JP2004193488A - Polishing solution for barrier metal and polishing method - Google Patents

Polishing solution for barrier metal and polishing method Download PDF

Info

Publication number
JP2004193488A
JP2004193488A JP2002362376A JP2002362376A JP2004193488A JP 2004193488 A JP2004193488 A JP 2004193488A JP 2002362376 A JP2002362376 A JP 2002362376A JP 2002362376 A JP2002362376 A JP 2002362376A JP 2004193488 A JP2004193488 A JP 2004193488A
Authority
JP
Japan
Prior art keywords
layer
concentration
polishing
barrier metal
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002362376A
Other languages
Japanese (ja)
Inventor
Setsuo Yoshida
節夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002362376A priority Critical patent/JP2004193488A/en
Publication of JP2004193488A publication Critical patent/JP2004193488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a barrier metal polishing solution and a polishing method, by which the processability of a barrier metal layer having high corrosion resistance, can be realized, the processing speed of a Cu layer can be controlled lower than that of a Ta layer, and the smoothness of a Cu layer polishing surface becomes very elaborate. <P>SOLUTION: In the barrier metal polishing solution, it is preferable that the pH of slurry consisting of nitric acid and/or its salt, hydrogen peroxide, tartaric acid and/or its salt, water, and abrasive grains be in the range of 3-9, the concentration of nitric acid and/or its salt be ≥0.05wt%, the concentration of hydrogen peroxide be ≥0.05wt%, the concentration of tartaric acid and/or its salt be ≥0.001wt%, and the concentration of abrasive grains be ≥0.1wt%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はバリア金属用研磨液及び研磨方法に関するものであり、更に詳しくは、半導体集積回路の配線工程における化学機械研磨技術によるデバイス平坦化に用いられる研磨液に関するものである。
【0002】
【従来の技術】
近年、情報化技術の急速な発展に伴い大規模集積回路(LSI、ULSI、VLSI)の微細化、高密度化、高集積化による高速化が要求され、精度の高い配線の多層化技術の開発が鋭意行われている。配線の多層化を達成するためには、配線ピッチ幅の縮小及び配線間容量の低減等を行なうことが必要となり、現有の金属配線材料であるアルミニウム等から電気抵抗率の低い銅(Cu)への変更開発が精力的に行なわれている。
【0003】
Cu配線層は、ドライエッチング法では生成物の蒸気圧の関係で配線形成が困難とされていることから、半導体基板上に形成された絶縁層にリソグラフィー等によるパターン溝を形成し、その溝を配線用金属層で埋め込むダマシン配線プロセスが必須技術とされている。また、溝及び開口部の余剰の配線金属層を研磨、除去して平坦化する技術は所謂、CMP(Chemical Mechanical Polishing)加工技術が用いられる。
【0004】
図1に、ダマシン配線/CMP加工技術法による配線の一例(断面図)を示す。
【0005】
初めに、図2(A)のように半導体シリコン基板10上にシリコンの熱酸化膜である絶縁層20を形成し平坦化する。次に、図2(B)に示すように絶縁層20にリソグラフィー等によりパターン溝を形成する。その後、図2(C)に示すように、絶縁層20に形成した溝及び開口部にタンタル(Ta)、チッ化タンタル(TaN)、チタン(Ti)又はチッ化チタン(TiN)等のバリア金属層30をスパッタリング及びCVD法、等により形成する。このバリア金属層30は、Cu等の配線用金属がシリコン基板10及び絶縁層20に拡散することを防御するため、また、熱酸化膜20と配線用金属層40の接触抵抗を低下させる目的で成膜されるものである。
【0006】
次に、図2(D)に示すように溝及び開口部にメッキ法、スパッタリング法及びCVD法、等により配線用金属層40の埋め込み形成を行なう。このようにダマシン法により形成されたバリア金属層30及び配線用金属層40の平坦化を行なう方法としてCMP加工技術が適用される。
【0007】
CMP加工技術は、通常、研磨、除去する金属と化学的に反応する薬剤及び研磨砥粒を含む研磨用スラリーを、研磨装置の定盤上に貼付したポリシングパッド面に一定供給しつつ、ダマシン施工した半導体基板を装着した研磨ヘッドを一定荷重でパッドに押圧し、定盤と研磨ヘッドの回転相対運動により余剰の金属層を研磨、除去して平坦化する方法である。
【0008】
CMP加工技術の終了の一態様は図2(F)に示されるものであり、CMP加工により図2(D)の配線用金属層40(以下、Cu層と記す)と図2(E)のバリア金属層30を順次研磨、除去し平坦化する。
【0009】
