JP2004187360A - Gate drive circuit of voltage driven switching element, and semiconductor module - Google Patents

Gate drive circuit of voltage driven switching element, and semiconductor module Download PDF

Info

Publication number
JP2004187360A
JP2004187360A JP2002348967A JP2002348967A JP2004187360A JP 2004187360 A JP2004187360 A JP 2004187360A JP 2002348967 A JP2002348967 A JP 2002348967A JP 2002348967 A JP2002348967 A JP 2002348967A JP 2004187360 A JP2004187360 A JP 2004187360A
Authority
JP
Japan
Prior art keywords
voltage
wiring
gate
emitter
driven switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348967A
Other languages
Japanese (ja)
Inventor
Kazuya Kotani
和也 小谷
Hironobu Kin
宏信 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002348967A priority Critical patent/JP2004187360A/en
Publication of JP2004187360A publication Critical patent/JP2004187360A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize more uniform switching operation by suppressing differences between gate-emitter voltages of a plurality of voltage driven switching elements. <P>SOLUTION: In the gate drive circuit, a coupling factor between a gate wiring 8 and an emitter auxiliary wiring 9 is set to be a predetermined value or higher. The differences between gate-emitter voltages of the plurality of voltage driven switching elements 5a and 5b caused by an induced voltage generated at a floating inductance of an emitter-side main circuit wiring 7 is suppressed upon switching. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばIGBT等の電圧駆動型スイッチング素子のゲ−ト駆動回路および半導体モジュ−ルに関するものである。
【0002】
【従来の技術】
インバ−タ等の電力変換装置に使用されるスイッチング素子として、IGBT等の電圧駆動型スイッチング素子がある。この電圧駆動型スイッチング素子において、素子単体の定格電流を超える大電流をスイッチングする場合、複数の電圧駆動型スイッチング素子を並列接続してこれを実現することが行われている。
【0003】
図2は、電圧駆動型スイッチング素子を2並列接続した2レベルインバ−タの従来例を示している。直流電源20の主回路(+)端子13と主回路(−)端子14の間に、主回路直流(+)配線16及び主回路直流(−)配線17を介して上側ア−ムとなる2並列接続した電圧駆動型スイッチング素子22a、22bと下側ア−ムとなる2並列接続した電圧駆動型スイッチング素子22c、22dとが接続されている。各電圧駆動型スイッチング素子22a〜22dには、それぞれ還流ダイオ−ド23a〜23dが並列接続されている。
【0004】
上側ア−ムの電圧駆動型スイッチング素子22a、22bはエミッタ補助配線24aを通じてゲ−ト駆動回路19aで同時に駆動され、下側ア−ムの電圧駆動型スイッチング素子22c、22dはエミッタ補助配線24bを通じてゲ−ト駆動回路19bで同時に駆動されるようになっており、このような構成により、各電圧駆動型スイッチング素子22a〜22d単体の定格電流の2倍の大電流をスイッチングする2レベルインバ−タが実現されている。
【0005】
図3は、上記の2レベルインバ−タにおいて、主回路直流(+)配線16、主回路直流(−)配線17及びエミッタ補助配線24a、24b等の浮遊インダクタンスを集中定数として表した等価回路を示している。下側ア−ムのタ−ンオンの場合、ゲ−ト駆動回路19bのオンゲ−ト電圧指令により、2並列接続した電圧駆動型スイッチング素子22c、22dは同時にタ−ンオンし、還流ダイオ−ド23aと23bに流れる負荷電流が転流する。この主回路の電流変化によって、浮遊インダクタンス21a、21b、21c、21dに誘起電圧が発生し、特に浮遊インダクタンス21cに発生した誘起電圧VL(c)は、電圧駆動型スイッチング素子22dのオンゲ−ト電圧指令に加算され、電圧駆動型スイッチング素子22dのゲ−ト・エミッタ間電圧Vge(d)は、電圧駆動型スイッチング素子22cのVge(c)より大きくなる。
【0006】
下側ア−ムのタ−ンオフの場合も同様に、主回路の電流変化によって、特に浮遊インダクタンス21cに発生した誘起電圧VL(c)は、電圧駆動型スイッチング素子22dのオフゲ−ト電圧指令に加算され、電圧駆動型スイッチング素子22dのゲ−ト・エミッタ間電圧Vge(d)は、電圧駆動型スイッチング素子22cのVge(c)よりも大きくなる。このように、スイッチングにおける主回路の電流変化時に、電圧駆動型スイッチング素子22cと22dのゲ−ト・エミッタ間電圧は等しくならないため、均一なスイッチング動作が行えなくなる。
【0007】
これに対し、従来の電圧駆動型スイッチング素子のゲ−ト駆動回路としては、複数の電圧駆動型スイッチング素子における各コレクタ端子及び各エミッタ端子同士を接続導体で並列に接続し、単一のゲ−ト回路を、1つの電圧駆動型スイッチング素子のゲ−ト端子には直接接続し、他の電圧駆動型スイッチング素子のゲ−ト端子にはエミッタ間接続導体に生じるリアクトル成分による電圧降下に等しい電圧を発生する電圧源を介して接続し、過渡時に、並列接続したエミッタ間接続導体によって引起こされるゲ−ト電圧のばらつきを補正して複数の電圧駆動型スイッチング素子に流れる電流を均等化するようにしている。上記の電圧源は、エミッタ間接続導体に他の電圧駆動型スイッチング素子のゲ−ト線を巻き付けたリアクトルで構成している(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平7−177727号公報(第2頁、図1、図2)
【0009】
【発明が解決しようとする課題】
図2、図3に示す従来技術は、電圧駆動型スイッチング素子のスイッチング時に、主回路配線の電流変化率と主回路配線の僅かな浮遊インダクタンスで発生する誘起電圧によって、複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に電圧差が生じ、均一なスイッチング動作ができなくなるという問題がある。
