JP2004196573A - Manufacturing method of compound semiconductor single crystal - Google Patents

Manufacturing method of compound semiconductor single crystal Download PDF

Info

Publication number
JP2004196573A
JP2004196573A JP2002365789A JP2002365789A JP2004196573A JP 2004196573 A JP2004196573 A JP 2004196573A JP 2002365789 A JP2002365789 A JP 2002365789A JP 2002365789 A JP2002365789 A JP 2002365789A JP 2004196573 A JP2004196573 A JP 2004196573A
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
semiconductor single
crystal
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365789A
Other languages
Japanese (ja)
Inventor
Koji Taiho
幸司 大宝
Michinori Wachi
三千則 和地
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002365789A priority Critical patent/JP2004196573A/en
Publication of JP2004196573A publication Critical patent/JP2004196573A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a compound semiconductor single crystal that is capable of efficiently obtaining a single crystal having excellent electrical properties by preventing poly-crystallization thereof. <P>SOLUTION: The manufacturing method of the compound semiconductor single crystal, which covers a whole of crucible storing a compound semiconductor raw material melt with an airtight container and grows the compound semiconductor single crystal by floating a sealant for preventing volatilization of a gas from the compound semiconductor raw material melt, is characterized in that the thickness of the sealant when the single crystal reach the predetermined diameter is in a range of 8 mm-15 mm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化合物半導体単結晶の製造方法、特に、液体封止チョクラルスキー法(LEC法)によって半絶縁性GaAs単結晶を製造するのに好適な化合物半導体単結晶の製造方法に関するものである。
【0002】
【従来の技術】
LEC法によるGaAs半導体単結晶の製造方法としては、図1に示すように、高圧容器1内にGa、Asおよび種結晶6を配置したPBNルツボ2にGaAs融液からのAs揮発抑止のための封止剤として三酸化硼素7を入れ、真空、ガス置換を行い、続いて、高圧容器1内をヒータ3により加熱してGaAs融液8を形成し、PBNルツボ2を移動させてGaAs融液8最上面の位置をヒータ3の発熱部分の中心位置と一致させる。その後、種結晶6を下降させてGaAs融液8に接触させ、ヒータ3の出力を調整して高圧容器1内の温度を徐々に下げ、定径まで単結晶9を成長させる。単結晶9を成長させる際、図2に詳細を示すように、定径(一般的には、直径115mm)まで(肩部成長時)は、単結晶9の形状は引上方向に対して100°である(例えば、特許文献1)。なお、図1において、4はシード軸、5はルツボ軸である。
【0003】
【特許文献1】
特公平6−102588号公報
【0004】
【発明が解決しようとする課題】
LEC法による半絶縁性GaAs単結晶の製造において、多結晶化の原因の一つに結晶成長初期段階(肩部成長時)においての固液界面の融液8側への凹面化による転位の集合が起点となることが挙げられる。前記した従来技術では、As揮発を防止するという観点から、封止剤である三酸化硼素7の厚さtを25mm以上にしており、成長初期段階で結晶頭部付近からの放熱量が不足し、結晶頭部以外からの放熱量が多くなり、固液界面が凹面化し、転位が集中して多結晶化するという問題がある。
【0005】
本発明は、上記に基づいてなされたものであり、多結晶化を防止することにより化合物半導体単結晶を効率良く得ることができる製造方法の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的達成のため、本発明は、化合物半導体原料融液を収容したルツボ全体を気密容器で覆い、前記化合物半導体原料融液からのガスの揮発を抑止する封止剤を浮遊させて化合物半導体単結晶を成長させる化合物半導体単結晶の製造方法において、単結晶が定径に到達したときの前記封止剤の厚さが8mm〜15mmの範囲にあるようにした化合物半導体単結晶の製造方法を提供する。
【0007】
【発明の実施の形態】
本発明は、特に、LEC法によって半絶縁性GaAs単結晶を製造する場合において、Asの揮発を抑止する封止剤として三酸化硼素を用いた場合に好適である。封止剤の厚さが8mmに達しないときは、融液からガス(例えばAs)が揮発するため融液自体の組成が変化し、結晶の電気特性に異常を来たすようになり、また、組成不良の融液を使用するため結晶成長中に結晶表面からガス(例えばAs)が揮発し、多結晶化しやすくなる。15mmを越えると、結晶成長初期段階で結晶頭部からの放熱が不足し、固液界面形状が凹面形状となり、転位が集中して多結晶化しやすくなる。
【0008】
(実施例1)
通常のLEC法の高圧炉を用い、Ga10,000g、As10,500gおよび封止剤である三酸化硼素を、結晶径が定径(約115mm)に到達したとき(引上方向に対して100°で増径の場合)12mmの厚さとなる重量をPBNルツボ内に収納する。融点温度以上に加熱し、GaAs融液を形成した後、単結晶の引上育成を行い、直径約115mmで重量約17,000gのGaAs単結晶を作製した。同じ条件で20本のGaAs単結晶を作製したが、結晶頭部からの放熱不足による多結晶化は発生しなかった。(製品歩留:100%)
【0009】
(実施例2)
三酸化硼素の厚さを8mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、結晶頭部からの放熱不足による多結晶化は発生しなかった。(製品歩留:100%)
【0010】
(実施例3)
三酸化硼素の厚さを15mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、結晶頭部からの放熱不足による多結晶化は発生しなかった。(製品歩留:100%)
【0011】
(比較例1)
三酸化硼素の厚さを3mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、12本が電気特性不良で使用不可、3本が多結晶化した。(製品歩留:25%)
【0012】
(比較例2)
三酸化硼素の厚さを5mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、10本が電気特性不良で使用不可、4本が多結晶化した。(製品歩留:30%)
【0013】
(比較例3)
三酸化硼素の厚さを7mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、2本が電気特性不良で使用不可、2本が多結晶化した。(製品歩留:80%)
【0014】
(比較例4)
三酸化硼素の厚さを16mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、3本が多結晶化した。(製品歩留:88%)
【0015】
(比較例5)
三酸化硼素の厚さを20mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、7本が多結晶化した。(製品歩留:65%)
【0016】
(比較例6)
三酸化硼素の厚さを25mmにした以外は実施例1と同様にしてGaAs単結晶を作製した。20本のGaAs単結晶を作製したところ、11本が多結晶化した。(製品歩留:45%)
【0017】
【発明の効果】
