JP2004190582A - 油圧建設機械のポンプトルク制御方法及び装置 - Google Patents

油圧建設機械のポンプトルク制御方法及び装置 Download PDF

Info

Publication number
JP2004190582A
JP2004190582A JP2002359822A JP2002359822A JP2004190582A JP 2004190582 A JP2004190582 A JP 2004190582A JP 2002359822 A JP2002359822 A JP 2002359822A JP 2002359822 A JP2002359822 A JP 2002359822A JP 2004190582 A JP2004190582 A JP 2004190582A
Authority
JP
Japan
Prior art keywords
torque
pump
engine
hydraulic
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002359822A
Other languages
English (en)
Other versions
JP4322499B2 (ja
JP2004190582A5 (ja
Inventor
Kazunori Nakamura
和則 中村
Yoichi Kowatari
陽一 古渡
Hiroji Ishikawa
広二 石川
Yasushi Arai
康 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002359822A priority Critical patent/JP4322499B2/ja
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to EP03812682A priority patent/EP1571339B1/en
Priority to DE60314178T priority patent/DE60314178T2/de
Priority to AT03812682T priority patent/ATE363598T1/de
Priority to US10/507,888 priority patent/US8162618B2/en
Priority to PCT/JP2003/014638 priority patent/WO2004053332A1/ja
Priority to KR1020047019011A priority patent/KR100674696B1/ko
Priority to CNB2003801004118A priority patent/CN100520022C/zh
Publication of JP2004190582A publication Critical patent/JP2004190582A/ja
Publication of JP2004190582A5 publication Critical patent/JP2004190582A5/ja
Application granted granted Critical
Publication of JP4322499B2 publication Critical patent/JP4322499B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】高負荷時に油圧ポンプの最大吸収トルクを減少させてエンジン停止を防止することができるとともに、環境の変化や粗悪燃料の使用などによりエンジン出力が低下したときにはエンジン回転数の低下を生じることなく油圧ポンプの最大吸収トルクを減少させることができ、しかも事前に予想ができないファクターやセンサによる検出が難しいファクターなどエンジン出力低下のあらゆる要因に対応することができ、かつ環境センサ等のセンサは不要であり安価に製作することができるようにする。
【解決手段】エンジン10の現在の負荷率を演算し、その負荷率が目標値に保たれるよう油圧ポンプ1,2の最大吸収トルクを制御する。
【選択図】 図6