理想的なCMP加工技術は、これらの金属層を一工程のCMP加工で研磨、除去し平坦化することであるが、Cu層とバリア金属層とでは耐食性及び硬度等の特性が大きく相違するため、現状技術としては、一段目でCu層を研磨し、二段目でバリア金属層を除去し、平坦化する二段法が定着しつつある。しかしながら、二段目の加工層は、図2(D)及び(E)から明らかなようにバリア金属層のみでなくCu層も加工対象層となる。従って、二段目のCMPスラリーは、バリア金属層の高加工特性が発現できることは勿論、Cu層もバリア金属層と同等或いはそれ以下の加工速度が発現され、表面は高平滑性及び高平坦性を有する鏡面を得ることが大切となる。Cu層がバリア金属層より高い加工速度を示すと、Cu層が過剰研磨され皿状欠陥を生じ、平坦性が損なわれ電気抵抗の増大及び配線ショート等の要因となる。従って、Ta/Cuの加工速度の比である選択比は、1.0以上とすることが重要となる。
【0010】
Cuは酸化剤の存在により容易に酸化されるため、Cu層を加工対象とするCMPスラリー中への酸化剤の添加は必須となるが、この酸化剤の作用が強いと加工速度は増大するものの表面は凹凸の著しい無光沢の表面を呈する。このような現象を制御するために、Cuのインヒビターとして作用するベンゾトリアゾール(BTA)及びその誘導体が添加される。
【0011】
二段目のバリア金属層用CMPスラリー技術の一態様としては、例えば、特許文献1に、砥粒、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有する研磨剤が開示されている。また、特許文献2には、研磨材、防食剤、酸化剤、酸、pH調整剤及び水を含むpH2〜5の範囲内である研磨用組成物が開示されている。
【0012】
これらの公報にはBTA等の保護膜形成剤(防食剤)の作用により、加工速度、選択比及び表面状態を制御可能であることが示唆されているものの、原子間力顕微鏡(AFM)等を用いてCu層の表面粗さ(Ra)の評価を行うと、更なる改善の余地があることがわかった。Cu層の表面粗さは、マイクロスクラッチ及び皿状欠陥であるディッシング等の表面欠陥発生の指標となり、これらの欠陥が発生するとショート等の電気的障害の誘引となる。
なお、本発明でいう表面粗さ(Ra)とは、JIS B0601に定義される算術平均粗さを表すものである。
【0013】
【特許文献1】
特開2001−127020号公報(請求項1)
【特許文献2】
特開2001−247853号公報(請求項1)
【0014】
【発明が解決しようとする課題】
本発明は、高耐食性を示すバリア金属層の加工性を発現し、Cu層の加工速度はTa層より小さく制御でき、更にはCu層研磨面の平滑性が極めて緻密となる新規なバリア金属用研磨液及び研磨方法を提供するものである。
【0015】
【課題を解決するための手段】
本発明者は、上記課題を達成するために鋭意検討を行なった結果、本発明に示される特定の化合物を組合わせることにより、バリア金属層の高加工速度及びCu層との選択性(Ta/Cu>1)が満足でき、しかも、Cu層研磨面の表面粗さ(Ra≦1.2nm)特性が極めて優れる新規な金属用研磨液及び研磨方法を見出し、上記課題を一挙に解決したものである。
【0016】
すなわち、本発明は硝酸及び/又はその塩、過酸化水素、酒石酸及び/又はその塩、水並びに研磨砥粒を含有し、保護膜形成剤を含有しないスラリーであって、該スラリーのpHが3〜9であるバリア金属用研磨液を提供するものである。
【0017】
本発明を更に詳述する。
【0018】
本発明に用いられる硝酸の塩としては、アンモニウム、カルシウム、カリウム、鉄、ナトリウム等の水溶性塩の少なくとも一種を用いることが出来る。半導体基板上への汚染を考慮すると硝酸、硝酸のカリウム塩又はアンモニウム塩を用いることが特に好ましい。
【0019】
本発明の硝酸及び/又はその塩の濃度としては、バリア金属層及びCu膜の加工速度、選択性及び表面特性を満足できる0.05重量%以上、3重量%以下とすることが好ましく、0.1重量%以上、1重量%以下とすることがより好ましい。
【0020】
その範囲外の低濃度側においては、バリア金属層及びCu層の加工特性は出現しない。また、高濃度側においては、バリア金属層の加工速度には支障ないが、Cu層の加工速度がバリア金属層の加工速度を上回り選択性の制御が困難となる場合がある。
【0021】
本発明の過酸化水素濃度としては、バリア金属層とCu層の選択性から0.05重量%以上とすることが好ましく、0.5重量%以上とすることが特に好ましい。
【0022】
その範囲外の低濃度側においては、バリア金属層は加工できるがCu層の加工特性が出現しない。一方、高濃度側は特に制限されないが、加工特性及び経済性の面より5重量%程度とすることが好ましい。
【0023】
本発明に用いられる酒石酸の塩としては、カリウム、ナトリウム、カルシウム、アンモニウム、水素カリウム、水素ナトリウム、水素アンモニウム等、あらゆる水溶性塩の少なくとも一種を用いることが出来るが、後工程の洗浄性を配慮すると酒石酸、酒石酸のカリウム塩又はアンモニウム塩を用いることが特に好ましい。
【0024】
本発明の酒石酸及びその塩としては、選択性及び表面粗さ特性より0.001重量%以上、0.5重量%以下とすることが好ましく、0.01重量%以上、0.1重量%以下とすることが特に好ましい。
【0025】
その範囲外の低濃度側においては、Cu層の表面粗さに対し効果が期待できない。また、高濃度側では、Cu層の加工速度が上昇し選択性に支障を来す場合がある。
【0026】
本発明に用いられる研磨砥粒としては、通常使用されるシリカ(SiO2)、アルミナ(Al23)、セリア(CeO2)、ジルコニア(ZrO2)、二酸化マンガン(MnO2)及びマンガン酸化物等が適宜適用でき、特に限定されるものではないが、分散性及び研磨表面の欠陥制御の面より微細粒子で分散性に富んだコロイダルシリカ及びコロイダルアルミナを用いることが好ましい。
【0027】
研磨砥粒の濃度は、バリア金属層の加工を制御する最大の要素であり、砥粒濃度と共に加工速度は増大するが、研磨砥粒の濃度としては実用的な加工速度200Å/minが得られる0.1重量%以上、10重量%以下とすることが好ましく、0.5重量%以上、5重量%以下とすることがより好ましい。
【0028】
本発明に用いられるスラリーのpHは、3.0〜9.0、好ましくは4.0〜7.0とすることが特に好ましい。
【0029】
本発明の構成剤である硝酸及び/又はその塩として、硝酸を適用すると調製時のpHは2.0以下を示す。よって、水酸化アンモニウム(アンモニア水)、水酸化カリウム、炭酸カリウム等のアルカリ剤によるpH調製剤によりスラリーpHを調整することが必要となるが、不純物の混入を抑制する意味で水酸化アンモニウム及び水酸化カリウムを適用すること特に望ましい。
【0030】
研磨液のpHが9.0を超えたアルカリ領域ではバリア金属層の加工特性はほとんど出現しなくなり、Cu層の加工速度がバリア金属層の加工速度を著しく超過する現象となる。一方、pHが3.0未満の場合、バリア金属層の加工速度は十分満足できる値を示すものの、Cu層の加工速度はそれ以上の特性を示し選択性が問題となる。また、Cu層の表面粗さ特性も著しく低下する。