【0010】
また、特許文献1に記載の従来技術は、エミッタ間接続導体に生じるリアクトル成分による電圧降下に等しい電圧を発生する電圧源を、そのエミッタ間接続導体に他の電圧駆動型スイッチング素子のゲ−ト線を巻き付けたリアクトルで構成している。しかし、ゲ−ト線を巻き付けたリアクトルに発生する電圧は、エミッタ間接続導体との相互誘導によって生じるものであり、過渡時に、エミッタ間接続導体に生じるリアクトル成分による電圧降下と等しい電圧を、そのエミッタ間接続導体に単にゲ−ト線を巻き付けたリアクトルに生じさせるのは難しい。このため、この従来技術の構成で、過渡時に、複数の電圧駆動型スイッチング素子の電流を十分に均等化させるのは難しい。
【0011】
本発明は、上記に鑑みてなされたもので、複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に生じる電圧差を抑制し、より均一なスイッチング動作を実現することができる電圧駆動型スイッチング素子のゲ−ト駆動回路および半導体モジュ−ルを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に係る電圧駆動型スイッチング素子のゲ−ト駆動回路は、各コレクタをそれぞれコレクタ側主回路配線を介して一方の主回路端子に接続し、各エミッタをそれぞれエミッタ側主回路配線を介して他方の主回路端子に接続し、それぞれゲ−ト配線及びエミッタ補助配線を通じて各ゲ−トにゲ−ト電圧を供給するようにしてなる並列接続された複数の電圧駆動型スイッチング素子の各ゲ−トを駆動する電圧駆動型スイッチング素子のゲ−ト駆動回路であって、前記ゲ−ト配線とエミッタ補助配線間の結合係数を一定値以上に設定し、前記複数の電圧駆動型スイッチング素子のスイッチング時に、前記エミッタ側主回路配線の浮遊インダクタンスに生じる誘起電圧により前記複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に発生する電圧差を抑制するようにしたことを要旨とする。
【0013】
ゲ−ト配線とエミッタ補助配線間の結合係数を一定値以上に設定することで、スイッチング時に、エミッタ側主回路配線の浮遊インダクタンスに生じる誘起電圧により複数の電圧駆動型スイッチング素子の各エミッタ間に発生する電圧差が補償される。これにより、複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に生じる電圧差が抑制される。
【0014】
本発明の請求項2に係る電圧駆動型スイッチング素子のゲ−ト駆動回路は、前記ゲ−ト配線とエミッタ補助配線を、共に磁性体コアを貫通させて、前記結合係数を一定値以上としたことを要旨とする。
【0015】
ゲ−ト配線とエミッタ補助配線間の磁気的な結合性が増大して、結合係数を一定値以上に設定することが可能となる。
【0016】
本発明の請求項3に係る電圧駆動型スイッチング素子のゲ−ト駆動回路は、前記ゲ−ト配線とエミッタ補助配線を、共にギャップ付き磁性体コアを貫通させて、前記結合係数を一定値以上としたことを要旨とする。
【0017】
ゲ−ト配線とエミッタ補助配線間の磁気的な結合性が増大するとともに、結合係数を一定値以上に設定・調整することが可能となる。
【0018】
本発明の請求項4に係る電圧駆動型スイッチング素子のゲ−ト駆動回路は、前記ゲ−ト配線とエミッタ補助配線を、平行平板構造にして、前記結合係数を一定値以上としたことを要旨とする。
【0019】
前記請求項2に係る発明と略同様の作用がある。
【0020】
本発明の請求項5に係る電圧駆動型スイッチング素子のゲ−ト駆動回路は、前記ゲ−ト配線とエミッタ補助配線を、同軸構造にして、前記結合係数を一定値以上としたことを要旨とする。
【0021】
前記請求項2に係る発明と略同様の作用がある。
【0022】
本発明の請求項6に係る電圧駆動型スイッチング素子のゲ−ト駆動回路は、前記結合係数の値は、0.9以上であることを要旨とする。
【0023】
結合係数の値を0.9以上に設定することで、スイッチング時に、複数の電圧駆動型スイッチング素子の各エミッタ間に発生する電圧差が十分に補償され、複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に生じる電圧差の抑制が十分に行われる。
【0024】
本発明の請求項7に係る電圧駆動型スイッチング素子の半導体モジュ−ルは、各コレクタをそれぞれコレクタ側主回路配線を介して一方の主回路端子に接続し、各エミッタをそれぞれエミッタ側主回路配線を介して他方の主回路端子に接続し、それぞれゲ−ト配線及びエミッタ補助配線を通じて各ゲ−トにゲ−ト電圧を供給するようにしてなる並列接続された複数の電圧駆動型スイッチング素子を搭載した電圧駆動型スイッチング素子の半導体モジュ−ルであって、前記ゲ−ト配線とエミッタ補助配線間の結合係数を一定値以上に設定し、前記複数の電圧駆動型スイッチング素子のスイッチング時に、前記エミッタ側主回路配線の浮遊インダクタンスに生じる誘起電圧により前記複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に発生する電圧差を抑制するようにしたことを要旨とする。
【0025】
半導体モジュ−ルにおいて、前記請求項1に係る発明と略同様の作用がある。
【0026】
本発明の請求項8に係る電圧駆動型スイッチング素子の半導体モジュ−ルは、前記ゲ−ト配線とエミッタ補助配線を、共に磁性体コアを貫通させて、前記結合係数を一定値以上としたことを要旨とする。
【0027】
半導体モジュ−ルにおいて、前記請求項2に係る発明と略同様の作用がある。
【0028】
本発明の請求項9に係る電圧駆動型スイッチング素子の半導体モジュ−ルは、前記ゲ−ト配線とエミッタ補助配線を、共にギャップ付き磁性体コアを貫通させて、前記結合係数を一定値以上としたことを要旨とする。
【0029】
半導体モジュ−ルにおいて、前記請求項3に係る発明と略同様の作用がある。
【0030】
本発明の請求項10に係る電圧駆動型スイッチング素子の半導体モジュ−ルは、前記ゲ−ト配線とエミッタ補助配線を、平行平板構造にして、前記結合係数を一定値以上としたことを要旨とする。
【0031】
半導体モジュ−ルにおいて、前記請求項2に係る発明と略同様の作用がある。
【0032】
本発明の請求項11に係る電圧駆動型スイッチング素子の半導体モジュ−ルは、前記ゲ−ト配線とエミッタ補助配線を、同軸構造にして、前記結合係数を一定値以上としたことを要旨とする。
【0033】
半導体モジュ−ルにおいて、前記請求項2に係る発明と略同様の作用がある。
【0034】
本発明の請求項12に係る電圧駆動型スイッチング素子の半導体モジュ−ルは、前記結合係数の値は、0.9以上であることを要旨とする。
【0035】
半導体モジュ−ルにおいて、前記請求項6に係る発明と略同様の作用がある。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0037】
図1は、本発明の第1の実施の形態に係る電圧駆動型スイッチング素子(以下、IGBTを適用して説明する)のゲ−ト駆動回路の構成を示している。図1において、主回路コレクタ端子1がそれぞれ主回路コレクタ配線6を介してIGBT5aと5bの各コレクタに接続され、主回路エミッタ端子2がそれぞれ主回路エミッタ配線7を介してIGBT5aと5bの各エミッタに接続されて、主回路コレクタ端子1と主回路エミッタ端子2の間にIGBT5a、5bが並列接続されている。主回路エミッタ配線7には浮遊インダクタンス10が生じている。