以上説明してきた通り、本発明は、化合物半導体原料融液を収容したルツボ全体を気密容器で覆い、前記化合物半導体原料融液からのガスの揮発を抑止する揮発封止剤を浮遊させて化合物半導体単結晶を成長させる化合物半導体単結晶の製造方法において、単結晶が定径に到達したときの前記封止剤の厚さが8mm〜15mmの範囲にあるようにした化合物半導体単結晶の製造方法を提供するものであり、これによって、多結晶化を防止して優れた電気特性を有する単結晶を効率良く得ることができるようになる。
【図面の簡単な説明】
【図1】LEC法による化合物半導体単結晶の製造方法の説明図。
【図2】単結晶引上の要部説明図。
【符号の説明】
1:高圧容器
2:PBNルツボ
3:ヒータ
4:シード軸
5:ルツボ軸
6:種結晶
7:封止剤(三酸化硼素)
8:融液
9:単結晶
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a compound semiconductor single crystal, and more particularly to a method for producing a compound semiconductor single crystal suitable for producing a semi-insulating GaAs single crystal by a liquid-sealed Czochralski method (LEC method). .
[0002]
[Prior art]
As a method of manufacturing a GaAs semiconductor single crystal by the LEC method, as shown in FIG. 1, a PBN crucible 2 in which Ga, As, and a seed crystal 6 are arranged in a high-pressure vessel 1 is used to suppress volatilization of As from a GaAs melt. Boron trioxide 7 is charged as a sealant, and vacuum and gas replacement are performed. Subsequently, the inside of the high-pressure vessel 1 is heated by the heater 3 to form a GaAs melt 8, and the PBN crucible 2 is moved to move the GaAs melt. 8 The position of the uppermost surface is matched with the center position of the heat generating portion of the heater 3. Thereafter, the seed crystal 6 is lowered and brought into contact with the GaAs melt 8, the output of the heater 3 is adjusted, the temperature in the high-pressure vessel 1 is gradually lowered, and the single crystal 9 is grown to a constant diameter. As shown in detail in FIG. 2, when growing the single crystal 9, up to a constant diameter (generally, a diameter of 115 mm) (during shoulder growth), the shape of the single crystal 9 is 100 with respect to the pulling direction. ° (for example, Patent Document 1). In FIG. 1, 4 is a seed axis, and 5 is a crucible axis.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 6-102588
[Problems to be solved by the invention]
In the production of a semi-insulating GaAs single crystal by the LEC method, one of the causes of polycrystallization is the aggregation of dislocations due to the concave surface of the solid-liquid interface toward the melt 8 at the initial stage of crystal growth (during shoulder growth). Is a starting point. In the prior art described above, from the viewpoint of preventing As volatilization, the thickness t of the boron trioxide 7 as the sealing agent is set to 25 mm or more, and the amount of heat radiated from the vicinity of the crystal head is insufficient at the initial stage of growth. In addition, there is a problem that the amount of heat radiation from portions other than the crystal head increases, the solid-liquid interface becomes concave, dislocations are concentrated, and polycrystals are formed.
[0005]
The present invention has been made based on the above, and an object of the present invention is to provide a manufacturing method capable of efficiently obtaining a compound semiconductor single crystal by preventing polycrystallization.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for covering a whole crucible containing a compound semiconductor raw material melt with an airtight container and suspending a sealing agent for suppressing volatilization of a gas from the compound semiconductor raw material melt to float the compound semiconductor raw material. In a method for producing a compound semiconductor single crystal for growing a crystal, a method for producing a compound semiconductor single crystal is provided in which the thickness of the sealant when the single crystal reaches a constant diameter is in the range of 8 mm to 15 mm. I do.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is particularly suitable when a semi-insulating GaAs single crystal is manufactured by the LEC method, and when boron trioxide is used as a sealing agent for suppressing volatilization of As. When the thickness of the sealant does not reach 8 mm, gas (for example, As) volatilizes from the melt, so that the composition of the melt itself changes and the electrical characteristics of the crystal become abnormal. Since a defective melt is used, gas (for example, As) is volatilized from the crystal surface during crystal growth, and polycrystals are easily formed. If it exceeds 15 mm, the heat radiation from the crystal head will be insufficient at the initial stage of crystal growth, the solid-liquid interface shape will be concave, and dislocations will be concentrated and polycrystals will be easily formed.
[0008]
(Example 1)
Using a normal LEC high-pressure furnace, 10,000 g of Ga, 10,500 g of As, and boron trioxide as a sealant were removed when the crystal diameter reached a constant diameter (about 115 mm) (100 ° with respect to the pulling direction). In the case of increasing the diameter, the weight of 12 mm is stored in the PBN crucible. After heating to a melting point temperature or higher to form a GaAs melt, a single crystal was pulled and grown to produce a GaAs single crystal having a diameter of about 115 mm and a weight of about 17,000 g. Although 20 GaAs single crystals were produced under the same conditions, polycrystallization did not occur due to insufficient heat radiation from the crystal head. (Product yield: 100%)
[0009]
(Example 2)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 8 mm. When 20 GaAs single crystals were produced, polycrystallization did not occur due to insufficient heat radiation from the crystal head. (Product yield: 100%)
[0010]
(Example 3)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 15 mm. When 20 GaAs single crystals were produced, polycrystallization did not occur due to insufficient heat radiation from the crystal head. (Product yield: 100%)
[0011]
(Comparative Example 1)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 3 mm. When 20 GaAs single crystals were produced, 12 were unusable due to poor electrical characteristics and 3 were polycrystallized. (Product yield: 25%)
[0012]
(Comparative Example 2)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 5 mm. When 20 GaAs single crystals were produced, 10 were unusable due to poor electrical characteristics and 4 were polycrystalline. (Product yield: 30%)
[0013]
(Comparative Example 3)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 7 mm. When 20 GaAs single crystals were produced, 2 of them were unusable due to poor electrical characteristics and 2 were polycrystalline. (Product yield: 80%)
[0014]
(Comparative Example 4)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 16 mm. When 20 GaAs single crystals were produced, three were polycrystallized. (Product yield: 88%)
[0015]
(Comparative Example 5)
A GaAs single crystal was produced in the same manner as in Example 1, except that the thickness of boron trioxide was changed to 20 mm. When 20 GaAs single crystals were produced, 7 were polycrystallized. (Product yield: 65%)
[0016]
(Comparative Example 6)
A GaAs single crystal was produced in the same manner as in Example 1 except that the thickness of boron trioxide was changed to 25 mm. When 20 GaAs single crystals were produced, 11 were polycrystallized. (Product yield: 45%)
[0017]
【The invention's effect】
As described above, the present invention provides a compound semiconductor by covering an entire crucible containing a compound semiconductor raw material melt with an airtight container and suspending a volatile sealing agent for suppressing volatilization of gas from the compound semiconductor raw material melt. In the method for producing a compound semiconductor single crystal for growing a single crystal, the method for producing a compound semiconductor single crystal, wherein the thickness of the sealant when the single crystal reaches a constant diameter is in a range of 8 mm to 15 mm. Accordingly, a single crystal having excellent electric characteristics can be efficiently obtained by preventing polycrystallization.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for manufacturing a compound semiconductor single crystal by an LEC method.
FIG. 2 is an explanatory view of a main part of pulling a single crystal.
[Explanation of symbols]
1: High pressure vessel 2: PBN crucible 3: Heater 4: Seed shaft 5: Crucible shaft 6: Seed crystal 7: Sealant (boron trioxide)
8: Melt 9: Single crystal

Claims (3)

化合物半導体原料融液を収容したルツボ全体を気密容器で覆い、前記化合物半導体原料融液からのガスの揮発を抑止する封止剤を浮遊させて化合物半導体単結晶を成長させる化合物半導体単結晶の製造方法において、単結晶が定径に到達したときの前記封止剤の厚さが8mm〜15mmの範囲にあるようにしたことを特徴とする化合物半導体単結晶の製造方法。Production of a compound semiconductor single crystal in which the entire crucible containing the compound semiconductor material melt is covered with an airtight container, and a sealing agent for suppressing volatilization of gas from the compound semiconductor material melt is floated to grow the compound semiconductor single crystal. A method for producing a compound semiconductor single crystal, wherein the thickness of the sealant when the single crystal reaches a constant diameter is in the range of 8 mm to 15 mm. 前記化合物半導体原料融液は、GaAs融液である請求項1記載の化合物半導体単結晶の製造方法。The method for producing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor raw material melt is a GaAs melt. 前記封止剤は、三酸化硼素である請求項1記載の化合物半導体単結晶の製造方法。The method for producing a compound semiconductor single crystal according to claim 1, wherein the sealing agent is boron trioxide.
JP2002365789A 2002-12-17 2002-12-17 Manufacturing method of compound semiconductor single crystal Pending JP2004196573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365789A JP2004196573A (en) 2002-12-17 2002-12-17 Manufacturing method of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365789A JP2004196573A (en) 2002-12-17 2002-12-17 Manufacturing method of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2004196573A true JP2004196573A (en) 2004-07-15

Family

ID=32763239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365789A Pending JP2004196573A (en) 2002-12-17 2002-12-17 Manufacturing method of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2004196573A (en)

Similar Documents

Publication Publication Date Title
JP4844428B2 (en) Method for producing sapphire single crystal
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
WO2021020539A1 (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2009120453A (en) Method of manufacturing aluminum oxide single crystal
WO2014129414A1 (en) Sapphire single crystal core and production method therefor
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2012031004A (en) SEMI-INSULATIVE GaAs SINGLE CRYSTAL WAFER
JP2010064936A (en) Method for producing semiconductor crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JP2004196573A (en) Manufacturing method of compound semiconductor single crystal
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2009057237A (en) Method for producing compound semiconductor single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal
JPH08104591A (en) Apparatus for growing single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2003342096A (en) Method for producing compound semiconductor single crystal
JP2013087045A (en) Gallium phosphide single crystal and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A02