Description

【0001】
【発明の属する技術分野】
本発明は原動機としてディーゼルエンジンを備え、このエンジンにより可変容量型の油圧ポンプを駆動しアクチュエータを駆動する油圧建設機械のポンプトルク制御方法及び装置に関する。
【0002】
【従来の技術】
油圧ショベル等の油圧建設機械は、一般に、原動機としてディーゼルエンジンを備え、このエンジンにより可変容量型の油圧ポンプを駆動しアクチュエータを駆動することで所定の作業を行っている。このような油圧建設機械におけるエンジン制御は、一般に、目標燃料噴射量を設定し、この目標燃料噴射量に基づいて燃料噴射装置を制御することにより行う。
【0003】
また、油圧ポンプの制御は、要求流量に基づく容量制御とポンプ吐出圧に基づくトルク制御(馬力制御)を行うのが一般的である。油圧ポンプのトルク制御とは、ポンプ吐出圧が上昇するに従って油圧ポンプの容量を減じることで油圧ポンプの吸収トルクが予め設定した最大吸収トルクを越えないように制御し、エンジンの過負荷を防止するものである。
【0004】
このような油圧ポンプのトルク制御において、エンジンの出力馬力の有効利用を図る技術として、例えば特開昭57−65822号公報に記載のスピードセンシング制御が知られている。このスピードセンシング制御は、エンジンの目標回転数と実回転数との偏差をトルク補正値に変換し、このトルク補正値をポンプベーストルクに加算或いは減算して最大吸収トルクの目標値を求め、油圧ポンプの最大吸収トルクをその目標値に一致するよう制御するものであり、これによりエンジン回転数(実回転数)が低下すると油圧ポンプの最大吸収トルクを減じることでエンジン停止が防止されるので、油圧ポンプの最大吸収トルク(設定値)をエンジンの最大出力トルクに近づけて設定することが可能となり、エンジンの出力馬力の有効利用を図ることができる。
【0005】
また、油圧ポンプのトルク制御におけるスピードセンシング制御の改良技術として、特開平11−101183号公報、特開2000−73812号公報、特開2000−73960号公報等に記載のものがある。この技術は、エンジン出力に影響を及ぼす環境ファクター(大気圧、燃料温度、冷却水温度等)をセンサにより検出し、その検出値を予め設定したマップに参照させてポンプベーストルクの補正値を求め、油圧ポンプの最大吸収トルクを補正するものであり、これにより環境の変化でエンジン出力が低下した場合でも、高負荷時において、スピードセンシング制御により油圧ポンプの最大吸収トルクを減少させエンジン停止を防止するとともに、スピードセンシング制御による原動機の回転数の低下を少なくし、良好な作業性を確保できる。
【0006】
【特許文献1】
特開昭57−65822号公報
【特許文献2】
特開平11−101183号公報
【特許文献3】
特開2000−73812号公報
【特許文献4】
特開2000−73960号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来技術には次のような問題がある。
【0008】
ディーゼルエンジンの出力トルク特性は、レギュレーション領域(部分負荷領域)の特性と全負荷領域の特性に分けられる。レギュレーション領域は燃料噴射装置による燃料噴射量が100%以下の出力領域であり、全負荷領域は燃料噴射量が100%となる最大出力トルク領域である。エンジンの出力は環境の変化や燃料の品質などエンジンの運転状況によって変化し、それに応じてエンジン出力特性も変化する。
【0009】
特開昭57−65822号公報等の記載の一般的なスピードセンシング制御では、エンジン出力に余裕があり、エンジン出力特性のレギュレーション領域における最高出力トルクがスピードセンシング制御のポンプベーストルク(油圧ポンプの最大吸収トルク)より大きい場合は、高負荷時、スピードセンシング制御におけるエンジン出力トルクとポンプ吸収トルクのマッチング点はレギュレーション領域上にあるため、エンジン回転数は目標回転数に一致し、エンジン回転数の低下を生じることなく、油圧ポンプの最大吸収トルクを減少させエンジン停止を防止することができる。しかし、吸入空気量の減少(環境の変化)や粗悪燃料の使用などによりエンジン出力が低下し、エンジン出力特性のレギュレーション領域における最高出力トルクがスピードセンシング制御のポンプベーストルク(油圧ポンプの最大吸収トルク)より小さくなると、スピードセンシング制御により油圧ポンプの最大吸収トルクが減少するよう制御されるが、このときエンジン出力トルクとポンプ吸収トルクのマッチング点がレギュレーション領域から全負荷領域に移動し、エンジン回転数は目標回転数から低下する。これによって土砂の掘削作業等、高負荷状態へと負荷状態が変化する作業を行う場合は、その都度エンジン回転数の低下が生じ、これが騒音となり、作業者に不快感や疲労感を与える。
【0010】
特開平11−101183号公報、特開2000−73812号公報、特開2000−73960号公報等に記載のスピードセンシング制御では、大気圧、燃料温度、冷却水温度等、センサで検出できる環境ファクターの変化によるエンジン出力の低下に対してはポンプベーストルクを補正し、スピードセンシング制御によるエンジン回転数の低下を防止することができる。しかし、この技術は環境ファクターを事前に予測してセンサを設け、その検出値を利用するものであるため、事前に予想ができない環境ファクターによるエンジン出力の低下には対応することができない。また、粗悪燃料の使用等のセンサで検出することが難しいファクターによるエンジン出力の低下にも対応することができない。更に、種々の環境ファクタの検出のために多数のセンサが必要であり、かつそのセンサ数と同数のマップを作成しコントローラに用いる必要があり、コスト高となる。
【0011】
本発明の目的は、高負荷時に油圧ポンプの最大吸収トルクを減少させてエンジン停止を防止することができるとともに、環境の変化や粗悪燃料の使用などによりエンジン出力が低下したときにはエンジン回転数の低下を生じることなく油圧ポンプの最大吸収トルクを減少させることができ、しかも事前に予想ができないファクターやセンサによる検出が難しいファクターなどエンジン出力低下のあらゆる要因に対応することができ、かつ環境センサ等のセンサは不要であり安価に製作することができる油圧建設機械にポンプトルク制御方法及び装置を提供することである。
【0012】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、エンジンと、このエンジンの回転数と出力とを制御する燃料噴射装置と、この燃料噴射装置を制御する燃料噴射装置コントローラと、前記エンジンによって駆動されアクチュエータを駆動する少なくとも1つの可変容量型の油圧ポンプとを備えた油圧建設機械のポンプトルク制御方法において、前記エンジンの現在の負荷率を演算する第1手順と、前記負荷率が目標値に保たれるよう前記油圧ポンプの最大吸収トルクを制御する第2手順とを有するこものとする。
【0013】
これにより高負荷時にエンジンの負荷率が目標値を超えようとするとエンジンの負荷率が目標値に保たれるよう油圧ポンプの最大吸収トルクが制御されるため、高負荷時に油圧ポンプの最大吸収トルクを減少させてエンジン停止を防止することができる。
【0014】
また、環境の変化や粗悪燃料の使用などによりエンジン出力が低下するときも、エンジンの負荷率が目標値を超えようとするとエンジンの負荷率が目標値に保たれるよう油圧ポンプの最大吸収トルクが制御されるため、エンジン回転数の低下を生じることなく油圧ポンプの最大吸収トルクを減少させることができる。
【0015】
更に、エンジンの負荷率を目標値に保つ制御であるため、レギュレーション領域における最高出力トルクが低下すれば自動的に負荷である油圧ポンプの最大吸収トルクも低下するよう制御され、エンジン出力低下の要因は問わないので、事前に予想ができないファクターやセンサによる検出が難しいファクターなどエンジン出力の下のあらゆる要因に対応することができ、しかも環境センサ等のセンサは不要であり安価に製作することができる。
【0016】
(2)上記(1)において、好ましくは、前記負荷率の演算は、前記燃料噴射装置コントローラで演算される目標燃料噴射量とエンジントルク余裕率との関係を予め設定しておき、前記負荷率をそのときの目標燃料噴射量に対応するエンジントルク余裕率として求めることにより行う。
【0017】
これにより燃料噴射装置コントローラで演算される目標燃料噴射量を用いてエンジンの現在の負荷率を演算することができる。
【0018】
(3)また、上記(1)において、好ましくは、前記最大吸収トルクの制御は、前記負荷率と目標値の偏差を演算し、この偏差を用いてポンプベーストルクを補正し、この補正したポンプベーストルクに一致するよう前記油圧ポンプの最大吸収トルクを制御することにより行う。
【0019】
これによりエンジンの現在の負荷率が目標値に保たれるよう油圧ポンプの最大吸収トルクを制御することができる。
【0020】
(4)更に、上記(1)〜(3)において、本発明のポンプトルク制御方法は、好ましくは、前記負荷率が目標値に保たれるよう前記油圧ポンプの最大吸収トルクを制御するのと同時に、前記エンジンの目標回転数と実回転数との偏差を演算し、この偏差が小さくなるよう前記油圧ポンプの最大吸収トルクを制御する。
【0021】
これにより本発明の制御と従来のスピードセンシング制御の両方で油圧ポンプの最大吸収トルクを制御することができ、急負荷がかかったときの制御の応答性を向上することができる。
【0022】
(5)また、上記目的を達成するために、本発明は、エンジンと、このエンジンの回転数と出力とを制御する燃料噴射装置と、この燃料噴射装置を制御する燃料噴射装置コントローラと、前記エンジンによって駆動されアクチュエータを駆動する少なくとも1つの可変容量型の油圧ポンプとを備えた油圧建設機械のポンプトルク制御装置において、前記エンジンの現在の負荷率を演算する第1手段と、前記負荷率が目標値に保たれるよう前記油圧ポンプの最大吸収トルクを制御する第2手段とを有するものとする。
【0023】
これにより上記(1)で述べたように、高負荷時に油圧ポンプの最大吸収トルクを減少させてエンジン停止を防止することができるとともに、環境の変化や粗悪燃料の使用などによりエンジン出力が低下したときにはエンジン回転数の低下を生じることなく油圧ポンプの最大吸収トルクを減少させることができ、しかも事前に予想ができないファクターやセンサによる検出が難しいファクターなどエンジン出力低下のあらゆる要因に対応することができ、かつ環境センサ等のセンサは不要であり安価に製作することができる。
【0024】
(6)上記(5)において、好ましくは、前記第1手段は、前記燃料噴射装置コントローラで演算される目標燃料噴射量とエンジントルク余裕率との関係を予め設定しておき、前記負荷率をそのときの目標燃料噴射量に対応するエンジントルク余裕率として求める。
【0025】
これにより燃料噴射装置コントローラで演算される目標燃料噴射量を用いてエンジンの現在の負荷率を演算することができる。
【0026】
(7)また、上記(5)において、好ましくは、前記第2手段は、前記負荷率と目標値の偏差を演算し、この偏差を用いてポンプベーストルクを補正し、この補正したポンプベーストルクに一致するよう前記油圧ポンプの最大吸収トルクを制御する。
【0027】
これによりエンジンの現在の負荷率が目標値に保たれるよう油圧ポンプの最大吸収トルクを制御することができる。
【0028】
(8)上記(7)において、好ましくは、前記第2手段は、前記偏差を積分してポンプベーストルク補正値を求め、前記ポンプベーストルクに前記ポンプベーストルクを加算することで前記ポンプベーストルクを補正する。
【0029】
これにより負荷率と目標値の偏差を用いてポンプベーストルクを補正することができる。
【0030】
(9)また、上記(5)〜(8)において、本発明のポンプトルク制御装置は、好ましくは、前記エンジンの目標回転数と実回転数との偏差を演算し、この偏差が小さくなるよう前記油圧ポンプの最大吸収トルクを制御する第3手段を更に有する。
【0031】
これにより本発明の制御と従来のスピードセンシング制御の両方で油圧ポンプの最大吸収トルクを制御することができ、急負荷がかかったときの制御の応答性を向上することができる。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。以下の実施の形態は、本発明を油圧ショベルのエンジン・ポンプ制御装置に適用した場合のものである。
【0033】
まず、本発明の第1の実施形態を図1〜図8により説明する。
【0034】
図1において、1及び2は例えば斜板式の可変容量型の油圧ポンプであり、9は固定容量型のパイロットポンプであり、油圧ポンプ1,2及びパイロットポンプ9は原動機10の出力軸11に接続され、原動機10により回転駆動される。
【0035】
油圧ポンプ1,2の吐出路3,4には図2に示す弁装置5が接続され、この弁装置5を介して複数のアクチュエータ50〜56に圧油を送り、これらアクチュエータを駆動する。パイロットポンプ9の吐出路9aにはパイロットポンプ9の吐出圧力を一定圧に保持するパイロットリリーフ弁9bが接続されている。
【0036】
弁装置5の詳細を説明する。
【0037】
図2において、弁装置5は、流量制御弁5a〜5dと流量制御弁5e〜5iの2つの弁グループを有し、流量制御弁5a〜5dは油圧ポンプ1の吐出路3につながるセンタバイパスライン5j上に位置し、流量制御弁5e〜5iは油圧ポンプ2の吐出路4につながるセンタバイパスライン5k上に位置している。吐出路3,4には油圧ポンプ1,2の吐出圧力の最大圧力を決定するメインリリーフ弁5mが設けられている。
【0038】
流量制御弁5a〜5d及び流量制御弁5e〜5iはセンタバイパスタイプであり、油圧ポンプ1,2から吐出された圧油はこれらの流量制御弁によりアクチュエータ50〜56の対応するものに供給される。アクチュエータ50は走行右用の油圧モータ(右走行モータ)、アクチュエータ51はバケット用の油圧シリンダ(バケットシリンダ)、アクチュエータ52はブーム用の油圧シリンダ(ブームシリンダ)、アクチュエータ53は旋回用の油圧モータ(旋回モータ)、アクチュエータ54はアーム用の油圧シリンダ(アームシリンダ)、アクチュエータ55は予備の油圧シリンダ、アクチュエータ56は走行左用の油圧モータ(左走行モータ)であり、流量制御弁5aは走行右用、流量制御弁5bはバケット用、流量制御弁5cは第1ブーム用、流量制御弁5dは第2アーム用、流量制御弁5eは旋回用、流量制御弁5fは第1アーム用、流量制御弁5gは第2ブーム用、流量制御弁5hは予備用、流量制御弁5iは走行左用である。即ち、ブームシリンダ52に対しては2つの流量制御弁5g,5cが設けられ、アームシリンダ54に対しても2つの流量制御弁5d,5fが設けられ、ブームシリンダ52とアームシリンダ54のボトム側には、それぞれ、2つの油圧ポンプ1,2からの圧油が合流して供給可能になっている。
【0039】
流量制御弁5a〜5iの操作パイロット系を図3に示す。
【0040】
流量制御弁5i,5aは操作装置35の操作パイロット装置39,38からの操作パイロット圧TR1,TR2及びTR3,TR4により、流量制御弁5b及び流量制御弁5c,5gは操作装置36の操作パイロット装置40,41からの操作パイロット圧BKC,BKD及びBOD,BOUにより、流量制御弁5d,5f及び流量制御弁5eは操作装置37の操作パイロット装置42,43からの操作パイロット圧ARC,ARD及びSW1,SW2により、流量制御弁5hは操作パイロット装置44からの操作パイロット圧AU1,AU2により、それぞれ切り換え操作される。
操作パイロット装置38〜44は、それぞれ、1対のパイロット弁(減圧弁)38a,38b〜44a,44bを有し、操作パイロット装置38,39,44はそれぞれ更に操作ペダル38c,39c、44cを有し、操作パイロット装置40,41は更に共通の操作レバー40cを有し、操作パイロット装置42,43は更に共通の操作レバー42cを有している。操作ペダル38c,39c、44c及び操作レバー40c,42cを操作すると、その操作方向に応じて関連する操作パイロット装置のパイロット弁が作動し、操作量に応じた操作パイロット圧が生成される。
【0041】
また、操作パイロット装置38〜44の各パイロット弁の出力ラインにはシャトル弁61〜67、シャトル弁68,69,100、シャトル弁101,102、シャトル弁103が階層的に接続され、シャトル弁61,63,64,65,68,69,101により操作パイロット装置38,40,41,42の操作パイロット圧の最高圧力が油圧ポンプ1の制御パイロット圧PL1として検出され、シャトル弁62,64,65,66,67,69,100,102,103により操作パイロット装置39,41,42,43,44の操作パイロット圧の最高圧力が油圧ポンプ2の制御パイロット圧PL2として検出される。
【0042】
以上のような油圧駆動系に本発明のポンプトルク制御装置を備えたエンジン・ポンプ制御装置が設けられている。以下、その詳細を説明する。
図1において、油圧ポンプ1,2にはそれぞれレギュレータ7,8が備えられ、これらレギュレータ7,8で油圧ポンプ1,2の容量可変機構である斜板1a,2aの傾転位置を制御し、ポンプ吐出流量を制御する。
【0043】
油圧ポンプ1,2のレギュレータ7,8は、それぞれ、傾転アクチュエータ20A,20B(以下、適宜20で代表する)と、図3に示す操作パイロット装置38〜44の操作パイロット圧に基づいてポジティブ傾転制御をする第1サーボ弁21A,21B(以下、適宜21で代表する)と、油圧ポンプ1,2の全馬力制御をする第2サーボ弁22A,22B(以下、適宜22で代表する)とを備え、これらのサーボ弁21,22によりパイロットポンプ9から傾転アクチュエータ20に作用する圧油の圧力を制御し、油圧ポンプ1,2の傾転位置を制御する。
【0044】
傾転アクチュエータ20、第1及び第2サーボ弁21,22の詳細を説明する。
【0045】
各傾転アクチュエータ20は、両端に大径の受圧部20aと小径の受圧部20bとを有する作動ピストン20cと、受圧部20a,20bが位置する大径の受圧室20d及び小径の受圧室20eとを有し、両受圧室20d,20eの圧力が等しいときは受圧面積差により作動ピストン20cは図示右方向に移動し、斜板1a又は2aの傾転を小さくしてポンプ吐出流量を減少させ、大径の受圧室20dの圧力が低下すると、作動ピストン20cを図示左方向に移動し、斜板1a又は2aの傾転を大きくしてポンプ吐出流量を増大させる。また、大径の受圧室20dは第1及び第2サーボ弁21,22を介してパイロットポンプ9の吐出路9aとタンク12に至る戻り油路13に選択的に接続され、小径の受圧室20eは直接パイロットポンプ9の吐出路9aに接続されている。
【0046】
ポジティブ傾転制御用の各第1サーボ弁21は、ソレノイド制御弁30又は31からの制御圧力により作動し油圧ポンプ1,2の傾転位置を制御する弁であり、制御圧力が低いときはサーボ弁21の弁体21aがバネ21bの力で図示左方向に移動し、傾転アクチュエータ20の大径の受圧室20dを戻り油路13にを介してタンク12に連通し、油圧ポンプ1又は2の傾転を大きくし、制御圧力が上昇するとサーボ弁21の弁体21aが図示右方向に移動し、パイロットポンプ9からのパイロット圧を大径の受圧室20dに導き、油圧ポンプ1又は2の傾転を小さくする。
全馬力制御用の各第2サーボ弁22は、油圧ポンプ1,2の吐出圧力とソレノイド制御弁32からの制御圧力により作動して油圧ポンプ1,2の全馬力制御をする弁であり、ソレノイド制御弁32にからの制御圧力より油圧ポンプ1,2の最大吸収トルクを制御する。
【0047】
即ち、油圧ポンプ1及び2の吐出圧力とソレノイド制御弁32からの制御圧力が第2サーボ弁22の受圧室22a,22b,22cにそれぞれ導かれ、油圧ポンプ1,2の吐出圧力の油圧力の和がバネ22dの力と受圧室22cに導かれる制御圧力の油圧力との差で決まる設定値より低いときは、弁体22eは図示右方向に移動し、傾転アクチュエータ20の大径の受圧室20dを戻り油路13にを介してタンク12に連通し、油圧ポンプ1,2の傾転を大きくし、油圧ポンプ1,2の吐出圧力の油圧力の和が同設定値よりも高くなるにしたがって弁体22aを図示左方向に移動し、パイロットポンプ9からのパイロット圧を受圧室20dに伝達し、油圧ポンプ1,2の傾転を小さくする。また、ソレノイド制御弁32からの制御圧力が低いときは、上記設定値を大きくし、油圧ポンプ1,2の高めの吐出圧力から油圧ポンプ1,2の傾転を減少させ、ソレノイド制御弁32からの制御圧力が高くなるにしたがって上記設定値を小さくし、油圧ポンプ1,2の低めの吐出圧力から油圧ポンプ1,2の傾転を減少させる。
【0048】
図4に第2サーボ弁22による吸収トルク制御の特性を示す。横軸は油圧ポンプ1,2の吐出圧力の平均値であり、縦軸は油圧ポンプ1,2の傾転(押しのけ容積)である。ソレノイド制御弁32からの制御圧力が高くなる(バネ22dの力と受圧室22cの油圧力との差で決まる設定値が小さくなる)に従い第2サーボ弁22の吸収トルク特性はA1,A2,A3と変化し、油圧ポンプ1,2の最大吸収トルクはT1,T2,T3と減少する。また、ソレノイド制御弁32からの制御圧力が低くなる(バネ22dの力と受圧室22cの油圧力との差で決まる設定値が大きくなる)に従い第2サーボ弁22の吸収トルク特性はA1,A4,A5と変化し、油圧ポンプ1,2の最大吸収トルクはT1,T4,T5と増大する。つまり、制御圧力を高くし設定値を小さくすれば油圧ポンプ1,2の最大吸収トルクが減少し、制御圧力を低くし設定値を大きくすれば油圧ポンプ1,2の最大吸収トルクが増大する。
【0049】
ソレノイド制御弁30,31,32は駆動電流SI1,SI2,SI3により作動する比例減圧弁であり、駆動電流SI1,SI2,SI3が最小のときは、出力する制御圧力を最高にし、駆動電流SI1,SI2,SI3が増大するに従って出力する制御圧力を低くするよう動作する。駆動電流SI1,SI2,SI3は図5に示す車体コントローラ70より出力される。
【0050】
原動機10はディーゼルエンジンであり、目標燃料噴射量FN1の信号により作動する電子燃料噴射装置14を備えている。指令信号は図5に示す燃料噴射装置コントローラ80より出力される。電子燃料噴射装置14は原動機(以下、エンジンという)10の回転数と出力とを制御する。
【0051】
エンジン10に対する目標回転数NR1をオペレータが手動で入力する目標エンジン回転数入力部71が設けられ、その目標回転数NR1の入力信号は車体コントローラ70及びエンジン燃料噴射装置コントローラ80に取り込まれる。目標エンジン回転数入力部71は例えばポテンショメータのような電気的入力手段であり、オペレータが基準となる目標回転数(目標基準回転数)を指令するものである。
【0052】
また、エンジン10の実回転数NE1を検出する回転数センサー72と、油圧ポンプ1,2の制御パイロット圧PL1,PL2を検出する圧力センサー73,74(図3参照)が設けられている。
【0053】
車体コントローラ70及び燃料噴射装置コントローラ80の全体の信号の入出力関係を図5に示す。
【0054】
車体コントローラ70は目標エンジン回転数入力部71の目標回転数NR1の信号、圧力センサー73,74のポンプ制御パイロット圧PL1,PL2の信号、エンジン燃料噴射装置コントローラ80で演算されたエンジントルク余裕率ENGTRRTの信号を入力し、所定の演算処理を行って駆動電流SI1,SI2,SI3をソレノイド制御弁30〜32に出力する。エンジン燃料噴射装置コントローラ80は目標エンジン回転数入力部71の目標回転数NR1の信号、回転数センサー72の実回転数NE1の信号を入力し、所定の演算処理を行って目標燃料噴射量FN1の信号を電子燃料噴射装置14に出力する。また、エンジン燃料噴射装置コントローラ80はエンジントルク余裕率ENGTRRTを演算しその信号を車体コントローラ70に出力する。
【0055】
ここで、エンジントルク余裕率ENGTRRTとは、エンジン10の現在の負荷率がどの程度であるかを示すエンジン負荷率の指標値であり、目標燃料噴射量FN1を用いて演算される(後述)。
【0056】
車体コントローラ70の油圧ポンプ1,2の制御に関する処理機能を図6に示す。
【0057】
図6において、車体コントローラ70は、ポンプ目標傾転演算部70a,70b、ソレノイド出力電流演算部70c,70d、ベーストルク演算部70e、エンジントルク余裕率設定部70m、エンジントルク余裕率偏差演算部70n、ゲイン演算部70p、ポンプトルク補正値演算積分要素70q,70r,70s、ポンプベーストルク補正部70t、ソレノイド出力電流演算部70kの各機能を有している。
【0058】
ポンプ目標傾転演算部70aは、油圧ポンプ1側の制御パイロット圧PL1の信号を入力し、これをメモリに記憶してあるテーブルに参照させ、そのときの制御パイロット圧PL1に応じた油圧ポンプ1の目標傾転θR1を演算する。この目標傾転θR1はパイロット操作装置38,40,41,42の操作量に対するポジティブ傾転制御の基準流量メータリングであり、メモリのテーブルには制御パイロット圧PL1が高くなるに従って目標傾転θR1も増大するようPL1とθR1の関係が設定されている。
【0059】
ソレノイド出力電流演算部70cは、θR1に対してこのθR1が得られる油圧ポンプ1の傾転制御用の駆動電流SI1を求め、これをソレノイド制御弁30に出力する。
ポンプ目標傾転演算部70b、ソレノイド出力電流演算部70dでも、同様にポンプ制御パイロット圧PL2の信号から油圧ポンプ2の傾転制御用の駆動電流SI2を算出し、これをソレノイド制御弁31に出力する。
ベーストルク演算部70eは、目標回転数NR1の信号を入力し、これをメモリに記憶してあるテーブルに参照させ、そのときの目標回転数NR1に応じたポンプベーストルクTR0を算出する。このポンプベーストルクTR0は、燃料噴射装置コントローラ80で演算されたエンジントルク余裕率ENGTRRTが設定値ENG1RPTC(後述)にある時の標準トルクであり、メモリのテーブルには、エンジン10の全負荷領域での最大出力特性の変化に対応した目標回転数NR1とポンプベーストルク(標準トルク)TR0との関係が設定されている。なお、標準トルクとはエンジン10が標準の出力トルク特性を有しかつエンジン10が置かれている環境(燃料の品質も含む)が標準状態にあるときのエンジン出力トルクであり、例えば目標回転数NR1を最大に設定したときのポンプベーストルクTR0は図4に示した油圧ポンプ1,2の最大吸収トルクT1に対応する。エンジン出力は状況によって変化するが、それに対する補正を行うことが本発明の目的であるため、この場合の標準トルクの精度、正確さは厳密性を必要としない。
【0060】
エンジントルク余裕率設定部70mには上記のエンジントルク余裕率の設定値ENG1RPTCが設定されている。このエンジントルク余裕率の設定値ENG1RPTCはエンジン10にかかる許容ポンプ負荷(エンジン負荷)に対する目標の余裕率である(後述)。エンジン出力を有効に使うためには、設定値ENG1RPTCは100%に近い値とすることが好まく、例えば99%に設定される。
【0061】
エンジントルク余裕率偏差演算部70nは、設定部70mの設定値ENG1RPTCから燃料噴射装置コントローラ80で演算されたエンジントルク余裕率ENGTRRTを減算し、それらの偏差ΔTRY(=ENG1RPTC−ENGTRRT)を演算する。
【0062】
ゲイン演算部70pはエンジントルク余裕率偏差演算部70nで求めた偏差ΔTRYをメモリに記憶してあるテーブルに参照させ、本発明によるポンプベーストルク可変制御の積分ゲインKTRYを演算する。この積分ゲインKTRYは本発明の制御速度を設定するものであり、メモリのテーブルには、エンジントルク余裕率ENGTRRTが設定値ENG1RPTCを超えた場合(偏差ΔTRYがマイナスの場合)に速やかにポンプトルク(エンジン負荷)を下げるため、+側の制御ゲインが−側の制御ゲインより大きくなるようΔTRYとKTRYの関係が設定されている。
【0063】
ポンプトルク補正値演算積分要素70q,70r,70sは、積分ゲインKTRYを前回計算したポンプベーストルク補正値TER0に加算して積分し、ポンプベーストルク補正値TER1を演算する。
【0064】
ポンプベーストルク補正部70tは、ベーストルク演算部70eで演算したポンプベーストルクTR0にポンプベーストルク補正値TER1を加算し、補正したポンプベーストルクTR1(=TR0+TER1)を算出する。この補正したポンプベーストルクが全馬力制御の第2サーボ弁22に設定されるポンプ最大吸収トルクの目標値となる。
【0065】
ソレノイド出力電流演算部70kは、第2サーボ弁22により制御される油圧ポンプ1,2の最大吸収トルクがTR1となるようソレノイド制御弁32の駆動電流SI3を求め、これをソレノイド制御弁32に出力する。
【0066】
このようにして駆動電流SI3を受けたソレノイド制御弁32は駆動電流S13に応じた制御圧力を出力し、第2サーボ弁22の設定値を制御し、油圧ポンプ1,2の最大吸収トルクがTR1になるよう制御する。
【0067】
燃料噴射装置コントローラ80の処理機能を図7に示す。
【0068】
燃料噴射装置コントローラ80は、回転数偏差演算部80a、燃料噴射量変換部80b、積分演算要素80c,80d,80e、リミッタ演算部80f、エンジントルク余裕率演算部80gの各制御機能を有している。
【0069】
回転数偏差演算部80aは、目標回転数NR1と実回転数NE1とを比較して回転数偏差ΔN(=NR1−NE1)を算出し、燃料噴射量変換部80bはその回転数偏差ΔNにゲインKFを掛けて目標燃料噴射量の増分ΔFNを演算し、積分演算要素80c,80d,80eは、目標燃料噴射量の増分ΔFNを前回計算した目標燃料噴射量FN0に加算して積分し、目標燃料噴射量FN2を求め、リミッタ演算部80fは目標燃料噴射量FN2に上限・下限リミッタを掛け、目標燃料噴射量FN1とする。この目標燃料噴射量FN1は図示しない出力部に送られ、対応する制御電流が電子燃料噴射装置14に出力され、燃料噴射量を制御する。これにより実回転数NE1が目標回転数NR1より小さいとき(回転数偏差ΔNが正のとき)は目標燃料噴射量FN1を増大させ、実回転数NE1が目標回転数NR1より大きくなると(回転数偏差ΔNが負になると)目標燃料噴射量FN1を減少させるよう、つまり目標回転数NR1と実回転数NE1との偏差ΔNが0になるよう積分演算により目標燃料噴射量FN1を演算し、実回転数NE1が目標回転数NR1に一致するよう燃料噴射量が制御される。その結果、エンジン回転数の制御は負荷が変わっても一定の目標回転数NR1となるようなアイソクロナス制御が行われ、中間負荷では一定回転が静的に維持される。
【0070】
エンジントルク余裕率演算部80gは、目標燃料噴射量FN1をメモリに記憶してあるテーブルに参照させエンジントルク余裕率ENGTRRTを計算する。前述したようにエンジントルク余裕率ENGTRRTとは、エンジン10の現在の出力割合がどの程度であるかを示すエンジン負荷率の指標値である。
【0071】
エンジン負荷率の具体的内容を図8を用いて説明する。図8は、エンジン10が標準の出力トルク特性を有しかつエンジン10が置かれている環境(燃料の品質も含む)が標準状態にあるときの出力トルク特性を示す図である。エンジン10の出力トルク特性は、レギュレーション領域の特性Eと全負荷領域の特性(最大出力特性)Fに分けられる。レギュレーション領域は電子燃料噴射装置14による燃料噴射量が100%以下の部分負荷領域であり、全負荷領域は燃料噴射量が100%(最大)となる最大の出力トルク領域である。本実施の形態では、燃料噴射装置コントローラ80はアイソクロナス制御を行うため、レギュレーション領域では負荷が変化しても一定の回転数、例えばNmaxが維持され、特性Eは横軸(エンジン回転数)に対して垂直な直線となる。また、レギュレーション領域の特性Eは、一例として、目標エンジン回転数入力部71により設定される目標回転数NR1が最大のときのものであり、TR0NMAXは目標回転数NR1を最大に設定したときのポンプベーストルクTR0であり、前述したようにTR0NMAXは油圧ポンプ1,2の最大吸収トルクT1に対応する。TR1はそのときポンプベーストルク補正部70tで演算される補正されたポンプベーストルクである。また、Tmaxはレギュレーション領域における最高出力トルクである。エンジン負荷率は下記の式で表される。
【0072】
エンジン負荷率(%)=(T1/Tmax)×100
エンジントルク余裕率演算部80gはそのエンジン負荷率を目標燃料噴射量FN1からエンジントルク余裕率ENGTRRTとして求めるものである。目標燃料噴射量FN1の最大値は予め決められているので、目標燃料噴射量FN1が最大値であればその時点でのエンジントルク余裕率ENGTRRTは100%であり、エンジン負荷率も100%である。また、例えば目標燃料噴射量FN1が50%であれば負荷率としては部分負荷であり、エンジントルク余裕率ENGTRRTは例えば40%ということになる。この目標燃料噴射量FN1とエンジントルク余裕率ENGTRRTの関係は予め実験により定めておき、メモリのテーブルには、その実験データを用い、目標燃料噴射量FN1が増大するに従ってエンジントルク余裕率ENGTRRTも増大するようにFN1とENGTRRTの関係が設定されている。本発明は、このエンジントルク余裕率ENGTRRTを用いてポンプべーストルクを補正し、エンジントルク余裕率ENGTRRT(エンジン負荷率)を目標値に保つようポンプ最大吸収トルクを制御するものである。
【0073】
目標燃料噴射量FN1とエンジントルク余裕率ENGTRRTの関係は例えば次のような方法で定める。あるエンジンを駆動して目標燃料噴射量毎に出力トルクのデータを収集する。その出力トルクを燃料温度、大気圧等の状態量に応じて適宜補正する。そのときの最大目標燃料噴射量に対応する出力トルク(最大出力トルク)をTmaxとし、個々の目標燃料噴射量に対応する出力トルクをTxとすると、下記の式でエンジントルク余裕率ENGTRRT(%)を計算する。
エンジントルク余裕率ENGTRRT(%)=Tx/Tmax×100
このようにして求めたエンジントルク余裕率ENGTRRTを目標燃料噴射量に対応させ両者の関係を得る。
【0074】
次に、以上のように構成した本実施の形態の動作の特徴を図9及び図10を用いて説明する。
【0075】
図9は、従来のポンプトルク制御装置によるエンジン出力トルクとポンプ吸収トルクのマッチング点を示す図であり、図10は本実施の形態のポンプトルク制御装置によるエンジン出力トルクとポンプ吸収トルクのマッチング点を示す図である。これらのマッチング点は、共に、目標回転数を最大に設定した場合のものである。また、図9では、エンジンの出力トルクが通常時のものから環境の変化或いは粗悪燃料の使用等により低下した場合のマッチング点の変化を1つの図にまとめて示し、図10では、図示左側にエンジン出力トルクが通常時のマッチング点を示し、図示右側に環境の変化或いは粗悪燃料の使用等によりエンジン出力トルクが低下した場合のマッチング点を示すものである。
【0076】
図8および図9において、全負荷領域の特性(以下適宜エンジン出力特性という)F1,F2,F3は製品によるバラツキであり、特性F4は環境の変化或いは粗悪燃料の使用により大幅に出力が低下した場合のものである。また、特性F1は図8に示したエンジン10が標準の出力トルク特性を有しかつエンジン10が置かれている環境(燃料の品質も含む)が標準状態にあるときの出力トルク特性に対応するものである。
【0077】
従来のポンプトルク制御装置はスピードセンシング制御を行う。このスピードセンシング制御は、後述する第2の実施の形態に係わる図11において、エンジントルク余裕率設定部70m、エンジントルク余裕率偏差演算部70n、ゲイン演算部70p、ポンプトルク補正値演算積分要素70q,70r,70s、ポンプベーストルク補正部70tがなく、ベーストルク補正部70jでポンプベーストルクTR0に、回転数偏差演算部70f、トルク変換部70g、リミッタ演算部70hで得たスピードセンシング制御のトルク補正値ΔTNLを加算し、吸収トルクTR1を求めるものである。
【0078】
従来のスピードセンシング制御では、ベーストルク演算部70eにおけるポンプベーストルクTR0NMAXは、エンジン出力のバラツキを考慮し、例えば標準時の出力トルク特性F1のレギュレーション領域における最高出力トルク付近に設定する。この場合、特性がF1のエンジンでは、油圧ポンプ1,2の吸収トルク(エンジン負荷)が増加してポンプベーストルクTR0NMAXに達すると、それ以上のポンプ吸収トルクの増加に対してはスピードセンシング制御により油圧ポンプ1,2の最大吸収トルクがポンプベーストルクTR0NMAXに維持されるよう制御される。つまり、油圧ポンプ1,2の吸収トルク(エンジン負荷)がポンプベーストルクTR0NMAXより増大しようとすると、エンジン回転数がNmax以下に低下し、スピードセンシング制御の回転数偏差ΔNSが負の値となって油圧ポンプの最大吸収トルクを低下させ、エンジン出力トルクとスピードセンシング制御によるポンプ吸収トルク(エンジン負荷)とがレギュレーション領域上のM1点でマッチングする。このためエンジン回転数の低下を生じることなく、油圧ポンプの最大吸収トルクを減少させエンジン停止を防止することができる。
【0079】
環境の変化、粗悪燃料の使用等によりエンジン出力が低下し、全負荷領域の特性がF1からF4と低下した場合は、スピードセンシング制御による最大トルクのマッチング点もM1からM4に移動する。つまり、エンジン出力特性のレギュレーション領域における最高出力トルクがスピードセンシング制御のポンプベーストルクより小さくなると、スピードセンシング制御によりエンジン回転数の低下(回転数偏差ΔNS(負の値)の絶対値の増大)により油圧ポンプ1,2の最大吸収トルクを低下させる。このとき、エンジン回転数の低下(回転数偏差ΔNの増大)に対するポンプ最大吸収トルクの低下の割合は図11に示すトルク変換部70gのゲインKNで定まる。これをポンプ最大吸収トルクのスピードセンシングゲインと呼ぶとき、図8の「C」がこれに相当する。このため、エンジン回転数の低下に応じてスピードセンシングゲインCの特性に沿って油圧ポンプ1,2の最大吸収トルクを低下させ、マッチング点はM1からM4に移動する。これにより環境の変化、粗悪燃料の使用等によるエンジン出力低下時もエンジンの停止を防止することができる。また、このとき、エンジン出力トルクとポンプトルクのマッチング点M4はレギュレーション領域から全負荷領域に移動するため、エンジン回転数は目標回転数から低下する。これによって土砂の掘削作業等、高負荷状態へと負荷状態が変化する作業を行う場合は、その都度エンジン回転数の低下が生じ、これが騒音となり、作業者に不快感や疲労感を与える。
【0080】
製品のバラツキにより出力特性がF2,F3とばらつくエンジンの場合も、同様にマッチング点は全負荷領域のM2,M3点に移動し、エンジン回転数の低下が生じる。
【0081】
また、一般に、エンジンの特性上、エンジンの最大出力馬力は最高回転数で得られるため、レギュレーション領域の特性Eと全負荷領域の特性F1〜F4との交点付近がその箇所となる。このためマッチング点がM2,M3,M4に移動するとエンジン出力馬力を最大に使えなくなる。
【0082】
本実施の形態では、前述したように、エンジントルク余裕率ENGTRRT(エンジン負荷率)を目標値に保つようポンプ最大吸収トルクを制御する。この場合、図10に示すように特性がF1のエンジンでは、油圧ポンプ1,2の吸収トルク(エンジン負荷)が増加してポンプベーストルクTR0NMAXに達すると、エンジントルク余裕率もエンジントルク余裕率設定部70mの設定値(99%)に達するが、ポンプ吸収トルク(エンジン負荷)が更に増加し、エンジントルク余裕率が設定値(99%)を超えると、エンジントルク余裕率偏差演算部70nでは、偏差ΔTRYがマイナスの値として演算され、ポンプベーストルク補正値TER1はマイナスの値となり、ポンプベーストルク補正部70tではポンプベーストルクTR0(=TR0NMAX)をポンプベーストルク補正値TER1の絶対値分だけ減じた値をポンプベーストルクTR1として演算される。つまり、TR1<TR0NMAXとなる。このポンプベーストルクTR1はポンプ最大吸収トルクの目標値であり、油圧ポンプ1,2の吸収トルク(エンジン負荷)はポンプベーストルクTR0NMAXからTR1へと減少する。その結果、エンジントルク余裕率は設定値(99%)に戻り、偏差ΔTRYが0となるため、ポンプベーストルク補正値TER1も0となり、ポンプベーストルクTR1がTR0NMAXに維持される。つまり、エンジン出力トルクとポンプ吸収トルクはレギュレーション領域上のM5点でマッチングする。これによりエンジン回転数の低下を生じることなく、油圧ポンプの最大吸収トルクを減少させエンジン停止を防止することができる。
【0083】
環境の変化、粗悪燃料の使用等によりエンジン出力が低下し、全負荷領域の特性がF1からF4と低下したエンジンでは、油圧ポンプ1,2の吸収トルク(エンジン負荷)が増加するとき、そのポンプ吸収トルクがポンプベーストルクTR0NMAXに達する前にエンジントルク余裕率はエンジントルク余裕率設定部70mの設定値(99%)に達し、エンジントルク余裕率が設定値(99%)を超えると、エンジントルク余裕率偏差演算部70nでは、偏差ΔTRYがマイナスの値として演算され、ポンプベーストルク補正値TER1はマイナスの値となり、ポンプベーストルク補正部70tではポンプベーストルクTR0(=TR0NMAX)をポンプベーストルク補正値TER1の絶対値分だけ減じた値がポンプベーストルクTR1として演算され、油圧ポンプ1,2の吸収トルク(エンジン負荷)はポンプベーストルクTR0NMAXからTR1へと減少する。この場合は、エンジン出力が低下しているため、ポンプ吸収トルクが少し下がってもエンジントルク余裕率は依然として設定値(99%)を超えたままであり、偏差ΔTRYはマイナスの値として演算され続けるため、ポンプベーストルクTR1は下がり続ける。つまり、ポンプベーストルクTR1の減少はエンジントルク余裕率は設定値(99%)に戻るまで続けられる。ポンプベーストルクTR1が下がり続けてポンプ吸収トルク(エンジン負荷)が更に減り、エンジントルク余裕率が設定値(99%)に戻ると、偏差ΔTRYが0となるため、ポンプベーストルク補正値TER1も0となり、ポンプベーストルクTR1はTR0NMAXから下がった値に維持される。図10中、T6はそのポンプベーストルクTR1に対応する油圧ポンプ1,2の最大吸収トルクである。つまり、エンジンの最高出力トルクTmaxとポンプベーストルクTR1(=T5)の比率がエンジントルク余裕率の設定値に保たれるよう制御され、エンジン出力トルクとポンプ吸収トルクはポンプベーストルクTR0NMAXより低いレギュレーション領域上のM6点でマッチングするよう制御される。これにより、環境の変化、粗悪燃料の使用等によりエンジン出力が低下し、全負荷領域の特性がF1からF4と低下した場合も、エンジン回転数の低下を生じることなく、油圧ポンプの最大吸収トルクを減少させエンジン停止を防止することができる。
【0084】
製品のバラツキにより出力特性が図9のF2,F3とばらつくエンジンの場合も、同様にエンジンの最高出力トルクTmaxとポンプベーストルクTR1の比率がエンジントルク余裕率の設定値に保たれるよう制御されるため、マッチング点はポンプベーストルクTR0NMAXより低いレギュレーション領域上の点にあり、エンジン回転数の低下を生じることなく、油圧ポンプの最大吸収トルクを減少させエンジン停止を防止することができる。
【0085】
更に、マッチング点はポンプベーストルクTR0NMAXより低いレギュレーション領域上の点にあるため、エンジントルク余裕率の設定値を100%に近い値に設定することにより、マッチング点はレギュレーション領域の特性Eと全負荷領域の特性F1〜F4との交点付近となる。このためエンジンの最大出力馬力を有効に使うことができる。
【0086】
以上のように本実施の形態によれば、高負荷時に油圧ポンプの最大吸収トルクを減少させてエンジン停止を防止することができるとともに、環境の変化や粗悪燃料の使用などによりエンジン出力が低下したときにはエンジン回転数の低下を生じることなく油圧ポンプの最大吸収トルクを減少させることができる。
【0087】
また、エンジンの負荷率を目標値に保つ制御であるため、レギュレーション領域における最高出力トルクが低下すれば自動的に負荷である油圧ポンプの最大吸収トルクも低下するよう制御され、エンジン出力低下の要因は問わないので、事前に予想ができないファクターやセンサによる検出が難しいファクターによるエンジン出力の低下に対しても対応することができ、しかも、環境センサ等のセンサは不要であり安価に製作することができる。
【0088】
更に、エンジンの最大出力馬力を有効に使うことができる。
【0089】
本発明の第2の実施の形態を図11および図12を用いて説明する。図中、図5及び図6に示した部分と同様の部分には同じ符号を付している。本実施の形態は、本発明のポンプトルク制御にスピードセンシング制御を組み合わせたものである。
【0090】
図11は、車体コントローラ70A及び燃料噴射装置コントローラ80の全体の信号の入出力関係を示す図である。
【0091】
車体コントローラ70Aは目標回転数NR1の信号、ポンプ制御パイロット圧PL1,PL2の信号、エンジントルク余裕率ENGTRRTの信号加え、回転数センサー72の実回転数NE1の信号を入力し、所定の演算処理を行って駆動電流SI1,SI2,SI3をソレノイド制御弁30〜32に出力する。燃料噴射装置コントローラ80の入出力信号は図5に示した第1の実施の形態のものと同じである。
【0092】
図12は、車体コントローラ70Aの油圧ポンプ1,2の制御に関する処理機能を示す図である。
【0093】
図12において、車体コントローラ70Aは、ポンプ目標傾転演算部70a,70b、ソレノイド出力電流演算部70c,70d、ベーストルク演算部70e、エンジントルク余裕率設定部70m、エンジントルク余裕率偏差演算部70n、ゲイン演算部70p、ポンプトルク補正値演算積分要素70q,70r,70s、ポンプベーストルク補正部70t、ソレノイド出力電流演算部70kに加え、回転数偏差演算部70f、トルク変換部70g、リミッタ演算部70h、第2ポンプベーストルク補正部70jの各機能を有している。
【0094】
回転数偏差演算部70fは、目標回転数NR1と実回転数NE1の差である回転数偏差ΔNS(=NE1−NR1)を算出する。
【0095】
トルク変換部70gは、回転数偏差ΔNSにスピードセンシングのゲインKNを掛け、スピードセンシングトルク偏差ΔTOを算出する。
【0096】
リミッタ演算部70hは、スピードセンシングトルク偏差ΔTOに上限・下限リミッタを掛け、スピードセンシング制御のトルク補正値ΔTNLとする。
【0097】
第2ポンプベーストルク補正部70jは、ポンプベーストルク補正部70tで補正して求めたポンプベーストルクTR01にスピードセンシング制御のトルク補正値ΔTNLを加算し、補正したポンプベーストルクTR1(=TR01+ΔTNL)を算出する。この補正したポンプベーストルクがポンプ最大吸収トルクの目標値となる。
【0098】
以上のように構成した本実施の形態では、第1の実施の形態と同様の効果が得られると共に、常に回転数偏差によるポンプ最大吸収トルクを制御するスピードセンシングを合わせて行っているため、急負荷がかかったときや予期せぬことによるエンジンの出力低下に対しても応答性良くエンジン停止を防止することができる。
【0099】
なお、以上の実施の形態では、電子燃料噴射装置14によるレギュレーション領域の制御として、負荷が変わってもエンジン回転数を一定に維持するアイソクロナス制御を行うものとしたが、エンジン出力が増加するに従ってエンジン回転数が減少するいわゆるドループ特性となる制御を行うものに本発明を適用しても良く、この場合も、アイソクロナス制御を行う上記実施の形態と同様の効果が得られる。
【0100】
【発明の効果】
本発明によれば、高負荷時に油圧ポンプの最大吸収トルクを減少させてエンジン停止を防止することができるとともに、環境の変化や粗悪燃料の使用などによりエンジン出力が低下したときにはエンジン回転数の低下を生じることなく油圧ポンプの最大吸収トルクを減少させることができ、しかも事前に予想ができないファクターやセンサによる検出が難しいファクターなどエンジン出力低下のあらゆる要因に対応することができ、かつ環境センサ等のセンサは不要であり安価に製作することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる油圧建設機械のポンプトルク制御装置を備えたエンジン・ポンプ制御装置を示す図である。
【図2】弁装置及びアクチュエータの油圧回路図である。
【図3】流量制御弁の操作パイロット系を示す図である。
【図4】ポンプレギュレータの第2サーボ弁によるポンプ吸収トルクの制御特性を示す図である。
【図5】エンジン・ポンプ制御装置の演算制御部を構成するコントローラ(車体コントローラ及びエンジン燃料噴射装置コントローラ)とその入出力関係を示す図である。
【図6】車体コントローラの処理機能を示す機能ブロック図である。
【図7】燃料噴射装置コントローラの処理機能を示す機能ブロック図である。
【図8】エンジンが標準の出力トルク特性を有しかつエンジンが置かれている環境(燃料の品質も含む)が標準状態にあるときの出力トルク特性を示す図である。
【図9】従来のスピードセンシング制御によるエンジン出力トルクとポンプ吸収トルクのマッチング点を示す図である。
【図10】本発明の第1の実施の形態によるポンプトルク制御のエンジン出力トルクとポンプ吸収トルクのマッチング点を示す図である。
【図11】本発明の第2の実施の形態に係わるエンジン・ポンプ制御装置の演算制御部を構成するコントローラ(車体コントローラ及びエンジン燃料噴射装置コントローラ)とその入出力関係を示す図である。
【図12】車体コントローラの処理機能を示す機能ブロック図である。
【符号の説明】
1,2 油圧ポンプ
1a,2a 斜板
5 弁装置
7,8 レギュレータ
10 原動機
14 電子燃料噴射装置
20A,20B 傾転アクチュエータ
21A,21B 第1サーボ弁
22A,22B 第2サーボ弁
30〜32 ソレノイド制御弁
38〜44 操作パイロット装置
50〜56 アクチュエータ
70 車体コントローラ
70a,70b ポンプ目標傾転演算部
70c,70d ソレノイド出力電流演算部
70e ポンプベーストルク演算部
70m エンジントルク余裕率設定部
70n エンジントルク余裕率偏差演算部
70p ゲイン演算部
70q,70r,70s ポンプトルク補正値演算積分要素
70t ポンプベーストルク補正部
70k ソレノイド出力電流演算部
70A 車体コントローラ
70f 回転数偏差演算部
70g トルク変換部
70h リミッタ演算部
70j 第2ポンプベーストルク補正部
71 目標エンジン回転数入力部
72 回転数センサー
80 燃料噴射装置コントローラ
80a 回転数偏差演算部
80b 燃料噴射量変換部
80c,80d,80e 積分演算要素
80f リミッタ演算部
80g エンジントルク余裕率演算部