【0038】
また、ゲ−ト端子3がそれぞれゲ−ト配線8によりゲ−ト抵抗11を介してIGBT5aと5bの各ゲ−トに接続され、エミッタ補助端子4がエミッタ補助配線9を介してIGBT5aと5bの各エミッタに接続され、ゲ−ト端子3とエミッタ補助端子4間に与えられるゲ−ト電圧VGEにより、両IGBT5a、5bは同時に駆動されるようになっている。ゲ−ト配線8とエミッタ補助配線9とは結合係数12で磁気的に結合している。
【0039】
次に、上述のように構成された本実施の形態の作用を説明する。ゲ−ト端子3とエミッタ補助端子4の間にゲ−ト電圧VGEを与えて、IGBT5a、5bをスイッチングする場合、主回路エミッタ配線7の電流変化率di/dtによって各浮遊インダクタンス10に誘起電圧VL(a)、VL(b)が発生する。
【0040】
【数1】

Figure 2004187360
各主回路エミッタ配線7における浮遊インダクタンス10の値Leや電流変化率di/dtが等しくなければ、各浮遊インダクタンス10に生じる誘起電圧VL(a)、VL(b)は等しくならず、両IGBT5a、5bのエミッタ端子間に電圧差ΔVe(a−b)が発生する。
【0041】
【数2】
ΔVe(a−b)=VL(a)−VL(b) …(2)
結合係数12の値をKとし、各ゲ−ト配線8と各エミッタ補助配線9のインダクタンスを等しくLge、また相互インダクタンスを等しくMgeとすれば、電圧差ΔVe(a−b)はエミッタ補助配線9のインダクタンスLgeで2等分され、エミッタ補助配線9には、VKe(a)、VKe(b)が発生する。
【0042】
【数3】
Figure 2004187360
エミッタ補助配線9のインダクタンスLgeに発生した電圧は、相互インダクタンスMgeによって、ゲ−ト配線8のインダクタンスLgeに磁気結合され、各ゲ−ト配線8には、VKg(a)、VKg(b)が発生する。
【0043】
【数4】
Figure 2004187360
式(3)、式(4)から、IGBT5a、5bのゲ−ト・エミッタ間電圧Vge(a)、Vge(b)は、次式で示される。
【0044】
【数5】
Figure 2004187360
結合係数12がない場合、即ち、係数K=0とすれば、両IGBT5a、5bのエミッタ端子間の電圧差ΔVe(a−b)によって、次式に示すように、両IGBT5a、5bのゲ−ト・エミッタ間電圧Vge(a)、Vge(b)に電圧差が発生するため、均一なスイッチング動作をすることができない。
【0045】
【数6】
Figure 2004187360
一方、結合係数12がある場合、係数K=1とすれば、両IGBT5a、5bのエミッタ端子間の電圧差ΔVe(a−b)は、磁気結合により補償されるため、次式に示すように、両IGBT5a、5bのゲ−ト・エミッタ間電圧Vge(a)、Vge(b)に電圧差が発生しない。このため、均一なスイッチング動作を行うことができる。
【0046】
【数7】
Vge(a)=VGE、Vge(b)=VGE→Vge(a)=Vge(b) …(8)
このように、IGBT5a、5bのゲ−ト・エミッタ間電圧Vge(a)、Vge(b)の電圧差を抑制するためには、ゲ−ト配線8とエミッタ補助配線9の結合係数12を十分大きくする必要がある。十分な電圧補償を得るには、結合係数12の係数K>0.9は必要である。また、ΔVgeを抑制するには、スイッチング時にエミッタ補助配線9に流れる電流が、エミッタ補助配線9の寄生抵抗によって飽和しないようにする必要がある。十分な補償期間を得るには、エミッタ補助配線9のインダクタンスL>10nHは必要である。
【0047】
結合係数12の係数Kを上記のような一定値以上の大なる値に設定し、また、エミッタ補助配線9のインダクタンスを大にすることは、ゲ−ト配線8とエミッタ補助配線9を、共に磁性体コアを貫通させることで、実現することができる。このゲ−ト配線8とエミッタ補助配線9を、共に磁性体コアを貫通させる構成を採用することで、さらに、スイッチング時に主回路エミッタ配線7とエミッタ補助配線9に流れる閉ル−プ電流を減少させて、誤動作やノイズを減らすことも同時に達成できる。
【0048】
その他の実施の形態を説明する。結合係数12の係数Kを一定値以上の大なる値に設定する手段として、上記の他に、ゲ−ト配線8とエミッタ補助配線9を、共にギャップ付き磁性体コアを貫通させることでも、実現することができる。ギャップ付き磁性体コアを用いることで、エミッタ補助配線9のインダクタンス値を調整し、かつ磁性体コアが飽和しないようにすることもできる。
【0049】
また、ゲ−ト配線8とエミッタ補助配線9を、平行平板構造あるいは同軸構造にすることによっても、一定値以上の大きな結合係数12を得ることができる。平行平板構造あるいは同軸構造にすると、ゲ−ト配線8とエミッタ補助配線9の低インダクタンス化も同時に達成できる。
【0050】
なお、上述の第1の実施の形態及び他の実施の形態において、電圧駆動型スイッチング素子の並列接続数は、3並列以上であっても、上記と同様の考えを適用して実施することができる。また、以上述べた電圧駆動型スイッチング素子のゲ−ト駆動回路は、インバ−タ等に使用する場合において、回路全体を例えば1つのパッケ−ジ内に収納し、電圧駆動型スイッチング素子の半導体モジュ−ルとして構成しても、上記と同様の作用・効果を生じる。
【0051】
【発明の効果】
以上説明したように、請求項1〜5に係る電圧駆動型スイッチング素子のゲ−ト駆動回路の発明によれば、ゲ−ト配線とエミッタ補助配線間の結合係数を一定値以上に設定し、スイッチング時に、エミッタ側主回路配線の浮遊インダクタンスに生じる誘起電圧により複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に生じる電圧差を抑制するようにしたので、より均一なスイッチング動作を実現することができる。
【0052】
請求項6に係る電圧駆動型スイッチング素子のゲ−ト駆動回路の発明によれば、結合係数の値を0.9以上に設定することで、スイッチング時に、複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に生じる電圧差の抑制が十分に行われて、より一層均一なスイッチング動作を実現することができる。
【0053】
請求項7〜11に係る電圧駆動型スイッチング素子の半導体モジュ−ルの発明によれば、半導体モジュ−ルにおいて、前記請求項1〜5に係る発明と略同様の効果がある。
【0054】
請求項12に係る電圧駆動型スイッチング素子の半導体モジュ−ルの発明によれば、半導体モジュ−ルにおいて、前記請求項6に係る発明と略同様の効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である電圧駆動型スイッチング素子のゲ−ト駆動回路の回路図である。
【図2】従来の電圧駆動型スイッチング素子のゲ−ト駆動回路の回路図である。
【図3】各配線の浮遊インダクタンスを集中定数として表した図2の等価回路図である。
【符号の説明】
1 主回路コレクタ端子(一方の主回路端子)
2 主回路エミッタ端子(他方の主回路端子)
3 ゲ−ト端子
4 エミッタ補助端子
5a、5b IGBT(電圧駆動型スイッチング素子)
6 主回路コレクタ配線(コレクタ側主回路配線)
7 主回路エミッタ配線(エミッタ側主回路配線)
8 ゲ−ト配線
9 エミッタ補助配線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gate drive circuit of a voltage-driven switching element such as an IGBT and a semiconductor module.
[0002]
[Prior art]
As a switching element used in a power converter such as an inverter, there is a voltage-driven switching element such as an IGBT. In the case of switching a large current exceeding the rated current of a single element in this voltage-driven switching element, a plurality of voltage-driven switching elements are connected in parallel to achieve this.
[0003]
FIG. 2 shows a conventional example of a two-level inverter in which two voltage-driven switching elements are connected in parallel. An upper arm between the main circuit (+) terminal 13 and the main circuit (-) terminal 14 of the DC power supply 20 via the main circuit DC (+) wiring 16 and the main circuit DC (-) wiring 17 (2). The voltage-driven switching elements 22a and 22b connected in parallel are connected to two parallel-connected voltage-driven switching elements 22c and 22d serving as lower arms. Reflux diodes 23a to 23d are connected in parallel to the voltage-driven switching elements 22a to 22d, respectively.
[0004]
The upper arm voltage-driven switching elements 22a and 22b are simultaneously driven by the gate drive circuit 19a through the auxiliary emitter wiring 24a, and the lower arm voltage-driven switching elements 22c and 22d through the emitter auxiliary wiring 24b. The gate drive circuit 19b is driven simultaneously, and with such a configuration, a two-level inverter for switching a large current twice as large as the rated current of each of the voltage-driven switching elements 22a to 22d alone. Has been realized.
[0005]
FIG. 3 shows an equivalent circuit in which stray inductances of the main circuit DC (+) wiring 16, the main circuit DC (-) wiring 17, and the auxiliary emitter wirings 24a and 24b are represented as lumped constants in the two-level inverter. Is shown. When the lower arm is turned on, the voltage-driven switching elements 22c and 22d connected in parallel are turned on at the same time by the on-gate voltage command of the gate drive circuit 19b, and the return diode 23a is turned on. And the load current flowing through 23b is commutated. Due to the current change in the main circuit, an induced voltage is generated in the floating inductances 21a, 21b, 21c, and 21d. In particular, the induced voltage VL (c) generated in the floating inductance 21c is an on-gate voltage of the voltage-driven switching element 22d. In addition to the command, the gate-emitter voltage Vge (d) of the voltage-driven switching element 22d becomes larger than Vge (c) of the voltage-driven switching element 22c.
[0006]
Similarly, when the lower arm is turned off, the induced voltage VL (c) generated in the stray inductance 21c due to the current change of the main circuit is similarly applied to the off-gate voltage command of the voltage-driven switching element 22d. As a result, the gate-emitter voltage Vge (d) of the voltage-driven switching element 22d becomes larger than Vge (c) of the voltage-driven switching element 22c. As described above, when the current of the main circuit changes during switching, the gate-emitter voltages of the voltage-driven switching elements 22c and 22d are not equal, so that a uniform switching operation cannot be performed.
[0007]
On the other hand, as a gate drive circuit of a conventional voltage-driven switching element, each collector terminal and each emitter terminal of a plurality of voltage-driven switching elements are connected in parallel by a connection conductor, and a single gate is connected. A gate circuit is directly connected to the gate terminal of one voltage-driven switching element, and the gate terminal of the other voltage-driven switching element has a voltage equal to the voltage drop due to the reactor component generated in the emitter-to-emitter connection conductor. To compensate for variations in the gate voltage caused by the emitter-to-emitter connection conductors connected in parallel during a transient to equalize the currents flowing through the plurality of voltage-driven switching elements. I have to. The above-mentioned voltage source is configured by a reactor in which a gate wire of another voltage-driven switching element is wound around an emitter-to-emitter connection conductor (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP-A-7-177727 (page 2, FIG. 1, FIG. 2)
[0009]
[Problems to be solved by the invention]
The prior art shown in FIG. 2 and FIG. 3 uses a plurality of voltage-driven switching elements due to a current change rate of a main circuit wiring and an induced voltage generated by a small floating inductance of the main circuit wiring when switching the voltage-driven switching element. In this case, there is a problem that a voltage difference occurs between the gate-emitter voltage and a uniform switching operation cannot be performed.
[0010]
Further, in the prior art described in Patent Document 1, a voltage source for generating a voltage equal to a voltage drop due to a reactor component generated in an emitter-to-emitter connection conductor is connected to a gate of another voltage-driven switching element in the emitter-to-emitter connection conductor. It consists of a reactor wrapped with wires. However, the voltage generated in the reactor around which the gate wire is wound is generated by mutual induction with the emitter-to-emitter connection conductor, and a voltage equal to the voltage drop due to the reactor component generated in the emitter-to-emitter connection conductor during a transient is generated. It is difficult to produce a reactor simply having a gate wire wound around the emitter-to-emitter connection conductor. For this reason, it is difficult to sufficiently equalize the currents of the plurality of voltage-driven switching elements during a transition with the conventional configuration.
[0011]
The present invention has been made in view of the above, and has been made in consideration of the above-described problems, and has been made in consideration of the above-described circumstances. It is an object of the present invention to provide a gate drive circuit for a switching element and a semiconductor module.
[0012]
[Means for Solving the Problems]
In order to solve the above problem, a gate drive circuit of a voltage-driven switching element according to claim 1 of the present invention connects each collector to one main circuit terminal via a collector-side main circuit wiring, Each emitter is connected in parallel to the other main circuit terminal via an emitter-side main circuit wiring, and a gate voltage is supplied to each gate via a gate wiring and an emitter auxiliary wiring. A gate drive circuit of a voltage-driven switching element for driving each gate of the plurality of voltage-driven switching elements, wherein a coupling coefficient between the gate wiring and the emitter auxiliary wiring is set to a predetermined value or more. When the plurality of voltage-driven switching elements are switched, the plurality of voltage-driven switches are induced by an induced voltage generated in a floating inductance of the emitter-side main circuit wiring. Grayed element gate - and gist that so as to suppress a voltage difference generated in the preparative-emitter voltage.
[0013]
By setting the coupling coefficient between the gate wiring and the emitter auxiliary wiring to a certain value or more, an induced voltage generated in the stray inductance of the emitter-side main circuit wiring causes a voltage between the emitters of the plurality of voltage-driven switching elements during switching. The generated voltage difference is compensated. As a result, the voltage difference between the gate-emitter voltages of the plurality of voltage-driven switching elements is suppressed.
[0014]
According to a second aspect of the present invention, in the gate drive circuit for a voltage-driven switching element, both the gate wiring and the emitter auxiliary wiring are made to pass through a magnetic core, and the coupling coefficient is set to a predetermined value or more. That is the gist.
[0015]
The magnetic coupling between the gate wiring and the auxiliary emitter wiring increases, and the coupling coefficient can be set to a certain value or more.
[0016]
According to a third aspect of the present invention, there is provided a gate drive circuit for a voltage-driven switching element, wherein the gate wiring and the emitter auxiliary wiring are both passed through a magnetic core with a gap, and the coupling coefficient is equal to or more than a predetermined value. The gist is that
[0017]
The magnetic coupling between the gate wiring and the emitter auxiliary wiring is increased, and the coupling coefficient can be set and adjusted to a certain value or more.
[0018]
According to a fourth aspect of the present invention, there is provided a gate drive circuit for a voltage-driven switching element, wherein the gate wiring and the auxiliary emitter wiring have a parallel plate structure, and the coupling coefficient is equal to or more than a predetermined value. And
[0019]
There is substantially the same operation as the invention according to claim 2.
[0020]
According to a fifth aspect of the present invention, there is provided a gate drive circuit for a voltage-driven switching element, wherein the gate wiring and the emitter auxiliary wiring have a coaxial structure, and the coupling coefficient is equal to or more than a predetermined value. I do.
[0021]
There is substantially the same operation as the invention according to claim 2.
[0022]
A gate drive circuit for a voltage-driven switching element according to claim 6 of the present invention is characterized in that the value of the coupling coefficient is 0.9 or more.
[0023]
By setting the value of the coupling coefficient to 0.9 or more, the voltage difference generated between the emitters of the plurality of voltage driven switching elements during switching is sufficiently compensated, and the gain of the plurality of voltage driven switching elements is compensated. The voltage difference generated in the gate-emitter voltage is sufficiently suppressed.
[0024]
In a semiconductor module of a voltage-driven switching element according to a seventh aspect of the present invention, each collector is connected to one main circuit terminal via a collector-side main circuit wiring, and each emitter is respectively connected to an emitter-side main circuit wiring. And a plurality of voltage-driven switching elements connected in parallel so as to supply a gate voltage to each gate through the gate wiring and the emitter auxiliary wiring, respectively. A semiconductor module of a mounted voltage-driven switching element, wherein a coupling coefficient between the gate wiring and the emitter auxiliary wiring is set to a certain value or more, and the switching is performed when the plurality of voltage-driven switching elements are switched. Gate-emitter voltages of the plurality of voltage-driven switching elements due to an induced voltage generated in the floating inductance of the emitter-side main circuit wiring. And gist that so as to suppress a voltage difference generated.
[0025]
The semiconductor module has substantially the same function as the first aspect of the invention.
[0026]
In the semiconductor module of a voltage-driven switching element according to claim 8 of the present invention, the gate wiring and the emitter auxiliary wiring are both passed through a magnetic core, and the coupling coefficient is set to a predetermined value or more. Is the gist.
[0027]
The semiconductor module has substantially the same operation as the second aspect of the invention.
[0028]
According to a ninth aspect of the present invention, in the semiconductor module of the voltage-driven switching element, the gate wiring and the emitter auxiliary wiring are both passed through a magnetic core with a gap so that the coupling coefficient is equal to or more than a predetermined value. The gist is that you have done it.
[0029]
The semiconductor module has substantially the same operation as the third aspect of the invention.
[0030]
A semiconductor module of a voltage-driven switching element according to claim 10 of the present invention is characterized in that the gate wiring and the emitter auxiliary wiring have a parallel plate structure and the coupling coefficient is equal to or more than a certain value. I do.
[0031]
The semiconductor module has substantially the same operation as the second aspect of the invention.
[0032]
A semiconductor module of a voltage-driven switching element according to claim 11 of the present invention is characterized in that the gate wiring and the auxiliary emitter wiring have a coaxial structure and the coupling coefficient is equal to or more than a certain value. .
[0033]
The semiconductor module has substantially the same operation as the second aspect of the invention.
[0034]
A semiconductor module of a voltage-driven switching element according to claim 12 of the present invention is characterized in that the value of the coupling coefficient is 0.9 or more.
[0035]
The semiconductor module has substantially the same operation as the invention according to the sixth aspect.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0037]
FIG. 1 shows a configuration of a gate drive circuit of a voltage-driven switching element (hereinafter described by applying an IGBT) according to a first embodiment of the present invention. In FIG. 1, a main circuit collector terminal 1 is connected to each collector of IGBTs 5a and 5b via a main circuit collector wiring 6, and a main circuit emitter terminal 2 is connected to each emitter of IGBTs 5a and 5b via a main circuit emitter wiring 7, respectively. IGBTs 5 a and 5 b are connected in parallel between the main circuit collector terminal 1 and the main circuit emitter terminal 2. A floating inductance 10 is generated in the main circuit emitter wiring 7.
[0038]
Further, the gate terminal 3 is connected to each of the IGBTs 5a and 5b via a gate resistor 11 via a gate wiring 8, and the emitter auxiliary terminal 4 is connected to the IGBTs 5a and 5b via an emitter auxiliary wiring 9. The IGBTs 5a and 5b are simultaneously driven by a gate voltage VGE applied between the gate terminal 3 and the emitter auxiliary terminal 4. Gate wiring 8 and emitter auxiliary wiring 9 are magnetically coupled with a coupling coefficient of 12.
[0039]
Next, the operation of the present embodiment configured as described above will be described. When the gate voltage VGE is applied between the gate terminal 3 and the emitter auxiliary terminal 4 to switch the IGBTs 5a and 5b, the induced voltage is applied to each floating inductance 10 by the current change rate di / dt of the main circuit emitter wiring 7. VL (a) and VL (b) are generated.
[0040]
(Equation 1)
Figure 2004187360
If the value Le of the floating inductance 10 and the current change rate di / dt in each main circuit emitter wiring 7 are not equal, the induced voltages VL (a) and VL (b) generated in each floating inductance 10 will not be equal, and both IGBTs 5a, A voltage difference ΔVe (ab) is generated between the emitter terminals of 5b.
[0041]
(Equation 2)
ΔVe (ab) = VL (a) −VL (b) (2)
Assuming that the value of the coupling coefficient 12 is K, the inductance of each gate wiring 8 and each emitter auxiliary wiring 9 is equal to Lge, and the mutual inductance is equal to Mge, the voltage difference ΔVe (ab) is equal to the emitter auxiliary wiring 9. VKe (a) and VKe (b) are generated in the emitter auxiliary wiring 9.
[0042]
[Equation 3]
Figure 2004187360
The voltage generated in the inductance Lge of the emitter auxiliary wiring 9 is magnetically coupled to the inductance Lge of the gate wiring 8 by the mutual inductance Mge, and each gate wiring 8 has VKg (a) and VKg (b). appear.
[0043]
(Equation 4)
Figure 2004187360
From the equations (3) and (4), the gate-emitter voltages Vge (a) and Vge (b) of the IGBTs 5a and 5b are expressed by the following equations.
[0044]
(Equation 5)
Figure 2004187360
If there is no coupling coefficient 12, that is, if the coefficient K = 0, the voltage difference ΔVe (ab) between the emitter terminals of both IGBTs 5a and 5b causes the gain of both IGBTs 5a and 5b as shown in the following equation. Since a voltage difference occurs between the gate-emitter voltages Vge (a) and Vge (b), a uniform switching operation cannot be performed.
[0045]
(Equation 6)
Figure 2004187360
On the other hand, if there is a coupling coefficient 12 and the coefficient K = 1, the voltage difference ΔVe (ab) between the emitter terminals of the IGBTs 5a and 5b is compensated by magnetic coupling, and as shown in the following equation: No voltage difference occurs between the gate-emitter voltages Vge (a) and Vge (b) of the IGBTs 5a and 5b. Therefore, a uniform switching operation can be performed.
[0046]
(Equation 7)
Vge (a) = VGE, Vge (b) = VGE → Vge (a) = Vge (b) (8)
As described above, in order to suppress the voltage difference between the gate-emitter voltages Vge (a) and Vge (b) of the IGBTs 5a and 5b, the coupling coefficient 12 between the gate wiring 8 and the auxiliary emitter wiring 9 must be sufficiently large. Need to be bigger. To obtain sufficient voltage compensation, a coefficient K> 0.9 of the coupling coefficient 12 is necessary. Further, in order to suppress ΔVge, it is necessary to prevent the current flowing through the emitter auxiliary wiring 9 during switching from being saturated by the parasitic resistance of the emitter auxiliary wiring 9. In order to obtain a sufficient compensation period, the inductance L> 10 nH of the auxiliary emitter wiring 9 is necessary.
[0047]
Setting the coefficient K of the coupling coefficient 12 to a large value equal to or greater than the above-mentioned fixed value and increasing the inductance of the auxiliary emitter wiring 9 requires that the gate wiring 8 and the auxiliary emitter wiring 9 be both formed. This can be realized by penetrating the magnetic core. By adopting a configuration in which both the gate wiring 8 and the emitter auxiliary wiring 9 pass through the magnetic core, the closed loop current flowing through the main circuit emitter wiring 7 and the emitter auxiliary wiring 9 at the time of switching is further reduced. Thus, it is possible to simultaneously reduce malfunctions and noises.
[0048]
Other embodiments will be described. As means for setting the coefficient K of the coupling coefficient 12 to a large value equal to or greater than a certain value, in addition to the above, the gate wiring 8 and the emitter auxiliary wiring 9 may both be realized by penetrating a magnetic core with a gap. can do. By using the magnetic core with a gap, the inductance value of the auxiliary emitter wiring 9 can be adjusted and the magnetic core can be prevented from being saturated.
[0049]
Also, by forming the gate wiring 8 and the emitter auxiliary wiring 9 in a parallel plate structure or a coaxial structure, a large coupling coefficient 12 of a certain value or more can be obtained. If the structure is a parallel plate structure or a coaxial structure, low inductance of the gate wiring 8 and the emitter auxiliary wiring 9 can be achieved at the same time.
[0050]
In the above-described first embodiment and other embodiments, even if the number of parallel connection of the voltage-driven switching elements is three or more, it is possible to implement the same idea as above. it can. When the gate drive circuit of the voltage-driven switching element described above is used for an inverter or the like, the entire circuit is housed in, for example, one package, and the semiconductor module of the voltage-driven switching element is used. The same operation and effect as described above can be obtained even if the configuration is made as a negative control.
[0051]
【The invention's effect】
As described above, according to the invention of the gate drive circuit of the voltage-driven switching element according to claims 1 to 5, the coupling coefficient between the gate wiring and the emitter auxiliary wiring is set to a certain value or more, During switching, the induced voltage generated in the floating inductance of the main circuit wiring on the emitter side suppresses the voltage difference between the gate and emitter of multiple voltage-driven switching elements, realizing more uniform switching operation. can do.
[0052]
According to the gate drive circuit of the voltage-driven switching element according to the sixth aspect, by setting the value of the coupling coefficient to 0.9 or more, the gate of the plurality of voltage-driven switching elements is switched at the time of switching. The voltage difference generated in the gate-emitter voltage is sufficiently suppressed, and a more uniform switching operation can be realized.
[0053]
According to the invention of the semiconductor module of the voltage-driven switching element according to the seventh to eleventh aspects, the semiconductor module has substantially the same effect as the invention according to the first to fifth aspects.
[0054]
According to the semiconductor module of the voltage-driven switching element according to the twelfth aspect, the semiconductor module has substantially the same effect as the invention according to the sixth aspect.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a gate drive circuit of a voltage-driven switching element according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram of a conventional gate drive circuit of a voltage-driven switching element.
FIG. 3 is an equivalent circuit diagram of FIG. 2 in which stray inductance of each wiring is represented as a lumped constant.
[Explanation of symbols]
1 Main circuit collector terminal (one main circuit terminal)
2 Main circuit emitter terminal (the other main circuit terminal)
3 Gate terminal 4 Emitter auxiliary terminal 5a, 5b IGBT (voltage driven switching element)
6. Main circuit collector wiring (collector side main circuit wiring)
7 Main circuit emitter wiring (emitter side main circuit wiring)
8 Gate wiring 9 Emitter auxiliary wiring

Claims (12)

各コレクタをそれぞれコレクタ側主回路配線を介して一方の主回路端子に接続し、各エミッタをそれぞれエミッタ側主回路配線を介して他方の主回路端子に接続し、それぞれゲ−ト配線及びエミッタ補助配線を通じて各ゲ−トにゲ−ト電圧を供給するようにしてなる並列接続された複数の電圧駆動型スイッチング素子の各ゲ−トを駆動する電圧駆動型スイッチング素子のゲ−ト駆動回路であって、前記ゲ−ト配線とエミッタ補助配線間の結合係数を一定値以上に設定し、前記複数の電圧駆動型スイッチング素子のスイッチング時に、前記エミッタ側主回路配線の浮遊インダクタンスに生じる誘起電圧により前記複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に発生する電圧差を抑制するようにしたことを特徴とする電圧駆動型スイッチング素子のゲ−ト駆動回路。Each collector is connected to one main circuit terminal via the collector side main circuit wiring, each emitter is connected to the other main circuit terminal via the emitter side main circuit wiring, respectively, and the gate wiring and the emitter auxiliary A gate drive circuit of a voltage-driven switching element for driving each gate of a plurality of voltage-driven switching elements connected in parallel, wherein the gate voltage is supplied to each gate through wiring. The coupling coefficient between the gate wiring and the emitter auxiliary wiring is set to be equal to or more than a predetermined value, and the induced voltage generated in the floating inductance of the emitter-side main circuit wiring when the plurality of voltage-driven switching elements are switched. A voltage-driven switching device characterized in that a voltage difference generated in a gate-emitter voltage of a plurality of voltage-driven switching elements is suppressed. Switching element gate - gate drive circuit. 前記ゲ−ト配線とエミッタ補助配線を、共に磁性体コアを貫通させて、前記結合係数を一定値以上としたことを特徴とする請求項1記載の電圧駆動型スイッチング素子のゲ−ト駆動回路。2. A gate drive circuit for a voltage-driven switching element according to claim 1, wherein both the gate wiring and the auxiliary emitter wiring penetrate a magnetic core so that the coupling coefficient is equal to or greater than a predetermined value. . 前記ゲ−ト配線とエミッタ補助配線を、共にギャップ付き磁性体コアを貫通させて、前記結合係数を一定値以上としたことを特徴とする請求項1記載の電圧駆動型スイッチング素子のゲ−ト駆動回路。2. The gate of a voltage-driven switching element according to claim 1, wherein said gate wiring and said emitter auxiliary wiring are both passed through a magnetic core with a gap so that said coupling coefficient is not less than a predetermined value. Drive circuit. 前記ゲ−ト配線とエミッタ補助配線を、平行平板構造にして、前記結合係数を一定値以上としたことを特徴とする請求項1記載の電圧駆動型スイッチング素子のゲ−ト駆動回路。2. A gate drive circuit for a voltage-driven switching element according to claim 1, wherein the gate wiring and the emitter auxiliary wiring have a parallel plate structure and the coupling coefficient is equal to or more than a predetermined value. 前記ゲ−ト配線とエミッタ補助配線を、同軸構造にして、前記結合係数を一定値以上としたことを特徴とする請求項1記載の電圧駆動型スイッチング素子のゲ−ト駆動回路。2. A gate drive circuit for a voltage-driven switching element according to claim 1, wherein said gate wiring and said emitter auxiliary wiring have a coaxial structure, and said coupling coefficient is not less than a predetermined value. 前記結合係数の値は、0.9以上であることを特徴とする請求項1乃至5の何れかに記載の電圧駆動型スイッチング素子のゲート駆動回路。6. The gate drive circuit for a voltage-driven switching device according to claim 1, wherein the value of the coupling coefficient is 0.9 or more. 各コレクタをそれぞれコレクタ側主回路配線を介して一方の主回路端子に接続し、各エミッタをそれぞれエミッタ側主回路配線を介して他方の主回路端子に接続し、それぞれゲ−ト配線及びエミッタ補助配線を通じて各ゲ−トにゲ−ト電圧を供給するようにしてなる並列接続された複数の電圧駆動型スイッチング素子を搭載した電圧駆動型スイッチング素子の半導体モジュ−ルであって、前記ゲ−ト配線とエミッタ補助配線間の結合係数を一定値以上に設定し、前記複数の電圧駆動型スイッチング素子のスイッチング時に、前記エミッタ側主回路配線の浮遊インダクタンスに生じる誘起電圧により前記複数の電圧駆動型スイッチング素子のゲ−ト・エミッタ間電圧に発生する電圧差を抑制するようにしたことを特徴とする電圧駆動型スイッチング素子の半導体モジュ−ル。Each collector is connected to one main circuit terminal via the collector side main circuit wiring, each emitter is connected to the other main circuit terminal via the emitter side main circuit wiring, respectively, and the gate wiring and the emitter auxiliary A voltage-driven switching element semiconductor module including a plurality of voltage-driven switching elements connected in parallel and configured to supply a gate voltage to each gate through a wiring, wherein A coupling coefficient between the wiring and the emitter auxiliary wiring is set to be equal to or more than a predetermined value, and when the plurality of voltage-driven switching elements are switched, the plurality of voltage-driven switching elements are caused by an induced voltage generated in a floating inductance of the emitter-side main circuit wiring. A voltage-driven switch characterized by suppressing a voltage difference generated in a gate-emitter voltage of an element. Semiconductor module of grayed element - Le. 前記ゲ−ト配線とエミッタ補助配線を、共に磁性体コアを貫通させて、前記結合係数を一定値以上としたことを特徴とする請求項7記載の電圧駆動型スイッチング素子の半導体モジュ−ル。8. The semiconductor module for a voltage-driven switching element according to claim 7, wherein both the gate wiring and the auxiliary emitter wiring penetrate the magnetic core so that the coupling coefficient is equal to or greater than a predetermined value. 前記ゲ−ト配線とエミッタ補助配線を、共にギャップ付き磁性体コアを貫通させて、前記結合係数を一定値以上としたことを特徴とする請求項7記載の電圧駆動型スイッチング素子の半導体モジュ−ル。8. The semiconductor module for a voltage-driven switching element according to claim 7, wherein both the gate wiring and the auxiliary emitter wiring penetrate a magnetic core with a gap so that the coupling coefficient is equal to or greater than a predetermined value. Le. 前記ゲ−ト配線とエミッタ補助配線を、平行平板構造にして、前記結合係数を一定値以上としたことを特徴とする請求項7記載の電圧駆動型スイッチング素子の半導体モジュ−ル。8. The semiconductor module for a voltage-driven switching element according to claim 7, wherein said gate wiring and said emitter auxiliary wiring have a parallel plate structure and said coupling coefficient is not less than a certain value. 前記ゲ−ト配線とエミッタ補助配線を、同軸構造にして、前記結合係数を一定値以上としたことを特徴とする請求項7記載の電圧駆動型スイッチング素子の半導体モジュ−ル。8. The semiconductor module for a voltage-driven switching device according to claim 7, wherein the gate wiring and the emitter auxiliary wiring have a coaxial structure and the coupling coefficient is equal to or more than a predetermined value. 前記結合係数の値は、0.9以上であることを特徴とする請求項7乃至11の何れかに記載の電圧駆動型スイッチング素子の半導体モジュ−ル。12. The semiconductor module for a voltage-driven switching element according to claim 7, wherein the value of the coupling coefficient is 0.9 or more.
JP2002348967A 2002-11-29 2002-11-29 Gate drive circuit of voltage driven switching element, and semiconductor module Pending JP2004187360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348967A JP2004187360A (en) 2002-11-29 2002-11-29 Gate drive circuit of voltage driven switching element, and semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348967A JP2004187360A (en) 2002-11-29 2002-11-29 Gate drive circuit of voltage driven switching element, and semiconductor module

Publications (1)

Publication Number Publication Date
JP2004187360A true JP2004187360A (en) 2004-07-02

Family

ID=32751722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348967A Pending JP2004187360A (en) 2002-11-29 2002-11-29 Gate drive circuit of voltage driven switching element, and semiconductor module

Country Status (1)

Country Link
JP (1) JP2004187360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188540A (en) * 2010-03-04 2011-09-22 Denso Corp Drive circuit of switching element
JP2011244572A (en) * 2010-05-18 2011-12-01 Fuji Electric Co Ltd Power conversion device, control type semiconductor element of discrete type, and control type semiconductor element module
JP2013118385A (en) * 2005-04-04 2013-06-13 Kokusai Electric Semiconductor Service Inc Supply power regulator, semiconductor manufacturing apparatus, and method for manufacturing semiconductor device
JP2014027831A (en) * 2012-07-30 2014-02-06 Fanuc Ltd Power conversion device in which switching elements are connected in parallel and driven in parallel
WO2018100647A1 (en) * 2016-11-29 2018-06-07 三菱電機株式会社 Gate driving circuit
JP2022103713A (en) * 2020-12-28 2022-07-08 三菱電機株式会社 Semiconductor module
EP2996233B1 (en) * 2014-09-09 2023-03-29 Fuji Electric Co., Ltd. Semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118385A (en) * 2005-04-04 2013-06-13 Kokusai Electric Semiconductor Service Inc Supply power regulator, semiconductor manufacturing apparatus, and method for manufacturing semiconductor device
JP2011188540A (en) * 2010-03-04 2011-09-22 Denso Corp Drive circuit of switching element
JP2011244572A (en) * 2010-05-18 2011-12-01 Fuji Electric Co Ltd Power conversion device, control type semiconductor element of discrete type, and control type semiconductor element module
JP2014027831A (en) * 2012-07-30 2014-02-06 Fanuc Ltd Power conversion device in which switching elements are connected in parallel and driven in parallel
US9479083B2 (en) 2012-07-30 2016-10-25 Fanuc Corporation Power converter in which switching elements are driven in parallel
EP2996233B1 (en) * 2014-09-09 2023-03-29 Fuji Electric Co., Ltd. Semiconductor device
JPWO2018100647A1 (en) * 2016-11-29 2019-06-24 三菱電機株式会社 Gate drive circuit
CN109983699A (en) * 2016-11-29 2019-07-05 三菱电机株式会社 Gate driving circuit
US10505536B2 (en) 2016-11-29 2019-12-10 Mitsubishi Electric Corporation Gate driving circuit
WO2018100647A1 (en) * 2016-11-29 2018-06-07 三菱電機株式会社 Gate driving circuit
CN109983699B (en) * 2016-11-29 2023-07-14 三菱电机株式会社 Gate driving circuit
JP2022103713A (en) * 2020-12-28 2022-07-08 三菱電機株式会社 Semiconductor module
JP7455058B2 (en) 2020-12-28 2024-03-25 三菱電機株式会社 semiconductor module

Similar Documents

Publication Publication Date Title
JP5783997B2 (en) Power semiconductor device
US10277112B2 (en) Physical topology for a power converter
JP6130863B2 (en) Semiconductor power module and device
JP4955078B2 (en) Semiconductor device
IL95438A (en) Switching circuit
US20100164601A1 (en) Control circuit for a power semiconductor assembly and power semiconductor assembly
US7838901B2 (en) Single-chip common-drain JFET device and its applications
JP5925364B2 (en) Power semiconductor device
US20180123478A1 (en) Inverter switching devices with common source inductance layout to avoid shoot-through
US11489437B2 (en) DC inverter/converter current balancing for paralleled phase leg switches
US10200030B2 (en) Paralleling of switching devices for high power circuits
JP3696833B2 (en) Power semiconductor device
JP4484400B2 (en) Semiconductor device
US20050077947A1 (en) Half-bridge circuit
US10574223B1 (en) Paralleled power semiconductors with chokes in gate path
US5202619A (en) Control circuit for a switching transistor
US10439606B2 (en) Semiconductor module
JP7099075B2 (en) Semiconductor module
JP2004187360A (en) Gate drive circuit of voltage driven switching element, and semiconductor module
JP2006529066A5 (en)
JP5546892B2 (en) Booster circuit
US10700681B1 (en) Paralleled power module with additional emitter/source path
Bayerer et al. Low impedance gate drive for full control of voltage controlled power devices
US20240120825A1 (en) High-Efficiency Drive Circuit And Bidirectional FET
WO2023095244A1 (en) Power conversion device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106