【0031】
本発明の研磨液には、更に一般的に用いられるアニオン系、カチオン系及びノニオン系の界面活性剤、粘度調整剤、及び消泡剤等を添加することができるが、界面活性剤においては、特にアニオン系及びノニオン系が研磨砥粒の分散性において好適に作用する。
【0032】
本発明の研磨液が有用なバリア金属とは、タンタル、若しくはチッ化タンタル等のタンタルを含む化合物、又はチタン若しくはチッ化チタン等のチタンを含む化合物を例示することができる。
【0033】
本発明においては、研磨液に保護膜形成剤を含有しなくとも良好な研磨特性を得ることができるが、ここでいう保護膜形成剤とは、Cu層に対する溶出抑制剤として作用して、Cu層の表面欠陥、過度の加工及び腐食によるエッチング耐性を制御する目的で添加されるものであり、具体的にはベンゾトリアゾール及びその誘導体を例示することができる。
【0034】
ベンゾトリアゾール誘導体としては、例えば、1−オキシベンゾトリアゾール、1−N−ベンゾイルベンゾトリアゾール、1−N−アセチルベンゾトリアゾール等を挙げることができる。
【0035】
本発明は、バリア、金属層であるTa、TaN、Ti又はTiN等を有するダマシン配線法で形成された半導体基板を装着した研磨ヘッドを、一定荷重の下に研磨布となるポリシングパッドを貼付した定盤に押圧し、定盤と研磨ヘッドの回転による相対運動で凸部分を優先的に研磨し、平坦化する方法に際し、ポリシングパッド上に任意の速度で一定供給する研磨液として適用されるものである。
【0036】
そして、本発明によれば、研磨面のRaを1.2nm以下、好ましくは1.0nm以下とすることができ、半導体デバイス上にこのような平滑なCu層を形成することにより、マイクロスクラッチ及びディッシング等の表面欠陥の発生を抑止することが可能となる。
【0037】
【実施例】
以下、本発明を実施例により詳述するが、本発明はこれらの実施例に何ら制限されるものではない。
【0038】
(実施例1、比較例1)
硝酸(HNO3)濃度が0.5wt%、過酸化水素(H22)濃度が1wt%、砥粒(コロイダルシリカ;扶桑化学工業製:グレードPL−1)濃度が1wt%となるように各試薬を超純水中に添加、溶解させた後、酒石酸濃度を任意に設定し、これらの研磨液のpHをアンモニア水で約5.0に調整した。
【0039】
次に、スパッタリング法で成膜した200nm厚みを有するタンタル(Ta)層ブランケットウエハ及び電解メッキ法で成膜した1,500nm厚みのCu層ブランケットウエハをそれぞれ15mm角にダイシングした試料を、図1に示すワークプレート1に装着し、修正リング2に挿入した。
【0040】
先に調製した研磨液を、図1のスラリー供給ノズル4より30ml/minの滴下速度で供給しつつ、図1の定盤3の回転速度を30rpmとして研磨を行った。
【0041】
加工圧力は250g/cm2とし、パッドはロデール・ニッタ社製、商品名「IC1000/SUBA400」を用いた。
【0042】
加工速度は、四端子法によるシート抵抗器を用いて加工前後のシート抵抗を測定し算出した。また、表面粗さ(Ra)は、原子間力顕微鏡(Nanopics:セイコーインスツルメンツ社製)を用いて、40μm×40μm視野での測定を行なった。
【0043】
結果を表1に示す。酒石酸を含有しない状態(比較例1)では、Raは2nmの値を示した。一方、酒石酸を含有するとTa層及びCu層の加工速度、選択比は酒石酸未添加と同程度であるものの、Raは約1nm以下となり優れた表面粗さ特性を示した。
【0044】
(実施例2)
実施例1と同一の試薬を用い、H22濃度が1wt%、酒石酸濃度が0.05wt%、砥粒濃度が1wt%となるように各試薬を超純水中に添加、溶解させた後、硝酸濃度を任意に設定し、各研磨液のpHをアンモニア水で約5.0に調整した。
【0045】
これらの研磨液を用いて、実施例1と同様の加工条件で評価した。
【0046】
表1に結果を示すが、硝酸の濃度を変化させてもTa層及びCu層の加工特性及びRaは変化無く高特性を示した。
【0047】
(実施例3)
実施例1と同一の試薬を用い、硝酸濃度を0.5wt%、酒石酸濃度が0.05wt%、砥粒濃度が1wt%となるように各試薬を超純水中に添加、溶解させた後、H22濃度を任意に設定し、各研磨液のpHをアンモニア水で約5.0に調整した。
【0048】
これらの研磨液を用いて、実施例1と同様の加工条件で評価した。
【0049】
表1に結果を示すが、H22濃度の変化に影響されることもなくTa層及びCu層の加工特性及びRaは優れた特性を示した。
【0050】
(実施例4)
実施例1と同一の試薬を用い、硝酸濃度が0.5wt%、H22濃度が1wt%、酒石酸濃度が0.05wt%となるように各試薬を超純水中に添加、溶解させた後、砥粒濃度を任意に設定し、各研磨液のpHをアンモニア水で約5.0に調整した。評価は実施例1と同一の条件で実施した。
【0051】
結果を、表1に示すが、Ta層及びCu層の加工速度は砥粒濃度と共に増大するが、いずれの条件下でも選択比のTa/Cuは1.0以上となりRaも優れた特性を示した。
【0052】
(実施例5)
実施例1と同一の試薬を用い、硝酸濃度が0.5wt%、H22濃度が1wt%、酒石酸濃度が0.05wt%及び砥粒濃度が1wt%となるように各試薬を超純水中に添加、溶解させた後、研磨液のpHをアンモニア水で任意に調整した。
【0053】
これらの研磨液を用いて、実施例1と同様の加工条件で評価を実施した。
【0054】
結果を、表1に示す。研磨液のpHが3〜9では、Ta層及びCu層とも優れた特性を示すことが確認できた。特に、pH4以上では、Ta層及びCu層の加工速度が増大しRaは非常に優れた結果を示した。
【0055】
pHが3未満の場合、Ta層及びCu層の加工速度は増大するが、Cu層の腐食性が著しくなり、Raは極めて高い値を示す結果となった。また、pHが9を超える領域では、Ta層の加工特性が出現しない、或いはCu層の加工速度が著しく大きくなり選択性及びRaが制御できない結果となった。
【0056】
(実施例6)
硝酸塩として硝酸アンモニウム(NH4NO3)を用い、濃度を0.5wt%とした以外は実施例2と同一の条件で研磨液の調製及び評価を行なった。
【0057】
結果を、表1に示すが、実施例2と同等の特性が得られた。
【0058】
(実施例7)
酒石酸の代わりに酒石酸アンモニウム又は酒石酸水素カリウムを適用し、濃度を0.1wt%とした以外は実施例1と同一の組成及び条件で評価を行なった。
【0059】
結果を、表1に示すが、酒石酸塩の種類に影響されることなく、Ta層及びCu層の加工特性及びRaは高特性を示した。
【0060】
(比較例2)
実施例1の酒石酸濃度を0.1wt%とした系に、保護膜形成剤であるBTAを任意の濃度で添加し、実施例1と同一の条件下での評価を行った。その結果を、表1に示すが、Cu層の加工速度が抑制されるもののRaは約2nmと高い値を示した。
【0061】
(比較例3)