Claims (9)

  1. エンジンと、
    このエンジンの回転数と出力とを制御する燃料噴射装置と、
    この燃料噴射装置を制御する燃料噴射装置コントローラと、
    前記エンジンによって駆動されアクチュエータを駆動する少なくとも1つの可変容量型の油圧ポンプとを備えた油圧建設機械のポンプトルク制御方法において、
    前記エンジンの現在の負荷率を演算し、前記負荷率が目標値に保たれるよう前記油圧ポンプの最大吸収トルクを制御することを特徴とする油圧建設機械のポンプトルク制御方法。
  2. 請求項1記載の油圧建設機械のポンプトルク制御方法において、
    前記負荷率の演算は、前記燃料噴射装置コントローラで演算される目標燃料噴射量とエンジントルク余裕率との関係を予め設定しておき、前記負荷率をそのときの目標燃料噴射量に対応するエンジントルク余裕率として求めることにより行うことを特徴とする油圧建設機械のポンプトルク制御方法。
  3. 請求項1記載の油圧建設機械のポンプトルク制御方法において、
    前記最大吸収トルクの制御は、前記負荷率と目標値の偏差を演算し、この偏差を用いてポンプベーストルクを補正し、この補正したポンプベーストルクに一致するよう前記油圧ポンプの最大吸収トルクを制御することにより行うことを特徴とする油圧建設機械のポンプトルク制御方法。
  4. 請求項1〜3のいずれか1項記載の油圧建設機械のポンプトルク制御方法において、
    前記負荷率が目標値に保たれるよう前記油圧ポンプの最大吸収トルクを制御するのと同時に、前記エンジンの目標回転数と実回転数との偏差を演算し、この偏差が小さくなるよう前記油圧ポンプの最大吸収トルクを制御することを特徴とする油圧建設機械のポンプトルク制御方法。
  5. エンジンと、
    このエンジンの回転数と出力とを制御する燃料噴射装置と、
    この燃料噴射装置を制御する燃料噴射装置コントローラと、
    前記エンジンによって駆動されアクチュエータを駆動する少なくとも1つの可変容量型の油圧ポンプとを備えた油圧建設機械のポンプトルク制御装置において、
    前記エンジンの現在の負荷率を演算する第1手段と、
    前記負荷率が目標値に保たれるよう前記油圧ポンプの最大吸収トルクを制御する第2手段とを有することを特徴とする油圧建設機械のポンプトルク制御装置。
  6. 請求項5記載の油圧建設機械のポンプトルク制御装置において、
    前記第1手段は、前記燃料噴射装置コントローラで演算される目標燃料噴射量とエンジントルク余裕率との関係を予め設定しておき、前記負荷率をそのときの目標燃料噴射量に対応するエンジントルク余裕率として求めることを特徴とする油圧建設機械のポンプトルク制御装置。
  7. 請求項5記載の油圧建設機械のポンプトルク制御装置において、
    前記第2手段は、前記負荷率と目標値の偏差を演算し、この偏差を用いてポンプベーストルクを補正し、この補正したポンプベーストルクに一致するよう前記油圧ポンプの最大吸収トルクを制御することを特徴とする油圧建設機械のポンプトルク制御装置。
  8. 請求項7記載の油圧建設機械のポンプトルク制御装置において、
    前記第2手段は、前記偏差を積分してポンプベーストルク補正値を求め、前記ポンプベーストルクに前記ポンプベーストルクを加算することで前記ポンプベーストルクを補正することを特徴とする油圧建設機械のポンプトルク制御装置。
  9. 請求項5〜8のいずれか1項記載の油圧建設機械のポンプトルク制御装置において、
    前記エンジンの目標回転数と実回転数との偏差を演算し、この偏差が小さくなるよう前記油圧ポンプの最大吸収トルクを制御する第3手段を更に有することを特徴とする油圧建設機械のポンプトルク制御装置。
JP2002359822A 2002-12-11 2002-12-11 油圧建設機械のポンプトルク制御方法及び装置 Expired - Fee Related JP4322499B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002359822A JP4322499B2 (ja) 2002-12-11 2002-12-11 油圧建設機械のポンプトルク制御方法及び装置
DE60314178T DE60314178T2 (de) 2002-12-11 2003-11-18 Verfahren und vorrichtung zum steuern von pumpendrehmoment für hydraulische baumaschine
AT03812682T ATE363598T1 (de) 2002-12-11 2003-11-18 Verfahren und vorrichtung zum steuern von pumpendrehmoment für hydraulische baumaschine
US10/507,888 US8162618B2 (en) 2002-12-11 2003-11-18 Method and device for controlling pump torque for hydraulic construction machine
EP03812682A EP1571339B1 (en) 2002-12-11 2003-11-18 Method and device for controlling pump torque for hydraulic construction machine
PCT/JP2003/014638 WO2004053332A1 (ja) 2002-12-11 2003-11-18 油圧建設機械のポンプトルク制御方法及び装置
KR1020047019011A KR100674696B1 (ko) 2002-12-11 2003-11-18 유압건설기계의 펌프 토오크제어방법 및 장치
CNB2003801004118A CN100520022C (zh) 2002-12-11 2003-11-18 液压施工机械的泵转矩控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359822A JP4322499B2 (ja) 2002-12-11 2002-12-11 油圧建設機械のポンプトルク制御方法及び装置

Publications (3)

Publication Number Publication Date
JP2004190582A true JP2004190582A (ja) 2004-07-08
JP2004190582A5 JP2004190582A5 (ja) 2005-09-15
JP4322499B2 JP4322499B2 (ja) 2009-09-02

Family

ID=32500958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359822A Expired - Fee Related JP4322499B2 (ja) 2002-12-11 2002-12-11 油圧建設機械のポンプトルク制御方法及び装置

Country Status (8)

Country Link
US (1) US8162618B2 (ja)
EP (1) EP1571339B1 (ja)
JP (1) JP4322499B2 (ja)
KR (1) KR100674696B1 (ja)
CN (1) CN100520022C (ja)
AT (1) ATE363598T1 (ja)
DE (1) DE60314178T2 (ja)
WO (1) WO2004053332A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040975A1 (ja) * 2004-10-13 2006-04-20 Hitachi Construction Machinery Co., Ltd. 油圧建設機械の制御装置
WO2006064623A1 (ja) * 2004-12-13 2006-06-22 Hitachi Construction Machinery Co., Ltd. 走行作業車両の制御装置
JP2007040185A (ja) * 2005-08-03 2007-02-15 Shin Caterpillar Mitsubishi Ltd 作業機械の出力制御装置及び出力制御方法
JP2008169593A (ja) * 2007-01-11 2008-07-24 Komatsu Ltd 作業車両のエンジン負荷制御装置
WO2008099519A1 (ja) * 2007-02-14 2008-08-21 Shin Caterpillar Mitsubishi Ltd. 機体診断方法および機体診断システム
KR20110073082A (ko) * 2009-12-23 2011-06-29 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법
WO2012173160A1 (ja) * 2011-06-14 2012-12-20 住友建機株式会社 ハイブリッド型作業機械及びその制御方法
KR20150117870A (ko) * 2014-04-11 2015-10-21 두산인프라코어 주식회사 건설기계의 유압펌프 출력 제어방법
CN105102731A (zh) * 2013-03-29 2015-11-25 斗山英维高株式会社 工程机械液压泵控制装置及方法
WO2016027480A1 (ja) * 2014-08-19 2016-02-25 日立建機株式会社 建設機械用エンジン制御装置
WO2016117156A1 (ja) * 2015-01-21 2016-07-28 三菱重工業株式会社 液圧装置、内燃機関および船舶
JP2017036736A (ja) * 2011-04-06 2017-02-16 タンタル イノベーションズ リミテッド エンジン負荷報告方策を決定するための装置および方法
JP2017172224A (ja) * 2016-03-24 2017-09-28 株式会社日立建機ティエラ 小型油圧ショベル

