、下面を研磨面120aとした研磨パッド120を取付けた点にある。なお、細管112は、サポート140の内部を貫通して延びており、更にサポート140には、多数の貫通孔が設けられている。   FIG. 16 shows a main part of an electrolytic processing apparatus according to another embodiment of the present invention. This example is different from the example described above in that the high-resistance structure 110 is arranged so that the periphery thereof is held by the housing 94 so as to straddle the inside of the electrolytic solution chamber 100 in the lateral direction, and further has a support 140 having a flange 140a. The support 140 is provided such that the flange 140a of the support 140 is hooked and held on the inwardly protruding portion 94a of the housing 94, and a polishing pad 120 having a polishing surface 120a on the lower surface is attached to the lower surface of the support 140. The thin tube 112 extends through the inside of the support 140, and the support 140 is provided with a large number of through holes.

このように、材質や形状に影響されないサポート140を介して研磨パッド120を保持することで、この研磨パッド120を容易に保持して所定の位置に配置することができる。
なお、前記の各例では、下面を研磨面120aとした研磨パッド120を備えた例を示しているが、高抵抗構造体の一部に、例えばコーティング、焼成または封孔処理等の表面処理を施して、高抵抗構造体の下面を研磨面とするようにしてもよい。
As described above, by holding the polishing pad 120 via the support 140 which is not affected by the material and the shape, the polishing pad 120 can be easily held and arranged at a predetermined position.
In each of the above-described examples, an example is shown in which the polishing pad 120 having the lower surface as the polishing surface 120a is provided, but a surface treatment such as coating, firing, or sealing treatment is performed on a part of the high-resistance structure. In this case, the lower surface of the high-resistance structure may be a polished surface.

図17乃至図20は、本発明の更に他の実施の形態の電解加工装置を示す。この例の電解加工装置は、前述とほぼ同様な構成の、基板Wを着脱自在に保持する基板保持部36と、第1の電極88及びシール材90を備えた電極部38とを有する基板処理部20を備えている。そして、この基板処理部20を挟んだ両側に、例えばめっき液からなる第1の電解液(以下、めっき液と総称という)200を保持する第1の電解液トレー(同じく、めっき液トレー)202と、エッチング液からなる第2の電解液(同じく、エッチング液)204を保持する第2の電解液トレー(同じく、エッチング液トレー)206とが配置されている。   17 to 20 show an electrolytic processing apparatus according to still another embodiment of the present invention. The electrolytic processing apparatus of this example includes a substrate processing unit having a substrate holding unit 36 having a configuration substantially the same as that described above and detachably holding a substrate W, and an electrode unit 38 having a first electrode 88 and a sealing material 90. A section 20 is provided. A first electrolytic solution tray (also referred to as a plating solution tray) 202 that holds a first electrolytic solution (hereinafter, generally referred to as a plating solution) 200 made of, for example, a plating solution, on both sides of the substrate processing unit 20. And a second electrolyte solution tray (similarly, an etching solution tray) 206 for holding a second electrolyte solution (similarly, an etching solution) 204 made of an etching solution.

更に、上下動及び揺動自在な揺動アーム208の先端に保持されて、基板処理部20とめっき液トレー202との間を揺動する第1の電極ヘッド210と、同じく、上下動及び揺動自在な揺動アーム212の先端に保持されて、基板処理部20とエッチング液トレー206との間を揺動する第2の電極ヘッド214が備えられている。   Further, the first electrode head 210 held between the substrate processing unit 20 and the plating solution tray 202 while being held at the tip of a swing arm 208 that can swing up and down and swings. A second electrode head 214 that is held at the tip of a movable swing arm 212 and swings between the substrate processing unit 20 and the etchant tray 206 is provided.

この第1の電極ヘッド210は、前述とほぼ同様に、ハウジング216と、該ハウジング216の下方開口端を閉塞して電解液室(めっき液室)218を区画形成する高抵抗構造体220を有しており、この電解液室218の内部に第2の電極222が収容され、めっき液200を第2の電極222を浸漬させた状態で保持するようになっている。一方、第2の電極ヘッド214も前述とほぼ同様に、ハウジング224と、該ハウジング224の下方開口端を閉塞して電解液室(エッチング液室)226を区画形成する高抵抗構造体228を有しており、この電解液室226の内部に第2の電極230が収容され、エッチング液204を第2の電極230を浸漬させた状態で保持するようになっている。更に、この第2の電極ヘッド214の高抵抗構造体228の下面には、下面を研磨面232aとした研磨パッド232が貼着され、更に、図示しないが、第2の電極ヘッド214には、高抵抗構造体228を下方に押圧する押圧機構が備えられている。   The first electrode head 210 includes a housing 216 and a high-resistance structure 220 that closes a lower opening end of the housing 216 to form an electrolyte solution chamber (plating solution chamber) 218 in substantially the same manner as described above. The second electrode 222 is accommodated in the electrolytic solution chamber 218, and the plating solution 200 is held in a state where the second electrode 222 is immersed. On the other hand, the second electrode head 214 also has a housing 224 and a high-resistance structure 228 which closes a lower opening end of the housing 224 to form an electrolyte solution chamber (etching solution chamber) 226 in substantially the same manner as described above. The second electrode 230 is accommodated in the electrolytic solution chamber 226, and the etching solution 204 is held in a state where the second electrode 230 is immersed. Further, a polishing pad 232 having a lower surface as a polishing surface 232a is attached to the lower surface of the high-resistance structure 228 of the second electrode head 214. Further, although not shown, the second electrode head 214 has A pressing mechanism for pressing the high resistance structure 228 downward is provided.

この例では、第1の電極ヘッド210として、基板の被処理面(被めっき面)に電解めっきを行うのに使用するため、電解エッチングを行うようにした第2の電極ヘッド214とは異なり、研磨パッド等を有さないものを使用しているが、第2の電極ヘッド214と同様な構成のものを使用して、例えば電解エッチングを行うのに使用したり、研磨面を基板の被処理面に接触させて電解めっき行うのに使用したりしてもよい。第2の電極ヘッド214にあっても同様に、第1の電極ヘッド210と同様な構成のものを使用して、例えば電解めっきを行うにの使用してもよい。   In this example, since the first electrode head 210 is used to perform electrolytic plating on the surface to be processed (the surface to be plated) of the substrate, unlike the second electrode head 214 that performs electrolytic etching, Although the one having no polishing pad or the like is used, the one having the same configuration as that of the second electrode head 214 can be used, for example, for performing electrolytic etching, or the polishing surface can be processed on the substrate. It may be used in contact with a surface to perform electrolytic plating. Similarly, the second electrode head 214 may have the same configuration as the first electrode head 210 and may be used for, for example, performing electrolytic plating.

また、電解液が互いに混じるのを防止するため、第1の電極ヘッド210と第2の電極ヘッド214を備えた例を示しているが、例えば第2の電極ヘッド214と同様な構成の電極ヘッドを単一の共通したものとして使用してもよく、これにより、構造の簡素化を図ることができる。なお、3個以上の電解液トレーと、この各電解液トレーに対応した数の電極ヘッドを有するようにしてもよいことは勿論である。   Further, an example is shown in which the first electrode head 210 and the second electrode head 214 are provided in order to prevent the electrolyte solutions from being mixed with each other. For example, an electrode head having the same configuration as the second electrode head 214 is shown. May be used as a single common element, whereby the structure can be simplified. Needless to say, three or more electrolyte solution trays and the number of electrode heads corresponding to each of the electrolyte solution trays may be provided.

次に、この電解処理装置による電解処理について、図21を更に参照して説明する。
先ず、前述と同様にして、基板処理部20の基板保持部36で、被処理面を上向きにして基板Wを保持し、必要に応じて、めっき前処理を施した後、基板Wの周縁部に第1の電極88に接触させて通電可能な状態となし、同時に基板Wの周縁部上面にシール材90を圧接させて、基板Wの周縁部を水密的にシールする。
Next, the electrolytic processing by this electrolytic processing apparatus will be described with further reference to FIG.
First, in the same manner as described above, the substrate W is held by the substrate holding unit 36 of the substrate processing unit 20 with the surface to be processed facing upward, and if necessary, a plating pre-treatment is performed. The first electrode 88 is brought into contact with the first electrode 88 so that a current can be supplied. At the same time, the sealing material 90 is pressed against the upper surface of the peripheral edge of the substrate W to seal the peripheral edge of the substrate W in a watertight manner.

この時、図18に示すように、第1の電極ヘッド210は、めっき液トレー202内の通常の位置にあり、高抵抗構造体220がめっき液トレー202内のめっき液200に接触し、電解液室218の内部を吸引することで、高抵抗構造体220及び電解液室218の内部にめっき液200が保持される。第2の電極ヘッド214にあってもほぼ同様に、エッチング液トレー206内の通常に位置にあり、高抵抗構造体228がエッチング液トレー206内のエッチング液204に接触し、電解液室226の内部を吸引することで、高抵抗構造体228及び電解液室226の内部にエッチング液が保持される。   At this time, as shown in FIG. 18, the first electrode head 210 is at a normal position in the plating solution tray 202, and the high-resistance structure 220 contacts the plating solution 200 in the plating solution tray 202, By sucking the inside of the solution chamber 218, the plating solution 200 is held inside the high-resistance structure 220 and the electrolyte solution chamber 218. Similarly, even in the second electrode head 214, the high-resistance structure 228 is located at the normal position in the etching solution tray 206 and contacts the etching solution 204 in the etching solution tray 206, and By sucking the inside, the etching solution is held inside the high-resistance structure 228 and the electrolyte solution chamber 226.

そして、基板Wが所定に位置にセットされたという信号に基づいて、内部にめっき液200を保持した第1の電極ヘッド210を一端上昇させ、更に揺動させて、基板保持部36の直上方に位置させる。次に、第1の電極ヘッド210を基板保持部36に向かって下降させ、この高抵抗構造体220が基板Wの被処理面(被めっき面)に接触することなく、0.1mm〜3mm程度に近接した位置に達した時に、第1の電極ヘッド210の下降を停止させる。この下降が完了した時点で、図19に示すように、高抵抗構造体220と基板Wとの間にめっき液200を満たし、同時に、電源234を介して、第1の電極88をカソード、第2の電極222をアノードとしためっき電流を投入し、必要に応じて、基板Wを低速で回転させて、基板Wの被処理面(被めっき面)に電解めっきを施す。   Then, based on a signal that the substrate W has been set at a predetermined position, the first electrode head 210 holding the plating solution 200 therein is once raised and further swung to directly above the substrate holding portion 36. Position. Next, the first electrode head 210 is lowered toward the substrate holding unit 36, and the high-resistance structure 220 does not come into contact with the surface to be processed (the surface to be plated) of the substrate W, and is about 0.1 mm to 3 mm. When the first electrode head 210 reaches a position close to the first position, the lowering of the first electrode head 210 is stopped. When the lowering is completed, as shown in FIG. 19, the space between the high-resistance structure 220 and the substrate W is filled with the plating solution 200, and at the same time, the first electrode 88 is connected to the cathode and the second electrode via the power supply 234. A plating current is applied using the second electrode 222 as an anode, and the substrate W is rotated at a low speed as necessary to perform electrolytic plating on the surface to be processed (surface to be plated) of the substrate W.

このめっき終了後、第1の電極ヘッド210を上昇させ旋回させて、めっき液トレー202の上方へ戻し、通常位置へ下降させる。次に、前述と同様に、電解液回収ノズルから基板W上のめっき液の残液を回収し、しかる後、基板Wのめっき面に純水を供給してめっき面をリンス(洗浄)してめっき液を純水に置換し、更に、基板Wのめっき面に純水を供給しつつ基板Wを回転させて水洗した後、純水の供給を停止し、基板Wの回転スピードを増し、遠心力により基板表面の純水を振り切って基板Wを乾燥させる。   After the completion of the plating, the first electrode head 210 is raised and turned to return above the plating solution tray 202, and is lowered to the normal position. Next, in the same manner as described above, the remaining solution of the plating solution on the substrate W is collected from the electrolyte solution collecting nozzle, and thereafter, pure water is supplied to the plating surface of the substrate W to rinse (wash) the plating surface. After the plating solution is replaced with pure water, the substrate W is rotated and rinsed while supplying pure water to the plating surface of the substrate W, and then the supply of pure water is stopped, the rotation speed of the substrate W is increased, and centrifugation is performed. The substrate W is dried by shaking off the pure water on the substrate surface by the force.

次に、内部にエッチング液204を保持した第2の電極ヘッド214を一端上昇させ、更に揺動させて、基板保持部36の直上方に位置させる。次に、第2の電極ヘッド214を基板保持部36に向かって下降させ、この研磨パッド232の下面の研磨面232aを基板Wの被処理面(めっき面)に接触させ、所定の押圧力で押圧した時に第2の電極ヘッド214の下降を停止させる。この下降が完了した時点で、図20に示すように、高抵抗構造体228と基板Wとの間にエッチング液204を満たし、同時に、電源234を介して、第1の電極88をアノード、第2の電極230をカソードとした電流を投入し、基板Wを回転させて、被処理面(めっき面)に電解エッチングを施す。   Next, the second electrode head 214 holding the etching solution 204 therein is once raised and further swung to be positioned immediately above the substrate holding unit 36. Next, the second electrode head 214 is lowered toward the substrate holding unit 36, and the polishing surface 232a on the lower surface of the polishing pad 232 is brought into contact with the surface to be processed (plated surface) of the substrate W, and is pressed with a predetermined pressing force. When pressed, the lowering of the second electrode head 214 is stopped. When the lowering is completed, as shown in FIG. 20, the space between the high-resistance structure 228 and the substrate W is filled with the etching solution 204, and at the same time, the first electrode 88 is connected to the anode and the second electrode via the power supply 234. An electric current is applied by using the second electrode 230 as a cathode, the substrate W is rotated, and the surface to be processed (plated surface) is subjected to electrolytic etching.

このエッチング終了後、第2の電極ヘッド214を上昇させ旋回させて、エッチング液トレー206の上方へ戻し、通常位置へ下降させる。次に、前述と同様に、電解液回収ノズルから基板W上のエッチング液の残液を回収し、しかる後、基板Wのめっき面に純水を供給してめっき面をリンス(洗浄)してエッチング液を純水に置換し、更に、基板Wのめっき面に純水を供給しつつ基板Wを回転させて水洗した後、純水の供給を停止し、基板Wの回転スピードを増し、遠心力により基板表面の純水を振り切って基板Wを乾燥させる。
前記の電解めっき及び電解エッチングを、必要に応じて繰返し、めっき膜が所定の膜厚に達した時に、基板を次工程に搬送する。
After the completion of this etching, the second electrode head 214 is raised and turned to return above the etching solution tray 206, and is lowered to the normal position. Next, in the same manner as described above, the remaining solution of the etching solution on the substrate W is recovered from the electrolyte recovery nozzle, and thereafter, pure water is supplied to the plating surface of the substrate W to rinse (clean) the plating surface. After the etching solution is replaced with pure water, the substrate W is rotated and rinsed while supplying pure water to the plating surface of the substrate W, and then the supply of pure water is stopped, the rotation speed of the substrate W is increased, and centrifugation is performed. The substrate W is dried by shaking off the pure water on the substrate surface by the force.
The above-described electrolytic plating and electrolytic etching are repeated as necessary, and when the plating film reaches a predetermined thickness, the substrate is transported to the next step.

この例によれば、基板Wを搬送することなく、基板保持部36で基板Wを保持した状態のままで、第1の電解液を使用した第1の電解処理(例えば、めっき処理)と、第2の電解液を使用した第2の電解処理(例えば、エッチング処理)を、電解液が混じることなく、連続して行うことができる。   According to this example, a first electrolytic process (for example, a plating process) using the first electrolytic solution while the substrate W is held by the substrate holding unit 36 without transporting the substrate W, A second electrolytic process (for example, an etching process) using the second electrolytic solution can be performed continuously without mixing the electrolytic solution.

なお、この例では、第1の電解液としてめっき液を、第2の電解液としてエッチング液をそれぞれ使用して、めっき処理とエッチング処理を連続して行うようにした例を示しているが、例えば、第1の電解液として、埋込み性に優れた、硫酸銅濃度が高く硫酸濃度が低いめっき液を使用し、第2の電解液として、めっき膜の平坦性に優れた、硫酸銅濃度が低く硫酸濃度が高いめっき液を使用するようにしてもよい。これにより、特性の異なる2種類のめっき液を用いためっきを、基板保持部で基板を保持したまま連続して行うことができる。   In this example, a plating solution is used as the first electrolytic solution, and an etching solution is used as the second electrolytic solution, and the plating process and the etching process are continuously performed. For example, as the first electrolytic solution, a plating solution having a high copper sulfate concentration and a low sulfuric acid concentration, which is excellent in the embedding property, is used. A plating solution having a low sulfuric acid concentration may be used. This makes it possible to continuously perform plating using two types of plating solutions having different characteristics while holding the substrate in the substrate holding unit.

本発明の実施の形態の電解処理装置を備えた基板処理装置の全体を示す平面図である。It is a top view showing the whole substrate processing device provided with the electrolytic processing device of an embodiment of the invention. 本発明の実施の形態の電解処理装置を示す平面図である。1 is a plan view showing an electrolytic processing apparatus according to an embodiment of the present invention. 基板保持部及び電極部の拡大断面図である。It is an expanded sectional view of a substrate holding part and an electrode part. プレコート・回収アームを示す正面図である。It is a front view which shows a precoat and collection arm. 基板保持部の平面図である。It is a top view of a substrate holding part. 図5のB−B線断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 5. 図5のC−C線断面図である。FIG. 6 is a sectional view taken along line CC of FIG. 5. 電極部の平面図である。It is a top view of an electrode part. 図8のD−D線断面図である。FIG. 9 is a sectional view taken along line DD of FIG. 8. 電極アーム部の平面図である。It is a top view of an electrode arm part. 電極ヘッド及び基板保持部を概略的に示す電解めっき時における断面図である。It is sectional drawing at the time of the electrolytic plating which shows an electrode head and a board | substrate holding part schematically. 電極ヘッド及び基板保持部を概略的に示す電解エッチング時における断面図である。It is sectional drawing at the time of electrolytic etching which shows an electrode head and a board | substrate holding | maintenance part schematically. 電解めっきと電解エッチングを行う時の電流(電圧)と時間との関係の一例を示す図である。It is a figure which shows an example of the relationship between current (voltage) and time at the time of performing electrolytic plating and electrolytic etching. 図13における電解エッチング時の押圧力と時間との関係の一例を示す図である。FIG. 14 is a diagram illustrating an example of a relationship between pressing force and time during electrolytic etching in FIG. 13. 図13において、電解めっき時にも押圧力をかけた時の押圧力と時間との関係の一例を示す図である。FIG. 13 is a diagram illustrating an example of a relationship between a pressing force and a time when a pressing force is applied also during electrolytic plating. 本発明の他の実施の形態の電解処理装置の要部を示す断面図(図11相当図)である。It is sectional drawing (FIG. 11 equivalent view) which shows the principal part of the electrolytic processing apparatus of other embodiment of this invention. 本発明の更に他の実施の形態の電解処理装置の概要を示す電解めっき時の平面図である。It is a top view at the time of electrolytic plating which shows the outline of the electrolytic processing apparatus of further another embodiment of this invention. 図17に示す電解処理装置の電解めっき及び電解エッチングを行う前の状態を示す縦断面図である。FIG. 18 is a longitudinal sectional view showing a state before performing electrolytic plating and electrolytic etching of the electrolytic processing apparatus shown in FIG. 17. 図17に示す電解処理装置の電解めっき時の縦断面図である。FIG. 18 is a longitudinal sectional view of the electrolytic processing apparatus shown in FIG. 17 during electrolytic plating. 図17に示す電解処理装置の電解エッチング時の縦断面図である。FIG. 18 is a longitudinal sectional view of the electrolytic processing apparatus shown in FIG. 17 during electrolytic etching. 図17に示す電解処理装置で電解処理を行う時のブロック図である。It is a block diagram at the time of performing electrolysis processing with the electrolysis processing apparatus shown in FIG. めっき処理によって銅配線を形成する例を工程順に示す図である。It is a figure showing the example which forms a copper wiring by plating processing in order of a process. 従来の基板に銅めっきを行って埋込み配線を形成するときの問題点の説明に付する断面図である。It is sectional drawing attached to description of the problem at the time of forming a buried wiring by performing copper plating on the conventional board | substrate.

符号の説明Explanation of reference numerals

10 ロード・アンロード部
12 電解処理装置
14 搬送ロボット
16 電解液タンク
18 電解液供給設備
20 基板処理部
22 電解液トレー
26 揺動アーム
28 電極ヘッド
30 電極アーム部
32 プレコート・回収アーム
34 固定ノズル
36 基板保持部
38 電極部
64 プレコートノズル
66 電解液回収ノズル
68 ステージ
70 支持腕
76 チャック爪
80 押圧棒
82 支持板
86 枠体
88 第1の電極
90 シール材
94 ハウジング
98 第2の電極
100 電解液室
102 電解液供給管
104 電解液導入管
106 電解液排出管
110 高抵抗構造体
112 細管
114 めっき電源
120 研磨パッド
120a 研磨面
122 押圧機構
130 ストッパ
132 上下動モータ
140 サポート
200 めっき液(第1の電解液)
202 めっき液トレー
204 エッチング液(第2の電解液)
206 エッチング液トレー
210 第1の電極ヘッド
214 第2の電極ヘッド
218,226 電解液室
220,228 高抵抗構造体
222,230 第2の電極
232 研磨パッド
232a 研磨面
234 電源
DESCRIPTION OF SYMBOLS 10 Load / unload part 12 Electrolysis processing apparatus 14 Transfer robot 16 Electrolyte tank 18 Electrolyte supply facility 20 Substrate processing part 22 Electrolyte tray 26 Swing arm 28 Electrode head 30 Electrode arm part 32 Precoat / collection arm 34 Fixed nozzle 36 Substrate holding part 38 Electrode part 64 Precoat nozzle 66 Electrolyte recovery nozzle 68 Stage 70 Support arm 76 Chuck claw 80 Press rod 82 Support plate 86 Frame 88 First electrode 90 Seal material 94 Housing 98 Second electrode 100 Electrolyte chamber 102 Electrolyte supply pipe 104 Electrolyte introduction pipe 106 Electrolyte discharge pipe 110 High resistance structure 112 Thin tube 114 Plating power supply 120 Polishing pad 120a Polishing surface 122 Pressing mechanism 130 Stopper 132 Vertical motor 140 Support 200 Plating solution (first electrolytic solution) liquid)
202 Plating solution tray 204 Etching solution (second electrolyte)
206 Etching liquid tray 210 First electrode head 214 Second electrode head 218, 226 Electrolyte chamber 220, 228 High resistance structure 222, 230 Second electrode 232 Polishing pad 232a Polishing surface 234 Power supply

Claims (19)

基板を保持する基板保持部と、
基板と接触して基板の被処理面に通電させる第1の電極と、
前記基板保持部に対向して順に配置された第2の電極及び高抵抗構造体と、前記基板保持部で保持した基板の被処理面に対峙する位置に配置された研磨面とを有する電極ヘッドと、
前記基板保持部で保持した基板の被処理面と前記第2の電極との間に電解液を注入する電解液注入手段と、
前記基板保持部と前記電極ヘッドとを相対移動させる相対移動機構と、
前記電極ヘッドの研磨面を前記基板保持部で保持した基板に向けて押付ける押圧機構と、
前記第1の電極と前記第2の電極との間に電流の方向を選択的に切換えて電圧を印加する電源を有することを特徴とする電解処理装置。
A substrate holding unit for holding the substrate,
A first electrode that contacts the substrate and energizes the surface to be processed of the substrate;
An electrode head having a second electrode and a high-resistance structure sequentially arranged facing the substrate holding unit, and a polished surface arranged at a position facing a surface to be processed of the substrate held by the substrate holding unit. When,
Electrolyte injection means for injecting an electrolyte between the processing target surface of the substrate held by the substrate holding unit and the second electrode;
A relative movement mechanism for relatively moving the substrate holding unit and the electrode head,
A pressing mechanism that presses the polishing surface of the electrode head toward the substrate held by the substrate holding unit,
An electrolytic processing apparatus comprising: a power supply for selectively switching a current direction between the first electrode and the second electrode to apply a voltage.
前記研磨面は、前記高抵抗構造体の基板対向面に取付けた研磨パッドの露出表面に設けられていることを特徴とする請求項1記載の電解処理装置。   2. The electrolytic processing apparatus according to claim 1, wherein the polishing surface is provided on an exposed surface of a polishing pad attached to a substrate facing surface of the high resistance structure. 前記研磨面は、サポートで支持された研磨パッドの露出表面に設けられていることを特徴とする請求項1記載の電解処理装置。   2. The electrolytic processing apparatus according to claim 1, wherein the polishing surface is provided on an exposed surface of a polishing pad supported by a support. 前記研磨パッドは、柔軟性を有し、耐久性のある織布、不織布、樹脂または樹脂発泡体からなることを特徴とする請求項2または3記載の電解処理装置。   The electrolytic processing apparatus according to claim 2, wherein the polishing pad is made of a woven fabric, a nonwoven fabric, a resin, or a resin foam having flexibility and durability. 前記研磨面は、前記高抵抗構造体の一部または全部に改質または表面処理を施すことによって、前記高抵抗構造体の下面に設けられていることを特徴とする請求項1記載の電解処理装置。   2. The electrolytic treatment according to claim 1, wherein the polishing surface is provided on a lower surface of the high-resistance structure by modifying or surface-treating a part or all of the high-resistance structure. 3. apparatus. 前記押圧機構は、ばね要素の付勢力を介して、基板の被処理面に対する押圧力を調整できるように構成されていることを特徴とする請求項1乃至5のいずれかに記載の電解処理装置。   The electrolytic processing apparatus according to any one of claims 1 to 5, wherein the pressing mechanism is configured to be capable of adjusting a pressing force on a surface to be processed of the substrate via an urging force of a spring element. . 前記電解液は、めっき液、またはめっき液中に酸性液を含む溶液からなることを特徴とする請求項1乃至6のいずれかに記載の電解処理装置。   7. The electrolytic processing apparatus according to claim 1, wherein the electrolytic solution comprises a plating solution or a solution containing an acidic solution in the plating solution. 被処理面を上方に向けて基板を保持する基板保持部と、
基板と接触して基板の被処理面に通電させる第1の電極と、
前記基板保持部の上方に上下に配置された第2の電極及び高抵抗構造体と、前記基板保持部で保持した基板の被処理面に対峙する位置に配置された研磨面とを有する電極ヘッドと、
前記基板保持部で保持した基板の被処理面と前記第2の電極との間に電解液を注入する電解液注入手段と、
前記基板保持部と前記電極ヘッドとを相対移動させる相対移動機構と、
前記電極ヘッドの研磨面を前記基板保持部で保持した基板に向けて押付ける押圧機構と、
前記第1の電極と前記第2の電極との間に電流の方向を選択的に切換えて電圧を印加する電源を有することを特徴とする電解処理装置。
A substrate holding unit that holds the substrate with the surface to be processed facing upward,
A first electrode that contacts the substrate and energizes the surface to be processed of the substrate;
An electrode head having a second electrode and a high-resistance structure disposed vertically above and below the substrate holding unit, and a polished surface disposed at a position facing a surface to be processed of the substrate held by the substrate holding unit; When,
Electrolyte injection means for injecting an electrolyte between the processing target surface of the substrate held by the substrate holding unit and the second electrode;
A relative movement mechanism for relatively moving the substrate holding unit and the electrode head,
A pressing mechanism that presses the polishing surface of the electrode head toward the substrate held by the substrate holding unit,
An electrolytic processing apparatus comprising: a power supply for selectively switching a current direction between the first electrode and the second electrode to apply a voltage.
基板を保持する基板保持部と、
基板と接触して基板の被処理面に通電させる第1の電極と、
前記基板保持部の上方に上下に配置された第2の電極と高抵抗構造体とをそれぞれ有する第1及び第2の電極ヘッドと、
性質の異なる第1及び第2の電解液を個別に保持する電解液トレーを有し、
前記基板保持部で保持した基板の被処理面に、前記第1の電解液と前記第1の電極ヘッドを使用した第1の電解処理と、前記第2の電解液と前記第2の電極ヘッドを使用した第2の電解処理を行うことを特徴とする電解処理装置。
A substrate holding unit for holding the substrate,
A first electrode that contacts the substrate and energizes the surface to be processed of the substrate;
First and second electrode heads each having a second electrode and a high-resistance structure disposed vertically above and below the substrate holding unit;
Having an electrolyte tray individually holding first and second electrolytes having different properties,
A first electrolytic process using the first electrolytic solution and the first electrode head, a second electrolytic solution and the second electrode head, on a surface to be processed of the substrate held by the substrate holding unit; An electrolytic treatment apparatus characterized in that a second electrolytic treatment is performed by using the method.
前記第1の電極ヘッド及び前記第2の電極ヘッドの少なくとも一方は、
前記基板保持部で保持した基板の被処理面に対峙する位置に配置された研磨面と、
前記研磨面を前記基板保持部で保持した基板に向けて押付ける押圧機構とを更に有することを特徴とする請求項9記載の電解処理装置。
At least one of the first electrode head and the second electrode head,
A polished surface arranged at a position facing the surface to be processed of the substrate held by the substrate holding unit,
The electrolytic processing apparatus according to claim 9, further comprising: a pressing mechanism configured to press the polishing surface toward the substrate held by the substrate holding unit.
前記第1の電極ヘッドと前記第2の電極ヘッドは、単一の共通した電極ヘッドで構成されていることを特徴とする請求項9記載の電解処理装置。   10. The electrolytic processing apparatus according to claim 9, wherein the first electrode head and the second electrode head are constituted by a single common electrode head. 前記第1及び第2の電解液は、組成の異なるめっき液であることを特徴とする請求項9乃至11のいずれかに記載の電解処理装置。   The electrolytic processing apparatus according to claim 9, wherein the first and second electrolytic solutions are plating solutions having different compositions. 前記第1及び第2の電解液の少なくとも一方は、エッチング液であることを特徴とする請求項9乃至11のいずれかに記載の電解処理装置。   The electrolytic processing apparatus according to claim 9, wherein at least one of the first and second electrolytic solutions is an etchant. 被処理面を第1の電極に接触させて基板を保持し、この基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に電解液を満たしつつ電圧を印加して電解処理を行うに際し、
前記第1の電極をカソード、第2の電極をアノードとし、基板の被処理面の上方あるいは下方に隙間を設けて電解めっきを行い、
前記第1の電極をアノード、第2の電極をカソードとし、基板の被処理面を研磨面で擦り付けながら電解エッチングを行うことを特徴とする電解処理方法。
The substrate is held by bringing the surface to be processed into contact with the first electrode, and the high-resistance structure and the second electrode are arranged in this order in opposition to the substrate, and the first electrode, the second electrode, During the electrolytic treatment by applying a voltage while filling the electrolytic solution during,
The first electrode is a cathode, the second electrode is an anode, electrolytic plating is performed by providing a gap above or below a surface to be processed of a substrate,
An electrolytic processing method, wherein the first electrode is used as an anode and the second electrode is used as a cathode, and electrolytic etching is performed while rubbing the surface to be processed of the substrate with a polishing surface.
基板と研磨面を相対移動させつつ電解処理を行うことを特徴とする請求項14記載の電解処理方法。   The electrolytic treatment method according to claim 14, wherein the electrolytic treatment is performed while the substrate and the polishing surface are relatively moved. 被処理面を第1の電極に接触させて基板を保持し、この基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に電解液を満たしつつ電圧を印加して電解処理を行うに際し、
前記第1の電極をカソード、第2の電極をアノードとし、基板の被処理面に研磨面を接触させつつ電解めっきを行い、
前記第1の電極をアノード、第2の電極をカソードとし、基板の被処理面を研磨面で擦り付けながら電解エッチングを行うことを特徴とする電解処理方法。
The substrate is held by bringing the surface to be processed into contact with the first electrode, and the high-resistance structure and the second electrode are arranged in this order in opposition to the substrate, and the first electrode, the second electrode, During the electrolytic treatment by applying a voltage while filling the electrolytic solution during,
The first electrode is a cathode, the second electrode is an anode, and electrolytic plating is performed while the polishing surface is in contact with the surface to be processed of the substrate;
An electrolytic processing method, wherein the first electrode is used as an anode and the second electrode is used as a cathode, and electrolytic etching is performed while rubbing the surface to be processed of the substrate with a polishing surface.
被処理面に第1の電極を接触させて基板を保持し、
前記基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に第1の電解液を満たしつつ電圧を印加して第1の電解処理を行い、
前記基板に対向して高抵抗構造体と第2の電極とを順に配置し、前記第1の電極と前記第2の電極との間に第2の電解液を満たしつつ電圧を印加して第2の電解処理を行うことを特徴とする電解処理方法。
Holding the substrate by bringing the first electrode into contact with the surface to be processed;
A high-resistance structure and a second electrode are arranged in order in opposition to the substrate, and a voltage is applied between the first electrode and the second electrode while applying a first electrolytic solution to apply a voltage between the first electrode and the second electrode. Perform the electrolytic treatment of 1,
A high-resistance structure and a second electrode are arranged in order in opposition to the substrate, and a voltage is applied between the first electrode and the second electrode while filling a second electrolytic solution to apply a voltage. 2. An electrolytic treatment method comprising performing the electrolytic treatment of 2.
前記第1の電解処理及び第2の電解処理は、電解液として異なる組成のめっき液を使用しためっき処理であることを特徴とする請求項17記載の電解処理方法。   The electrolytic treatment method according to claim 17, wherein the first electrolytic treatment and the second electrolytic treatment are plating treatments using plating solutions having different compositions as the electrolytic solution. 前記第1の電解処理及び第2の電解処理の少なくとも一方は、電解液としてエッチング液を使用したエッチング処理であることを特徴とする請求項17記載の電解処理方法。
18. The electrolytic processing method according to claim 17, wherein at least one of the first electrolytic process and the second electrolytic process is an etching process using an etchant as an electrolytic solution.
JP2003399443A 2002-12-02 2003-11-28 Electrolytic treatment device, and method therefor Pending JP2004197220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399443A JP2004197220A (en) 2002-12-02 2003-11-28 Electrolytic treatment device, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002350529 2002-12-02
JP2003399443A JP2004197220A (en) 2002-12-02 2003-11-28 Electrolytic treatment device, and method therefor

Publications (2)

Publication Number Publication Date
JP2004197220A true JP2004197220A (en) 2004-07-15
JP2004197220A5 JP2004197220A5 (en) 2007-01-18

Family

ID=32774999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399443A Pending JP2004197220A (en) 2002-12-02 2003-11-28 Electrolytic treatment device, and method therefor

Country Status (1)

Country Link
JP (1) JP2004197220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084235A (en) * 2010-01-18 2010-04-15 Ebara Corp Plating apparatus
KR101805779B1 (en) * 2010-12-28 2017-12-07 가부시키가이샤 에바라 세이사꾸쇼 Electroplating method
CN111383962A (en) * 2018-12-28 2020-07-07 东京毅力科创株式会社 Substrate processing apparatus and method for operating substrate processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084235A (en) * 2010-01-18 2010-04-15 Ebara Corp Plating apparatus
KR101805779B1 (en) * 2010-12-28 2017-12-07 가부시키가이샤 에바라 세이사꾸쇼 Electroplating method
CN111383962A (en) * 2018-12-28 2020-07-07 东京毅力科创株式会社 Substrate processing apparatus and method for operating substrate processing apparatus

Similar Documents

Publication Publication Date Title
US20010024691A1 (en) Semiconductor substrate processing apparatus and method
JP2005146398A (en) Plating method and plating apparatus
JP4540981B2 (en) Plating method
KR100696732B1 (en) Polishing method and apparatus
KR20050092130A (en) Plating device and plating method
US20070158202A1 (en) Plating apparatus and method for controlling plating solution
KR20020022633A (en) Plating method and plating apparatus
JP2004250785A (en) Electrolytic treatment apparatus and substrate treatment apparatus
US20070181441A1 (en) Method and apparatus for electropolishing
JP2005133187A (en) Plating apparatus and plating method
JP2005213610A (en) Plating equipment and method
US7479213B2 (en) Plating method and plating apparatus
JP2004197220A (en) Electrolytic treatment device, and method therefor
JP4509968B2 (en) Plating equipment
JP4233376B2 (en) Substrate processing method
JP4624873B2 (en) Plating method
JP3657173B2 (en) Substrate plating equipment
JP3992421B2 (en) Substrate plating method
JP2008019495A (en) Method for cleaning porous body, and cleaning device therefor
JP4423354B2 (en) Plating method
JP2003306793A (en) Plating apparatus and plating method
JP3998689B2 (en) Substrate plating equipment
US7442282B2 (en) Electrolytic processing apparatus and method
JP4423358B2 (en) Plating apparatus and plating method
JP4166131B2 (en) Plating apparatus and plating method

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20061122

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Effective date: 20081128

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A02