実施例1の酒石酸の代わりに、各種カルボン酸を用い、BTA有無での検討を行った結果を表1に示す。BTAが存在しない系では、いずれのカルボン酸も、Ta層の加工速度には大きな変化が無いもののCu層の加工速度が増大する傾向が強く、選択比は1.0未満を示した。また、BTAが存在するとCu層の加工速度は抑制されるが、Raが1.5nm以上の高い値を示した。いずれにしても、Ta層の高加工速度、Cu層との高選択比及び表面粗さRaが1.2nm以下の全ての特性を満足する結果は得られなかった。
【0062】
【表1】

Figure 2004193488
【発明の効果】
以上、詳述したように、本発明は、硝酸及び/又はその塩、過酸化水素、酒石酸及び/又はその塩、水並びに研磨砥粒から構成されるバリア金属用研磨液を提案するものである。
【0063】
本発明の研磨液を用いて半導体デバイス上に施したCu層を有するバリア金属層を研磨加工することにより、Ta層の高加工速度及びCu層との高選択性は勿論、Cu層表面の粗さ特性に極めて優れた加工特性を得ることが可能となり、マイクロスクラッチ及びディッシング等の表面欠陥の発生を抑止することができる。
【図面の簡単な説明】
【図1】本発明の研磨液の評価に用いた研磨装置の概略図である。
【図2】金属配線(ダマシン法)/CMP加工技術法の概略断面図である。
【符号の説明】
1 ワークプレート
2 修正リング
3 定盤
4 スラリー供給ノズル
10 シリコン基板
20 絶縁層
30 バリア金属層
40 配線用金属層(Cu層)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing liquid for a barrier metal and a polishing method, and more particularly, to a polishing liquid used for device flattening by a chemical mechanical polishing technique in a wiring process of a semiconductor integrated circuit.
[0002]
[Prior art]
2. Description of the Related Art In recent years, rapid development of information technology has required high-speed integration by miniaturization, high density, and high integration of large-scale integrated circuits (LSI, ULSI, VLSI). Has been eagerly done. In order to achieve multi-layered wiring, it is necessary to reduce the wiring pitch width and the capacitance between wirings. For example, from the existing metal wiring material such as aluminum to copper (Cu) having a low electrical resistivity. The development of changes has been vigorous.
[0003]
In the Cu wiring layer, since it is difficult to form a wiring due to the vapor pressure of a product by dry etching, a pattern groove is formed on the insulating layer formed on the semiconductor substrate by lithography or the like, and the groove is formed. A damascene wiring process for embedding with a wiring metal layer is considered to be an essential technology. The so-called CMP (Chemical Mechanical Polishing) processing technique is used as a technique for polishing and removing an excess wiring metal layer in the groove and the opening to planarize the wiring metal layer.
[0004]
FIG. 1 shows an example (cross-sectional view) of a wiring formed by a damascene wiring / CMP processing technique.
[0005]
First, as shown in FIG. 2A, an insulating layer 20 which is a thermal oxide film of silicon is formed on the semiconductor silicon substrate 10 and flattened. Next, as shown in FIG. 2B, a pattern groove is formed in the insulating layer 20 by lithography or the like. Thereafter, as shown in FIG. 2C, a barrier metal such as tantalum (Ta), tantalum nitride (TaN), titanium (Ti), or titanium nitride (TiN) is formed in the grooves and openings formed in the insulating layer 20. The layer 30 is formed by sputtering, a CVD method, or the like. The barrier metal layer 30 is provided to prevent the wiring metal such as Cu from diffusing into the silicon substrate 10 and the insulating layer 20 and to reduce the contact resistance between the thermal oxide film 20 and the wiring metal layer 40. The film is formed.
[0006]
Next, as shown in FIG. 2D, the wiring metal layer 40 is buried in the grooves and openings by plating, sputtering, CVD, or the like. As a method for flattening the barrier metal layer 30 and the wiring metal layer 40 formed by the damascene method as described above, a CMP processing technique is applied.
[0007]
In the CMP processing technology, usually, a polishing slurry containing a chemical and a polishing abrasive which chemically react with a metal to be polished and removed is constantly supplied to a polishing pad surface stuck on a surface plate of a polishing machine, while damascene processing is performed. A polishing head having the semiconductor substrate mounted thereon is pressed against a pad with a constant load, and an excess metal layer is polished and removed by the relative movement of rotation between the platen and the polishing head to flatten the metal layer.
[0008]
One mode of completion of the CMP processing technique is shown in FIG. 2F, and the wiring metal layer 40 (hereinafter, referred to as a Cu layer) of FIG. 2D and FIG. The barrier metal layer 30 is sequentially polished, removed, and flattened.
[0009]
The ideal CMP processing technology is to polish, remove, and planarize these metal layers by one-step CMP processing. However, the characteristics such as corrosion resistance and hardness are largely different between the Cu layer and the barrier metal layer. As a state-of-the-art technique, a two-step method of polishing a Cu layer in a first step, removing a barrier metal layer in a second step, and planarizing the Cu layer is being established. However, as is clear from FIGS. 2D and 2E, not only the barrier metal layer but also the Cu layer is the processing target layer in the second processing layer. Therefore, the CMP slurry of the second stage can exhibit high processing characteristics of the barrier metal layer, and of course, the processing speed of the Cu layer is equal to or lower than that of the barrier metal layer, and the surface has high smoothness and high flatness. It is important to obtain a mirror surface having If the Cu layer has a higher processing speed than the barrier metal layer, the Cu layer is excessively polished to cause dish-like defects, thereby impairing the flatness, causing an increase in electric resistance and a short circuit in wiring. Therefore, it is important that the selection ratio, which is the ratio of the processing speed of Ta / Cu, be 1.0 or more.
[0010]
Since Cu is easily oxidized by the presence of the oxidizing agent, the addition of the oxidizing agent to the CMP slurry for processing the Cu layer is indispensable. However, if the action of the oxidizing agent is strong, the processing speed is increased. The surface presents a matte surface with marked irregularities. In order to control such a phenomenon, benzotriazole (BTA) and a derivative thereof that act as an inhibitor of Cu are added.
[0011]
As one mode of the CMP slurry technology for the second-stage barrier metal layer, for example, Patent Document 1 discloses an abrasive containing an abrasive, an oxidizing agent for a conductor, a protective film forming agent for a metal surface, and an acid and water. Have been. Patent Literature 2 discloses a polishing composition having a pH of 2 to 5 containing an abrasive, an anticorrosive, an oxidizing agent, an acid, a pH adjuster, and water.
[0012]
Although these publications suggest that the processing speed, the selectivity and the surface state can be controlled by the action of a protective film forming agent (corrosion inhibitor) such as BTA, an atomic force microscope (AFM) or the like is used. When the surface roughness (Ra) of the Cu layer was evaluated using this method, it was found that there was room for further improvement. The surface roughness of the Cu layer is an index of the occurrence of surface defects such as micro scratches and dishing, which is a dish-like defect, and the occurrence of these defects can lead to electrical failure such as short circuit.
The surface roughness (Ra) in the present invention represents an arithmetic average roughness defined in JIS B0601.
[0013]
[Patent Document 1]
JP 2001-127020 A (Claim 1)
[Patent Document 2]
JP 2001-247853 A (Claim 1)
[0014]
[Problems to be solved by the invention]
The present invention expresses the workability of the barrier metal layer exhibiting high corrosion resistance, the processing speed of the Cu layer can be controlled to be smaller than that of the Ta layer, and the smoothness of the polished surface of the Cu layer becomes extremely dense. A polishing liquid and a polishing method are provided.
[0015]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, by combining the specific compounds shown in the present invention, the high processing speed of the barrier metal layer and the selectivity to the Cu layer (Ta / Cu> 1) can be satisfied, and a new metal polishing liquid and a polishing method have been found in which the surface roughness (Ra ≦ 1.2 nm) of the polished surface of the Cu layer is extremely excellent. is there.
[0016]
That is, the present invention is a slurry containing nitric acid and / or a salt thereof, hydrogen peroxide, tartaric acid and / or a salt thereof, water, and abrasive grains, and not containing a protective film forming agent. To 9 are provided.
[0017]
The present invention will be described in more detail.
[0018]
As the nitric acid salt used in the present invention, at least one of water-soluble salts such as ammonium, calcium, potassium, iron, and sodium can be used. In view of contamination on the semiconductor substrate, it is particularly preferable to use nitric acid, a potassium salt or an ammonium salt of nitric acid.
[0019]
The concentration of nitric acid and / or a salt thereof according to the present invention is preferably 0.05% by weight or more and 3% by weight or less that can satisfy the processing speed, selectivity and surface properties of the barrier metal layer and the Cu film. It is more preferable that the content be from 1% by weight to 1% by weight.
[0020]
On the low concentration side outside the range, the processing characteristics of the barrier metal layer and the Cu layer do not appear. On the high concentration side, the processing speed of the barrier metal layer is not affected, but the processing speed of the Cu layer exceeds the processing speed of the barrier metal layer, and it may be difficult to control the selectivity.
[0021]
The concentration of hydrogen peroxide in the present invention is preferably 0.05% by weight or more, particularly preferably 0.5% by weight or more, from the selectivity of the barrier metal layer and the Cu layer.
[0022]
On the low concentration side outside this range, the barrier metal layer can be processed, but the processing characteristics of the Cu layer do not appear. On the other hand, the high concentration side is not particularly limited, but is preferably about 5% by weight in view of processing characteristics and economy.