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287425B2 (ja) * 2005-11-25 2009-07-01 日立建機株式会社 油圧作業機械のポンプトルク制御装置
US9126598B2 (en) * 2006-06-05 2015-09-08 Deere & Company Power management for infinitely variable transmission (IVT) equipped machines
JP4794468B2 (ja) * 2007-01-22 2011-10-19 日立建機株式会社 建設機械のポンプ制御装置
KR101438227B1 (ko) * 2007-12-26 2014-09-15 두산인프라코어 주식회사 건설기계의 유압펌프 최대 마력 제어를 이용한 엔진 회전수저하 방지 장치
EP2261488B1 (en) * 2008-03-21 2020-10-14 Komatsu, Ltd. Engine-driven machine
SE533307C2 (sv) * 2008-05-29 2010-08-17 Scania Cv Abp Styrning av hydraulisk enhet
DE102008059181A1 (de) * 2008-11-27 2010-06-02 Still Gmbh Mobile Arbeitsmaschine, insbesondere Flurförderzeug, und Verfahren zum Betreiben der mobilen Arbeitsmaschine
JP5383537B2 (ja) * 2010-02-03 2014-01-08 日立建機株式会社 油圧システムのポンプ制御装置
JP5878873B2 (ja) * 2010-10-13 2016-03-08 日立建機株式会社 建設機械の制御装置
GB2513056B (en) * 2012-01-23 2018-10-17 Coneqtec Corp Torque allocating system for a variable displacement hydraulic system
WO2013112432A1 (en) * 2012-01-23 2013-08-01 Coneqtec Corp. Torque allocating system for a variable displacement hydraulic system
EP2977621B1 (en) * 2013-03-19 2023-03-01 Hyundai Doosan Infracore Co., Ltd. Construction equipment hydraulic system and control method therefor
KR102054520B1 (ko) * 2013-03-21 2020-01-22 두산인프라코어 주식회사 건설기계 유압시스템의 제어방법
KR102014547B1 (ko) * 2013-03-21 2019-08-26 두산인프라코어 주식회사 건설기계용 유압펌프 제어 장치
US10215197B2 (en) 2013-04-12 2019-02-26 Doosan Infracore Co., Ltd. Method, device, and system for controlling hydraulic pump of construction machine
JP6177913B2 (ja) * 2013-07-24 2017-08-09 住友建機株式会社 ショベル及びショベルの制御方法
CN103362666B (zh) * 2013-07-29 2015-12-02 中联重科股份有限公司 功率匹配控制设备、方法、***以及工程机械
JP6042294B2 (ja) 2013-09-03 2016-12-14 ヤンマー株式会社 建設機械
GB2518413A (en) * 2013-09-20 2015-03-25 Jc Bamford Excavators Ltd Anti-lug and anti-stall control unit
JP6290602B2 (ja) * 2013-11-15 2018-03-07 オークマ株式会社 油圧制御装置
EP2889433B1 (en) * 2013-12-20 2019-05-01 Doosan Infracore Co., Ltd. System and method of controlling vehicle of construction equipment
US9416779B2 (en) * 2014-03-24 2016-08-16 Caterpillar Inc. Variable pressure limiting for variable displacement pumps
US9534616B2 (en) 2015-01-16 2017-01-03 Caterpillar Inc. System for estimating a sensor output
US9404516B1 (en) 2015-01-16 2016-08-02 Caterpillar Inc. System for estimating a sensor output
US9869311B2 (en) 2015-05-19 2018-01-16 Caterpillar Inc. System for estimating a displacement of a pump
KR102426362B1 (ko) * 2015-07-03 2022-07-28 현대두산인프라코어(주) 건설기계의 성능 보상을 위한 제어 장치
CN106870183B (zh) * 2015-12-11 2020-07-03 博世汽车柴油***有限公司 基于动力因数的车辆智能转矩控制器
EP3239414B1 (en) * 2016-04-28 2022-04-20 JCB India Limited A method and a system for controlling an engine stall of a working machine
DE102017117595A1 (de) * 2017-08-03 2019-02-07 Voith Patent Gmbh Verfahren zur regelung des ausgangsdrucks eines hydraulikantriebsystems, verwendung des verfahrens und hydraulikantriebsystem
DE102017216429A1 (de) * 2017-09-15 2019-03-21 Zf Friedrichshafen Ag Verfahren zum Betreiben einer Arbeitsmaschine mit einer Antriebsmaschine und mit einer von der Antriebsmaschine antreibbaren Arbeitshydraulik
JP6731387B2 (ja) * 2017-09-29 2020-07-29 株式会社日立建機ティエラ 建設機械の油圧駆動装置
CN111511608B (zh) 2017-12-18 2023-08-04 康明斯有限公司 发动机和变速器的动力总成综合控制
JP6975102B2 (ja) * 2018-06-26 2021-12-01 日立建機株式会社 建設機械
JP7114429B2 (ja) * 2018-09-26 2022-08-08 日立建機株式会社 建設機械
CN110439695B (zh) * 2019-08-15 2020-08-28 济宁医学院 工程车辆发动机超速保护控制***及其控制方法
CN110778401B (zh) * 2019-09-26 2022-01-21 潍柴动力股份有限公司 一种发动机转速自适应调节方法
CN114909280B (zh) * 2022-04-07 2024-05-17 潍柴动力股份有限公司 基于多源信息反馈优化的液压泵控制方法及***
DE102022122738A1 (de) * 2022-09-07 2024-03-07 Wacker Neuson Linz Gmbh Verfahren zum Betreiben einer mobilen Arbeitsmaschine
CN115478581B (zh) * 2022-10-27 2024-04-16 潍柴动力股份有限公司 一种液压***的控制方法、控制装置和工程车辆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982001396A1 (en) * 1980-10-09 1982-04-29 Izumi Eiki Method and apparatus for controlling a hydraulic power system
JPS5765822A (en) 1980-10-09 1982-04-21 Hitachi Constr Mach Co Ltd Control of driving system containing internal combustion engine and hydraulic pump
JPH02115582A (ja) * 1988-10-25 1990-04-27 Hitachi Constr Mach Co Ltd 可変容量油圧ポンプの入力トルク制御装置
JPH0371182A (ja) 1989-08-10 1991-03-26 Brother Ind Ltd 画像表示素子
JPH0371182U (ja) * 1989-11-14 1991-07-18
JPH03253787A (ja) * 1990-03-05 1991-11-12 Sumitomo Constr Mach Co Ltd 油圧ポンプの出力電子制御装置
DE4024547A1 (de) 1990-08-02 1992-02-06 Miba Frictec Gmbh Reibbelag und verfahren zu dessen herstellung
US5951258A (en) * 1997-07-09 1999-09-14 Caterpillar Inc. Torque limiting control system for a hydraulic work machine
JP3383754B2 (ja) 1997-09-29 2003-03-04 日立建機株式会社 油圧建設機械の油圧ポンプのトルク制御装置
JP3445167B2 (ja) 1998-09-03 2003-09-08 日立建機株式会社 油圧建設機械の油圧ポンプのトルク制御装置
JP3607089B2 (ja) 1998-09-03 2005-01-05 日立建機株式会社 油圧建設機械の油圧ポンプのトルク制御装置
US6254511B1 (en) * 1999-10-29 2001-07-03 Caterpillar Inc. Method and apparatus for adaptively controlling clutches based on engine load
JP4098955B2 (ja) * 2000-12-18 2008-06-11 日立建機株式会社 建設機械の制御装置
US6536402B2 (en) * 2001-05-04 2003-03-25 Caterpillar Inc. Programmable torque limit
JP4253787B2 (ja) 2002-03-29 2009-04-15 曽田香料株式会社 抗がん剤

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7543448B2 (en) 2004-10-13 2009-06-09 Hitachi Construction Machinery Co., Ltd. Control system for hydraulic construction machine
WO2006040975A1 (ja) * 2004-10-13 2006-04-20 Hitachi Construction Machinery Co., Ltd. 油圧建設機械の制御装置
WO2006064623A1 (ja) * 2004-12-13 2006-06-22 Hitachi Construction Machinery Co., Ltd. 走行作業車両の制御装置
US7543447B2 (en) 2004-12-13 2009-06-09 Hitachi Construction Machinery Co., Ltd. Control system for traveling working vehicle
JP2007040185A (ja) * 2005-08-03 2007-02-15 Shin Caterpillar Mitsubishi Ltd 作業機械の出力制御装置及び出力制御方法
JP2008169593A (ja) * 2007-01-11 2008-07-24 Komatsu Ltd 作業車両のエンジン負荷制御装置
WO2008099519A1 (ja) * 2007-02-14 2008-08-21 Shin Caterpillar Mitsubishi Ltd. 機体診断方法および機体診断システム
US9206798B2 (en) 2009-12-23 2015-12-08 Doosan Infracore Co., Ltd. Hydraulic pump control apparatus and method of construction machine
KR20110073082A (ko) * 2009-12-23 2011-06-29 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법
WO2011078543A3 (ko) * 2009-12-23 2011-11-24 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법
KR101637571B1 (ko) 2009-12-23 2016-07-20 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법
JP2017036736A (ja) * 2011-04-06 2017-02-16 タンタル イノベーションズ リミテッド エンジン負荷報告方策を決定するための装置および方法
JPWO2012173160A1 (ja) * 2011-06-14 2015-02-23 住友建機株式会社 ハイブリッド型作業機械及びその制御方法
US9103094B2 (en) 2011-06-14 2015-08-11 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Hybrid work machine and method of controlling same
WO2012173160A1 (ja) * 2011-06-14 2012-12-20 住友建機株式会社 ハイブリッド型作業機械及びその制御方法
CN105102731A (zh) * 2013-03-29 2015-11-25 斗山英维高株式会社 工程机械液压泵控制装置及方法
KR20150117870A (ko) * 2014-04-11 2015-10-21 두산인프라코어 주식회사 건설기계의 유압펌프 출력 제어방법
KR102090342B1 (ko) 2014-04-11 2020-03-17 두산인프라코어 주식회사 건설기계의 유압펌프 출력 제어방법
WO2016027480A1 (ja) * 2014-08-19 2016-02-25 日立建機株式会社 建設機械用エンジン制御装置
JP2016041924A (ja) * 2014-08-19 2016-03-31 日立建機株式会社 建設機械用エンジン制御装置
WO2016117156A1 (ja) * 2015-01-21 2016-07-28 三菱重工業株式会社 液圧装置、内燃機関および船舶
JP2017172224A (ja) * 2016-03-24 2017-09-28 株式会社日立建機ティエラ 小型油圧ショベル

Also Published As

Publication number Publication date
CN100520022C (zh) 2009-07-29
CN1692227A (zh) 2005-11-02
EP1571339A1 (en) 2005-09-07
US20050160727A1 (en) 2005-07-28
EP1571339A4 (en) 2006-04-05
WO2004053332A1 (ja) 2004-06-24
EP1571339B1 (en) 2007-05-30
ATE363598T1 (de) 2007-06-15
KR20050004221A (ko) 2005-01-12
KR100674696B1 (ko) 2007-01-25
JP4322499B2 (ja) 2009-09-02
DE60314178T2 (de) 2008-01-24
DE60314178D1 (de) 2007-07-12
US8162618B2 (en) 2012-04-24

Similar Documents

Publication Publication Date Title
JP4322499B2 (ja) 油圧建設機械のポンプトルク制御方法及び装置
JP3383754B2 (ja) 油圧建設機械の油圧ポンプのトルク制御装置
JP4413122B2 (ja) 油圧建設機械の制御装置
JP4188902B2 (ja) 油圧建設機械の制御装置
US5911506A (en) Control system for prime mover and hydraulic pump of hydraulic construction machine
KR100682619B1 (ko) 건설기계의 제어장치
JP3419661B2 (ja) 油圧建設機械の原動機のオートアクセル装置及び原動機と油圧ポンプの制御装置
US7255088B2 (en) Engine control system for construction machine
JP4084148B2 (ja) 油圧建設機械のポンプトルク制御装置
JP3607089B2 (ja) 油圧建設機械の油圧ポンプのトルク制御装置
JP4376047B2 (ja) 油圧建設機械の制御装置
JP3445167B2 (ja) 油圧建設機械の油圧ポンプのトルク制御装置
JP2608997B2 (ja) 油圧建設機械の駆動制御装置
JP3441834B2 (ja) 建設機械の駆動制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

R150 Certificate of patent or registration of utility model

Ref document number: 4322499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees