JP2004196710A - Ligand and asymmetric catalyst - Google Patents

Ligand and asymmetric catalyst Download PDF

Info

Publication number
JP2004196710A
JP2004196710A JP2002367304A JP2002367304A JP2004196710A JP 2004196710 A JP2004196710 A JP 2004196710A JP 2002367304 A JP2002367304 A JP 2002367304A JP 2002367304 A JP2002367304 A JP 2002367304A JP 2004196710 A JP2004196710 A JP 2004196710A
Authority
JP
Japan
Prior art keywords
ligand
reaction
group
mmol
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002367304A
Other languages
Japanese (ja)
Inventor
Masahisa Nakada
雅久 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2002367304A priority Critical patent/JP2004196710A/en
Publication of JP2004196710A publication Critical patent/JP2004196710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new ligand useful as an asymmetric catalyst for carrying out carbon-carbon bond reaction in high enantio-selectivity in a high yield. <P>SOLUTION: The ligand is represented by general formula (R<SB>a</SB>, R<SB>b</SB>, R<SB>c</SB>and R<SB>d</SB>are each a substituted group, preferably R<SB>a</SB>and R<SB>b</SB>are each hydrogen or a phenyl group and R<SB>c</SB>and R<SB>d</SB>are each a group selected from a methyl group, an isopropyl group, a t-butyl group and a phenyl group). The ligand forms a complex with a metal to give an asymmetric catalyst. The metal to form the complex is preferably selected from Cr, Zn, Ti, Mn, Pd and Rh. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、配位子及びそれを用いた不斉触媒に関する。
【0002】
【従来の技術】
野崎,檜山らにより開発されたCr(II),Cr(III)の酸化還元プロセスを伴う炭素−炭素結合反応(非特許文献1参照。)は官能基選択性に優れ、応用範囲も広いことから、複雑な天然物の合成などに多く利用されている。
【0003】
そして、Umani-Ronchiらはこの反応を応用し、クロムサレン錯体を用いたエナンチオ選択的なアリル化反応及びクロチル化反応(非特許文献2〜7参照。)を開発している。この反応は、不斉触媒反応として利用価値が高い。しかし、その生成物のエナンチオ選択性と収率は決して高いものではなく、大量の副生成物が発生するという問題があった。
【0004】
【非特許文献1】
Okude, y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977,99, 3179-3180.
【非特許文献2】
Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Morganti, S.; Umani-Ronchi,A. Org. Lett. 2001, 3, 1153-1155.
【非特許文献3】
Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Pure Appl. Chem. 2001, 73,325-329.
【非特許文献4】
Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Tetrahedron 2001, 57, 835-843.
【非特許文献5】
Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Polyhedron 2000, 19, 537-539.
【非特許文献6】
Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2000, 39, 2327-2330.
【非特許文献7】
Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Morganti, S.; Umani-Ronchi,A. Angew. Chem., Int. Ed. 1999, 38, 3357-3359.
【0005】
【発明が解決しようとする課題】
本発明の課題は上記問題を解決することであり、高エナンチオ選択性と高収率で炭素−炭素結合反応を可能にする不斉触媒として用いることのできる新規な配位子を提供することを目的とする。
【0006】
【課題を解決するための手段】
一般に、不斉触媒反応におけるエナンチオ選択性は不斉配位子に起因し、いかに効率的に不斉環境を与える配位子を設計するかが問題になる。
【0007】
本発明者らは上記課題に鑑み鋭意研究の結果、本発明に想到した。
【0008】
本発明の請求項1記載の配位子は、一般式
【化2】

Figure 2004196710
(但し、[化2]中のRa,Rb,Rc,Rdは置換基である。)で表されることを特徴とする。
【0009】
本発明の請求項2記載の配位子は、請求項1において、前記Ra,Rbは水素又はフェニル基であることを特徴とする。
【0010】
本発明の請求項3記載の配位子は、請求項1又は2において、前記Rc,Rdはメチル基,イソプロピル基,t−ブチル基,フェニル基から選択されることを特徴とする。
【0011】
本発明の請求項4記載の不斉触媒は、請求項1〜3のいずれか1項記載の配位子と金属が錯体を形成していることを特徴とする。
【0012】
本発明の請求項5記載の不斉触媒は、請求項4記載において、前記金属はCr,Zn,Ti,Mn,Pd,Rhから選択されることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0014】
本発明の配位子は、一般式
【化3】
Figure 2004196710
(但し、[化3]中のRa,Rb,Rc,Rdは置換基である。)で表される。この配位子は3つの窒素が配位子の中心に向いて配置された三座の配位子である。
【0015】
ここで、Ra,Rbは配位子の合成の容易さから水素又はフェニル基であるのが好ましく、フェニル基が最も好ましいが、これらに限定されず、その他の置換基であってもよい。また、Rc,Rdは適切な嵩高さを持たせるためにメチル基,イソプロピル基,t−ブチル基,フェニル基から選択されるのが好ましく、イソプロピル基が最も好ましいが、これらに限定されず、その他の置換基であってもよい。
【0016】
また、本発明の不斉触媒は、上記[化3]の配位子と金属が錯体を形成したものであり、この金属としては、錯体の安定性などからCr,Zn,Ti,Mn,Pd,Rhから選択されるのが好ましく、Crが最も好ましいが、これらに限定されず、その他の金属又は非金属元素であってもよい。