[0023]
As the salt of tartaric acid used in the present invention, at least one of all water-soluble salts, such as potassium, sodium, calcium, ammonium, potassium hydrogen, sodium hydrogen, ammonium hydrogen, etc., can be used, but consideration is given to the detergency in the subsequent steps. It is particularly preferable to use tartaric acid or potassium or ammonium salts of tartaric acid.
[0024]
The tartaric acid and salt thereof of the present invention are preferably 0.001% by weight or more and 0.5% by weight or less, and preferably 0.01% by weight or more and 0.1% by weight or less from the viewpoint of selectivity and surface roughness characteristics. It is particularly preferred that
[0025]
On the low concentration side outside this range, no effect can be expected on the surface roughness of the Cu layer. On the other hand, on the high-concentration side, the processing speed of the Cu layer increases, which may hinder the selectivity.
[0026]
Examples of the abrasive grains used in the present invention include silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), manganese dioxide (MnO 2 ), and manganese oxide which are commonly used. Materials and the like can be applied as appropriate and are not particularly limited. However, it is preferable to use colloidal silica and colloidal alumina which are fine particles and rich in dispersibility in terms of dispersibility and control of defects on the polished surface.
[0027]
The concentration of the abrasive grains is the largest factor controlling the processing of the barrier metal layer, and the processing speed increases with the abrasive grain concentration, but a practical processing speed of 200 ° / min can be obtained as the concentration of the abrasive grains. The content is preferably 0.1% by weight or more and 10% by weight or less, more preferably 0.5% by weight or more and 5% by weight or less.
[0028]
The pH of the slurry used in the present invention is particularly preferably 3.0 to 9.0, preferably 4.0 to 7.0.
[0029]
When nitric acid is applied as nitric acid and / or a salt thereof, which is a constituent of the present invention, the pH at the time of preparation shows 2.0 or less. Therefore, it is necessary to adjust the pH of the slurry with a pH adjuster using an alkaline agent such as ammonium hydroxide (aqueous ammonia), potassium hydroxide, or potassium carbonate. It is particularly desirable to apply potassium oxide.
[0030]
In the alkaline region where the pH of the polishing liquid exceeds 9.0, the processing characteristics of the barrier metal layer hardly appear, and the processing speed of the Cu layer significantly exceeds the processing speed of the barrier metal layer. On the other hand, when the pH is less than 3.0, the processing speed of the barrier metal layer shows a sufficiently satisfactory value, but the processing speed of the Cu layer has higher characteristics, and the selectivity becomes a problem. Further, the surface roughness characteristics of the Cu layer are significantly reduced.
[0031]
In the polishing liquid of the present invention, more commonly used anionic, cationic and nonionic surfactants, viscosity modifiers, antifoaming agents and the like can be added. In particular, anionic and nonionic ones suitably act on the dispersibility of the abrasive grains.
[0032]
Examples of the barrier metal in which the polishing liquid of the present invention is useful include a compound containing tantalum such as tantalum or tantalum nitride, or a compound containing titanium such as titanium or titanium nitride.
[0033]
In the present invention, good polishing characteristics can be obtained even if the polishing liquid does not contain a protective film forming agent, but the protective film forming agent referred to here acts as an elution inhibitor for the Cu layer, It is added for the purpose of controlling surface layer defects, etching resistance due to excessive processing and corrosion, and specific examples thereof include benzotriazole and its derivatives.
[0034]
Examples of the benzotriazole derivative include 1-oxybenzotriazole, 1-N-benzoylbenzotriazole, 1-N-acetylbenzotriazole and the like.
[0035]
In the present invention, a polishing head equipped with a semiconductor substrate formed by a damascene wiring method having a barrier, a metal layer such as Ta, TaN, Ti, or TiN is attached to a polishing pad serving as a polishing cloth under a constant load. In the method of pressing against the surface plate and preferentially polishing and flattening the convex part by the relative movement due to the rotation of the surface plate and the polishing head, it is applied as a polishing liquid that is supplied constantly at an arbitrary speed on the polishing pad. It is.
[0036]
According to the present invention, Ra on the polished surface can be set to 1.2 nm or less, preferably 1.0 nm or less. By forming such a smooth Cu layer on a semiconductor device, micro scratches and It is possible to suppress the occurrence of surface defects such as dishing.
[0037]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[0038]
(Example 1, Comparative Example 1)
The concentration of nitric acid (HNO 3 ) is 0.5 wt%, the concentration of hydrogen peroxide (H 2 O 2 ) is 1 wt%, and the concentration of abrasive grains (colloidal silica; manufactured by Fuso Chemical Industry: grade PL-1) is 1 wt%. After adding and dissolving each reagent in ultrapure water, the concentration of tartaric acid was arbitrarily set, and the pH of these polishing solutions was adjusted to about 5.0 with aqueous ammonia.
[0039]
Next, a tantalum (Ta) layer blanket wafer having a thickness of 200 nm formed by a sputtering method and a Cu layer blanket wafer having a thickness of 1,500 nm formed by an electrolytic plating method were diced into 15 mm square samples. It was mounted on the work plate 1 shown and inserted into the correction ring 2.
[0040]
The polishing liquid prepared above was supplied from the slurry supply nozzle 4 shown in FIG. 1 at a dropping speed of 30 ml / min, and polishing was performed while the rotation speed of the platen 3 shown in FIG. 1 was 30 rpm.
[0041]
The processing pressure was 250 g / cm 2 , and the pad used was “IC1000 / SUBA400” manufactured by Rodale Nitta.
[0042]
The processing speed was calculated by measuring the sheet resistance before and after processing using a sheet resistor according to the four-terminal method. The surface roughness (Ra) was measured in a visual field of 40 μm × 40 μm using an atomic force microscope (Nanopics: manufactured by Seiko Instruments Inc.).
[0043]
Table 1 shows the results. In the state without tartaric acid (Comparative Example 1), Ra showed a value of 2 nm. On the other hand, when tartaric acid is contained, the processing speed and selectivity of the Ta layer and the Cu layer are almost the same as those in which tartaric acid is not added, but Ra is about 1 nm or less, showing excellent surface roughness characteristics.
[0044]
(Example 2)
Using the same reagents as in Example 1, each reagent was added and dissolved in ultrapure water so that the H 2 O 2 concentration was 1 wt%, the tartaric acid concentration was 0.05 wt%, and the abrasive concentration was 1 wt%. Thereafter, the nitric acid concentration was arbitrarily set, and the pH of each polishing solution was adjusted to about 5.0 with aqueous ammonia.
[0045]
Using these polishing liquids, evaluation was made under the same processing conditions as in Example 1.
[0046]
Table 1 shows the results. Even when the concentration of nitric acid was changed, the processing characteristics and Ra of the Ta layer and the Cu layer showed high characteristics without change.
[0047]
(Example 3)
Using the same reagents as in Example 1, each reagent was added and dissolved in ultrapure water so that the nitric acid concentration was 0.5 wt%, the tartaric acid concentration was 0.05 wt%, and the abrasive particle concentration was 1 wt%. , H 2 O 2 concentration was arbitrarily set, and the pH of each polishing liquid was adjusted to about 5.0 with aqueous ammonia.
[0048]
Using these polishing liquids, evaluation was made under the same processing conditions as in Example 1.
[0049]
Table 1 shows the results. The processing characteristics and the Ra of the Ta layer and the Cu layer were excellent without being affected by the change in the H 2 O 2 concentration.
[0050]
(Example 4)
Using the same reagent as in Example 1, each reagent was added and dissolved in ultrapure water so that the nitric acid concentration was 0.5 wt%, the H 2 O 2 concentration was 1 wt%, and the tartaric acid concentration was 0.05 wt%. After that, the abrasive grain concentration was set arbitrarily, and the pH of each polishing liquid was adjusted to about 5.0 with aqueous ammonia. The evaluation was performed under the same conditions as in Example 1.
[0051]
The results are shown in Table 1. Although the processing speed of the Ta layer and the Cu layer increases with the abrasive concentration, the selectivity ratio Ta / Cu becomes 1.0 or more under any condition, and Ra shows excellent characteristics. Was.
[0052]
(Example 5)
Using the same reagents as in Example 1, ultrapure each reagent so that the nitric acid concentration was 0.5 wt%, the H 2 O 2 concentration was 1 wt%, the tartaric acid concentration was 0.05 wt%, and the abrasive grain concentration was 1 wt%. After being added and dissolved in water, the pH of the polishing solution was arbitrarily adjusted with aqueous ammonia.
[0053]
Using these polishing liquids, evaluation was performed under the same processing conditions as in Example 1.
[0054]
Table 1 shows the results. When the pH of the polishing liquid was 3 to 9, it was confirmed that both the Ta layer and the Cu layer exhibited excellent characteristics. In particular, when the pH was 4 or more, the processing speed of the Ta layer and the Cu layer was increased, and Ra showed extremely excellent results.
[0055]
When the pH is less than 3, the processing speed of the Ta layer and the Cu layer increases, but the corrosiveness of the Cu layer becomes remarkable, and Ra has an extremely high value. Further, in the region where the pH exceeds 9, the processing characteristics of the Ta layer did not appear, or the processing speed of the Cu layer was significantly increased, resulting in uncontrollable selectivity and Ra.
[0056]
(Example 6)
Preparation and evaluation of the polishing solution were performed under the same conditions as in Example 2 except that ammonium nitrate (NH 4 NO 3 ) was used as the nitrate and the concentration was 0.5 wt%.
[0057]
The results are shown in Table 1, and the same characteristics as in Example 2 were obtained.
[0058]
(Example 7)
Evaluation was performed under the same composition and conditions as in Example 1 except that ammonium tartrate or potassium hydrogen tartrate was used instead of tartaric acid and the concentration was 0.1 wt%.
[0059]
The results are shown in Table 1. The processing characteristics and Ra of the Ta layer and the Cu layer showed high characteristics without being affected by the type of the tartrate.
[0060]
(Comparative Example 2)
BTA as a protective film forming agent was added at an arbitrary concentration to the system of Example 1 with a tartaric acid concentration of 0.1 wt%, and the evaluation was performed under the same conditions as in Example 1. The results are shown in Table 1. Although the processing speed of the Cu layer was suppressed, Ra showed a high value of about 2 nm.
[0061]
(Comparative Example 3)
Table 1 shows the results obtained by using various carboxylic acids in place of tartaric acid in Example 1 and examining the presence or absence of BTA. In the system without BTA, any carboxylic acid showed no significant change in the processing speed of the Ta layer, but had a strong tendency to increase the processing speed of the Cu layer, and the selectivity was less than 1.0. In addition, although the processing speed of the Cu layer was suppressed when BTA was present, Ra showed a high value of 1.5 nm or more. In any case, a result was not obtained which satisfied all the characteristics of a high processing speed of the Ta layer, a high selectivity with the Cu layer, and a surface roughness Ra of 1.2 nm or less.
[0062]
[Table 1]
Figure 2004193488
【The invention's effect】
As described in detail above, the present invention proposes a polishing solution for a barrier metal composed of nitric acid and / or a salt thereof, hydrogen peroxide, tartaric acid and / or a salt thereof, water, and abrasive grains. .
[0063]
By polishing the barrier metal layer having a Cu layer provided on a semiconductor device using the polishing liquid of the present invention, not only the high processing speed of the Ta layer and the high selectivity with the Cu layer, but also the roughness of the Cu layer surface can be improved. It is possible to obtain a processing characteristic having an extremely excellent characteristic, and it is possible to suppress the occurrence of surface defects such as micro scratches and dishing.
[Brief description of the drawings]
FIG. 1 is a schematic view of a polishing apparatus used for evaluating a polishing liquid of the present invention.
FIG. 2 is a schematic sectional view of a metal wiring (damascene method) / CMP processing technique.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 work plate 2 correction ring 3 surface plate 4 slurry supply nozzle 10 silicon substrate 20 insulating layer 30 barrier metal layer 40 wiring metal layer (Cu layer)

Claims (5)

硝酸及び/又はその塩、過酸化水素、酒石酸及び/又はその塩、水並びに研磨砥粒を含有し、保護膜形成剤を含有しないスラリーであって、該スラリーのpHが3〜9であるバリア金属用研磨液。A barrier containing nitric acid and / or a salt thereof, hydrogen peroxide, tartaric acid and / or a salt thereof, water, and abrasive grains, and not containing a protective film forming agent, wherein the pH of the slurry is 3 to 9. Polishing liquid for metal. 硝酸及び/又はその塩の濃度が0.05重量%以上、過酸化水素濃度が0.05重量%以上、酒石酸及びその塩の濃度が0.001重量%以上及び研磨砥粒濃度が0.1重量%以上である請求項1記載のバリア金属用研磨液。The concentration of nitric acid and / or its salt is 0.05% by weight or more, the concentration of hydrogen peroxide is 0.05% by weight or more, the concentration of tartaric acid and its salt is 0.001% by weight or more, and the abrasive grain concentration is 0.1%. The polishing liquid for a barrier metal according to claim 1, which is not less than% by weight. pH調整剤を含んでなる、請求項1又は請求項2記載のバリア金属用研磨液。The polishing liquid for a barrier metal according to claim 1 or 2, further comprising a pH adjuster. 保護膜形成剤が、ベンゾトリアゾール及びその誘導体である請求項1〜3のいずれかに記載のバリア金属用研磨液。The polishing liquid for a barrier metal according to claim 1, wherein the protective film forming agent is benzotriazole or a derivative thereof. 請求項1〜4のいずれかの項に記載のバリア金属用研磨液を用いて、タンタル、チッ化タンタル、チタン又はチッ化チタンを含むバリア金属を含む半導体基板面を研磨する方法。A method for polishing a semiconductor substrate surface containing a barrier metal containing tantalum, tantalum nitride, titanium or titanium nitride, using the polishing liquid for a barrier metal according to claim 1.
JP2002362376A 2002-12-13 2002-12-13 Polishing solution for barrier metal and polishing method Pending JP2004193488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362376A JP2004193488A (en) 2002-12-13 2002-12-13 Polishing solution for barrier metal and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362376A JP2004193488A (en) 2002-12-13 2002-12-13 Polishing solution for barrier metal and polishing method

Publications (1)

Publication Number Publication Date
JP2004193488A true JP2004193488A (en) 2004-07-08

Family

ID=32760839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362376A Pending JP2004193488A (en) 2002-12-13 2002-12-13 Polishing solution for barrier metal and polishing method

Country Status (1)

Country Link
JP (1) JP2004193488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536296A (en) * 2005-03-09 2008-09-04 ラム リサーチ コーポレーション Plasma oxidation and removal of oxidized materials
US7547624B2 (en) 2006-04-07 2009-06-16 Oki Semiconductor Co., Ltd. Semiconductor device and method of producing the same
JP2009295747A (en) * 2008-06-04 2009-12-17 Hitachi Chem Co Ltd Polishing solution for metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536296A (en) * 2005-03-09 2008-09-04 ラム リサーチ コーポレーション Plasma oxidation and removal of oxidized materials
US7547624B2 (en) 2006-04-07 2009-06-16 Oki Semiconductor Co., Ltd. Semiconductor device and method of producing the same
JP2009295747A (en) * 2008-06-04 2009-12-17 Hitachi Chem Co Ltd Polishing solution for metal

Similar Documents

Publication Publication Date Title
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
JP4095731B2 (en) Semiconductor device manufacturing method and semiconductor device
KR100481651B1 (en) Slurry for chemical mechanical polishing and method for manufacturing semiconductor device
JP4253141B2 (en) Chemical mechanical polishing slurry and semiconductor device manufacturing method
JP2005518669A (en) Improved chemical mechanical polishing slurry for polishing copper or silver films
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
TWI294456B (en)
TWI761423B (en) Chemical mechanical polishing method for tungsten
JP4719204B2 (en) Chemical mechanical polishing slurry and semiconductor device manufacturing method
JP2006049479A (en) Chemical mechanical polishing method
US20060084271A1 (en) Systems, methods and slurries for chemical mechanical polishing
JP2004193488A (en) Polishing solution for barrier metal and polishing method
JPWO2003005431A1 (en) Chemical mechanical polishing slurry for semiconductor integrated circuit, polishing method, and semiconductor integrated circuit
JP2003286477A (en) Polishing composition and polishing method
JP2005056879A (en) Solution and method for polishing cooper-based metal
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP2004123931A (en) Polishing solution and polishing method
JP2004006810A (en) Acid for copper-based metal polishing solution, polishing solution for copper-based metals using the same, and polishing method
JPH10135163A (en) Compd. for polishing metal film on semiconductor substrate and method of palnarizing the metal film on semiconductor substrate
JP2004103666A (en) Polishing solution for barrier metal, and method for polishing
JP2003218071A (en) Composition for polishing
JP2003151928A (en) Polishing composition
JP2004103667A (en) Acid for barrier metal polishing solution, polishing solution for barrier metal using the same, and method for polishing
JP2003197572A (en) Composition for polishing
JP2006191132A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate