JP2004187385A - Distributed power supply system - Google Patents

Distributed power supply system Download PDF

Info

Publication number
JP2004187385A
JP2004187385A JP2002350075A JP2002350075A JP2004187385A JP 2004187385 A JP2004187385 A JP 2004187385A JP 2002350075 A JP2002350075 A JP 2002350075A JP 2002350075 A JP2002350075 A JP 2002350075A JP 2004187385 A JP2004187385 A JP 2004187385A
Authority
JP
Japan
Prior art keywords
power
fuel cell
vehicle
power supply
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350075A
Other languages
Japanese (ja)
Inventor
Ryosuke Hata
良輔 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002350075A priority Critical patent/JP2004187385A/en
Publication of JP2004187385A publication Critical patent/JP2004187385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed power supply system and its operating method capable of making effective use of a fuel battery vehicle at the time of stopping the vehicle. <P>SOLUTION: This distributed power supply system includes the fuel battery vehicle which conducts power generation by a fuel battery during stopping, and an external power network (a commercial power system 8) in which the generated power of the fuel battery 11 is inputted and which outputs the power to a load. By taking out, to the outside, the power generated by operating the installed fuel battery 11 while the fuel battery vehicle stops, the generated power can be used for operating an external load. The fuel battery 11 can be effectively used even during the stopping. By using high power generation efficiency, the fuel battery vehicle can be used as an inexpensive power supply source. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池車(Fuel Cell Electric Vehicle:FCEV)を用いた分散電源システムとその運転方法に関するものである。特に、FCEVに搭載された燃料電池(Fuel Cell:FC)の発生電気をより効率的に利用できる分散電源システムに関するものである。
【0002】
【従来の技術】
今日、水素と酸素とを結合して電力を得るFCの研究が広く行われている。FCは、その発電効率が60〜80%と他のあらゆる発電装置に比して高く、電池反応時にはHOしか排出しないという優れた特性を有する。そのため、環境上やエネルギー資源上、FCを搭載したFCEVが重要な技術として開発されている(例えば、特許文献1)。
【0003】
【特許文献1】
特開2001−307758号公報
【0004】
【発明が解決しようとする課題】
しかし、FCEVは優れた効率性や環境特性を有するにも関わらずコストが高く、いまだ大量に普及するに至っていない。初期コストの高いFCEVを費用的に優位にして広範な普及を図るには、発電効率の高さを活用して低い単位発電量当りの単価(α円/kWh)を長期間にわたって積算し、ランニングコストで優位性を取り戻すことが考えられる。
【0005】
ところが、一般に自動車は一部の業務用を除き、その稼働率はきわめて低く、自家用自動車にいたっては通勤の往復と週末の一部にしか活用されないのが通例である。まして、夜間は殆ど使われることがない。従って、FCEVの停車時にはFCも発電する必要がないため活用されず、単位発電量当りの単価が低いことを利用しても、初期の自動車購入コスト差を容易に回収することが難しい。
【0006】
従って、本発明の主目的は、停車時の燃料電池車を有効に活用できる分散電源システムとその運転方法とを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、燃料電池車の停車時に燃料電池を運転して発電させ、その電力を車外の負荷に利用することで上記の目的を達成する。
【0008】
つまり、本発明分散電源システムは、停車時に燃料電池で発電を行う燃料電池車と、この燃料電池の発電電力が入力されると共に、この電力を負荷に出力する車外電力網とを具えることを特徴とする。
【0009】
また、本発明分散電源システムの運転方法は、燃料電池車の停車時に燃料電池を作動し、燃料電池の発電電力を車外電力網に出力して、車外電力網に接続される負荷を動作することを特徴とする。
【0010】
FCEVの停車時に、搭載されたFCを運転して発電し、その発電電力を車外に取り出すことで、車外の負荷の運転に利用することができる。これにより、従来、停車時には発電する必要がなく活用されていなかったFCを有効に活用し、その高い発電効率を利用して、FCEVを安価な電力の供給源とすることができる。
【0011】
以下、本発明をより詳しく説明する。
FCEVに利用されるFCの種類としては、固体高分子型(PEFC)、固体電解質型(SOFC)、りん酸型(PAFC)などがある。PEFCの作動温度は常温から100℃である。固体電解質型の作動温度は約1000℃である。りん酸型の作動温度は約200℃である。中でも、作動温度が低く、小型化が可能なPEFCはFCEVに好適である。
【0012】
燃料電池に使用される水素ガスの供給方法としては、水素ガスを直接供給する方法と、天然ガス、メタン、エタン、プロパン、ブタン、都市ガスまたはそれらの混合ガス等のガス燃料あるいはガソリン、灯油、重油、メタノール、ナフサまたはそれらの混合液体などの液体燃料を改質して水素を得る方法がある。
【0013】
前者の水素燃料タイプでは、排出物が水のみで環境負荷が低く、しかも重量の重い改質装置を搭載しなくてよいという利点がある。FCEV内での水素の貯蔵手段としては、水素吸蔵合金、水素高圧ボンベあるいは液体水素タンクなどが挙げられる。
【0014】
後者の改質燃料タイプでは、燃料電池に供給する水素を炭化水素燃料から生成する改質装置を設ける。改質装置により、液体炭化水素などから水素を生成して燃料電池を運転することができる。その場合、改質装置に炭化水素燃料を供給する炭化水素供給手段を具えることが好ましい。これにより、ガソリンスタンドなど、既存の炭化水素供給手段から燃料の供給を容易に受けることができる。
【0015】
このようなFCをFCEVの停車時に運転し、得られた電力を車外電力網に供給する。車外電力網は車外において電力の供給が可能な送配電設備である。代表的には商用電力系統が挙げられる。一般にFCは直流を出力するため、インバータを介して交流に変換し、車外電力網に供給すれば良い。この交流電力を供給する際の運転方式には、商用電力系統に同期して電力を供給する系統連係運転、特定負荷へのみ電力を供給する自立運転(定電圧・定周波数運転)あるいは両方の運転が行える方式がある。また、FCの発電した直流をDC・DCコンバータ、DC・ACインバータなどを介して直接負荷に供給する場合FCと負荷とをつなぐ電線なども車外電力網に含まれる。FCの発電電力の車外への出力は、FCに設けた端子から行っても良いし、FCの発電電力を一旦車載バッテリなどに出力し、この車載バッテリの端子から行っても良い。
【0016】
このような車外電力網を通じてFCの発電電力を供給し、同電力網に接続される各種電機器などの負荷を動作させることができる。もちろん、FCの発電電力を商用電力系統に供給することで、電力会社に売電することができる。
【0017】
この分散電源システムは、燃料電池の発電電力を貯蔵すると共に車外電力網に貯蔵電力を供給する車外蓄電手段を具えることが好ましい。車外蓄電手段を用いることで、FCEVからの電力を蓄電することができ、その蓄電された電力を必要時に有効活用することができる。特に、複数台のFCEVからの電力を一括して蓄電することもできる。
【0018】
車外蓄電手段は、必要な電力容量を蓄電でき、放電が可能なものであれば特に限定されない。例えば、二次電池やキャパシタなどが挙げられる。この車外蓄電手段の容量は、1台のFCEVの発電電力により各家庭の消費電力の一部あるいは全部をまかなう程度から、集合住宅や市街地の駐車場などに停車した多数のFCEVから出力された電力を利用してより広範な電力需要に対応する程度など、種々のものが考えられる。通常、FCEV用のFCの出力は乗用車用で50〜100kW、大型バス用で250kW程度であり、一般家庭で使用する電力を5kW(100V×50A)程度と想定すると、乗用車用FCが1台あれば10軒以上の家庭への電力供給が十分可能である。また、車外蓄電手段の容量を十分大きくとっておいて、夜間、消費負荷電力の少ない時間にFCを運転して蓄電しておき、昼間、消費負荷電力が大きくなったときに、この車外蓄電手段から電力の供給を受け、FCEVを車両として活用すれば、益々FCの稼働率が上がって好ましい。この車外蓄電手段は可動式のものが好ましい。可動式とすることで、キャンプ場など、通常は電力供給設備がない場所での電力利用が容易になる。可動方式は、車外蓄電手段自身が走行するものでも、他の自動車に牽引されるものでもいずれでもよい。特に、この可動式蓄電手段には、交直変換装置、電圧昇降装置、電力供給制御装置(遮断機、積算電力計、フィルター、ヒューズなど)が搭載されていることが好ましい。
【0019】
さらに、本発明分散電源システムは、燃料電池または改質装置の運転時に発生された熱エネルギーを回収し、その熱エネルギーを熱源として温熱流体を出力する排熱回収手段を具えることが好ましい。
【0020】
前述したように、FCは作動温度が高いので、その排熱を利用することで温水や蒸気などの温熱流体を出力し、浴場、温水プール、空調などに応用することができる。改質装置は、一般にメタノールなどの燃料と水蒸気を高温で反応させて水素を分離するため、その際の排熱もFCの反応熱と同様に温水や空調として利用することができる。従って、FCから電気エネルギーと熱エネルギーの双方を取り出すことができ、いわゆるコジェネレーションによる効率的なエネルギーの活用が可能となる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(実施例1)
図1は水素燃料タイプのFCEVを用いた本発明分散電源システムの概略構成図である。この分散電源システムは、FCEVと、FCEVに接続される車外電力網とを有する。
【0022】
FCEVは、燃料電池ユニット1、水素タンク2、車載バッテリー3、コントロールユニット4、モーター5および車輪6を具える。
【0023】
図1において、破線で囲まれる部分が燃料電池ユニット1である。このユニット1は、燃料電池11(FC)および空気圧縮機12を有する。ここでは、FC11として固体高分子型燃料電池(PEFC)を用いた。このFC11には、水素タンク2から供給された水素と、空気圧縮機12を介して供給された空気とが導入され、水素と酸素とを結合して発電する。水素タンク2の水素量が減少すると、適宜、車外に設置された水素ステーション7で補給を受ける。
【0024】
また、図示していないが、PEFCでは電解質である高分子膜を湿った状態に保持する必要があるため、FCユニット1には空気や水素を加湿する加湿器も具えられている。その他、FC11が発電時に発生する反応熱を冷却するため、ポンプで冷却水の循環が行われる。この冷却水はFC11の反応熱で温められて温水(蒸気)になり、配管を介して出力される。車外に取り出された温水は、必要に応じて浴室・空調などに利用できる。
【0025】
FC11で発電された電力はコントロールユニット4に送られ、FCEVの走行時、必要に応じてモーター5の回転(車輪6の駆動)、エアコンやラジオなど車載電気機器(図示せず)の駆動、車載バッテリー3の充電に利用される。コントロールユニット4はモーター5や車載バッテリー3への電力の入出力を制御する。また、制動時などは、車輪6の回転に伴ってモーター5を発電機として回転し、その回生電力を車載バッテリー3に蓄電する。
【0026】
一方、夜間などFCEVの長時間停車時には、クラッチをニュートラルにして最高効率条件でFC11による発電を行う。そして、この発電電力を車外電力網である商用電力系統8に出力する。ここでは、FC11の端子から直接商用電力系統8に電力を出力している。通常、FC11は直流を出力するため、インバータ(図示せず)を介して交流に変換して商用電力系統8に出力すれば良い。商用電力系統8には各種電気機器9などの負荷が接続され、FC11の発電電力をこれら電気機器9の作動に利用することができる。また、昼間、商店・オフィス等にFCEVを停車させておくときは、そこでの発電電力と温水の両方を優先的に活用して電力料金のコストダウンを図ることができる。
【0027】
(実施例2)
次に、改質燃料タイプのFCを用いた本発明分散電源システムを図2に基づいて説明する。図2は同システムの概略説明図である。
【0028】
実施例1との主な相違点は、燃料を液体炭化水素として改質装置を用いている点と、FCと車外電力網との間に車外蓄電手段を設けた点にある。以下、相違点を中心に説明する。
【0029】
このFCEVの燃料電池ユニットでは、改質装置10を具えている。改質装置10は、燃料と水蒸気を高温で反応させて水素を分離する。改質装置10に供給される燃料は、燃料タンク21に貯えられており、適宜、ガソリン、メタノール、天然ガス、液化石油ガスなどの燃料スタンド71(炭化水素供給手段)から補給を行う。ここでは燃料にメタノールを用い、これを改質して水素を得ている。この改質を行う改質装置10は、300℃程度の温度でメタノールと水蒸気を反応させるため、その排熱を利用して温水を得ることができる。FC11自体の排熱から温水を得られる点は実施例1と同様である。
【0030】
本例のシステムでもFCEVの停車時にFC11を運転して発電を行う。発電された電力は、車外蓄電手段20に蓄電される。車外蓄電手段20は1台または複数台のFCEVのFC11から出力される電力を蓄電する。車外蓄電手段20には、例えば二次電池を用いる。この車外蓄電手段20は、それ自体はエンジンなどの駆動手段を持たないが、他の自動車に牽引されることで移動することができる。FC11と車外蓄電手段20の間には、必要に応じてDC/DCコンバータやDC/ACインバータ、電圧昇降装置、電力供給制御装置を介在させれば良い。また、DC/DCコンバータ等の機器類を車外蓄電手段20に搭載することは、機動性が増してより好ましい。
【0031】
車外蓄電手段20に蓄電された電力は、直接電気機器9などの負荷に、あるいは車外電力網である商用電力系統8に供給される。車外蓄電手段20から商用電力系統8に電力を供給する場合、インバータ(図示せず)を介して直流から交流に変換して出力すれば良い。そして、商用電力系統8に接続される各種電気機器9に電力を供給する。
【0032】
本例の場合、改質装置10を用いることで、既存のインフラで供給が可能な液体炭化水素を燃料に用いることができ、燃料切れを生じることなく継続的にFCの燃料供給を行うことができる。また、車外蓄電手段20を用いることで、FCEVの停車時に発電された電力、特に複数台のFCEVから発電された電力を一括して蓄電することができる。そのため、夜間に停車中のFCEVから出力された電力を車外蓄電手段20に蓄電し、電力消費の多い昼間に車外蓄電手段20からの電力を有効利用することができる。さらに、車外蓄電手段20を牽引などで移動自在とすることで、キャンプ場、公園、グラウンドなど電力供給設備が整っていない箇所に車外蓄電手段20を搬送することで、電気機器の利用を行うことができる。とりわけ、FCEVを車外蓄電手段20の搬送に利用すれば、FC11を運転して必要な電力と温水を得て活用することができる。
【0033】
【発明の効果】
以上説明したように、本発明分散電源システムおよび同システムの運転方法によれば、次の効果を奏することができる。
【0034】
▲1▼燃料電池を用いるため、クリーンなエネルギー変換を行い、環境負荷の極めて小さい発電を行うことができる。特に、燃料電池はディーゼル発電機などに比べて運転時の騒音も小さく、夜間の運転も十分許容できる。
【0035】
▲2▼FCEVの燃料電池を用いた安価な自家発電電力と、燃料電池の運転時に得られる温熱流体を活用することで、きわめて経済性の高いエネルギーの利用ができる。そのため、FCEVの初期コストが高くても、購入後の燃料電池の長期連続運転により、容易に価格差を回収することができる。
【0036】
▲3▼一般に燃料電池はストップ/オンの繰り返しに必ずしも強くない。しかし、本発明によれば、FCEVの停車中も燃料電池を運転することにより、いわゆる「活用ライフタイム」を長くすることができる。従って、この面からもFCEVの実質的なコストダウンを図ることができる。
【図面の簡単な説明】
【図1】水素燃料タイプのFCEVを用いた本発明分散電源システムの概略構成図である。
【図2】改質燃料タイプのFCEVを用いた本発明分散電源システムの概略説明図である。
【符号の説明】
1 燃料電池ユニット
2 水素タンク
3 車載バッテリー
4 コントロールユニット
5 モーター
6 車輪
7 水素ステーション
8 商用電力系統
9 電気機器
10 改質装置
11 燃料電池(FC)
12 空気圧縮機
20 車外蓄電手段
21 燃料タンク
71 燃料スタンド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a distributed power system using a fuel cell electric vehicle (FCEV) and an operation method thereof. In particular, the present invention relates to a distributed power supply system that can more efficiently use electricity generated by a fuel cell (FC) mounted on an FCEV.
[0002]
[Prior art]
Today, research on FCs for obtaining electric power by combining hydrogen and oxygen is widely performed. FC is higher than any power generating device that the power generation efficiency of 60% to 80% and the other, at the time of battery reaction has excellent characteristics that H 2 O only discharged. Therefore, FCEV equipped with FC has been developed as an important technology in terms of environment and energy resources (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-307758 A
[Problems to be solved by the invention]
However, despite having excellent efficiency and environmental characteristics, FCEV has a high cost and has not yet come into widespread use. In order to promote FCEV with high initial cost in terms of cost and to promote widespread use, the unit price per unit power generation (α yen / kWh) is accumulated over a long period of time by utilizing the high power generation efficiency and running. It is conceivable to regain the advantage at cost.
[0005]
However, the operating rate of automobiles is extremely low except for some business use, and private automobiles are usually used only for commuting round trips and part of weekends. Moreover, it is rarely used at night. Therefore, when the FCEV is stopped, the FC does not need to generate power either, so that it is not used. Even if the unit price per unit power generation is low, it is difficult to easily recover the initial car purchase cost difference.
[0006]
Therefore, a main object of the present invention is to provide a distributed power supply system capable of effectively utilizing a fuel cell vehicle at a stop and a method of operating the same.
[0007]
[Means for Solving the Problems]
The present invention achieves the above object by driving a fuel cell to generate electricity when the fuel cell vehicle is stopped, and using the electric power for a load outside the vehicle.
[0008]
That is, the distributed power supply system of the present invention is characterized by comprising a fuel cell vehicle that generates electric power by the fuel cell when the vehicle is stopped, and an external power network that receives the power generated by the fuel cell and outputs the electric power to the load. And
[0009]
Further, the method of operating the distributed power supply system according to the present invention is characterized in that when the fuel cell vehicle is stopped, the fuel cell is operated, the power generated by the fuel cell is output to the external power network, and the load connected to the external power network is operated. And
[0010]
When the FCEV is stopped, the on-board FC is driven to generate power, and the generated power is taken out of the vehicle, so that it can be used for driving a load outside the vehicle. As a result, it is possible to effectively utilize the FC which has not been used because it is not necessary to generate power when the vehicle is stopped, and to use the high power generation efficiency to make the FCEV an inexpensive power source.
[0011]
Hereinafter, the present invention will be described in more detail.
The types of FC used for FCEV include solid polymer type (PEFC), solid electrolyte type (SOFC), and phosphoric acid type (PAFC). The operating temperature of PEFC is from room temperature to 100 ° C. The operating temperature of the solid electrolyte type is about 1000 ° C. The operating temperature of the phosphoric acid type is about 200 ° C. Above all, PEFC, which has a low operating temperature and can be miniaturized, is suitable for FCEV.
[0012]
As a method of supplying hydrogen gas used in a fuel cell, a method of directly supplying hydrogen gas and a gas fuel such as natural gas, methane, ethane, propane, butane, city gas or a mixed gas thereof or gasoline, kerosene, There is a method of obtaining hydrogen by reforming a liquid fuel such as heavy oil, methanol, naphtha or a mixed liquid thereof.
[0013]
The former hydrogen fuel type has the advantage that the emission is only water, the environmental load is low, and a heavy reformer is not required. Means for storing hydrogen in the FCEV include a hydrogen storage alloy, a hydrogen high-pressure cylinder, a liquid hydrogen tank, and the like.
[0014]
In the latter type of reformed fuel, a reformer for generating hydrogen supplied to the fuel cell from hydrocarbon fuel is provided. The reformer can operate the fuel cell by generating hydrogen from liquid hydrocarbons or the like. In that case, it is preferable to provide a hydrocarbon supply means for supplying hydrocarbon fuel to the reformer. This makes it possible to easily receive fuel supply from existing hydrocarbon supply means such as a gas station.
[0015]
Such FC is operated when the FCEV is stopped, and the obtained electric power is supplied to the external power network. The out-of-vehicle power network is power transmission and distribution equipment capable of supplying power outside the vehicle. A typical example is a commercial power system. Generally, an FC outputs a direct current, so that it may be converted to an alternating current via an inverter and supplied to an external power network. The operation method for supplying the AC power includes a system-linked operation for supplying power in synchronization with a commercial power system, an independent operation for supplying power only to a specific load (constant voltage / constant frequency operation), or both operations. There is a method that can be performed. In the case where the direct current generated by the FC is directly supplied to the load via a DC / DC converter, a DC / AC inverter, or the like, an electric wire connecting the FC and the load is also included in the external power network. The output of the FC generated power to the outside of the vehicle may be performed from a terminal provided in the FC, or the FC generated power may be temporarily output to a vehicle-mounted battery or the like, and may be performed from the terminal of the vehicle-mounted battery.
[0016]
The power generated by the FC is supplied through such an external power network, and loads such as various electric devices connected to the power network can be operated. Of course, by supplying FC generated power to the commercial power system, power can be sold to a power company.
[0017]
It is preferable that the distributed power supply system includes an out-of-vehicle power storage unit that stores the power generated by the fuel cell and supplies the stored power to the out-of-vehicle power network. By using the external power storage means, the power from the FCEV can be stored, and the stored power can be effectively used when necessary. In particular, power from a plurality of FCEVs can be collectively stored.
[0018]
The external power storage means is not particularly limited as long as it can store necessary power capacity and can discharge. For example, there are a secondary battery and a capacitor. The capacity of the power storage means outside the vehicle is such that the power generated by one FCEV covers part or all of the power consumption of each household, and the power output from a large number of FCEVs stopped at an apartment house or a parking lot in an urban area. Various things can be considered, such as the extent to which the system is used to respond to a wider power demand. Normally, the FC output for FCEV is about 50 to 100 kW for passenger cars and about 250 kW for large buses. Assuming that the power used in ordinary households is about 5 kW (100 V × 50 A), there is one FC for passenger cars. For example, power supply to ten or more homes is sufficiently possible. In addition, the capacity of the power storage means outside the vehicle is set to be sufficiently large, and the FC is operated and stored at night, during a time when the load power consumption is low, and when the load power consumption becomes large in the daytime, the power storage means outside the vehicle is used. It is preferable to use the FCEV as a vehicle by receiving power supply from FC, as the operation rate of FC increases more and more. This external power storage means is preferably a movable type. By using a movable type, it is easy to use power in a place where there is usually no power supply equipment, such as a campsite. The movable system may be either a system in which the power storage means outside the vehicle itself travels or a system towed by another vehicle. In particular, it is preferable that the movable power storage unit is provided with an AC / DC converter, a voltage raising / lowering device, and a power supply control device (such as a circuit breaker, an integrating wattmeter, a filter, and a fuse).
[0019]
Further, the distributed power supply system of the present invention preferably includes exhaust heat recovery means for recovering thermal energy generated during the operation of the fuel cell or the reformer, and outputting a thermal fluid using the thermal energy as a heat source.
[0020]
As described above, since the operating temperature of the FC is high, the exhaust heat is used to output a hot fluid such as hot water or steam, which can be applied to a bath, a hot water pool, an air conditioner, and the like. In general, a reformer reacts a fuel such as methanol with steam at a high temperature to separate hydrogen, so that the exhaust heat at that time can be used as hot water or air conditioning as well as the reaction heat of FC. Therefore, both electric energy and heat energy can be extracted from the FC, and efficient energy utilization by so-called cogeneration becomes possible.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Example 1)
FIG. 1 is a schematic configuration diagram of a distributed power supply system of the present invention using a hydrogen fuel type FCEV. This distributed power supply system has an FCEV and an external power network connected to the FCEV.
[0022]
The FCEV includes a fuel cell unit 1, a hydrogen tank 2, a vehicle-mounted battery 3, a control unit 4, a motor 5, and wheels 6.
[0023]
In FIG. 1, a portion surrounded by a broken line is the fuel cell unit 1. This unit 1 has a fuel cell 11 (FC) and an air compressor 12. Here, a polymer electrolyte fuel cell (PEFC) was used as FC11. The hydrogen supplied from the hydrogen tank 2 and the air supplied via the air compressor 12 are introduced into the FC 11, and the hydrogen and oxygen are combined to generate power. When the amount of hydrogen in the hydrogen tank 2 decreases, the hydrogen is appropriately supplied at a hydrogen station 7 installed outside the vehicle.
[0024]
Although not shown, since the PEFC needs to keep the polymer film which is an electrolyte in a wet state, the FC unit 1 is also provided with a humidifier for humidifying air or hydrogen. In addition, a cooling water is circulated by a pump in order to cool reaction heat generated by the FC 11 during power generation. The cooling water is heated by the reaction heat of the FC 11 to become hot water (steam), which is output via a pipe. The hot water taken out of the vehicle can be used for bathrooms and air conditioning as needed.
[0025]
The electric power generated by the FC 11 is sent to the control unit 4, and when the FCEV runs, the motor 5 rotates (drives the wheels 6) as necessary, drives on-vehicle electric devices (not shown) such as an air conditioner and a radio, and drives the vehicle. Used for charging the battery 3. The control unit 4 controls input and output of electric power to and from the motor 5 and the vehicle-mounted battery 3. Further, during braking or the like, the motor 5 rotates as a generator with the rotation of the wheels 6, and the regenerative electric power is stored in the vehicle-mounted battery 3.
[0026]
On the other hand, when the FCEV is stopped for a long time, such as at night, the clutch is neutralized and power is generated by the FC11 under the highest efficiency condition. Then, the generated power is output to the commercial power system 8, which is an external power network. Here, power is output directly from the terminal of the FC 11 to the commercial power system 8. Normally, since the FC 11 outputs a direct current, it may be converted into an alternating current via an inverter (not shown) and output to the commercial power system 8. Loads such as various electric devices 9 are connected to the commercial power system 8, and the power generated by the FC 11 can be used for operating these electric devices 9. In addition, when the FCEV is stopped in a store or office during the daytime, the power generation cost and the hot water can be preferentially used to reduce the power rate.
[0027]
(Example 2)
Next, the distributed power supply system of the present invention using a reformed fuel type FC will be described with reference to FIG. FIG. 2 is a schematic explanatory diagram of the system.
[0028]
The main differences from the first embodiment are that a reformer is used as fuel using liquid hydrocarbons and that an external power storage means is provided between the FC and the external power network. Hereinafter, the differences will be mainly described.
[0029]
The FCEV fuel cell unit includes a reformer 10. The reformer 10 separates hydrogen by reacting the fuel with steam at a high temperature. The fuel supplied to the reformer 10 is stored in a fuel tank 21 and is supplied from a fuel station 71 (hydrocarbon supply means) for gasoline, methanol, natural gas, liquefied petroleum gas, or the like as appropriate. Here, methanol is used as a fuel, and hydrogen is obtained by reforming the methanol. Since the reformer 10 that performs this reforming reacts methanol and steam at a temperature of about 300 ° C., hot water can be obtained by using the exhaust heat. The point that hot water can be obtained from the exhaust heat of the FC 11 itself is the same as in the first embodiment.
[0030]
Even in the system of this example, when the FCEV is stopped, the FC11 is operated to generate power. The generated power is stored in the power storage means 20 outside the vehicle. The external power storage means 20 stores power output from one or more FCEVs FC11. For example, a secondary battery is used as the external power storage unit 20. This external power storage means 20 does not itself have a driving means such as an engine, but can be moved by being pulled by another vehicle. A DC / DC converter, a DC / AC inverter, a voltage raising / lowering device, and a power supply control device may be interposed between the FC 11 and the external power storage means 20 as necessary. In addition, it is more preferable to mount devices such as a DC / DC converter on the power storage means 20 outside the vehicle because the mobility is increased.
[0031]
The electric power stored in the external power storage means 20 is supplied directly to a load such as an electric device 9 or to a commercial power system 8 which is an external power network. When power is supplied from the external power storage means 20 to the commercial power system 8, the power may be converted from DC to AC via an inverter (not shown) and output. Then, power is supplied to various electric devices 9 connected to the commercial power system 8.
[0032]
In the case of this example, by using the reformer 10, the liquid hydrocarbon that can be supplied by the existing infrastructure can be used as the fuel, and the FC fuel supply can be continuously performed without running out of fuel. it can. Further, by using the external power storage means 20, it is possible to collectively store power generated when the FCEV is stopped, particularly power generated from a plurality of FCEVs. Therefore, the electric power output from the stopped FCEV at night can be stored in the external power storage means 20, and the electric power from the external power storage means 20 can be effectively used in the daytime when power consumption is high. In addition, by making the external power storage means 20 movable by towing or the like, the electric equipment can be used by transporting the external power storage means 20 to a campsite, a park, a ground or the like where power supply facilities are not provided. Can be. In particular, if FCEV is used for transporting the power storage means 20 outside the vehicle, it is possible to operate the FC 11 to obtain and utilize necessary electric power and hot water.
[0033]
【The invention's effect】
As described above, according to the distributed power supply system of the present invention and the method of operating the same, the following effects can be obtained.
[0034]
{Circle around (1)} Since a fuel cell is used, clean energy conversion can be performed, and power generation with an extremely low environmental load can be performed. In particular, a fuel cell generates less noise during operation than a diesel generator or the like, and can sufficiently operate at night.
[0035]
{Circle around (2)} By utilizing inexpensive in-house generated power using a FCEV fuel cell and warm fluid obtained during operation of the fuel cell, extremely economical energy can be used. Therefore, even if the initial cost of FCEV is high, the price difference can be easily recovered by long-term continuous operation of the fuel cell after purchase.
[0036]
{Circle around (3)} In general, a fuel cell is not always strong in repeated stop / on. However, according to the present invention, the so-called "utilization lifetime" can be extended by operating the fuel cell even while the FCEV is stopped. Therefore, from this aspect, the cost of the FCEV can be substantially reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a distributed power supply system of the present invention using a hydrogen fuel type FCEV.
FIG. 2 is a schematic explanatory view of a distributed power supply system of the present invention using a reformed fuel type FCEV.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell unit 2 Hydrogen tank 3 In-vehicle battery 4 Control unit 5 Motor 6 Wheel 7 Hydrogen station 8 Commercial power system 9 Electric equipment 10 Reformer 11 Fuel cell (FC)
12 air compressor 20 external power storage means 21 fuel tank 71 fuel station

Claims (8)

停車時に燃料電池で発電を行う燃料電池車と、
この燃料電池の発電電力が入力されると共に、この電力を負荷に出力する車外電力網とを具えることを特徴とする分散電源システム。
A fuel cell vehicle that generates power with a fuel cell when the vehicle is stopped,
A distributed power supply system, comprising: an external power network that receives power generated by the fuel cell and outputs the power to a load.
さらに、前記燃料電池の発電電力を貯蔵すると共に車外電力網に貯蔵電力を供給する車外蓄電手段を具えることを特徴とする請求項1に記載の分散電源システム。The distributed power supply system according to claim 1, further comprising an external power storage means for storing the power generated by the fuel cell and supplying the stored power to an external power network. 前記車外蓄電手段は、電池が搭載される移動可能な車両であることを特徴とする請求項2に記載の分散電源システム。The distributed power supply system according to claim 2, wherein the external power storage means is a movable vehicle on which a battery is mounted. さらに交直変換装置および電圧の昇降圧装置を車両に積載したことを特徴とする請求項3に記載の分散電源システム。4. The distributed power system according to claim 3, further comprising an AC / DC converter and a voltage step-up / step-down device mounted on the vehicle. さらに、前記燃料電池に供給する水素を炭化水素燃料から生成する改質装置を具えることを特徴とする請求項1に記載の分散電源システム。The distributed power supply system according to claim 1, further comprising a reformer configured to generate hydrogen supplied to the fuel cell from a hydrocarbon fuel. さらに、前記改質装置に炭化水素燃料を供給する炭化水素供給手段を具えることを特徴とする請求項5に記載の分散電源システム。The distributed power supply system according to claim 5, further comprising a hydrocarbon supply unit that supplies a hydrocarbon fuel to the reformer. さらに、前記燃料電池または改質装置の運転時に発生された熱エネルギーを回収し、その熱エネルギーを熱源として温熱流体を出力する排熱回収手段を具えることを特徴とする請求項5に記載の分散電源システム。The apparatus according to claim 5, further comprising an exhaust heat recovery unit that recovers thermal energy generated during operation of the fuel cell or the reformer, and outputs a thermal fluid using the thermal energy as a heat source. Distributed power system. 燃料電池車の停車時に燃料電池を作動し、燃料電池の発電電力を車外電力網に出力して、車外電力網に接続される負荷を動作することを特徴とする分散電源システムの運転方法。A method for operating a distributed power supply system, comprising: operating a fuel cell when a fuel cell vehicle stops, outputting power generated by the fuel cell to an external power network, and operating a load connected to the external power network.
JP2002350075A 2002-12-02 2002-12-02 Distributed power supply system Pending JP2004187385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350075A JP2004187385A (en) 2002-12-02 2002-12-02 Distributed power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350075A JP2004187385A (en) 2002-12-02 2002-12-02 Distributed power supply system

Publications (1)

Publication Number Publication Date
JP2004187385A true JP2004187385A (en) 2004-07-02

Family

ID=32752419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350075A Pending JP2004187385A (en) 2002-12-02 2002-12-02 Distributed power supply system

Country Status (1)

Country Link
JP (1) JP2004187385A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353383A (en) * 2004-06-09 2005-12-22 S X L Corp Fuel cell system for building
JP2006238652A (en) * 2005-02-25 2006-09-07 Toshiba Corp Railroad energy refilling system
JP2009232670A (en) * 2008-02-29 2009-10-08 Osaka Gas Co Ltd Energy supplying system
JP2009240150A (en) * 2007-12-28 2009-10-15 Osaka Gas Co Ltd Vehicle and energy-supplying system
JP2010021000A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Dry-up recovery device of fuel cell, and fuel cell system
WO2013132315A2 (en) 2012-03-05 2013-09-12 Toyota Jidosha Kabushiki Kaisha Power supply system
JP2020050041A (en) * 2018-09-25 2020-04-02 三菱自動車工業株式会社 Electric vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380730A (en) * 1986-09-25 1988-04-11 富士電機株式会社 Load feeding system with fuel cell
JPH03284104A (en) * 1990-02-22 1991-12-13 Fuji Electric Co Ltd Movable power supply vehicle
JPH0739085A (en) * 1993-07-19 1995-02-07 Meidensha Corp Uninterruptible changeover mobile power supply apparatus
JPH11178241A (en) * 1997-12-15 1999-07-02 Mitsubishi Electric Corp Power supply device for power failure
JP2000077088A (en) * 1998-09-01 2000-03-14 Chubu Electric Power Co Inc Vehicle using fuel cell
JP2001190033A (en) * 2000-01-04 2001-07-10 Ntt Power & Building Facilities Inc Portable backup power supply apparatus
JP2002008673A (en) * 2000-06-21 2002-01-11 Nippon Telegr & Teleph Corp <Ntt> Power generating system using fuel cell electric vehicle, and its controlling method
JP2002083607A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Polyeletrolyte type fuel cell cogeneration system
JP2002135906A (en) * 2000-10-19 2002-05-10 Sanyo Electric Co Ltd Hybrid vehicle
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380730A (en) * 1986-09-25 1988-04-11 富士電機株式会社 Load feeding system with fuel cell
JPH03284104A (en) * 1990-02-22 1991-12-13 Fuji Electric Co Ltd Movable power supply vehicle
JPH0739085A (en) * 1993-07-19 1995-02-07 Meidensha Corp Uninterruptible changeover mobile power supply apparatus
JPH11178241A (en) * 1997-12-15 1999-07-02 Mitsubishi Electric Corp Power supply device for power failure
JP2000077088A (en) * 1998-09-01 2000-03-14 Chubu Electric Power Co Inc Vehicle using fuel cell
JP2001190033A (en) * 2000-01-04 2001-07-10 Ntt Power & Building Facilities Inc Portable backup power supply apparatus
JP2002008673A (en) * 2000-06-21 2002-01-11 Nippon Telegr & Teleph Corp <Ntt> Power generating system using fuel cell electric vehicle, and its controlling method
JP2002083607A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Polyeletrolyte type fuel cell cogeneration system
JP2002135906A (en) * 2000-10-19 2002-05-10 Sanyo Electric Co Ltd Hybrid vehicle
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353383A (en) * 2004-06-09 2005-12-22 S X L Corp Fuel cell system for building
JP2006238652A (en) * 2005-02-25 2006-09-07 Toshiba Corp Railroad energy refilling system
JP2009240150A (en) * 2007-12-28 2009-10-15 Osaka Gas Co Ltd Vehicle and energy-supplying system
JP2009232670A (en) * 2008-02-29 2009-10-08 Osaka Gas Co Ltd Energy supplying system
JP2010021000A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Dry-up recovery device of fuel cell, and fuel cell system
WO2013132315A2 (en) 2012-03-05 2013-09-12 Toyota Jidosha Kabushiki Kaisha Power supply system
US10029579B2 (en) 2012-03-05 2018-07-24 Toyota Jidosha Kabushiki Kaisha Power supply system
JP2020050041A (en) * 2018-09-25 2020-04-02 三菱自動車工業株式会社 Electric vehicle
JP7121340B2 (en) 2018-09-25 2022-08-18 三菱自動車工業株式会社 electric vehicle

Similar Documents

Publication Publication Date Title
US8042631B2 (en) Electric vehicle having multiple-use APU system
US6380637B1 (en) Off-board station and an electricity exchanging system suitable for use with a mobile vehicle power system
JP4520959B2 (en) Power supply system
Lipman et al. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems
US6655325B1 (en) Power generation system and method with exhaust side solid oxide fuel cell
US6649289B2 (en) Fuel cell power supply system
US20060228593A1 (en) PEM-SOFC hybrid power generation systems
CN102762409A (en) Recharging electric vehicles
JP2015015116A (en) Fuel cell system
Ul-Haq et al. Smart charging infrastructure for electric vehicles
AU2022211781B2 (en) Combined hydrogen fuel cell for vehicle fueling, electric vehicle fast charging and fuel cell back-up power forecourt
JP2004187385A (en) Distributed power supply system
US8011463B1 (en) Flexible and efficient energy source
JP2002008673A (en) Power generating system using fuel cell electric vehicle, and its controlling method
JPH09103002A (en) Electric vehicle
JP2002203584A (en) Fuel cell system
JP2009076334A (en) Operation method of fuel cell
JP2004253337A (en) Power supply device of fuel cell vehicle
JP2002135980A (en) Distributed independent power generator system using photovoltaic power generator and fuel cell
CN212889876U (en) Sojourn vehicle
TR2022001153A2 (en) MOBILE, FAST AND CLEAN ENERGY USING ELECTRIC VEHICLE CHARGING SYSTEM
JP2004229480A (en) Hybrid electric vehicle
KR20210129283A (en) Hydrogen production and charging system connected railway and operating method thereof
JP2002205537A (en) Cooler for automobile
KR200238901Y1 (en) A direct hybrid automobile car of the polymer electrolyte fuel cells with natural gas regenerator and the natural gas engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070801