【0017】
上記配位子と上記金属が錯体を形成すると、金属はカルバゾールとのσ結合とオキサゾリンとの配位結合により三座で結合するので解離しにくく非常に安定である。また、上記配位子と上記金属が錯体を形成すると、カルボニル化合物が配位可能な空の配位座が生じる。したがって、[化4]に示すように、適切な条件下で配位子LにR1X(ここで、R1はアリル基又はメタリル基,Xはハロゲン)と金属Mを作用させると錯体R1−M−Lを形成する。そして、この錯体とアルデヒドR2CHO(ここで、R2はフェニル基,アルキル基,及びその他の炭化水素)の反応は、環状Zimmermann-Traxler遷移状態を経由するものと思われ、エナンチオ選択的な炭素−炭素結合反応によってアルコールが生成する。
【0018】
【化4】
Figure 2004196710
【0019】
本発明の配位子を用いて最適な条件で反応を行うことで、高エナンチオ選択性と高収率で炭素−炭素結合反応を行うことができる。さらに、本発明の配位子を用いた不斉触媒は回収して再利用可能であって、再利用したときでも選択性、収率が変わらないものであり、このような特徴を有する配位子は全く新規のものである。
【0020】
【実施例】
以下の実施例に基づき、本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではなく、種々の変形実施が可能である。
【0021】
以下のDME,トルエン,THF,DMFは、金属NaやCaH2などから脱水蒸留したものを用いた。また、アルデヒドR2CHOはCaH2から脱水蒸留し窒素雰囲気下で保存したものを用いた。CrCl2はアルドリッチ社製のものを用い、その他の試薬はすべてTCI社製又は関東化学株式会社製のものを用いた。
【0022】
[実施例1] 配位子の合成
以下、配位子の一例として、つぎの[化5]に示す1,8−ビス[4’−(S)−イソプロピルオキサゾリン−2’−イル]−3,6−ジフェニルカルバゾール(1,8-bis[4'-(S)-isopropyloxazolin-2'-yl]-3,6-diphenyl carbazole)の合成について説明する。
【0023】
【化5】
Figure 2004196710
【0024】
(1)3,6−ジフェニルカルバゾール(3,6-diphenyl carbazole)の合成
PhB(OH)2(5.45g,44.7mmol),Pd(OAc)2(0.164g,0.731mmol),(o−tol)3P(0.458g,1.50mmol),Ba(OH)28H2O(14.1g,44.8mmol)を、3,6−ジヨードカルバゾール(6.26g,14.9mmol)のDME(120ml)とH2O(20ml)の溶液に連続して加えた。この混合物を80℃で8時間加熱し、室温まで冷却し、濾過して沈殿物を除去した。この濾液を真空下で濃縮し、CH2Cl2(100ml×3)で抽出し、この有機層をNa2SO4で脱水した。そして、この有機層をエバポレートし、残留物をフラッシュクロマトグラフィー(ヘキサン/CH2Cl2=3/1)で精製した。ヘキサン/酢酸エチルで再結晶を行い、純粋な[化6]に示す3,6−ジフェニルカルバゾール(4.58g、96%)を得た。
【0025】
【化6】
Figure 2004196710
【0026】
(2)1,8−ジヨード−3,6−ジフェニルカルバゾール(1,8-diiodo-3,6-diphenyl carbazole)の合成
AcOH(1000ml),H2O(200ml),H2SO4(30ml)の混合溶媒中に3,6−ジフェニルカルバゾール[化6](22.3g,69.8mmol)を懸濁させた溶液に、I2(17.7g,69.6mmol),HIO42H2O(7.94g,34.9mmol)を連続して加えた。80℃で8時間攪拌した後、この反応混合液を室温まで冷却し、H2O(2000ml)中に注いだ。沈殿した粗生成物を酢酸エチル(1000ml)と飽和NaHCO3水溶液(300ml)で分離し、この有機層を飽和Na223水溶液(100ml)で洗浄し、つぎに食塩水(200ml)で洗浄してからNa2SO4で脱水した。エバポレートし、残留物をトルエンで再結晶して純粋な[化7]に示す1,8−ジヨード−3,6−ジフェニルカルバゾール(26.8g,67%)を得た。
【0027】
【化7】
Figure 2004196710
【0028】
(3)1,8−ビス[4’−(S)−イソプロピルオキサゾリン−2’−イル]−3,6−ジフェニルカルバゾール(1,8-bis[4'-(S)-isopropyloxazolin-2'-yl]-3,6-diphenyl carbazole)の合成
1,8−ジヨード−3,6−ジフェニルカルバゾール[化7](5.00g,8.75mmol)のDMF(130ml)溶液に、Ar雰囲気下でCuCN(2.35g,26.2mmol)を加え、この混合物を1.5時間還流した。この反応混合物を室温まで冷却し、濾過して沈殿物を除去し、この濾液を飽和NaCN水溶液(400ml)に注いだ。沈殿した固形物を濾過し、この濾液を酢酸エチル(700ml)とH2O(200ml)で分離し、この有機層を食塩水(100ml)で洗浄してNa2SO4で脱水した。この溶液をエバポレートして真空で乾燥し、未精製の1,8−ジシアノ−3,6−ジフェニルカルバゾールを得た。未精製の1,8−ジシアノ−3,6−ジフェニルカルバゾールをPhCl(100ml)に溶解し、その溶液にL−バリノール(2.71g,26.1mmol)とZnCl2(3.56g,26.2mmol)を加えた。この反応混合物を72時間還流し、その後、室温まで冷却した。この混合物へエチレンジアミン(15ml)のH2O(100ml)溶液を加えてから、この混合物を1時間攪拌した。得られた混合物をCH2Cl2(200ml)で抽出し、この有機層をNa2SO4で脱水、エバポレートし、残留物をフラッシュクロマトグラフィー(ヘキサン/CH2Cl2=4/1〜1/1)で精製した。ヘキサン/酢酸エチルで再結晶を行い、純粋な[化5]に示す配位子(3.38g,71%)を得た。
【0029】
[実施例2] アルデヒドのエナンチオ選択的アリル化及びメタリル化反応
上記実施例1で合成した配位子[化5]を用い、アリル化及びメタリル化を行った。
【0030】
[実施例2−1] (S)−1−フェニル−3−ブテン−1−オール((S)-1-phenyl-3-buten-1-ol)[化8]の合成
【0031】
【化8】
Figure 2004196710
【0032】
配位子(27.1mg,0.0500mmol),CrCl2(6.3mg,0.0510mmol),Mn(53.8mg,0.979mmol)の混合物をトルエンで3回共沸させ、高真空下で乾燥し、THF(2ml)に懸濁させた。この懸濁液の色は、即座に茶色に変化した。この懸濁液に攪拌しながらDIPEA(0.026ml,0.15mmol)を加え、その5分後にアリルブロマイド(0.086ml,0.99mmol)を加えた。30分間攪拌すると、この混合液の色は緑がかった茶色へ変化した。この混合液に攪拌しながら0℃でベンズアルデヒド(0.050ml,0.49mmol),TMSCl(0.125ml,0.985mmol)を連続して加えた。12時間後、この反応混合物の色は赤みを帯びた茶色へ変化した。飽和NaHCO3水溶液(1ml)で反応を停止させ、セライト(登録商標)で濾過し、真空下でエバポレートした。この未精製の生成物をTHF(2ml)に溶解し、攪拌しながらTBAF(1ml,1M溶液)で処理した。そして、飽和NH4Cl水溶液(2ml)を加えて反応を停止させ、Et2O(10ml×4)で抽出し、Na2SO4で脱水し、エバポレートした。残留物をフラッシュクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、(S)−1−フェニル−3−ブテン−1−オール[化8](64.7mg,93%ee,89%)を得た。
【0033】
[実施例2−2] その他のアルデヒドのエナンチオ選択的アリル化反応及びメタリル化反応
上記実施例2−1と同様に、種々のアルデヒドを用いて検討した。その結果を表1にまとめて示す。なお、表1における光学純度(ee)はHPLC(JASCO PU−980,UV−970)又は600MHz1H−NMR(Bruker AVANCE 600)(生成物jのみ)により測定した。反応は0℃で行い、収率は単離収率である。
【0034】
なお、配位子とCrCl2を反応させる際に発生するHClをトラップするために、アリル化やメタリル化を行う前に塩基を加えるのが好ましいが、特にトリアルキルアミンを加えることによりエナンチオ選択性が向上することを確認している。また、配位性溶媒は錯体が良好に溶解するTHF,アセトニトリル,DMF,塩化メチレン,DMSO,アセトンなどの極性溶媒が好ましい。また、アルデヒドを加える前に0℃に冷却することで、エナンチオ選択性が向上することを確認している。
【0035】
表1の結果より、ハロゲン化アリルのハロゲンの種類については、ベンズアルデヒドの場合、クロロ体とブロモ体とでは、エナンチオ選択性に差は見られなかったが、ヨード体の場合、エナンチオ選択性は低かった。これはMnとヨードアリルが反応しアキラルなアリルマンガン試薬が発生したためと思われる。
【0036】
メタリルハライドを用いた場合も同様の結果であったが、メタリルハライドがクロロ体の場合に好結果が得られた。これは、ブロモ体の反応性が高く有機マンガン試薬の生成が早いため、ブロモ体を用いた場合にエナンチオ選択性が下がるためと思われる。
【0037】
本発明の配位子を用いることにより、アリファティックなアルデヒドも含めて、種々の広範囲なアルデヒドについて、高収率及び高エナンチオ選択性で生成物が得られることがわかった。また、生成物の立体配置から、すべてのアルデヒドはSi面から攻撃を受けたことが分かった。
【0038】
【表1】
Figure 2004196710
【0039】
[実施例2−3] [化5]のエナンチオマー配位子を用いたキラルアルデヒドのエナンチオ選択的メタリル化反応:(1R,5S,6R,9R)−9−[(1R,3S)−1,5−ジメチル−3−ヒドロキシ−5−ヘキセニル]−1−メチル−5−フェニルメトキシビシクロ[4.3.0]ノナン((1R,5S,6R,9R)-9-[(1R,3S)-1,5-dimethyl-3-hydroxy-5-hexenyl]-1-methyl-5-phenylmethoxybicyclo[4.3.0]nonane)[化9]の合成
【0040】
【化9】
Figure 2004196710
【0041】
[化5]のエナンチオマー配位子(16.9mg,0.0312mmol),CrCl2(3.8mg,0.031mmol),Mn(34.4mg,0.626mmol)の混合物をトルエンで3回共沸させ、高真空下で乾燥し、THF(1ml)に懸濁させた。この懸濁液の色は、即座に茶色に変化した。この懸濁液に攪拌しながらDIPEA(0.027ml,0.16mmol)を加え、その5分後にメタリルクロライド(0.031ml,0.32mmol)を加えた。室温で30分間攪拌すると、この混合液の色は緑がかった茶色へ変化した。この混合液に攪拌しながら[化10]に示すアルデヒド(48.8mg,0.155mmol)のTHF(1ml)溶液をカニューレを経由して加え、ついで洗浄液(0.3ml×3)を加えた。
【0042】
【化10】
Figure 2004196710
【0043】
この反応混合物にTMSCl(0.039ml,0.31mmol)を加え、室温で攪拌した。18時間後、この反応混合物の色は赤みを帯びた茶色へ変化した。飽和NaHCO3水溶液(1ml)で反応を停止させ、セライト(登録商標)で濾過し、真空下でエバポレートした。この未精製の生成物をTHF(2ml)に溶解し、攪拌しながらTBAF(1ml,1M溶液)で処理した。そして、飽和NH4Cl水溶液(2ml)を加えて反応を停止させ、Et2O(10ml×4)で抽出し、Na2SO4で脱水し、エバポレートした。残留物をフラッシュクロマトグラフィー(ヘキサン/酢酸エチル=20/1)で精製し、(1R,5S,6R,9R)−9−[(1R,3S)−1,5−ジメチル−3−ヒドロキシ−5−ヘキセニル]−1−メチル−5−フェニルメトキシビシクロ[4.3.0]ノナン[化9]とそのジアステレオマーである(1R,5S,6R,9R)−9−[(1R,3R)−1,5−ジメチル−3−ヒドロキシ−5−ヘキセニル]−1−メチル−5−フェニルメトキシビシクロ[4.3.0]ノナン(52.5mg,97%de,91%)を得た。[化9]とそのジアステレオマーの立体化学およびdeは、600MHz1H−NMR(Bruker AVANCE 600)により決定した。
【0044】
[実施例2−4] 配位子[化5]を用いたキラルアルデヒドのエナンチオ選択的メタリル化反応:[化9]の合成
上記実施例2−3と同様に[化5]のエナンチオマー配位子の代わりに配位子[化5]を用いて処理を行い、[化9]とそのジアステレオマー(−94%de,97%)を得た。
【0045】
[実施例2−5] 配位子を用いないキラルアルデヒドのエナンチオ選択的メタリル化反応:[化9]の合成
CrCl2(3.8mg,0.031mmol),Mn(32.0mg,0.582mmol)の混合物をトルエンで3回共沸させ、高真空下で乾燥し、THF(1ml)に懸濁させた。この懸濁液に攪拌しながらメタリルクロライド(0.027ml,0.28mmol)を加えた。室温で30分間攪拌し、 [化10]に示すアルデヒド(43.4mg,0.138mmol)のTHF(1ml)溶液をカニューレを経由して加え、洗浄(0.3ml×3)した。この反応混合物にTMSCl(0.037ml,0.29mmol)を加え、室温で攪拌した。30時間後、飽和NaHCO3水溶液(1ml)で反応を停止させ、セライト(登録商標)で濾過し、真空下でエバポレートした。この未精製の生成物をTHF(2ml)に溶解し、攪拌しながらTBAF(1ml,1M溶液)で処理した。そして、飽和NH4Cl水溶液(2ml)を加えて反応を停止させ、Et2O(10ml×4)で抽出し、Na2SO4で脱水し、エバポレートした。残留物をプレパラティブTLC(ヘキサン/酢酸エチル=4/1)で精製し、[化9]とそのジアステレオマーの混合物(5.8mg,−3%de,転化率41%で27%)を得た。
【0046】
以上の実施例2−3,2−4,2−5の結果より、[化5]のエナンチオマー配位子を用いた場合に97%de、[化5]に示す配位子を用いた場合に−94%deの高いジアステレオ選択性が得られたのに対し、配位子を用いない場合はジアステレオ選択性はほとんど見られなかった(−3%de)。このように、このジアステレオ選択的な反応は、明らかに不斉触媒にコントロールされた反応であることが確認された。なお、[化9]に示す化合物は、カルシトリオールラクトン合成の鍵となる中間体である。したがって、この触媒による不斉反応は、天然物合成に大きな可能性を与えるものである。
【0047】
[実施例3] 配位子の再利用
上記実施例1で合成した配位子[化5]の再利用について検討を行った。
【0048】
[実施例3−1] 1回目の再利用((S)−1−フェニル−3−ブテン−1−オール[化8]の合成)
配位子(27.1mg,0.0500mmol),CrCl2(6.5mg,0.053mmol),Mn(58.3mg,1.06mmol)の混合物をトルエンで3回共沸させ、高真空下で乾燥し、THF(2ml)に懸濁させた。この懸濁液の色は、即座に茶色に変化した。この懸濁液に攪拌しながらDIPEA(0.026ml,0.15mmol)を加え、その5分後にアリルブロマイド(0.086ml,0.99mmol)を加えた。30分間攪拌すると、この混合液の色は緑がかった茶色へ変化した。この混合液に攪拌しながら0℃でベンズアルデヒド(0.050ml,0.49mmol),TMSCl(0.126ml,0.993mmol)を連続して加えた。12時間後、この反応混合物の色は赤みを帯びた茶色へ変化した。飽和NaHCO3水溶液(1ml)で反応を停止させ、セライト(登録商標)で濾過し、真空下でエバポレートした。この未精製の生成物をTHF(2ml)に溶解し、攪拌しながらTBAF(1ml,1M溶液)で処理した。そして、飽和NH4Cl水溶液(2ml)を加えて反応を停止させ、Et2O(10ml×4)で抽出し、Na2SO4で脱水し、エバポレートした。残留物をプレパラティブTLC(ヘキサン/酢酸エチル=4/1)で精製し、(S)−1−フェニル−3−ブテノール[化8](64.8mg,93%ee,89%)を得た。
【0049】
プレパラティブTLCのベースラインに残っているCr−配位子錯体をCH2Cl2/酢酸エチル=1/1で溶出し、その溶出液をエバポレートし、真空下で乾燥して薄い黄色の粘り気のあるオイルを得た。このオイルをCH2Cl2(5ml)に溶解し、水(5ml×1)で洗浄し、Na2SO4で乾燥し、エバポレートした。この再生したCr-配位子とMn(54.1mg,0.985mmol)の混合物をトルエンで共沸させ、高真空下で乾燥し、THF(2ml)に懸濁させた。この懸濁液を用いて、上記実施例2−1と同様に操作を行った。24時間の反応時間を要し、(S)−1−フェニル−3−ブテン−1−オール[化8](62.8mg,92%ee,86%)を得た。
【0050】
[実施例3−2] 2回目の再利用((S)−1−フェニル−3−ブテン−1−オール[化8]の合成)
上記実施例4−1と同様の手順で配位子の2回目の再利用を行い、(S)−1−フェニル−3−ブテン−1−オール[化8](57.4mg,79%ee,93%)を得た。
【0051】
[実施例3−3] その他のアルデヒドを用いた場合の配位子の再利用
上記実施例3−1,3−2と同様に、この他のアルデヒドを用いて検討した。その結果を表2にまとめて示す。この結果より、配位子を再利用しても生成物の光学純度は、再利用しなかった場合の生成物の光学純度とほとんど変わらないことが確認された。
【0052】
【表2】
Figure 2004196710
【0053】
[実施例4] ベンズアルデヒドのエナンチオ選択的クロチル化反応
上記実施例1で合成した配位子[化5]を用い、上記実施例2−1と同様の方法でクロチルブロミドとベンズアルデヒドの反応を行った。その結果、生成物の収率は38%,anti/syn=80/20,anti体は75%ee,syn体は21%eeであり、この反応がanti選択的であることが分かった。したがって、この反応は、配位子[化5]を用いない場合と同様に、ベンズアルデヒドはSi面から攻撃を受けており、環状Zimmermann-Traxler遷移状態を経由して反応しているものと思われる。
【0054】
【発明の効果】
本発明の請求項1記載の配位子は、一般式
【化11】
Figure 2004196710
(但し、[化11]中のRa,Rb,Rc,Rdは置換基である。)で表されるものであり、この配位子を用いることによって高エナンチオ選択性と高収率で炭素−炭素結合反応を行うことができる。
【0055】
本発明の請求項2記載の配位子は、請求項1において、前記Ra,Rbは水素又はフェニル基であり、配位子を容易に合成することができる。
【0056】
本発明の請求項3記載の配位子は、請求項1又は2において、前記Rc,Rdはメチル基,イソプロピル基,t−ブチル基,フェニル基から選択されるものであり、適切な嵩高さを持たせることができる。
【0057】
本発明の請求項4記載の不斉触媒は、請求項1〜3のいずれか1項記載の配位子と金属が錯体を形成しているものであり、高エナンチオ選択性と高収率で炭素−炭素結合反応を行うことができる。
【0058】
本発明の請求項5記載の不斉触媒は、請求項4記載において、前記金属はCr,Zn,Ti,Mn,Pd,Rhから選択されるものであり、安定な錯体を形成することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ligand and an asymmetric catalyst using the same.
[0002]
[Prior art]
The carbon-carbon bonding reaction involving the redox process of Cr (II) and Cr (III) developed by Nozaki, Hiyama et al. (See Non-Patent Document 1) has excellent functional group selectivity and has a wide range of applications. It is widely used for the synthesis of complex natural products.
[0003]
Umani-Ronchi et al. Applied this reaction to develop enantioselective allylation and crotylation reactions using a chromium salen complex (see Non-Patent Documents 2 to 7). This reaction has high utility value as an asymmetric catalytic reaction. However, the enantioselectivity and yield of the product are never high, and there is a problem that a large amount of by-product is generated.
[0004]
[Non-patent document 1]
Okude, y .; Hirano, S .; Hiyama, T .; Nozaki, H. J. Am. Chem. Soc. 1977,99, 3179-3180.
[Non-patent document 2]
Bandini, M .; Cozzi, PG; Melchiorre, P .; Morganti, S .; Umani-Ronchi, A. Org. Lett. 2001, 3, 1153-1155.
[Non-Patent Document 3]
Bandini, M .; Cozzi, PG; Umani-Ronchi, A. Pure Appl. Chem. 2001, 73, 325-329.
[Non-patent document 4]
Bandini, M .; Cozzi, PG; Umani-Ronchi, A. Tetrahedron 2001, 57, 835-843.
[Non-Patent Document 5]
Bandini, M .; Cozzi, PG; Umani-Ronchi, A. Polyhedron 2000, 19, 537-539.
[Non-Patent Document 6]
Bandini, M .; Cozzi, PG; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2000, 39, 2327-2330.
[Non-Patent Document 7]
Bandini, M .; Cozzi, PG; Melchiorre, P .; Morganti, S .; Umani-Ronchi, A. Angew. Chem., Int. Ed. 1999, 38, 3357-3359.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems, and to provide a novel ligand that can be used as an asymmetric catalyst that enables a carbon-carbon bonding reaction with high enantioselectivity and high yield. Aim.
[0006]
[Means for Solving the Problems]
In general, enantioselectivity in asymmetric catalysis is caused by asymmetric ligands, and the problem is how to efficiently design a ligand that provides an asymmetric environment.
[0007]
Means for Solving the Problems In view of the above problems, the present inventors have made intensive studies and have arrived at the present invention.
[0008]
The ligand according to claim 1 of the present invention has a general formula:
Figure 2004196710
(However, R a , R b , R c and R d in [Chemical Formula 2] are substituents.)
[0009]
The ligand according to claim 2 of the present invention is characterized in that, in claim 1, R a and R b are hydrogen or a phenyl group.
[0010]
The ligand according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the R c and R d are selected from a methyl group, an isopropyl group, a t-butyl group, and a phenyl group.
[0011]
The asymmetric catalyst according to a fourth aspect of the present invention is characterized in that the ligand and the metal according to any one of the first to third aspects form a complex.
[0012]
The asymmetric catalyst according to claim 5 of the present invention is characterized in that, in claim 4, the metal is selected from Cr, Zn, Ti, Mn, Pd, and Rh.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
The ligand of the present invention has the general formula:
Figure 2004196710
(However, R a , R b , R c , and R d in [Chemical Formula 3] are substituents.) This ligand is a tridentate ligand with three nitrogens positioned toward the center of the ligand.
[0015]
Here, R a and R b are preferably hydrogen or a phenyl group, and most preferably a phenyl group from the viewpoint of ease of synthesis of the ligand, but are not limited thereto, and may be other substituents. . Further, R c and R d are preferably selected from a methyl group, an isopropyl group, a t-butyl group, and a phenyl group in order to have an appropriate bulk, and an isopropyl group is most preferable, but not limited thereto. And other substituents.
[0016]
Further, the asymmetric catalyst of the present invention is one in which the ligand of the above [Chemical Formula 3] and a metal form a complex, and the metal includes Cr, Zn, Ti, Mn, Pd because of the stability of the complex. , Rh, and most preferably Cr, but is not limited thereto, and may be another metal or nonmetallic element.
[0017]
When the ligand and the metal form a complex, the metal is tridentated by a σ bond to carbazole and a coordination bond to oxazoline, so that the metal is hardly dissociated and very stable. When the ligand and the metal form a complex, an empty coordination site to which the carbonyl compound can coordinate is generated. Accordingly, as shown in [Formula 4], when R 1 X (where R 1 is an allyl group or a methallyl group and X is a halogen) and metal M act on the ligand L under appropriate conditions, the complex R Form 1 -ML. The reaction of this complex with the aldehyde R 2 CHO (where R 2 is a phenyl group, an alkyl group, and other hydrocarbons) is thought to be via a cyclic Zimmermann-Traxler transition state, and is enantioselective. Alcohol is produced by a carbon-carbon bonding reaction.
[0018]
Embedded image
Figure 2004196710
[0019]
By carrying out the reaction under optimal conditions using the ligand of the present invention, a carbon-carbon bond reaction can be carried out with high enantioselectivity and high yield. Furthermore, the asymmetric catalyst using the ligand of the present invention can be recovered and reused, and the selectivity and yield do not change even when reused. The child is completely new.
[0020]
【Example】
The present invention will be described more specifically based on the following examples. The present invention is not limited to the following embodiments, and various modifications can be made.
[0021]
The following DME, toluene, THF, and DMF were obtained by dehydration distillation of metal Na, CaH 2, or the like. The aldehyde R 2 CHO used was dehydrated and distilled from CaH 2 and stored under a nitrogen atmosphere. CrCl 2 used was manufactured by Aldrich, and all other reagents used were manufactured by TCI or Kanto Chemical Co., Ltd.
[0022]
[Example 1] Synthesis of ligand Hereinafter, as an example of a ligand, 1,8-bis [4 '-(S) -isopropyloxazolin-2'-yl] -3 shown in the following [Chemical Formula 5] The synthesis of 1,6-diphenylcarbazole (1,8-bis [4 '-(S) -isopropyloxazolin-2'-yl] -3,6-diphenylcarbazole) will be described.
[0023]
Embedded image
Figure 2004196710
[0024]
(1) Synthesis of 3,6-diphenylcarbazole PhB (OH) 2 (5.45 g, 44.7 mmol), Pd (OAc) 2 (0.164 g, 0.731 mmol), ( o-tol) 3 P (0.458g , 1.50mmol), Ba (OH) 2 8H 2 O (14.1g, a 44.8mmol), 3,6- diiodo carbazole (6.26g, 14.9mmol to a solution of DME (120 ml) and H 2 O (20 ml) of) was added sequentially. The mixture was heated at 80 ° C. for 8 hours, cooled to room temperature, and filtered to remove a precipitate. The filtrate was concentrated under vacuum, extracted with CH 2 Cl 2 (100 ml × 3), and the organic layer was dried over Na 2 SO 4 . Then, the organic layer was evaporated, and the residue was purified by flash chromatography (hexane / CH 2 Cl 2 = 3/1). Recrystallization from hexane / ethyl acetate gave pure 3,6-diphenylcarbazole (4.58 g, 96%) shown in [Chemical Formula 6].
[0025]
Embedded image
Figure 2004196710
[0026]
(2) 1,8-diiodo-3,6-synthesis AcOH diphenyl carbazole (1,8-diiodo-3,6-diphenyl carbazole) (1000ml), H 2 O (200ml), H 2 SO 4 (30ml) 3,6-diphenyl carbazole in a mixed solvent of the general formula 6] (22.3g, 69.8mmol) to a solution suspension of, I 2 (17.7g, 69.6mmol) , HIO 4 2H 2 O ( (7.94 g, 34.9 mmol) were added continuously. After stirring at 80 ° C. for 8 hours, the reaction mixture was cooled to room temperature and poured into H 2 O (2000 ml). The precipitated crude product was separated between ethyl acetate (1000 ml) and saturated aqueous NaHCO 3 (300 ml), and the organic layer was washed with saturated aqueous Na 2 S 2 O 3 (100 ml) and then with brine (200 ml). After washing, it was dried over Na 2 SO 4 . After evaporation, the residue was recrystallized from toluene to obtain pure 1,8-diiodo-3,6-diphenylcarbazole (26.8 g, 67%) shown in [Chemical formula 7].
[0027]
Embedded image
Figure 2004196710
[0028]
(3) 1,8-bis [4 '-(S) -isopropyloxazolin-2'-yl] -3,6-diphenylcarbazole (1,8-bis [4'-(S) -isopropyloxazolin-2'- yl] -3,6-diphenylcarbazole) In a DMF (130 ml) solution of 1,8-diiodo-3,6-diphenylcarbazole [Formula 7] (5.00 g, 8.75 mmol) was added CuCN under an Ar atmosphere. (2.35 g, 26.2 mmol) was added and the mixture was refluxed for 1.5 hours. The reaction mixture was cooled to room temperature, filtered to remove the precipitate, and the filtrate was poured into a saturated aqueous solution of NaCN (400 ml). The precipitated solid was filtered, the filtrate was separated with ethyl acetate (700 ml) and H 2 O (200 ml), the organic layer was washed with brine (100 ml) and dried over Na 2 SO 4 . The solution was evaporated and dried under vacuum to obtain crude 1,8-dicyano-3,6-diphenylcarbazole. Unpurified 1,8-dicyano-3,6-diphenylcarbazole was dissolved in PhCl (100 ml), and L-valinol (2.71 g, 26.1 mmol) and ZnCl 2 (3.56 g, 26.2 mmol) were added to the solution. ) Was added. The reaction mixture was refluxed for 72 hours and then cooled to room temperature. A solution of ethylenediamine (15 ml) in H 2 O (100 ml) was added to the mixture, and the mixture was stirred for 1 hour. The resulting mixture was extracted with CH 2 Cl 2 (200 ml), the organic layer was dried over Na 2 SO 4 and evaporated, and the residue was flash chromatographed (hexane / CH 2 Cl 2 = 4/1 to 1/1). Purified in 1). Recrystallization from hexane / ethyl acetate gave pure ligand (3.38 g, 71%).
[0029]
[Example 2] Enantioselective allylation and methallylation reaction of aldehyde Using the ligand synthesized in Example 1 above, allylation and methallylation were performed.
[0030]
Example 2-1 Synthesis of (S) -1-phenyl-3-buten-1-ol (Formula 8)
Embedded image
Figure 2004196710
[0032]
A mixture of the ligand (27.1 mg, 0.0500 mmol), CrCl 2 (6.3 mg, 0.0510 mmol), and Mn (53.8 mg, 0.979 mmol) was azeotroped with toluene three times, and then under high vacuum. It was dried and suspended in THF (2 ml). The color of the suspension immediately turned brown. DIPEA (0.026 ml, 0.15 mmol) was added to the suspension with stirring, and 5 minutes later, allyl bromide (0.086 ml, 0.99 mmol) was added. After stirring for 30 minutes, the color of the mixture turned greenish brown. To this mixture, benzaldehyde (0.050 ml, 0.49 mmol) and TMSCl (0.125 ml, 0.985 mmol) were continuously added at 0 ° C. while stirring. After 12 hours, the color of the reaction mixture had changed to reddish brown. The reaction was quenched with saturated aqueous NaHCO 3 (1 ml), filtered through Celite® and evaporated in vacuo. This crude product was dissolved in THF (2 ml) and treated with TBAF (1 ml, 1 M solution) with stirring. Then, the reaction was stopped by adding a saturated NH 4 Cl aqueous solution (2 ml), extracted with Et 2 O (10 ml × 4), dried over Na 2 SO 4 , and evaporated. The residue was purified by flash chromatography (hexane / ethyl acetate = 10/1), and (S) -1-phenyl-3-buten-1-ol [Chem. 8] (64.7 mg, 93% ee, 89%) ) Got.
[0033]
[Example 2-2] Enantioselective allylation reaction and methallylation reaction of other aldehydes In the same manner as in Example 2-1 described above, various aldehydes were examined. The results are summarized in Table 1. The optical purity (ee) in Table 1 was measured by HPLC (JASCO PU-980, UV-970) or 600 MHz 1 H-NMR (Bruker AVANCE 600) (product j only). The reaction is performed at 0 ° C., and the yield is an isolated yield.
[0034]
In order to trap HCl generated when the ligand reacts with CrCl 2 , it is preferable to add a base before allylation or methallylation. Has improved. The coordinating solvent is preferably a polar solvent such as THF, acetonitrile, DMF, methylene chloride, DMSO, acetone in which the complex is well dissolved. It has also been confirmed that cooling to 0 ° C. before adding the aldehyde improves the enantioselectivity.
[0035]
From the results shown in Table 1, no difference in enantioselectivity was found between the chloro form and the bromo form in the case of benzaldehyde, but the enantioselectivity was low in the case of the iodine form. Was. This is probably because Mn and iodoallyl reacted to generate an achiral allylmanganese reagent.
[0036]
Similar results were obtained when methallyl halide was used, but good results were obtained when methallyl halide was a chloro form. This is presumably because the reactivity of the bromo compound is high and the production of the organomanganese reagent is fast, and the enantioselectivity is reduced when the bromo compound is used.
[0037]
It has been found that by using the ligand of the present invention, products can be obtained with high yield and high enantioselectivity for a wide range of aldehydes including aliphatic aldehydes. In addition, the configuration of the product showed that all aldehydes were attacked from the Si surface.
[0038]
[Table 1]
Figure 2004196710
[0039]
[Example 2-3] Enantioselective methallylation reaction of chiral aldehyde using enantiomer ligand of [Chemical Formula 5]: (1R, 5S, 6R, 9R) -9-[(1R, 3S) -1, 5-dimethyl-3-hydroxy-5-hexenyl] -1-methyl-5-phenylmethoxybicyclo [4.3.0] nonane ((1R, 5S, 6R, 9R) -9-[(1R, 3S)- Synthesis of 1,5-dimethyl-3-hydroxy-5-hexenyl] -1-methyl-5-phenylmethoxybicyclo [4.3.0] nonane) [Chemical Formula 9]
Embedded image
Figure 2004196710
[0041]
A mixture of the enantiomer ligand (16.9 mg, 0.0312 mmol), CrCl 2 (3.8 mg, 0.031 mmol), and Mn (34.4 mg, 0.626 mmol) of [Chemical Formula 5] is azeotroped with toluene three times. And dried under high vacuum and suspended in THF (1 ml). The color of the suspension immediately turned brown. DIPEA (0.027 ml, 0.16 mmol) was added to the suspension with stirring, and 5 minutes later, methallyl chloride (0.031 ml, 0.32 mmol) was added. After stirring for 30 minutes at room temperature, the color of the mixture turned greenish brown. To this mixed solution was added a solution of aldehyde (48.8 mg, 0.155 mmol) in THF (1 ml) via a cannula with stirring, and then a washing solution (0.3 ml × 3).
[0042]
Embedded image
Figure 2004196710
[0043]
TMSCl (0.039 ml, 0.31 mmol) was added to the reaction mixture, and the mixture was stirred at room temperature. After 18 hours, the color of the reaction mixture had changed to reddish brown. The reaction was quenched with saturated aqueous NaHCO 3 (1 ml), filtered through Celite® and evaporated in vacuo. This crude product was dissolved in THF (2 ml) and treated with TBAF (1 ml, 1 M solution) with stirring. Then, the reaction was stopped by adding a saturated NH 4 Cl aqueous solution (2 ml), extracted with Et 2 O (10 ml × 4), dried over Na 2 SO 4 , and evaporated. The residue was purified by flash chromatography (hexane / ethyl acetate = 20/1) to give (1R, 5S, 6R, 9R) -9-[(1R, 3S) -1,5-dimethyl-3-hydroxy-5. -Hexenyl] -1-methyl-5-phenylmethoxybicyclo [4.3.0] nonane [Formula 9] and its diastereomer (1R, 5S, 6R, 9R) -9-[(1R, 3R) -1,5-Dimethyl-3-hydroxy-5-hexenyl] -1-methyl-5-phenylmethoxybicyclo [4.3.0] nonane (52.5 mg, 97% de, 91%) was obtained. The stereochemistry and de of [Formula 9] and its diastereomer were determined by 600 MHz 1 H-NMR (Bruker AVANCE 600).
[0044]
[Example 2-4] Enantioselective metallylation reaction of chiral aldehyde using ligand [Formula 5]: Synthesis of [Formula 9] Enantiomer coordination of [Formula 5] as in Example 2-3 above. Treatment was carried out using a ligand [Chemical Formula 5] instead of a ligand to obtain [Chemical Formula 9] and its diastereomer (-94% de, 97%).
[0045]
Example 2-5] enantioselective methallyl reaction of a chiral aldehyde without using ligand: [Chemical Formula 9] Synthesis CrCl 2 (3.8mg, 0.031mmol), Mn (32.0mg, 0.582mmol )) Was azeotroped with toluene three times, dried under high vacuum and suspended in THF (1 ml). To this suspension was added methallyl chloride (0.027 ml, 0.28 mmol) with stirring. The mixture was stirred at room temperature for 30 minutes, and a solution of an aldehyde (43.4 mg, 0.138 mmol) shown in [Chemical Formula 10] in THF (1 ml) was added via a cannula, followed by washing (0.3 ml × 3). TMSCl (0.037 ml, 0.29 mmol) was added to the reaction mixture, and the mixture was stirred at room temperature. After 30 hours, the reaction was quenched with saturated aqueous NaHCO 3 (1 ml), filtered through Celite® and evaporated in vacuo. This crude product was dissolved in THF (2 ml) and treated with TBAF (1 ml, 1 M solution) with stirring. Then, the reaction was stopped by adding a saturated NH 4 Cl aqueous solution (2 ml), extracted with Et 2 O (10 ml × 4), dried over Na 2 SO 4 , and evaporated. The residue was purified by preparative TLC (hexane / ethyl acetate = 4/1) to give a mixture of [Chemical Formula 9] and its diastereomer (5.8 mg, -3% de, 27% at 41% conversion). Obtained.
[0046]
From the results of Examples 2-3, 2-4, and 2-5 above, 97% de when the enantiomer ligand of Chemical Formula 5 is used, and when the ligand of Chemical Formula 5 is used. In contrast, a high diastereoselectivity of -94% de was obtained, whereas when no ligand was used, little diastereoselectivity was observed (-3% de). Thus, this diastereoselective reaction was clearly confirmed to be a reaction controlled by an asymmetric catalyst. The compound shown in Chemical formula 9 is a key intermediate in the synthesis of calcitriol lactone. Therefore, this asymmetric reaction using a catalyst has great potential for natural product synthesis.
[0047]
Example 3 Reuse of Ligand The reuse of the ligand [Chemical Formula 5] synthesized in Example 1 was studied.
[0048]
[Example 3-1] First reuse (synthesis of (S) -1-phenyl-3-buten-1-ol [Formula 8])
A mixture of the ligand (27.1 mg, 0.0500 mmol), CrCl 2 (6.5 mg, 0.053 mmol), and Mn (58.3 mg, 1.06 mmol) was azeotroped with toluene three times, and then under high vacuum. It was dried and suspended in THF (2 ml). The color of the suspension immediately turned brown. DIPEA (0.026 ml, 0.15 mmol) was added to the suspension with stirring, and 5 minutes later, allyl bromide (0.086 ml, 0.99 mmol) was added. After stirring for 30 minutes, the color of the mixture turned greenish brown. Benzaldehyde (0.050 ml, 0.49 mmol) and TMSCl (0.126 ml, 0.993 mmol) were continuously added to this mixture at 0 ° C. while stirring. After 12 hours, the color of the reaction mixture had changed to reddish brown. The reaction was quenched with saturated aqueous NaHCO 3 (1 ml), filtered through Celite® and evaporated in vacuo. This crude product was dissolved in THF (2 ml) and treated with TBAF (1 ml, 1 M solution) with stirring. Then, the reaction was stopped by adding a saturated NH 4 Cl aqueous solution (2 ml), extracted with Et 2 O (10 ml × 4), dried over Na 2 SO 4 , and evaporated. The residue was purified by preparative TLC (hexane / ethyl acetate = 4/1) to obtain (S) -1-phenyl-3-butenol [formula 8] (64.8 mg, 93% ee, 89%). .
[0049]
The Cr-ligand complex remaining in the baseline of the preparative TLC was eluted with CH 2 Cl 2 / ethyl acetate = 1/1, and the eluate was evaporated and dried under vacuum to give a pale yellow sticky substance. I got some oil. This oil was dissolved in CH 2 Cl 2 (5 ml), washed with water (5 ml × 1), dried over Na 2 SO 4 and evaporated. A mixture of the regenerated Cr-ligand and Mn (54.1 mg, 0.985 mmol) was azeotroped with toluene, dried under high vacuum, and suspended in THF (2 ml). Using this suspension, the same operation as in Example 2-1 was performed. A reaction time of 24 hours was required to obtain (S) -1-phenyl-3-buten-1-ol [formula 8] (62.8 mg, 92% ee, 86%).
[0050]
[Example 3-2] Second reuse (synthesis of (S) -1-phenyl-3-buten-1-ol [Formula 8])
The ligand was reused for the second time in the same procedure as in Example 4-1 to obtain (S) -1-phenyl-3-buten-1-ol [formula 8] (57.4 mg, 79% ee). , 93%).
[0051]
[Example 3-3] Recycling of ligand in the case of using other aldehydes In the same manner as in Examples 3-1 and 3-2, studies were performed using other aldehydes. Table 2 summarizes the results. From this result, it was confirmed that the optical purity of the product was hardly different from the optical purity of the product when the ligand was not reused even if the ligand was reused.
[0052]
[Table 2]
Figure 2004196710
[0053]
[Example 4] Enantioselective crotylation reaction of benzaldehyde Using the ligand [Chemical Formula 5] synthesized in the above Example 1, a reaction between crotyl bromide and benzaldehyde was carried out in the same manner as in the above Example 2-1. Was. As a result, the product yield was 38%, anti / syn = 80/20, the anti form was 75% ee, and the syn form was 21% ee, indicating that this reaction was anti-selective. Therefore, in this reaction, as in the case where the ligand [Chemical Formula 5] is not used, it is considered that benzaldehyde is attacked from the Si surface and reacts via the cyclic Zimmermann-Traxler transition state. .
[0054]
【The invention's effect】
The ligand according to claim 1 of the present invention has a general formula:
Figure 2004196710
(However, R a , R b , R c , and R d in [Chem. 11] are substituents.) By using this ligand, high enantioselectivity and high yield can be obtained. The carbon-carbon bonding reaction can be performed at a high rate.
[0055]
In the ligand according to claim 2 of the present invention, in claim 1, the R a and R b are hydrogen or a phenyl group, and the ligand can be easily synthesized.
[0056]
The ligand according to claim 3 of the present invention is the ligand according to claim 1 or 2, wherein R c and R d are selected from a methyl group, an isopropyl group, a t-butyl group, and a phenyl group. It can be bulky.
[0057]
The asymmetric catalyst according to claim 4 of the present invention is a catalyst in which the ligand according to any one of claims 1 to 3 forms a complex, and has a high enantioselectivity and a high yield. A carbon-carbon bonding reaction can be performed.
[0058]
In the asymmetric catalyst according to claim 5 of the present invention, in claim 4, the metal is selected from Cr, Zn, Ti, Mn, Pd, and Rh, and can form a stable complex. .

Claims (5)

一般式
Figure 2004196710
(但し、[化1]中のRa,Rb,Rc,Rdは置換基である。)で表されることを特徴とする配位子。
General formula
Figure 2004196710
(However, R a , R b , R c , and R d in [Chemical Formula 1] are substituents.)
前記Ra,Rbは水素又はフェニル基であることを特徴とする請求項1記載の配位子。The ligand according to claim 1, wherein R a and R b are hydrogen or a phenyl group. 前記Rc,Rdはメチル基,イソプロピル基,t−ブチル基,フェニル基から選択されることを特徴とする請求項1又は2記載の配位子。3. The ligand according to claim 1, wherein R c and R d are selected from a methyl group, an isopropyl group, a t-butyl group, and a phenyl group. 請求項1〜3のいずれか1項記載の配位子と金属が錯体を形成していることを特徴とする不斉触媒。An asymmetric catalyst, wherein the ligand according to claim 1 and a metal form a complex. 前記金属はCr,Zn,Ti,Mn,Pd,Rhから選択されることを特徴とする請求項4記載の不斉触媒。The asymmetric catalyst according to claim 4, wherein the metal is selected from Cr, Zn, Ti, Mn, Pd, and Rh.
JP2002367304A 2002-12-18 2002-12-18 Ligand and asymmetric catalyst Pending JP2004196710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367304A JP2004196710A (en) 2002-12-18 2002-12-18 Ligand and asymmetric catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367304A JP2004196710A (en) 2002-12-18 2002-12-18 Ligand and asymmetric catalyst

Publications (1)

Publication Number Publication Date
JP2004196710A true JP2004196710A (en) 2004-07-15

Family

ID=32764246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367304A Pending JP2004196710A (en) 2002-12-18 2002-12-18 Ligand and asymmetric catalyst

Country Status (1)

Country Link
JP (1) JP2004196710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297285A (en) * 2006-04-27 2007-11-15 Kobe Univ Method for preparing optically active hydroxy compound
JP2010207786A (en) * 2009-03-12 2010-09-24 Japan Science & Technology Agency Alkaline earth metal-based catalyst and reaction method
CN102464656A (en) * 2010-11-07 2012-05-23 上海交通大学 Two-oxazoline contained chiral dinuclear ligand with benzo cinnoline maternal skeleton, and synthesis method thereof
KR101572260B1 (en) 2008-12-11 2015-11-27 엘지디스플레이 주식회사 Organic Semi-Conductor Low Molecular And Organic Thin Film Transistor Comprising The Same
WO2023093686A1 (en) * 2021-11-25 2023-06-01 中国科学院上海有机化学研究所 Benzo[c]cinnoline skeleton diimide ligand and preparation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297285A (en) * 2006-04-27 2007-11-15 Kobe Univ Method for preparing optically active hydroxy compound
KR101572260B1 (en) 2008-12-11 2015-11-27 엘지디스플레이 주식회사 Organic Semi-Conductor Low Molecular And Organic Thin Film Transistor Comprising The Same
JP2010207786A (en) * 2009-03-12 2010-09-24 Japan Science & Technology Agency Alkaline earth metal-based catalyst and reaction method
CN102464656A (en) * 2010-11-07 2012-05-23 上海交通大学 Two-oxazoline contained chiral dinuclear ligand with benzo cinnoline maternal skeleton, and synthesis method thereof
CN102464656B (en) * 2010-11-07 2014-08-27 上海交通大学 Two-oxazoline contained chiral dinuclear ligand with benzo cinnoline maternal skeleton, and synthesis method thereof
WO2023093686A1 (en) * 2021-11-25 2023-06-01 中国科学院上海有机化学研究所 Benzo[c]cinnoline skeleton diimide ligand and preparation method therefor

Similar Documents

Publication Publication Date Title
JP4264418B2 (en) Ruthenium complexes as (preliminary) catalysts for metathesis reactions
JP5284269B2 (en) Ruthenium-based catalyst complexes and use of said complexes for olefin metathesis
CN111848675B (en) Tetrahydroquinoline framework chiral phosphine-nitrogen ligand and preparation method and application thereof
JP2004196710A (en) Ligand and asymmetric catalyst
Li et al. A highly dl-stereoselective pinacolization ofaromatic aldehydes mediated by TiCl4–Zn
JP2020535116A (en) Method for producing cyclic carbonate
CN109721523B (en) Indoline derivative and preparation method thereof
JP4413507B2 (en) Pincer metal complex, method for producing the same, and pincer metal complex catalyst
JP3843470B2 (en) Ferrocenyl diphenylphosphine derivative, hydrosilylation with the ligand metal complex
Doyle et al. Comparative enantiocontrol with allyl phenyldiazoacetates in asymmetric catalytic intramolecular cyclopropanation
Rosenblum et al. η2-acrylonitrilecyclopentadienyldicarbonyliron (II) tetrafluoroborate: an unusual high-valent transition metal complex
JP4284027B2 (en) Process for producing optically active isoxazolidines
JP4535216B2 (en) Optically active cobalt complex and asymmetric cyclopropanation reaction
JP2004269522A (en) New ruthenium complex, method for producing the same and method for producing amide compound using the same
JP5678438B2 (en) Method for producing pyrrole
CN111170857B (en) Preparation method of alpha, alpha-trisubstituted ester derivative
JP3624304B2 (en) Novel palladium-imidazole complex
CN107312045B (en) Preparation method of substituted cyclopentadienyl metallocene compound
WO2005068481A2 (en) Ferrocene derivatives
WO2008059960A1 (en) Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative
KR20230039329A (en) Ligand compound, method for prepraring thereof and method for preparing acrylate by using the same
Pedrosa et al. Synthesis, crystal structure and reactivity of a new pentacoordinated chiral dioxomolybdenum (VI) complex
JP6281877B2 (en) Method for synthesizing catalyst precursor and asymmetric chain compound
JP5246903B2 (en) Process for producing β-aminocarbonyl compound
JPS63201193A (en) Production of trimethylsilanized cyanohydrin