JP2004184480A - Manufacturing method of polymer optical waveguide - Google Patents

Manufacturing method of polymer optical waveguide Download PDF

Info

Publication number
JP2004184480A
JP2004184480A JP2002347948A JP2002347948A JP2004184480A JP 2004184480 A JP2004184480 A JP 2004184480A JP 2002347948 A JP2002347948 A JP 2002347948A JP 2002347948 A JP2002347948 A JP 2002347948A JP 2004184480 A JP2004184480 A JP 2004184480A
Authority
JP
Japan
Prior art keywords
mold
core
curable resin
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002347948A
Other languages
Japanese (ja)
Other versions
JP4534415B2 (en
Inventor
Hidekazu Akutsu
英一 圷
Shigemi Otsu
茂実 大津
Takashi Shimizu
敬司 清水
Kazutoshi Tanida
和敏 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2002347948A priority Critical patent/JP4534415B2/en
Publication of JP2004184480A publication Critical patent/JP2004184480A/en
Application granted granted Critical
Publication of JP4534415B2 publication Critical patent/JP4534415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and highly productive method to manufacture a polymer optical waveguide which is made highly precise and has a low waveguide loss. <P>SOLUTION: The manufacturing method of waveguide includes the following processes (1) a casting mold having a plurality of recessed parts (both tip parts of the recessed parts are the infiltrating section and the ejecting section of core resin) is produced employing a master disk on which a plurality of projecting parts are formed, (2) a clad member is tightly contacted to the mold, (3) core resin is filled into the mold recessed parts from the infiltrating sections of the mold, (4) the filled-in resin is hardened and the mold is peeled off from the member and (5) a clad layer is formed on the member on which a core is formed. The mold is made of a layer in which mold forming hardening resin is hardened and the recessed parts, the infiltrating and ejecting sections are provided and has a hardened resin layer having common gap sections that are connected to all infiltrating sections/or all ejecting sections at its tip part and a strengthened member having an injecting part to reinfoprce the hardened resin layer and to force fit the core resin. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高分子光導波路、特にフレキシブルな高分子光導波路の製造方法に関する。
【0002】
【従来の技術】
高分子導波路の製造方法としては、(1)フイルムにモノマーを含浸させてコア部を選択的に露光して屈折率を変化させフイルムを張り合わせる方法(選択重合法)、(2)コア層及びクラッド層を塗布後、反応性イオンエチングを用いてクラッド部を形成する方法(RIE法)、(3)高分子材料中に感光性の材料を添加した紫外線硬化樹脂を用いて、露光・現像するフォトリソグラフィー法を用いる方法(直接露光法)、(4)射出成形を利用する方法、(5)コア層及びクラッド層を塗布後、コア部を露光してコア部の屈折率を変化させる方法(フォトブリーチング法)等が提案されている。
然し、(1)の選択重合法はフイルムの張り合わせに問題があり、(2)や(3)の方法は、フォトリソグラフィー法を使うためコスト高になり、(4)の方法は、得られるコア径の精度に課題がある。また、(5)の方法はコア層とクラッド層との十分な屈折率差がとれないと言う問題がある。
現在、性能的に優れた実用的な方法は、(2)や(3)の方法だけであるが前記のごときコストの問題がある。そして(1)ないし(5)のいずれの方法も、大面積でフレキシブルなプラスチック基材に高分子導波路を形成するのに適用しうるものではない。
【0003】
また、高分子光導波路を製造する方法として、キャピラリーとなる溝のパターンが形成されたパターン基板(クラッド)にコア用のポリマー前駆体材料を充填し、その後硬化させてコア層を作り、その上に平面基板(クラッド)を貼り合わせる方法が知られているが、この方法ではキャピラリー溝にだけでなく、パターン基板と平面基板の間にも全面的にポリマー前駆体材料が薄く充填され硬化されてコア層と同じ組成の薄い層が形成される結果、この薄い層を通って光が漏洩してしまうという問題があった。
この問題を解決する方法の1つとして、デビット・ハートはキャピラリーとなる溝のパターンが形成されたパターン基板と平面基板とをクランプ用治具で固着し、さらにパターン基板と平面基板との接触部分を樹脂でシールなどした後減圧して、モノマー(ジアリルイソフタレート)溶液をキャピラリーに充填して、高分子光導波路を製造する方法を提案した(特許文献1参照)。
この方法はコア形成用樹脂材料としてポリマー前駆体材料を用いる代わりにモノマーを用いて充填材料を低粘度化し、キャピラリー内に毛細管現象を利用して充填させ、キャピラリー以外にはモノマーが充填されないようにする方法である。
しかし、この方法はコア形成用材料としてモノマーを用いているため、モノマーが重合してポリマーになる際の体積収縮率が大きく、高分子光導波路の透過損失が大きくなるいう問題がある。
また、この方法は、パターン基板と平面基板とをクランプで固着する、あるいはこれに加えさらに接触部を樹脂でシールするなど煩雑な方法であり、量産にはむかず、その結果コスト低下を期待することはできない。また、クラッドとして厚さがmmオーダーあるいは1mm以下のフィルムを用いる高分子光導波路の製造に適用することは不可能である。
【0004】
また、最近、ハーバード大学のGeorge M. Whitesidesらは、ナノ構造を作る新技術として、ソフトリソグラフィーの一つとして毛細管マイクロモールドという方法を提唱している。これは、フォトリソグラフィーを利用してマスター基板を作り、ポリジメチルシロキサン(PDMS)の密着性と容易な剥離性を利用してマスター基板のナノ構造をPDMSの鋳型に写し取り、この鋳型に毛細管現象を利用して液体ポリマーを流し込んで固化させる方法であり、以下の非特許文献1に詳しい解説記事が記載されている。
【0005】
又はバード大学のGeorge M. WhitesidesのグループのKim Enochらによって毛細管マイクロモールド法に関する特許が出願されている(特許文献2参照)。
しかし、この特許に記載の製造方法を高分子光導波路の製造に適用しても、光導波路のコア部は断面積が小さいので、コア部を形成するのに時間がかかり、量産に適さない。また、モノマー溶液が重合して高分子になるときに体積変化を起こしコアの形状が変化し、透過損失が大きくなるという欠点を持つ。
【0006】
また、IBMチュリッヒ研究所のB. MichelらはPDMSを用いた高解像度のリソグラフィー技術を提案しており、この技術により数十nmの解像力が得られると報告している。詳しい解説記事は、以下の非特許文献2に記載されている。このように、PDMSを使ったソフトリソグラフィー技術や、毛細管マイクロモールド法は、ナノテクノロジーとして最近、米国を中心に注目を集めている技術である
【0007】
しかしながら、前記のごときマイクロモールド法を用いて光導波路を作製すると、硬化時の体積収縮率を小さくする(したがって透過損失を小さくする)ことと、充填を容易にするために充填液体(モノマー等)を低粘度化することを両立させえない。したがって、透過損失を小さくすることを優先的に考慮すると、充填液体の粘度をある限度以下にすることができず、充填速度が遅くなり、量産は望めない。また前記のマイクロモールド法は、基板としてガラスやシリコン基板を用いることが前提になっており、フレキシブルなフィルム基材を用いることは考慮されていない。
【0008】
このような要請に基づき本発明者らは、フレキシブルなフィルム基材をクラッド用フィルムとして用い、極めて簡便に高分子光導波路を製造する方法を開発した。(特願2002−187473号)
この方法は、1)光導波路に対応する凸部が形成された原盤に鋳型形成用樹脂材料の層を形成した後剥離して型を取り、次いで前記型に形成された凸部に対応する凹部が露出するように型の両端を切断して鋳型を作製し、2)前記鋳型に該鋳型との密着性が良好なクラッド用フィルム基材を密着させ、3)クラッド用フィルム基材を密着させた鋳型の一端を、コアとなる紫外線硬化性樹脂又は熱硬化性樹脂に接触させ、紫外線硬化性樹脂又は熱硬化性樹脂を毛細管現象により前記鋳型の凹部に進入させ、4)進入させた紫外線硬化性樹脂又は熱硬化性樹脂を硬化させ、鋳型をクラッド用フィルム基材から剥離し、5)コアが形成されたクラッド用フィルム基材の上にクラッド層を形成することを特徴とする方法である。この方法により、従来作製することが困難であったフレキシブルなクラッドフィルム基材の上に簡便な方法で高分子光導波路を形成することが可能になった。また、この方法においては、鋳型凹部にコア用の硬化性樹脂を注入する速度を上げるため、系を減圧にしたり、硬化性樹脂を加圧注入することも考慮されている。しかしながら、系を減圧にしたり、硬化性樹脂を圧入すると、鋳型が変形したりしてその結果望ましい特性の高分子光導波路を得ることができない場合があった。
【0009】
【特許文献1】
特許第3151364号明細書
【特許文献2】
米国特許6355198号明細書
【非特許文献1】
SCIENTIFIC AMERICAN September 2001(日経サイエンス2001年12月号)
【非特許文献2】
IBM J. REV. & DEV. VOL. 45 NO. 5 SEPTEMBER 2001
【0010】
【発明が解決しようとする課題】
本発明は、前記のごとき問題点に鑑みてなされたものであり、その目的は、簡便な方法で、生産性が高く、コア形状を高精度に維持して導波損失の少ない高分子光導波路を製造する方法を提供することにある。
【0011】
【課題を解決するための手段】
前記課題は、以下の高分子光導波路の製造方法を提供することにより解決される。
(1)1)光導波路に対応する凸部が形成された原盤を用いて、前記凸部に対応する凹部、並びに該凹部の両端部であるコア形成用硬化性樹脂の進入部及び排出部を有する鋳型を作製する工程、
2)前記鋳型にクラッド用基材を密着させる工程、
3)前記鋳型の進入部からコア形成用硬化性樹脂を鋳型凹部に充填する工程、
4)充填したコア形成用硬化性樹脂を硬化させ、鋳型をクラッド用基材から剥離する工程、
5)コアが形成されたクラッド用基材の上に、クラッド層を形成する工程、
を有する高分子光導波路の製造方法であって、
前記鋳型が、鋳型形成用硬化性樹脂が硬化した層からなり前記凹部並びに進入部及び排出部が設けられ、かつ、その端部に、すべての進入部及び/又はすべての排出部に連通する共通の空隙部を有する硬化樹脂層と、前記硬化樹脂層を補強しかつコア形成用硬化性樹脂を圧入するための注入口を備えた強化部材とを有することを特徴とする高分子光導波路の製造方法。
【0012】
(2)前記空隙の断面積が、前記すべての凹部の総断面積の5〜20000倍であることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(3)前記鋳型の硬化樹脂層が、硬化性シリコーンゴムオリゴマーが硬化した層であることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(4)前記硬化樹脂層の厚さが、10μm〜50mmであることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(5)前記強化部材が、金属材料又はセラミック材料からなることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(6)前記強化部材の肉厚が、1mm〜40mmであることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
【0013】
(7)前記鋳型の強化部材が、さらに減圧口を有していることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(8)前記強化部材の、前記凹部に対応する部分が光透過性材料よりなることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(9)前記強化部材が、前記凹部に対応する部分に開口部を有することを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(10)前記1)の工程において、鋳型が、原盤の上に鋳型形成用硬化性樹脂の層を形成した後、この層の上に強化部材を載置し、次いで硬化させ、その後原盤を剥離して作製されることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
【0014】
(11)前記クラッド用基材が、鋳型との密着性が良好なクラッド用フィルム基材であることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(12)前記クラッド用フィルム基材が、脂環式オレフィン樹脂フイルムであることを特徴とする前記(11)に記載の高分子光導波路の製造方法。
(13)前記2)の工程において、クラッド用基材と鋳型の強化部材を固定することを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(14)前記2)の工程において、クラッド用基材が保持部材の上に置かれることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(15)前記2)の工程において、鋳型の強化部材とクラッド用基材が保持された保持部材を固定することを特徴とする前記(1)に記載の高分子光導波路の製造方法。
【0015】
(16)前記3)の工程において、コア形成用硬化性樹脂を強化部材の注入口から圧入するとともに、減圧口から鋳型の排出部近傍を減圧排気することを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(17)前記3)の工程において、コア形成用硬化性樹脂を圧入させる圧力を段階的に増加させるのに同期して、段階的に減圧排気することを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(18)前記コア形成用硬化性樹脂が、紫外線硬化性樹脂又は熱硬化性樹脂であることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(19)前記鋳型形成用硬化性樹脂を硬化した層の表面エネルギーが、10dyn/cm〜30dyn/cmであることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
(20)前記鋳型形成用硬化性樹脂を硬化した層のシェア(Share)ゴム硬度が15〜80であることを特徴とする前記(1)に記載の高分子光導波路の製造方法。
【0016】
【発明の実施の形態】
本発明の高分子光導波路の製造方法は、1)光導波路に対応する凸部が形成された原盤を用いて、前記凸部に対応する凹部並びに該凹部の両端部であるコア形成用硬化性樹脂の進入部及び排出部を有する鋳型を作製する工程、2)前記鋳型にクラッド用基材を密着させる工程、3)前記鋳型のコア形成用硬化性樹脂の進入部よりコア形成用硬化性樹脂を鋳型凹部に充填する工程、4)充填したコア形成用硬化性樹脂を硬化させ、鋳型をクラッド用基材から剥離する工程、5)コアが形成されたクラッド用基材の上に、クラッド層を形成する工程を有し、前記鋳型が、鋳型形成用硬化性樹脂が硬化した層からなり前記凹部、並びに該凹部の両端部であるコア形成用硬化性樹脂の進入部及び排出部が設けられ設けられ、かつ、その端部に、すべての進入部及び/又はすべての排出部に連通する共通の空隙部を有する硬化樹脂層と、前記硬化樹脂層を補強しかつコア形成用硬化性樹脂を圧入するための注入口を備えた強化部材とを有する方法である。
【0017】
本発明において用いられる鋳型は2つの部分すなわち、1)鋳型形成用硬化性樹脂が硬化した層からなり、前記凹部、並びに該凹部の両端部であるコア形成用硬化性樹脂の進入部及び排出部が設けられ、かつ、その端部に、すべての進入部及び/又はすべての排出部に連通する共通の空隙部を有する硬化樹脂層と、2)前記硬化樹脂層を補強しかつコア形成用硬化性樹脂を圧入するための注入口を備えた強化部材とを有することを特徴とする。注入口は1つ以上設けられ、2以上設けることにより鋳型内部に均一な加圧状態を作ることができる。
本発明の高分子光導波路の製造方法は前記のごとき強化部材を設けた鋳型を用いるので、鋳型凹部にコア形成用硬化性樹脂を加圧充填(圧入)する際、圧力を大きくしても鋳型が変形したり、鋳型とクラッド用基材との間でずれることがなく、そのため、コア形状の精度を犠牲にすることなく、充填速度を大きくすることができる。
また、鋳型に前記のごとき空隙部を設けたため、各進入部及び/又は各排出部におけるコア形成用硬化性樹脂の注入圧力の均一化及び/又は減圧圧力の均一化が図られ、鋳型各凹部への樹脂の注入が均一化される。
したがって、本発明の製造方法により、コア形状を高精度に維持して導波損失の少ない高分子光導波路を、簡便な方法で、生産性が高く作製することができる。
【0018】
先ず、本発明の方法により高分子光導波路を製造する方法の概略を説明する。図1(A)は、光導波路に対応する凸部12と空隙部形成用凸部(図示せず)が形成された原盤10の上に、鋳型形成用硬化性樹脂の層22aを形成し、次に、鋳型形成用硬化性樹脂が未硬化の状態において、樹脂層22aの上から強化部材24を押圧しつつ載せた状態を示す図である。
次に、この状態で鋳型形成用硬化性樹脂の層22aを硬化させると鋳型形成用硬化性樹脂は硬化樹脂層22となり、強化部材24と接着し一体化する。この一体化したものを原盤10から剥離し、鋳型20とする(図1(B)参照)。鋳型20の硬化層22には、前記凸部12に対応する凹部23、凹部23の一端である進入部(図示せず)及び他端である排出部(図示せず)、さらに鋳型の少なくとも一端に空隙部(図示せず)が形成される。
このようにして作製した鋳型20に、クラッド用基材30を密着させる(図1(C)参照)。次に、コア形成用硬化性樹脂を鋳型の強化部材24に設けた注入口(図示せず)を通し、進入部からコア形成用硬化性樹脂を鋳型凹部に圧入し、排出部から排出させる。図1(D)は、鋳型の凹部に硬化性樹脂を充填した状態を示す。その後硬化性樹脂を硬化させる。
次いで鋳型20を剥離すると、図1(E)に示すように、クラッド基材30の上にコア40が形成される。
さらに、クラッド用基材のコア形成面にクラッド層50を形成することにより、本発明の高分子光導波路60(図1(F)参照)が作製される。
【0019】
次に、本発明を工程順にさらに詳細に説明する。
1)鋳型作製工程
<原盤の作製>
原盤には、高分子光導波路コアに対応する複数の凸部と、鋳型各凹部の進入部及び/又は排出部に連通する共通の空隙部を鋳型に形成するための凸部とが作製される。図2に原盤の一例を概念図で示す。10は原盤、12は高分子光導波路コアに対応する3本の凸部、14は空隙部形成のための凸部を示す。
これらの凸部の作製には、たとえばRIE法、面精度の高い機械加工等を特に制限なく用いることができる。また光導波路に対応する凸部の膜厚を変化させる必要がない場合は、厚膜レジスト(SU−8)をスピンコートした後露光するフォトリソグラフィー法により、簡便に原盤を作製することができる。また、本出願人が先に出願した電着法又は光電着法により高分子光導波路を作製する方法(特願2002−10240号)も、原盤を作製するのに適用できる。原盤に形成される光導波路に対応する凸部の大きさは30〜200μm程度であるが、高分子光導波路の用途等に応じて適宜決められる。例えばシングルモード用の光導波路の場合には、10μm角程度のコアを、マルチモード用の光導波路の場合には、50〜100μm角程度のコアが一般的に用いられるが、用途によっては数百μm程度と更に大きなコア部を持つ光導波路も利用される。
また、高分子光導波路コアに対応する凸部だけを最初に作製し、その後空隙部作製用凸部を、型を用いてモールドするなどの方法も採用しうる。
【0020】
<鋳型の作製>
鋳型の空隙部は鋳型形成用硬化性樹脂の硬化層に設けられ、コア形成用硬化性樹脂が進入する側及び/又は排出する側に設けられるが、進入側に設けることが好ましく、さらには進入側及び排出側の両方に設けることが好ましい。
鋳型硬化樹脂層の進入側に空隙部を設けると、鋳型強化部材の注入口から注入されたコア形成用硬化性樹脂は、一旦、ここに充満された後、各進入部から凹部に充填される。このような空隙部を設けず、鋳型硬化樹脂層の端部にコア形成用硬化性樹脂の複数の進入部が顕れている場合には、進入部に直接注入圧力が作用し、各進入部に均一な圧力をかけることが難しく、その結果、各凹部に同様な速度で均一に樹脂を充填することが困難となる。しかし、鋳型硬化樹脂層の進入部側に共通の空隙を設けると、空隙断面積は進入部の断面積よりはるかに大きいため、強化部材の注入口から圧入された樹脂は、空隙部にまず流入し、その後各凹部に樹脂が進入する。即ち、各進入部に対する注入圧力が緩和され、均一化される。
また、鋳型硬化樹脂層の、すべての凹部排出部に連通する共通の空隙部を設けると、後述の減圧口を通して鋳型内部を減圧する場合にも、鋳型凹部の端部である各排出部における吸引負圧の緩和と均一化が得られ、鋳型各凹部への樹脂の注入が均一化される。
空隙部の断面積は、すべての凹部の総断面積の5〜20000倍であることが好ましく、より好ましくは500〜2500倍である。(ここで、「すべての凹部の総断面積」とは、空隙部を通じて連通する各凹部の端部の面積の総和を意味する。)
【0021】
鋳型を作製するには、高分子光導波路コアに対応する凸部及び空隙部作製のための凸部が形成された原盤に、後述の鋳型形成用硬化性樹脂の層を、塗布、注型などにより形成した後、未硬化の状態で樹脂層の上から強化部材を押圧しつつ載せ、次いで、樹脂を硬化させる。樹脂は硬化と同時に強化部材に固着する。この状態になったら、強化部材とともに硬化樹脂層を原盤から剥離して鋳型を得る。
【0022】
図3に本発明の鋳型を一例を示す。図3(A)は鋳型の斜視図を、図3(B)はA−A断面図を表わす。20は鋳型を、22は鋳型形成用硬化性樹脂が硬化した硬化樹脂層を、24は硬化樹脂層を補強する強化部材である。硬化樹脂層22には前記凹部23と、空隙部(図3(C)参照)が形成されている。また、図3(C)は鋳型硬化樹脂層の、コア形成用硬化性樹脂が進入する側の端面が顕れるようにした断面図であり、21がすべての進入部に連通する空隙部である。
強化部材24にはコア形成用硬化性樹脂を圧入するための注入口25a及び25bが設けられ、コア形成用硬化性樹脂を注入するための注入管26a及び26bが連結される。注入口は1個以上設けられるが、加圧状態が各凹部の進入部(充填口)において均一になるように、複数設けることが好ましい。
【0023】
また、コア形成用硬化性樹脂として紫外線硬化性樹脂を用いる場合には、強化部材24の、前記硬化樹脂層22の凹部23に対応する部分は光透過性部材24a(例えばガラス板、石英板、硬質プラスチック板)で作られ、露光用開口部となる。コア形成用硬化性樹脂として熱硬化性樹脂を用いる場合は、この部分を光透過性にする必要はない。
また、コア形成用硬化性樹脂として紫外線硬化性樹脂を用いる場合、露光用開口部に光透過性部材を用いる代わりに、図4に示すように、強化部材24を、硬化樹脂層22の凹部23に対応する部分が切り欠かれた形のものにすることも可能である。
【0024】
さらに、図5に、鋳型のコア形成用硬化性樹脂の進入側及び排出側に空隙部を設け、かつ、減圧口をも設けた鋳型を示す。図5(A)は鋳型の斜視図を、図5(B)は、鋳型長手方向において凹部及び空隙部が顕れるように切断した断面図である。なお、説明のために同一図中に、注入口25bと減圧口27bを仮想線で示している。
図5(A)中、25a及び25bは注入口、26a及び26bは注入管、27a及び27bは減圧口、28a及び28bをは減圧排気管をそれぞれ示す。鋳型内部を減圧状態にすることにより、一層充填速度を上げることができる。この際、強化部材24により鋳型が補強されているので、コアの成形精度が落ちることはない。減圧口も1個以上設け、鋳型凹部の各排出部において減圧状態が偏らないように複数設けることが好ましい。
また、図5(B)中、22は鋳型の硬化樹脂層、21は空隙部、23は凹部をそれぞれ示し、23a及び23bは凹部の両末端部である進入部及び排出部である。
硬化樹脂層の厚さは、10μm〜30mm程度であることが好ましい。また、強化部材は、金属材料、セラミック材料、硬質プラスチック材料等で作られ、その肉厚は1mm〜40mm程度が適切である。
【0025】
<鋳型形成用硬化性樹脂>
鋳型形成用硬化性樹脂としては、その硬化物が原盤から容易に剥離することができること、鋳型(繰り返し用いる)として一定以上の機械的強度・寸法安定性を有することが好ましい。
鋳型形成用硬化性樹脂は、原盤に形成された個々の光導波路を正確に写し取らなければならないので、ある限度以下の粘度、たとえば、2000〜7000mPa・s程度を有することが好ましい。また、粘度調節のために溶剤を、溶剤の悪影響がない程度に加えることができる。(なお本発明において用いる鋳型形成用硬化性樹脂としては、硬化性シリコーンゴムオリゴマーのように、硬化後、弾性を有するゴム状体となるものも含まれる。)
【0026】
前記鋳型形成用硬化性樹脂としては、硬化後、シリコーンゴム又はシリコーン樹脂となる硬化性シリコーンゴムオリゴマー又はモノマー、硬化性シリコーン樹脂オリゴマー又はモノマー(熱硬化型、室温硬化型、)が、剥離性、機械強度・寸法安定性の観点から、また、クラッド用基材との密着性の良さから好ましく用いられる。特にシリコーンゴムはクラッド用基材との密着性と剥離性という相反した特性に優れ、ナノ構造を写し取る能力を持ち、シリコーンゴムとクラッド用基材とを密着させると液体の進入させ防ぐことができる。このようなシリコーンゴムを用いた鋳型は高精度に原盤を写し取り、クラッド用基材に良く密着するため、鋳型とクラッド用基材の間の凹部のみに効率よくコア形成用樹脂を充填することが可能となり、さらにクラッド用基材と鋳型の剥離も容易である。したがって、この鋳型からは高精度に形状を維持した高分子光導波路を、極めて簡便に作製することができる。
硬化性シリコーンゴムオリゴマー又はモノマー及び硬化性シリコーン樹脂オリゴマー又はモノマーとしては、メチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含むものが好ましく、特に硬化性ジメチルシロキサンゴムオリゴマー(PDMS)が密着性及び剥離性の点から好ましい。
【0027】
また、前記原盤にはあらかじめ離型剤塗布などの離型処理を行なって鋳型との剥離を促進させることが望ましい。
鋳型の硬化樹脂層の表面エネルギーは、10dyn/cm〜30dyn/cm、好ましくは15dyn/cm〜24dyn/cmの範囲にあることが、クラッド用基材との密着性の点からみて好ましい。
鋳型の硬化樹脂層のシェア(Share)ゴム硬度は、15〜80、好ましくは20〜60であることが、型取り性能や剥離性の点からみて好ましい。
鋳型の硬化樹脂層の表面粗さ(二乗平均粗さ(RMS))は、0.5μm以下、好ましくは0.1μm以下にすることが、さらには0.5nm〜0.05μmの範囲にあることが、型取り性能の点からみて好ましい。
さらに、コア形成用硬化性樹脂が紫外線硬化性樹脂の場合は、鋳型(強化部材が開口部を有する場合は硬化樹脂層を意味し、開口部をもたない場合は硬化樹脂層と強化部材の凹部に対応する部分の両者を含める)は光透過性であることが必要で、350nm〜700nmの波長領域における光透過率が80%以上であることが好ましい。
【0028】
2)前記鋳型にクラッド用基材を密着させる工程
本発明において用いるクラッド用基材としては、ガラス基材、セラミック基材、プラスチック基材等のものが制限なく用いられる。また屈折率制御のために前記基材に樹脂コートしたものも用いられる。クラッド用基材の屈折率は、1.55より小さく、1.50より小さいものがより好ましい。特に、コア材の屈折率より0.05以上小さいことが必要である。また、クラッド基材としては、鋳型との密着性に優れ、両者を密着させた場合、鋳型凹部以外に空隙が生じないものが好ましい。プラスチック基材の中でも、フレキシブルなフィルム基材を用いた高分子光導波路は、カプラー、ボード間の光配線や光分波器等としても使用でき、その用途に応じて、フィルム基材の屈折率、光透過性等の光学的特性、機械的強度、耐熱性、鋳型との密着性、フレキシビリティー(可撓性)等を考慮して選択される。前記フィルムとしては脂環式アクリルフイルム、脂環式オレフィンフイルム、三酢酸セルロースフイルム、含フッ素樹脂フイルム等が挙げられる。フィルム基材の屈折率は、コアとの屈折率差を確保するため、1.55より小さく、好ましくは1.53より小さくすることが望ましい。
【0029】
前記脂環式アクリルフイルムとしてはトリシクロデカン等の脂肪族環状炭化水素をエステル置換基に導入した、OZ−1000、OZ−1100等が用いられる。
また、脂環式オレフィンフイルムとしては主鎖にノルボルネン構造を有するもの、及び主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基(アルキル基としては炭素数1から6のものやシクロアルキル基)等の極性基をもつものが挙げられる。中でも前記のごとき主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂は、低屈折率(屈折率が1.50近辺であり、コア・クラッドの屈折率の差を確保できる)及び高い光透過性等の優れた光学的特性を有し、鋳型との密着性に優れ、さらに耐熱性に優れているので特に本発明の高分子光導波路の作製に適している。
また、前記フィルム基材の厚さはフレキシビリティーと剛性や取り扱いの容易さ等を考慮して適切に選ばれ、一般的には0.1mm〜0.5mm程度が好ましい。
【0030】
この工程において、鋳型とクラッド用基材を確実に密着させ、次のコア形成用硬化性樹脂の圧入工程において鋳型の一端を加圧、又はさらに他端を減圧した場合でも両者がわずかでもずれないようにすることが望ましい。そのため、鋳型の強化部材とクラッド用基材とをネジで固定したり、クラッド用基材を保持部材に保持させたり、クラッド基材が保持された保持部材と鋳型の強化部材を固定したりして、鋳型とクラッド用基材を安定的に密着させることが好ましい。特にクラッド用基材としてフレキシブルフィルムを用いる場合、鋳型とフィルムを密着させてもコア形成用硬化性樹脂を加圧注入するとフィルム表面に軽い波打状態を発生する場合があるので、前記のごとき手段を採用することが好ましい。
図6(A)は鋳型の4隅を固定ネジ60によりクラッド用基材30に固定する例を示し、図6(B)は図6(A)のA−A断面図を示す。
また、図7はクラッド用基材の保持部材62によりクラッド用基材を保持する例を示し、図7(B)は図7(A)のA−A断面図を示す。
さらに図8に示すように、鋳型20と保持部材62に固定用の嵌合部29と63を設け、鋳型を保持部材に嵌め込みで固定する方法も挙げられる。
【0031】
3)クラッド用基材を密着させた鋳型の注入口からコア形成用硬化性樹脂を圧入する工程
この工程においては、紫外線硬化性樹脂及び熱硬化性樹脂等のコア形成用硬化性樹脂を、鋳型の強化部材に設けられた注入口から鋳型内部の空間に注入する。硬化樹脂層の進入部側に空隙部が形成されている場合には、注入された樹脂は空隙部に流入し、さらに、硬化樹脂層に形成された凹部の一端である進入部から凹部全体に圧入し、凹部の他端である排出部からコア形成用硬化性樹脂を排出する。この際、強化部材に減圧口を設け、圧入と同期して減圧排気するとさらに充填速度が向上する。また、樹脂の圧入の圧力を段階的に増加させ、これと同期して段階的に圧力を減少させながら減圧排気を行うことが好ましい。
用いるコア形成用硬化性樹脂は凹部内への充填が容易なように十分低粘度である他、前記硬化性樹脂の硬化後の屈折率はクラッドを構成する高分子材料よりも高い(クラッドとの差が0.02以上)ことが必要である。このほかに、原盤に形成された凸部が有する元の形状を高精度に再現するため、前記硬化性樹脂の硬化前後の体積変化が小さいことが必要である。例えば、体積が減少すると導波損失の原因になる。したがって、前記硬化性樹脂は、体積変化ができるだけ小さいものが望ましく、10%以下、好ましくは6%以下であるのが望ましい。溶剤を用いて低粘度化することは、硬化前後の体積変化が大きいので避ける方が好ましい。
【0032】
したがって、前記硬化性樹脂の粘度は、10mPa・s〜2000mPa・s、望ましくは20mPa・s〜1000mPa・s、更に好ましくは30mPa・s〜500mPa・sにするのが好ましい。
また、前記硬化性樹脂としてエポキシ系、ポリイミド系、アクリル系の紫外線硬化性樹脂が好ましく用いられる。
コアとなる硬化性樹脂の硬化物の屈折率は、クラッドとなる前記フィルム基材(以下の5)の工程におけるクラッド層を含む)より大きいことが必要で、1.53以上、好ましくは1.55以上である。クラッド(以下の5)の工程におけるクラッド層を含む)とコアの屈折率の差は、0.02以上、好ましくは0.05以上である
【0033】
4)充填したコア形成用硬化性樹脂を硬化させ、鋳型をクラッド用基材から剥離する工程
充填したコア形成用硬化性樹脂、例えば紫外線硬化性樹脂又は熱硬化性樹脂を硬化させる。紫外線硬化性樹脂を硬化させるには、紫外線ランプ、紫外線LED、UV照射装置等が用いられる。また、熱硬化性樹脂を硬化させるには、オーブン中での加熱等が用いられる。
また、前記1)〜3)の工程で用いる鋳型をそのままクラッド層に用いることも可能で、この場合は、鋳型を剥離する必要はなくそのままクラッド層として利用する。
【0034】
5)コアが形成されたクラッド用基材の上にクラッド層を形成する工程
コアが形成されたクラッド用基材の上にクラッド層を形成するが、クラッド層としてはフィルム(たとえば前記2)の工程で用いたようなフィルム基材が同様に用いられる)、硬化性樹脂(紫外線硬化性樹脂、熱硬化性樹脂)を塗布して硬化させた層、高分子材料の溶剤溶液を塗布して乾燥して得られる高分子膜等が挙げられる。クラッド層としてフィルムを用いる場合は、接着剤を用いて貼り合わされるが、その際、接着剤の屈折率がフィルムの屈折率と近いことが望ましい。クラッド層の屈折率は、コアとの屈折率差を確保するため、1.55より小さく、好ましくは1.53より小さくすることが望ましい。また、クラッド層の屈折率を前記フィルム基材の屈折率と同じにすることが、光の閉じ込めの点からみて好ましい。さらに、クラッド用基材とクラッド層の屈折率の差が0.1以内であることが光の導波損失を抑制する効果の点からみて好ましい。
【0035】
本発明の高分子光導波路の製造方法において、特に、鋳型形成用硬化性樹脂として熱硬化性のシリコーンゴムオリゴマー又はモノマー、中でも熱硬化性のジメチルシロキサンゴムオリゴマー又はモノマーを用い、フィルム基材として主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂を用いる組み合わせは、両者の密着性が特に高く、また、凹部構造の断面積が極めて小さくても(例えば10×10μmの矩形)毛細管現象により素早く凹部に硬化性樹脂を充填することができる。
【0036】
【実施例】
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
ガラス基板に紫外線硬化型厚膜レジスト液(マイクロケミカル(株)製、SU−8)をスピンコート法で塗布した後、80℃加熱オーブンでプリベークし、フォトマスクを通して高圧水銀灯により露光した後、現像工程を経て、断面が正方形の微細凸部(幅:50μm、高さ:50μm、長さ:50mm)を5本作製した。次に、これを120℃でポストベークした。このようにして作製した凸部の端部に、モールドにより、高さ4mm、幅(凸部に直交する方向)20mm、基板長手方向長さ15mmの、断面が長方形の凸部を形成し、原盤とした。
次に、図3(A)に示すようなアルミ製の強化部材を作製した。露光用開口部24aは石英製とした。
前記原盤に離型剤を塗布した後、この上に熱硬化性シリコーンゴムオリゴマー(ダウコウニングアジア社製:SYLGARD184、ジメチルポリシロキサン)を、凸部の長手方向の一端が一部露出するように、かつ、他端にある空隙部作製用凸部の端までが覆われるように、塗布した。この上から前記強化部材を押圧し固定した。その後、120℃で30分間加熱して硬化させ、シリコンゴムと強化部材を一体化させた。硬化シリコーンゴム層の厚さは10mmであった。次いでこれを原盤から剥離し鋳型を得た。鋳型のシリコンゴム層には、50μm角の凹部と、コア形成用硬化性樹脂の進入部と排出部、空隙部とが形成された。
この強化シリコンゴム鋳型と膜厚188μmのアートンフイルム(JSR(株)製、屈折率1.510)を加圧密着させた。また、鋳型強化部材の注入口にコア形成用硬化性樹脂の注入管を連結した。注入管から粘度が1300mPa・sの紫外線硬化性樹脂(JSR社製:PJ3001)を圧力注入した。およそ120秒後に凹部全体に樹脂が充填された。鋳型から注入管をはずし、鋳型の露光用開口部から50mW/cmのUV光を10分間照射してコア形成用硬化性樹脂を硬化させた。
鋳型を剥離すると、アートンフイルム上に屈折率1.51のコアが形成された。
さらに、アートンフイルムのコア形成面に、硬化後の屈折率がアートンフイルムと同じ1.510である紫外線硬化性樹脂(JSR(株)製)を全面に塗布した後、50mW/cmのUV光を10分間照射して紫外線硬化させ(硬化後の膜厚10μm)た。フレキシブルな高分子光導波路が得られた。この高分子光導波路の損失は、0.33dB/cmであった。5本の高分子光導波路の導波光損失は、0.338±0.008dB/cmの範囲であった。
【0037】
実施例2
ガラス基板に、実施例1と同様にして、10本の凸部(幅:100μm、高さ:100μm、長さ:100mm)と、凸部の両端部に、高さ2mm、幅(凸部に直交する方向)10mm、基板長手方向長さ20mmの、断面が長方形の凸部を形成し、原盤とした。
次に、図5に示すようなアルミ製の強化部材を作製した。露光用開口部24aはガラス製とした。
実施例1と同様にして、前記原盤から鋳型を作製した。硬化シリコーンゴム層の厚さは6mmであった。次いでこれを原盤から剥離し鋳型を得た。鋳型のシリコンゴム層には、100μm角の凹部と、コア形成用硬化性樹脂の進入部と排出部、空隙部とが形成された。
この強化シリコーンゴム鋳型と膜厚188μmのアートンフイルム(JSR(株)製、屈折率1.510)を加圧密着させた。また、鋳型強化部材の注入口にコア形成用硬化性樹脂の注入管を連結し、減圧口に減圧排気管を連結した。注入管から粘度が1300mPa・sの紫外線硬化性樹脂(JSR社製:PJ3001)を圧力注入するとともに、これと同期して減圧口から減圧排気した。およそ110秒後に凹部全体に樹脂が充填された。鋳型から注入管、減圧排気管をはずし、鋳型の露光用開口部から75mW/cmのUV光を10分間照射してコア形成用硬化性樹脂を硬化させた。
鋳型を剥離すると、アートンフイルム上に屈折率1.570のコアが形成された。
さらに、アートンフイルムのコア形成面に、硬化後の屈折率がアートンフイルムと同じ1.510である熱硬化性樹脂(JSR(株)製)を全面に塗布した後、110℃、6分熱処理して硬化させた(硬化後の膜厚10μm)。フレキシブルな高分子光導波路が得られた。この高分子光導波路の最良の光損失は、0.45dB/cmであった。10本の高分子光導波路の導波光損失は、0.458±0.008dB/cmの範囲であり、ばらつきの少ない特性であった。
【0038】
実施例3
ガラス基板に、実施例1と同様にして、15本の凸部(幅:50μm、高さ:50μm、長さ:50mm)と、凸部の両端部に、高さ2mm、幅(凸部に直交する方向)15mm、基板長手方向長さ20mmの、断面が長方形の凸部を形成し、原盤とした。
次に、図5に示すようなステンレス製の強化部材を作製した。露光用開口部24aは石英製とした。
実施例1と同様にして、前記原盤から鋳型を作製した。硬化シリコーンゴム層の厚さは5mmであった。次いでこれを原盤から剥離し鋳型を得た。鋳型のシリコンゴム層には、50μm角の凹部と、コア形成用硬化性樹脂の進入部と排出部、空隙部とが形成された。
この強化シリコーンゴム鋳型と膜厚188μmのアートンフイルム(JSR(株)製、屈折率1.510)を加圧密着させた。また、鋳型強化部材の注入口にコア形成用硬化性樹脂の注入管を連結し、減圧口に減圧排気管を連結した。注入管から粘度が1300mPa・sの紫外線硬化性樹脂(JSR(株)製:PJ3001)を圧力注入するとともに、これと同期して減圧口から減圧排気した。およそ90秒後に凹部全体に樹脂が充填された。鋳型から注入管、減圧排気管をはずし、鋳型の露光用開口部から50mW/cmのUV光を10分間照射してコア形成用硬化性樹脂を硬化させた。
鋳型を剥離すると、アートンフイルム上に屈折率1.591のコアが形成された。
さらに、アートンフイルムのコア形成面に、硬化後の屈折率がアートンフイルムと同じ1.510である紫外線硬化性樹脂接着剤(JSR(株)製)を全面に塗布した後、この上に厚さが120μmのアートンフイルムを載せ、50mW/cmのUV光を15分間照射して硬化させた。フレキシブルなフィルムサンドイッチ型の高分子光導波路が得られた。この高分子光導波路の損失は、0.45dB/cmであった。15本の高分子光導波路の導波光損失は、0.35±0.009dB/cmの範囲内にすべて入っていた。
【0039】
比較例1
実施例1において、原盤に空隙部形成用凸部を作製しない他は、実施例1と同様にして高分子光導波路を作製した。導波損失は、最良値で0.43dB/cmであった。また、鋳型に形成された5本の凹部のうち2本は注入不良であり、導波損失を測定することはできなかった。
【0040】
比較例2
Si基板に厚膜レジスト(マイクロケミカル(株)製、SU−8)をスピンコート法で塗布した後、80℃でプリベークし、フォトマスクを通して露光し、現像して、断面が正方形の凸部(幅:50μm、高さ:50μm、長さ:150mm)を5本形成した。次に、これを120℃でポストベークして、光導波路コア作製用原盤を作製した。
次に、この原盤に離型剤を塗布した後、熱硬化性シリコンゴムオリゴマー(ダウコウニングアジア社製:SYLGARD184、ジメチルポリシロキサン)を流し込み、120℃で30分間加熱して固化させた後、剥離して、前記断面が正方形の凸部に対応する凹部を持った型(鋳型の厚さ:3mm)を作製した。さらに、前記型の両端を切断して下記紫外線硬化性樹脂の入出力部を作り鋳型とした。
この鋳型と、鋳型よりひとまわり大きいガラス基板(厚さ500μm)を密着させた。次に、鋳型の一端にある入出力部に、粘度が1300mPa・sの紫外線硬化性樹脂(JSR社製:屈折率1.5010)を数滴落としたところ、毛細管現象により前記凹部に紫外線硬化性樹脂が充填された。50mm充填するのに24時間を要した。次いで、50mW/cmのUV光をPDMS鋳型を透して5分間照射して紫外線硬化させた。鋳型をアートンフイルムから剥離したところ、アートンフイルム上に前記原盤凸部と同じ形状のコアが形成された。コアの屈折率は1.591であった。
次に、ガラス基板のコア形成面に、硬化後の屈折率がガラス基板と同じ1.510である紫外線硬化性樹脂(JSR(株)製)を全面に塗布した後、50mW/cmのUV光を10分間照射して紫外線硬化させ(硬化後の膜厚10μm)た。ガラス基板上に高分子光導波路が得られた。この高分子光導波路の損失は、1.98dB/cmであった。また、4本の高分子光導波路コアは導波せず測定不能であった。
【0041】
【発明の効果】
本発明の高分子光導波路の製造方法は前記のごとき強化部材を設けた鋳型を用いるので、鋳型凹部にコア形成用硬化性樹脂を加圧充填(圧入)する際、圧力を大きくしても鋳型が変形したり、鋳型とクラッド用基材との間でずれることがなく、そのため、コア形状の精度を犠牲にすることなく、充填速度を大きくすることができる。
また、鋳型に前記のごとき空隙部を設けたため、各進入部及び/又は各排出部におけるコア形成用硬化性樹脂の注入圧力の均一化及び/又は減圧圧力の均一化が図られ、鋳型各凹部への樹脂の注入が均一化される。
したがって、本発明の製造方法により、コア形状を高精度に維持して導波損失の少ない高分子光導波路を、簡便な方法で、生産性が高く作製することができる。
【図面の簡単な説明】
【図1】本発明の高分子光導波路の製造方法を示す工程概略図である。
【図2】本発明で用いる原盤の一例を示す斜視図である。
【図3】本発明で用いる鋳型の一例を示す概念図で、図3(A)は斜視図を、図3(B)はA−A断面図を、図3(C)は硬化樹脂層の空隙部が顕れるように切断した断面図を示す。
【図4】本発明で用いる鋳型の他の例を示す概念図である。
【図5】本発明で用いる鋳型の他の例を示す概念図で、図5(A)は斜視図を、図5(B)は硬化樹脂層の凹部及び空隙部が顕れるように長手方向に切断した断面図を示す。
【図6】本発明の鋳型を固定ネジを用いてクラッド用基材に密着固定させた状態を示す概念図である。
【図7】クラッド用基材を保持部材により保持させ鋳型と密着させた状態を示す概念図である。
【図8】クラッド用基材を鋳型に密着固定させる他の態様を示す概念図である。
【符号の説明】
10 原盤
12 高分子光導波路コアに対応する凸部
14 空隙部形成のための凸部
20 鋳型
21 空隙部
22 樹脂硬化層
23 凹部
23a 進入部
23b 排出部
24 強化部材
25a、25b 注入口
27a、27b 減圧口
30 クラッド用基材
40 コア
50 クラッド層
62 保持部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a polymer optical waveguide, particularly a flexible polymer optical waveguide.
[0002]
[Prior art]
As a method for producing a polymer waveguide, (1) a method of impregnating a film with a monomer, selectively exposing a core portion to change a refractive index, and bonding a film (selective polymerization method), and (2) a core layer And a method of forming a clad portion by using reactive ion etching after coating the clad layer (RIE method). (3) Exposure and development using an ultraviolet curable resin obtained by adding a photosensitive material to a polymer material A method using a photolithography method (direct exposure method), (4) a method using injection molding, (5) a method in which after applying a core layer and a cladding layer, exposing the core portion to change the refractive index of the core portion ( Photo bleaching method) has been proposed.
However, the selective polymerization method (1) has a problem in laminating the films, the methods (2) and (3) use photolithography, which increases the cost, and the method (4) requires the core obtained. There is a problem with the accuracy of the diameter. Further, the method (5) has a problem that a sufficient refractive index difference between the core layer and the clad layer cannot be obtained.
At present, the only practical methods excellent in performance are the methods (2) and (3), but there is a problem of cost as described above. Further, none of the methods (1) to (5) is applicable to forming a polymer waveguide on a large-area flexible plastic substrate.
[0003]
As a method of manufacturing a polymer optical waveguide, a pattern substrate (cladding) on which a pattern of grooves serving as capillaries is formed is filled with a polymer precursor material for a core, and then cured to form a core layer. It is known that a planar substrate (cladding) is bonded to the substrate. In this method, a polymer precursor material is thinly filled and cured not only in the capillary groove but also between the pattern substrate and the planar substrate. As a result of forming a thin layer having the same composition as the core layer, there is a problem that light leaks through the thin layer.
As one of the methods to solve this problem, David Hart fixes a pattern substrate on which a pattern of grooves serving as capillaries is formed to a flat substrate with a jig for clamping, and furthermore, a contact portion between the pattern substrate and the flat substrate. Was sealed with a resin or the like, and then decompressed, and a monomer (diallyl isophthalate) solution was filled in a capillary to produce a polymer optical waveguide (see Patent Document 1).
In this method, instead of using a polymer precursor material as a core forming resin material, the filling material is reduced in viscosity using a monomer instead of using a polymer, and the capillary is filled using a capillary phenomenon so that the monomer is not filled except for the capillary. How to
However, in this method, since a monomer is used as a material for forming the core, there is a problem that the volume shrinkage when the monomer is polymerized into a polymer is large, and the transmission loss of the polymer optical waveguide is increased.
In addition, this method is a complicated method such as fixing the pattern substrate and the flat substrate with a clamp, or additionally sealing the contact portion with a resin, and is not suitable for mass production, and as a result, is expected to reduce cost. Can not. Further, it cannot be applied to the production of a polymer optical waveguide using a film having a thickness on the order of mm or 1 mm or less as a clad.
[0004]
Recently, George M. of Harvard University. Whitesides et al. Have proposed a method called capillary micromolding as one of soft lithography as a new technology for producing nanostructures. In this method, a master substrate is made using photolithography, and the nanostructure of the master substrate is transferred to a PDMS mold using the adhesiveness of polydimethylsiloxane (PDMS) and the easy peeling property. This is a method of pouring and solidifying a liquid polymer by using a technique described in Non-Patent Document 1 below.
[0005]
Or George M. of Bird University. A patent on capillary micromolding has been filed by Kim Enoch et al. Of the Whitesides group (see Patent Document 2).
However, even if the manufacturing method described in this patent is applied to the production of a polymer optical waveguide, the core portion of the optical waveguide has a small cross-sectional area, so that it takes time to form the core portion and is not suitable for mass production. In addition, there is a disadvantage that when the monomer solution is polymerized into a polymer, the volume changes and the shape of the core changes, and the transmission loss increases.
[0006]
In addition, B.I. Michel et al. Have proposed a high-resolution lithography technology using PDMS, and have reported that a resolution of several tens of nm can be obtained by this technology. A detailed commentary article is described in Non-Patent Document 2 below. As described above, the soft lithography technology using PDMS and the capillary micromolding method are the technologies that have recently attracted attention mainly in the United States as nanotechnology.
[0007]
However, when an optical waveguide is manufactured by using the micromold method as described above, a filling liquid (such as a monomer) is used in order to reduce the volumetric shrinkage at the time of curing (therefore, reducing transmission loss) and to facilitate filling. Cannot be made compatible with each other. Therefore, if priority is given to reducing the transmission loss, the viscosity of the filling liquid cannot be reduced below a certain limit, the filling speed becomes slow, and mass production cannot be expected. The micromolding method is based on the premise that a glass or silicon substrate is used as the substrate, and does not consider using a flexible film substrate.
[0008]
Based on such a request, the present inventors have developed a method for manufacturing a polymer optical waveguide extremely easily using a flexible film base as a cladding film. (Japanese Patent Application No. 2002-187473)
This method includes: 1) forming a layer of a resin material for forming a mold on a master on which a convex portion corresponding to an optical waveguide is formed, peeling and removing a mold, and then forming a concave portion corresponding to the convex portion formed on the mold; The mold is prepared by cutting both ends of the mold so that the film is exposed. 2) The clad film base having good adhesion to the mold is brought into close contact with the mold, and 3) The clad film base is brought into close contact with the mold. One end of the mold is brought into contact with an ultraviolet-curing resin or a thermosetting resin serving as a core, and the ultraviolet-curing resin or the thermosetting resin enters the concave portion of the mold by capillary action. Curing the thermosetting resin or thermosetting resin, peeling off the mold from the clad film base, and 5) forming a clad layer on the clad film base on which the core is formed. . According to this method, it has become possible to form a polymer optical waveguide on a flexible clad film base material, which has been conventionally difficult to manufacture, by a simple method. Further, in this method, in order to increase the speed of injecting the curable resin for the core into the concave portion of the mold, it is considered to reduce the pressure of the system or to inject the curable resin under pressure. However, when the pressure of the system is reduced or the curable resin is injected, the mold is deformed, and as a result, a polymer optical waveguide having desired characteristics may not be obtained.
[0009]
[Patent Document 1]
Patent No. 3151364
[Patent Document 2]
US Pat. No. 6,355,198
[Non-patent document 1]
SCIENTIFIC AMERICA Septmber 2001 (Nikkei Science December 2001)
[Non-patent document 2]
IBM J.M. REV. & DEV. VOL. 45 NO. 5 SEPTEMBER 2001
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and has as its object a simple method, high productivity, a high-precision polymer optical waveguide that maintains the core shape with high precision and has a small waveguide loss. It is to provide a method for manufacturing the.
[0011]
[Means for Solving the Problems]
The above object is achieved by providing the following method for producing a polymer optical waveguide.
(1) 1) Using a master on which a convex portion corresponding to an optical waveguide is formed, a concave portion corresponding to the convex portion, and an entry portion and a discharge portion of the core-forming curable resin which are both end portions of the concave portion. Producing a mold having
2) a step of bringing a clad substrate into close contact with the mold;
3) filling the mold recess with a core-forming curable resin from the entrance of the mold;
4) curing the filled core-forming curable resin and releasing the mold from the cladding substrate;
5) forming a clad layer on the clad substrate on which the core is formed;
A method for producing a polymer optical waveguide having
The mold is formed of a layer obtained by curing a mold-forming curable resin, and is provided with the concave portion, the entrance portion, and the discharge portion, and has an end portion communicating with all the entrance portions and / or all the discharge portions. The production of a polymer optical waveguide, comprising: a cured resin layer having a void portion, and a reinforcing member provided with an inlet for reinforcing the cured resin layer and for press-fitting the core-forming curable resin. Method.
[0012]
(2) The method for producing a polymer optical waveguide according to (1), wherein a cross-sectional area of the void is 5 to 20,000 times a total cross-sectional area of all the concave portions.
(3) The method for producing a polymer optical waveguide according to (1), wherein the cured resin layer of the mold is a layer obtained by curing a curable silicone rubber oligomer.
(4) The method for manufacturing a polymer optical waveguide according to (1), wherein the thickness of the cured resin layer is 10 μm to 50 mm.
(5) The method for manufacturing a polymer optical waveguide according to (1), wherein the reinforcing member is made of a metal material or a ceramic material.
(6) The method for manufacturing a polymer optical waveguide according to (1), wherein the thickness of the reinforcing member is 1 mm to 40 mm.
[0013]
(7) The method for producing a polymer optical waveguide according to (1), wherein the reinforcing member of the mold further has a decompression port.
(8) The method for manufacturing a polymer optical waveguide according to (1), wherein a portion of the reinforcing member corresponding to the concave portion is made of a light transmitting material.
(9) The method for producing a polymer optical waveguide according to (1), wherein the reinforcing member has an opening at a portion corresponding to the recess.
(10) In the step of 1), after the mold forms a layer of the mold-forming curable resin on the master, places the reinforcing member on this layer, then cures, and then peels the master. The method for producing a polymer optical waveguide according to the above (1), wherein the method is produced.
[0014]
(11) The method for producing a polymer optical waveguide according to (1), wherein the clad substrate is a clad film substrate having good adhesion to a mold.
(12) The method for producing a polymer optical waveguide according to (11), wherein the clad film base is an alicyclic olefin resin film.
(13) The method for producing a polymer optical waveguide according to (1), wherein in the step (2), the clad substrate and the reinforcing member of the mold are fixed.
(14) The method for producing a polymer optical waveguide according to (1), wherein the cladding substrate is placed on the holding member in the step (2).
(15) The method for producing a polymer optical waveguide according to (1), wherein in the step (2), the reinforcing member of the mold and the holding member holding the clad base material are fixed.
[0015]
(16) In the step (3), the curable resin for forming a core is press-fitted from the injection port of the reinforcing member, and the area near the discharge portion of the mold is evacuated and evacuated from the pressure reduction port. Of manufacturing a polymer optical waveguide.
(17) In the step (3), the pressure is reduced and exhausted stepwise in synchronization with the stepwise increase of the pressure for press-fitting the core-forming curable resin. A method for manufacturing a polymer optical waveguide.
(18) The method for producing a polymer optical waveguide according to (1), wherein the curable resin for forming a core is an ultraviolet curable resin or a thermosetting resin.
(19) The method for producing a polymer optical waveguide according to (1), wherein the surface energy of the layer obtained by curing the curable resin for forming a mold is from 10 dyn / cm to 30 dyn / cm.
(20) The method for producing a polymer optical waveguide according to (1), wherein the layer obtained by curing the curable resin for forming a mold has a shear rubber hardness of 15 to 80.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for manufacturing a polymer optical waveguide according to the present invention includes the following steps: 1) using a master on which a convex portion corresponding to an optical waveguide is formed, forming a concave portion corresponding to the convex portion, and a curable core for forming both ends of the concave portion. A step of preparing a mold having a resin entrance and a discharge part; 2) a step of adhering a cladding substrate to the mold; and 3) a core-forming curable resin from the core-forming curable resin entrance of the mold. 4) Curing the filled core-forming curable resin and releasing the mold from the clad substrate 5) Filling the clad substrate with the core formed thereon with a clad layer Wherein the mold is formed of a layer formed by curing a mold-forming curable resin, and the concave portion is provided, and an ingress portion and a discharge portion of the core-forming curable resin which are both ends of the concave portion are provided. Provided and at its end all A cured resin layer having a common void portion communicating with the ingress portion and / or all the discharge portions, and a reinforcing member provided with an inlet for reinforcing the cured resin layer and for press-fitting the core-forming curable resin. It is a method having.
[0017]
The mold used in the present invention is composed of two parts: 1) a layer formed by curing the curable resin for forming a mold, the concave portion, and an entrance portion and a discharge portion of the curable resin for forming a core, which are both ends of the concave portion. A cured resin layer having at its end a common void portion communicating with all of the ingress portions and / or all of the discharge portions, and 2) curing of the cured resin layer and curing for forming a core. A reinforcing member provided with an injection port for press-fitting the conductive resin. One or more inlets are provided, and by providing two or more, a uniform pressurized state can be created inside the mold.
Since the method for producing a polymer optical waveguide of the present invention uses a mold provided with a reinforcing member as described above, when the curable resin for forming a core is pressure-filled (press-fitted) into the concave portion of the mold, even if the pressure is increased, the mold is increased. Is not deformed or displaced between the mold and the cladding base material. Therefore, the filling speed can be increased without sacrificing the accuracy of the core shape.
In addition, since the mold is provided with the above-described voids, the injection pressure and / or the decompression pressure of the core-forming curable resin at each entry portion and / or each discharge portion is made uniform, and each mold recess is formed. Injection of the resin into the resin is made uniform.
Therefore, according to the manufacturing method of the present invention, a polymer optical waveguide having a small waveguide loss while maintaining the core shape with high precision can be manufactured with high productivity by a simple method.
[0018]
First, an outline of a method for manufacturing a polymer optical waveguide by the method of the present invention will be described. FIG. 1A shows that a mold-forming curable resin layer 22a is formed on a master 10 on which a convex portion 12 corresponding to an optical waveguide and a convex portion for forming a gap (not shown) are formed. Next, it is a diagram illustrating a state in which the reinforcing member 24 is placed while being pressed from above the resin layer 22a in a state where the mold-forming curable resin is uncured.
Next, when the mold-forming curable resin layer 22a is cured in this state, the mold-forming curable resin becomes the cured resin layer 22 and is adhered and integrated with the reinforcing member 24. The integrated product is peeled from the master 10 to form a mold 20 (see FIG. 1B). The cured layer 22 of the mold 20 includes a concave portion 23 corresponding to the convex portion 12, an entrance portion (not shown) which is one end of the concave portion 23, and a discharge portion (not shown) which is the other end, and at least one end of the mold. A void (not shown) is formed at the bottom.
The clad substrate 30 is brought into close contact with the mold 20 thus produced (see FIG. 1C). Next, the core-forming curable resin is passed through an inlet (not shown) provided in the reinforcing member 24 of the mold, the core-forming curable resin is pressed into the mold concave portion from the entrance portion, and discharged from the discharge portion. FIG. 1D shows a state in which the concave portion of the mold is filled with the curable resin. Thereafter, the curable resin is cured.
Next, when the mold 20 is peeled off, a core 40 is formed on the clad substrate 30 as shown in FIG.
Further, the polymer optical waveguide 60 (see FIG. 1 (F)) of the present invention is manufactured by forming the cladding layer 50 on the core forming surface of the cladding base material.
[0019]
Next, the present invention will be described in more detail in the order of steps.
1) Mold making process
<Preparation of master>
On the master, a plurality of convex portions corresponding to the polymer optical waveguide core and a convex portion for forming a common void portion communicating with the entrance portion and / or the discharge portion of each concave portion of the mold are formed on the mold. . FIG. 2 is a conceptual diagram showing an example of the master. Reference numeral 10 denotes a master, 12 denotes three convex portions corresponding to the polymer optical waveguide core, and 14 denotes a convex portion for forming a void portion.
For the production of these projections, for example, RIE, machining with high surface accuracy, or the like can be used without any particular limitation. When it is not necessary to change the film thickness of the projection corresponding to the optical waveguide, a master can be easily manufactured by a photolithography method in which a thick film resist (SU-8) is spin-coated and then exposed. In addition, the method (Japanese Patent Application No. 2002-10240) of preparing a polymer optical waveguide by an electrodeposition method or a photoelectric deposition method, which was previously applied by the present applicant, can also be applied to manufacture a master. The size of the convex portion corresponding to the optical waveguide formed on the master is about 30 to 200 μm, but is appropriately determined according to the application of the polymer optical waveguide. For example, in the case of a single mode optical waveguide, a core of about 10 μm square is generally used, and in the case of a multimode optical waveguide, a core of about 50 to 100 μm square is generally used. An optical waveguide having a core part as large as about μm is also used.
Alternatively, a method in which only the protrusion corresponding to the polymer optical waveguide core is formed first, and then the protrusion for forming the void portion is molded using a mold may be employed.
[0020]
<Preparation of mold>
The cavity of the mold is provided in a cured layer of the curable resin for forming a mold, and is provided on a side where the curable resin for forming a core enters and / or is discharged, and is preferably provided on an entry side. Preferably, it is provided on both the discharge side and the discharge side.
When a gap is provided on the entry side of the mold cured resin layer, the core-forming curable resin injected from the injection port of the mold reinforcing member is once filled here, and then filled into the recess from each entry portion. . If such a void is not provided, and a plurality of entry portions of the core-forming curable resin are exposed at the end of the mold-cured resin layer, the injection pressure is directly applied to the entry portion, and each entry portion is applied. It is difficult to apply a uniform pressure, and as a result, it becomes difficult to uniformly fill each concave portion with a resin at a similar speed. However, if a common gap is provided on the entry side of the mold-cured resin layer, since the cross-sectional area of the gap is much larger than the cross-sectional area of the entry section, the resin press-fitted from the injection port of the reinforcing member first flows into the gap. Then, the resin enters each recess. That is, the injection pressure on each entry portion is reduced and made uniform.
In addition, when a common gap portion communicating with all the recess discharge portions of the mold cured resin layer is provided, even when the inside of the mold is depressurized through a decompression port described later, suction at each discharge portion which is an end portion of the mold recess portion is performed. As a result, the negative pressure can be alleviated and uniformized, and the resin can be uniformly injected into each concave portion of the mold.
The cross-sectional area of the void is preferably 5 to 20,000 times, more preferably 500 to 2500 times the total cross-sectional area of all the concave portions. (Here, "the total cross-sectional area of all the concave portions" means the sum of the areas of the end portions of the respective concave portions communicating with each other through the gap.)
[0021]
To prepare a mold, a mold-forming curable resin layer described later is coated, cast, and the like on a master on which a convex portion corresponding to the polymer optical waveguide core and a convex portion for forming a void portion are formed. After that, the reinforcing member is placed while being pressed from above the resin layer in an uncured state, and then the resin is cured. The resin adheres to the reinforcing member simultaneously with curing. In this state, the cured resin layer together with the reinforcing member is peeled from the master to obtain a mold.
[0022]
FIG. 3 shows an example of the mold of the present invention. FIG. 3A is a perspective view of a mold, and FIG. 3B is a cross-sectional view along AA. Reference numeral 20 denotes a mold, 22 denotes a cured resin layer obtained by curing a curable resin for forming a mold, and 24 denotes a reinforcing member for reinforcing the cured resin layer. The cured resin layer 22 has the concave portion 23 and a void portion (see FIG. 3C). FIG. 3C is a cross-sectional view in which the end surface of the mold-curable resin layer on the side where the core-forming curable resin enters is exposed, and reference numeral 21 denotes a void portion communicating with all the entry portions.
The reinforcing member 24 is provided with injection ports 25a and 25b for press-fitting the core-forming curable resin, and is connected to injection pipes 26a and 26b for injecting the core-forming curable resin. Although one or more injection ports are provided, it is preferable to provide a plurality of injection ports so that the pressurized state is uniform at the entrance (filling port) of each recess.
[0023]
When an ultraviolet curable resin is used as the curable resin for forming the core, a portion of the reinforcing member 24 corresponding to the concave portion 23 of the cured resin layer 22 is a light transmissive member 24a (for example, a glass plate, a quartz plate, (Hard plastic plate), and becomes an exposure opening. When a thermosetting resin is used as the core-forming curable resin, it is not necessary to make this portion light-transmissive.
When an ultraviolet curable resin is used as the curable resin for forming the core, instead of using a light transmissive member for the exposure opening, as shown in FIG. It is also possible to make the portion corresponding to a notched shape.
[0024]
Further, FIG. 5 shows a mold in which a cavity is provided on the entrance side and the discharge side of the core-forming curable resin of the mold, and a pressure reducing port is also provided. FIG. 5A is a perspective view of the mold, and FIG. 5B is a cross-sectional view of the mold cut so that a concave portion and a void portion appear in the longitudinal direction of the mold. For the sake of explanation, the injection port 25b and the decompression port 27b are shown by phantom lines in the same figure.
In FIG. 5A, 25a and 25b indicate inlets, 26a and 26b indicate inlet pipes, 27a and 27b indicate decompression ports, and 28a and 28b indicate decompression exhaust pipes, respectively. The filling speed can be further increased by reducing the pressure inside the mold. At this time, since the mold is reinforced by the reinforcing member 24, the molding accuracy of the core does not decrease. It is preferable that one or more pressure reducing ports are provided, and a plurality of pressure reducing ports are provided at each discharge portion of the mold concave portion so as not to bias the reduced pressure state.
In FIG. 5B, reference numeral 22 denotes a cured resin layer of the mold, reference numeral 21 denotes a void portion, reference numeral 23 denotes a concave portion, and reference numerals 23a and 23b denote an entrance portion and a discharge portion which are both ends of the concave portion.
The thickness of the cured resin layer is preferably about 10 μm to 30 mm. The reinforcing member is made of a metal material, a ceramic material, a hard plastic material, or the like, and its thickness is suitably about 1 mm to 40 mm.
[0025]
<Curable resin for mold formation>
The curable resin for forming a mold preferably has a cured product that can be easily peeled off from the master and has a certain or more mechanical strength and dimensional stability as a mold (repeated use).
Since the mold-forming curable resin must accurately copy individual optical waveguides formed on the master, it is preferable that the curable resin has a viscosity less than a certain limit, for example, about 2000 to 7000 mPa · s. Further, a solvent can be added to adjust the viscosity to such an extent that the solvent is not adversely affected. (Note that the curable resin for forming a mold used in the present invention includes a resin that becomes an elastic rubber-like body after curing, such as a curable silicone rubber oligomer.)
[0026]
As the mold-forming curable resin, a curable silicone rubber oligomer or monomer which becomes a silicone rubber or a silicone resin after curing, a curable silicone resin oligomer or monomer (thermosetting type, room temperature curing type), It is preferably used from the viewpoints of mechanical strength and dimensional stability and good adhesion to a cladding substrate. In particular, silicone rubber is excellent in contradictory properties of adhesion to the cladding substrate and releasability, has the ability to copy the nanostructure, and can prevent liquid from entering when the silicone rubber and the cladding substrate are brought into close contact. . Such a mold using silicone rubber transfers the master with high precision and adheres well to the base material for cladding, so it is necessary to efficiently fill only the recess between the mold and the base material for cladding with the core forming resin. And the separation between the cladding substrate and the mold is easy. Therefore, a polymer optical waveguide whose shape is maintained with high precision can be extremely easily manufactured from this mold.
As the curable silicone rubber oligomer or monomer and the curable silicone resin oligomer or monomer, those containing a methylsiloxane group, an ethylsiloxane group, and a phenylsiloxane group are preferable. In particular, a curable dimethylsiloxane rubber oligomer (PDMS) is used for adhesion and peeling. It is preferable from the viewpoint of properties.
[0027]
Further, it is preferable that the master is subjected to a release treatment such as application of a release agent in advance to promote separation from the mold.
The surface energy of the cured resin layer of the mold is preferably in the range of 10 dyn / cm to 30 dyn / cm, and more preferably in the range of 15 dyn / cm to 24 dyn / cm from the viewpoint of adhesion to the cladding substrate.
The shear resin hardness of the cured resin layer of the mold is preferably from 15 to 80, and more preferably from 20 to 60, from the viewpoint of mold-making performance and releasability.
The surface roughness (root mean square roughness (RMS)) of the cured resin layer of the mold is 0.5 μm or less, preferably 0.1 μm or less, and more preferably in the range of 0.5 nm to 0.05 μm. However, it is preferable from the viewpoint of molding performance.
Furthermore, when the curable resin for core formation is an ultraviolet curable resin, a mold (when the reinforcing member has an opening means a cured resin layer, and when there is no opening, the cured resin layer and the reinforcing member It is necessary that the light-transmitting portions (including both portions corresponding to the concave portions) are light-transmitting, and the light transmittance in a wavelength region of 350 nm to 700 nm is preferably 80% or more.
[0028]
2) a step of bringing a clad substrate into close contact with the mold;
As the cladding substrate used in the present invention, a glass substrate, a ceramic substrate, a plastic substrate and the like can be used without any limitation. In addition, a resin coated on the base material for controlling the refractive index is also used. The refractive index of the cladding substrate is smaller than 1.55, and more preferably smaller than 1.50. In particular, it is necessary that the refractive index is smaller than the refractive index of the core material by 0.05 or more. Further, as the clad base material, a material that has excellent adhesion to the mold and does not form a void other than the concave portion of the mold when both are adhered is preferable. Among plastic substrates, polymer optical waveguides using flexible film substrates can be used as couplers, optical wiring between boards, optical demultiplexers, etc., and depending on the application, the refractive index of the film substrate , Optical properties such as light transmittance, mechanical strength, heat resistance, adhesion to a mold, flexibility (flexibility), and the like. Examples of the film include an alicyclic acrylic film, an alicyclic olefin film, a cellulose triacetate film, and a fluorine-containing resin film. It is desirable that the refractive index of the film substrate is smaller than 1.55, preferably smaller than 1.53, in order to secure a refractive index difference from the core.
[0029]
Examples of the alicyclic acrylic film include OZ-1000 and OZ-1100 in which an aliphatic cyclic hydrocarbon such as tricyclodecane is introduced into an ester substituent.
Examples of the alicyclic olefin film include those having a norbornene structure in the main chain, and those having a norbornene structure in the main chain and having an alkyloxycarbonyl group (an alkyl group having 1 to 6 carbon atoms or cycloalkyl) as a side chain. And a polar group having a polar group such as Above all, an alicyclic olefin resin having a norbornene structure in the main chain and a polar group such as an alkyloxycarbonyl group in the side chain as described above has a low refractive index (the refractive index is around 1.50, and the core / clad Of the polymer optical waveguide of the present invention because it has excellent optical properties such as high refractive index and excellent light transmittance, excellent adhesion to a mold, and excellent heat resistance. Suitable for fabrication.
The thickness of the film substrate is appropriately selected in consideration of flexibility, rigidity, ease of handling, and the like, and is generally preferably about 0.1 mm to 0.5 mm.
[0030]
In this step, the mold and the base material for the clad are securely adhered to each other, and one end of the mold is pressurized in the next press-fitting step of the core-forming curable resin, or even if the other end is depressurized, the two do not shift even slightly. It is desirable to do so. Therefore, the reinforcing member of the mold and the base material for the clad are fixed with screws, the base material for the clad is held by the holding member, or the reinforcing member of the mold and the holding member holding the clad base material are fixed. It is preferable that the mold and the base material for cladding are stably adhered to each other. Especially when a flexible film is used as a base material for the clad, even if the mold and the film are brought into close contact with each other, a light wavy state may be generated on the film surface when the core-forming curable resin is injected under pressure. It is preferable to employ
FIG. 6A shows an example in which the four corners of the mold are fixed to the cladding substrate 30 by the fixing screws 60, and FIG. 6B is a cross-sectional view taken along the line AA of FIG. 6A.
7 shows an example in which the clad base material is held by the clad base material holding member 62, and FIG. 7B is a cross-sectional view taken along the line AA of FIG. 7A.
Further, as shown in FIG. 8, there is a method in which fitting portions 29 and 63 for fixing are provided in the mold 20 and the holding member 62, and the mold is fitted into the holding member and fixed.
[0031]
3) A step of press-fitting a core-forming curable resin from an injection port of a mold with a clad base material adhered thereto.
In this step, a core-forming curable resin such as an ultraviolet curable resin and a thermosetting resin is injected into a space inside the mold from an injection port provided in a reinforcing member of the mold. When a gap is formed on the entry side of the cured resin layer, the injected resin flows into the gap, and further from the entry, which is one end of the recess formed in the cured resin layer, to the entire recess. The core-forming curable resin is discharged from the discharge portion at the other end of the concave portion by press-fitting. At this time, if the pressure reducing port is provided in the reinforcing member and the pressure is reduced and exhausted in synchronization with the press-fitting, the filling speed is further improved. Further, it is preferable that the pressure of the resin injection is increased stepwise, and the pressure is reduced and the pressure is reduced stepwise in synchronism with the pressure.
The curable resin for forming a core used has a sufficiently low viscosity so that it can be easily filled into the concave portion, and the refractive index of the curable resin after curing is higher than that of the polymer material constituting the clad. (The difference is 0.02 or more). In addition, it is necessary that the change in volume of the curable resin before and after curing is small in order to accurately reproduce the original shape of the convex portion formed on the master. For example, a decrease in volume causes waveguide loss. Therefore, the curable resin preferably has a volume change as small as possible, preferably 10% or less, and more preferably 6% or less. It is preferable to avoid lowering the viscosity using a solvent because the volume change before and after curing is large.
[0032]
Therefore, the viscosity of the curable resin is preferably 10 mPa · s to 2000 mPa · s, more preferably 20 mPa · s to 1000 mPa · s, and still more preferably 30 mPa · s to 500 mPa · s.
As the curable resin, an epoxy-based, polyimide-based, or acrylic-based ultraviolet curable resin is preferably used.
It is necessary that the refractive index of the cured product of the curable resin to be the core is larger than the refractive index of the film substrate to be the clad (including the clad layer in the step of 5 below), and is 1.53 or more, preferably 1. 55 or more. The difference between the refractive indices of the cladding (including the cladding layer in step 5 below) and the core is 0.02 or more, preferably 0.05 or more.
[0033]
4) Step of curing the filled core-forming curable resin and peeling the mold from the cladding base material
The filled core-forming curable resin, for example, an ultraviolet curable resin or a thermosetting resin is cured. In order to cure the ultraviolet curable resin, an ultraviolet lamp, an ultraviolet LED, a UV irradiation device, or the like is used. Heating in an oven or the like is used to cure the thermosetting resin.
In addition, the mold used in the above steps 1) to 3) can be used as it is for the clad layer. In this case, the mold need not be peeled off and is used as it is as the clad layer.
[0034]
5) Step of forming a clad layer on the clad substrate on which the core is formed
A clad layer is formed on the clad substrate on which the core is formed. As the clad layer, a film substrate (for example, the film substrate used in the step 2) is similarly used), a curable resin ( (A UV-curable resin, a thermosetting resin) and a cured layer, and a polymer film obtained by applying and drying a solvent solution of a polymer material. When a film is used as the cladding layer, they are bonded together using an adhesive, and in this case, it is desirable that the refractive index of the adhesive be close to the refractive index of the film. It is desirable that the refractive index of the cladding layer is smaller than 1.55, preferably smaller than 1.53 in order to secure a difference in refractive index from the core. In addition, it is preferable that the refractive index of the clad layer is the same as the refractive index of the film substrate from the viewpoint of light confinement. Further, it is preferable that the difference in the refractive index between the cladding base material and the cladding layer is within 0.1 from the viewpoint of the effect of suppressing the waveguide loss of light.
[0035]
In the method for producing a polymer optical waveguide of the present invention, in particular, a thermosetting silicone rubber oligomer or monomer, particularly a thermosetting dimethylsiloxane rubber oligomer or monomer, is used as a curable resin for forming a mold, The combination using an alicyclic olefin resin having a norbornene structure in the chain and having a polar group such as an alkyloxycarbonyl group in the side chain has a particularly high adhesion between the two, and the cross-sectional area of the concave structure is extremely small. The concave portion can be quickly filled with the curable resin by capillary action (for example, a rectangle of 10 × 10 μm).
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.
Example 1
A UV curable thick-film resist solution (SU-8, manufactured by Micro Chemical Co., Ltd.) is applied to a glass substrate by spin coating, prebaked in a heating oven at 80 ° C., exposed through a photomask with a high-pressure mercury lamp, and developed. Through the process, five fine convex portions having a square cross section (width: 50 μm, height: 50 μm, length: 50 mm) were produced. Next, it was post-baked at 120 ° C. At the end of the protrusion thus manufactured, a protrusion having a rectangular cross section of 4 mm in height, 20 mm in width (in the direction perpendicular to the protrusion), and 15 mm in length in the substrate longitudinal direction is formed by molding. And
Next, an aluminum reinforcing member as shown in FIG. The exposure opening 24a was made of quartz.
After applying a release agent to the master, a thermosetting silicone rubber oligomer (SYLGARD184, manufactured by Dow Corning Asia Ltd., dimethylpolysiloxane) is applied thereon so that one end in the longitudinal direction of the projection is partially exposed. The coating was applied so that the end of the gap-forming projection at the other end was covered. From above, the reinforcing member was pressed and fixed. Then, it was cured by heating at 120 ° C. for 30 minutes to integrate the silicone rubber and the reinforcing member. The thickness of the cured silicone rubber layer was 10 mm. Next, this was peeled from the master to obtain a mold. In the silicone rubber layer of the mold, a concave portion of 50 μm square, an entrance portion, a discharge portion, and a void portion of the core-forming curable resin were formed.
This reinforced silicone rubber mold was pressed and adhered to an Arton film (manufactured by JSR Corporation, refractive index: 1.510) having a thickness of 188 μm. Further, an injection pipe of a curable resin for forming a core was connected to an injection port of the mold reinforcing member. An ultraviolet curable resin (PJ3001 manufactured by JSR) having a viscosity of 1300 mPa · s was pressure-injected from the injection tube. After about 120 seconds, the resin was filled in the entire concave portion. The injection tube was removed from the mold, and 50 mW / cm from the exposure opening of the mold. 2 Was irradiated for 10 minutes to cure the core-forming curable resin.
When the mold was peeled off, a core having a refractive index of 1.51 was formed on the ARTON film.
Further, an ultraviolet curable resin (manufactured by JSR Corporation) having a cured refractive index of 1.510, which is the same as that of Arton film, is applied to the entire surface of the core forming surface of the Arton film, and then 50 mW / cm. 2 Was irradiated with UV light for 10 minutes to be cured by ultraviolet rays (film thickness after curing: 10 μm). A flexible polymer optical waveguide was obtained. The loss of this polymer optical waveguide was 0.33 dB / cm. The guided light loss of the five polymer optical waveguides was in the range of 0.338 ± 0.008 dB / cm.
[0037]
Example 2
In the same manner as in Example 1, 10 convex portions (width: 100 μm, height: 100 μm, length: 100 mm) were formed on both sides of the glass substrate. A rectangular projection having a rectangular cross section of 10 mm in a direction perpendicular to the substrate and a length of 20 mm in the longitudinal direction of the substrate was formed to obtain a master.
Next, an aluminum reinforcing member as shown in FIG. 5 was produced. The exposure opening 24a was made of glass.
In the same manner as in Example 1, a mold was prepared from the master. The thickness of the cured silicone rubber layer was 6 mm. Next, this was peeled from the master to obtain a mold. In the silicone rubber layer of the mold, a 100 μm square concave portion, an entry portion, a discharge portion, and a void portion of the core-forming curable resin were formed.
The reinforced silicone rubber mold and an Arton film (manufactured by JSR Corporation, refractive index 1.510) having a film thickness of 188 μm were pressed and adhered. Further, an injection pipe of the core-forming curable resin was connected to the injection port of the mold reinforcing member, and a reduced-pressure exhaust pipe was connected to the reduced-pressure port. An ultraviolet curable resin (PJ3001 manufactured by JSR Corporation) having a viscosity of 1300 mPa · s was pressure-injected from the injection tube, and the pressure was reduced and exhausted from the pressure reducing port in synchronization with the injection. After about 110 seconds, the resin was filled in the entire concave portion. Remove the injection pipe and the vacuum exhaust pipe from the mold, and 75 mW / cm from the exposure opening of the mold. 2 Was irradiated for 10 minutes to cure the core-forming curable resin.
When the mold was peeled off, a core having a refractive index of 1.570 was formed on the ARTON film.
Further, a thermosetting resin (manufactured by JSR Corporation) having a cured refractive index of 1.510, which is the same as that of the ARTON film, is applied to the entire surface of the core forming surface of the ARTON film, followed by heat treatment at 110 ° C. for 6 minutes. And cured (film thickness after curing 10 μm). A flexible polymer optical waveguide was obtained. The best optical loss of this polymer optical waveguide was 0.45 dB / cm. The waveguide light loss of the ten polymer optical waveguides was in the range of 0.458 ± 0.008 dB / cm, and had characteristics with little variation.
[0038]
Example 3
In the same manner as in Example 1, 15 convex portions (width: 50 μm, height: 50 μm, length: 50 mm) were formed on both sides of the glass substrate. A rectangular projection having a cross section of 15 mm and a length of 20 mm in the longitudinal direction of the substrate was formed as a master.
Next, a reinforcing member made of stainless steel as shown in FIG. 5 was produced. The exposure opening 24a was made of quartz.
In the same manner as in Example 1, a mold was prepared from the master. The thickness of the cured silicone rubber layer was 5 mm. Next, this was peeled from the master to obtain a mold. In the silicone rubber layer of the mold, a concave portion of 50 μm square, an entrance portion, a discharge portion, and a void portion of the core-forming curable resin were formed.
The reinforced silicone rubber mold and an Arton film (manufactured by JSR Corporation, refractive index 1.510) having a film thickness of 188 μm were pressed and adhered. Further, an injection pipe of the core-forming curable resin was connected to the injection port of the mold reinforcing member, and a reduced-pressure exhaust pipe was connected to the reduced-pressure port. An ultraviolet curable resin having a viscosity of 1300 mPa · s (PJ3001 manufactured by JSR Corporation) was pressure-injected from the injection tube, and the pressure was reduced and exhausted from the pressure-reducing port in synchronization with the injection. Approximately 90 seconds later, the entire recess was filled with resin. Remove the injection pipe and the vacuum exhaust pipe from the mold, and set 50 mW / cm from the exposure opening of the mold. 2 Was irradiated for 10 minutes to cure the core-forming curable resin.
When the mold was peeled off, a core having a refractive index of 1.591 was formed on the ARTON film.
Further, a UV curable resin adhesive (manufactured by JSR Corporation) having a cured refractive index of 1.510, which is the same as that of ARTON film, is applied to the entire surface of the core forming surface of the ARTON film, and the thickness of the UV curable resin adhesive is set on the UV curable resin adhesive. Puts 120 μm Arton film, 50 mW / cm 2 For 15 minutes to cure. A flexible film sandwich type polymer optical waveguide was obtained. The loss of this polymer optical waveguide was 0.45 dB / cm. The loss of guided light of the 15 polymer optical waveguides was all within the range of 0.35 ± 0.009 dB / cm.
[0039]
Comparative Example 1
A polymer optical waveguide was produced in the same manner as in Example 1 except that no convex portion for forming a gap was formed on the master. The waveguide loss was 0.43 dB / cm at the best value. In addition, two out of the five recesses formed in the mold were defective in injection, and the waveguide loss could not be measured.
[0040]
Comparative Example 2
After a thick film resist (SU-8, manufactured by Micro Chemical Co., Ltd.) is applied to a Si substrate by spin coating, the film is prebaked at 80 ° C., exposed through a photomask, and developed to form a convex section having a square cross section ( (Width: 50 μm, height: 50 μm, length: 150 mm). Next, this was post-baked at 120 ° C. to produce a master for producing an optical waveguide core.
Next, after applying a release agent to the master, a thermosetting silicone rubber oligomer (manufactured by Dow Corning Asia Ltd .: SYLGARD184, dimethylpolysiloxane) is poured, and the mixture is heated at 120 ° C. for 30 minutes to be solidified. By peeling, a mold (thickness of the mold: 3 mm) having a concave portion corresponding to the convex portion having the square cross section was produced. Further, both ends of the mold were cut to form input / output portions of the following ultraviolet-curable resin, which was used as a mold.
The mold was brought into close contact with a glass substrate (500 μm thick) which was slightly larger than the mold. Next, when a few drops of an ultraviolet-curing resin having a viscosity of 1300 mPa · s (manufactured by JSR: refractive index 1.5010) were dropped into the input / output unit at one end of the mold, the concave portion was exposed to ultraviolet curable resin by capillary action. Resin was filled. It took 24 hours to fill 50 mm. Then, 50mW / cm 2 UV light was applied through a PDMS mold for 5 minutes to cure the UV light. When the mold was peeled off from the Arton film, a core having the same shape as the convex portion of the master was formed on the Arton film. The refractive index of the core was 1.591.
Next, an ultraviolet-curable resin (manufactured by JSR Corporation) having a cured refractive index of 1.510, which is the same as that of the glass substrate, is applied to the entire surface of the glass substrate on which the core is formed, and then 50 mW / cm. 2 Was irradiated with UV light for 10 minutes to be cured by ultraviolet rays (film thickness after curing: 10 μm). A polymer optical waveguide was obtained on a glass substrate. The loss of this polymer optical waveguide was 1.98 dB / cm. In addition, the four polymer optical waveguide cores were not guided and could not be measured.
[0041]
【The invention's effect】
Since the method for producing a polymer optical waveguide of the present invention uses a mold provided with a reinforcing member as described above, when the curable resin for forming a core is pressure-filled (press-fitted) into the concave portion of the mold, even if the pressure is increased, the mold is increased. Is not deformed or displaced between the mold and the cladding base material. Therefore, the filling speed can be increased without sacrificing the accuracy of the core shape.
In addition, since the mold is provided with the above-described voids, the injection pressure and / or the decompression pressure of the core-forming curable resin at each entry portion and / or each discharge portion is made uniform, and each mold recess is formed. Injection of the resin into the resin is made uniform.
Therefore, according to the manufacturing method of the present invention, a polymer optical waveguide having a small waveguide loss while maintaining the core shape with high precision can be manufactured with high productivity by a simple method.
[Brief description of the drawings]
FIG. 1 is a process schematic diagram showing a method for producing a polymer optical waveguide of the present invention.
FIG. 2 is a perspective view showing an example of a master used in the present invention.
3A and 3B are conceptual views showing an example of a mold used in the present invention. FIG. 3A is a perspective view, FIG. 3B is an AA cross-sectional view, and FIG. FIG. 4 shows a cross-sectional view cut so that a void portion appears.
FIG. 4 is a conceptual diagram showing another example of a mold used in the present invention.
5A and 5B are conceptual views showing another example of a mold used in the present invention. FIG. 5A is a perspective view, and FIG. 5B is a view in the longitudinal direction so that concave portions and voids of the cured resin layer appear. FIG.
FIG. 6 is a conceptual diagram showing a state in which the mold of the present invention is closely fixed to a cladding base material using fixing screws.
FIG. 7 is a conceptual diagram showing a state in which a clad base material is held by a holding member and is brought into close contact with a mold.
FIG. 8 is a conceptual diagram showing another embodiment in which a clad substrate is fixedly adhered to a mold.
[Explanation of symbols]
10 master
12 Projection corresponding to polymer optical waveguide core
14 Convex part for void formation
20 mold
21 void
22 Resin cured layer
23 recess
23a Entry section
23b discharge section
24 Strengthening members
25a, 25b Inlet
27a, 27b Decompression port
30 Base material for cladding
40 cores
50 cladding layer
62 Holding member

Claims (20)

1)光導波路に対応する複数の凸部が形成された原盤を用いて、前記凸部に対応する複数の凹部、並びに該凹部の両端部であるコア形成用硬化性樹脂の進入部及び排出部を有する鋳型を作製する工程、
2)前記鋳型にクラッド用基材を密着させる工程、
3)前記鋳型の進入部からコア形成用硬化性樹脂を鋳型凹部に充填する工程、
4)充填したコア形成用硬化性樹脂を硬化させ、鋳型をクラッド用基材から剥離する工程、
5)コアが形成されたクラッド用基材の上に、クラッド層を形成する工程、
を有する高分子光導波路の製造方法であって、
前記鋳型が、鋳型形成用硬化性樹脂が硬化した層からなり前記凹部並びに進入部及び排出部が設けられ、かつ、その端部に、すべての進入部及び/又はすべての排出部に連通する共通の空隙部を有する硬化樹脂層と、前記硬化樹脂層を補強しかつコア形成用硬化性樹脂を圧入するための注入口を備えた強化部材とを有することを特徴とする高分子光導波路の製造方法。
1) Using a master on which a plurality of convex portions corresponding to an optical waveguide are formed, a plurality of concave portions corresponding to the convex portions, and an entrance portion and a discharge portion of a core-forming curable resin which are both end portions of the concave portions. Producing a mold having
2) a step of bringing a clad substrate into close contact with the mold;
3) filling the mold recess with a core-forming curable resin from the entrance of the mold;
4) curing the filled core-forming curable resin and releasing the mold from the cladding substrate;
5) forming a clad layer on the clad substrate on which the core is formed;
A method for producing a polymer optical waveguide having
The mold is formed of a layer obtained by curing a mold-forming curable resin, and is provided with the concave portion, the entrance portion, and the discharge portion, and has an end portion communicating with all the entrance portions and / or all the discharge portions. The production of a polymer optical waveguide, comprising: a cured resin layer having a void portion, and a reinforcing member provided with an inlet for reinforcing the cured resin layer and for press-fitting the core-forming curable resin. Method.
前記空隙の断面積が、前記すべての凹部の総断面積の5〜20000倍であることを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method according to claim 1, wherein a cross-sectional area of the gap is 5 to 20,000 times a total cross-sectional area of all the concave portions. 3. 前記鋳型の硬化樹脂層が、硬化性シリコーンゴムオリゴマーが硬化した層であることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method for producing a polymer optical waveguide according to claim 1, wherein the cured resin layer of the mold is a layer in which a curable silicone rubber oligomer is cured. 前記硬化樹脂層の厚さが、10μm〜50mmであることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method of claim 1, wherein the thickness of the cured resin layer is 10 μm to 50 mm. 前記強化部材が、金属材料又はセラミック材料からなることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method according to claim 1, wherein the reinforcing member is made of a metal material or a ceramic material. 前記強化部材の肉厚が、1mm〜40mmであることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method according to claim 1, wherein the thickness of the reinforcing member is 1 mm to 40 mm. 前記鋳型の強化部材が、さらに減圧口を有していることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method for manufacturing a polymer optical waveguide according to claim 1, wherein the reinforcing member of the mold further has a decompression port. 前記強化部材の、前記凹部に対応する部分が光透過性材料よりなることを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method according to claim 1, wherein a portion of the reinforcing member corresponding to the concave portion is made of a light transmitting material. 前記強化部材が、前記凹部に対応する部分に開口部を有することを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method according to claim 1, wherein the reinforcing member has an opening at a portion corresponding to the recess. 前記1)の工程において、鋳型が、原盤の上に鋳型形成用硬化性樹脂の層を形成した後、この層の上に強化部材を載置し、次いで硬化させ、その後原盤を剥離して作製されることを特徴とする請求項1に記載の高分子光導波路の製造方法。In the step 1), a mold is formed by forming a layer of a curable resin for forming a mold on a master, placing a reinforcing member on the layer, curing the layer, and then peeling the master. The method according to claim 1, wherein the method is performed. 前記クラッド用基材が、鋳型との密着性が良好なクラッド用フィルム基材であることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method for producing a polymer optical waveguide according to claim 1, wherein the clad substrate is a clad film substrate having good adhesion to a mold. 前記クラッド用フィルム基材が、脂環式オレフィン樹脂フイルムであることを特徴とする請求項11に記載の高分子光導波路の製造方法。The method according to claim 11, wherein the clad film substrate is an alicyclic olefin resin film. 前記2)の工程において、クラッド用基材と鋳型の強化部材を固定することを特徴とする請求項1に記載の高分子光導波路の製造方法。The method according to claim 1, wherein in the step (2), the cladding substrate and the reinforcing member of the mold are fixed. 前記2)の工程において、クラッド用基材が保持部材の上に置かれることを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method according to claim 1, wherein the cladding substrate is placed on the holding member in the step 2). 3. 前記2)の工程において、鋳型の強化部材とクラッド用基材が保持された保持部材を固定することを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method according to claim 1, wherein in the step 2), the holding member holding the reinforcing member of the mold and the clad base material is fixed. 3. 前記3)の工程において、コア形成用硬化性樹脂を強化部材の注入口から圧入するとともに、減圧口から鋳型の排出部近傍を減圧排気することを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The polymer photoconductor according to claim 1, wherein in the step 3), the curable resin for forming a core is press-fitted from an injection port of the reinforcing member, and the area near the outlet of the mold is evacuated and evacuated from the decompression port. Waveguide manufacturing method. 前記3)の工程において、コア形成用硬化性樹脂を圧入させる圧力を段階的に増加させるのに同期して、段階的に減圧排気することを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The polymer optical waveguide according to claim 1, wherein in the step (3), the pressure is reduced and exhausted stepwise in synchronization with the stepwise increase of the pressure for press-fitting the core-forming curable resin. Manufacturing method. 前記コア形成用硬化性樹脂が、紫外線硬化性樹脂又は熱硬化性樹脂であることを特徴とする請求項1に記載の高分子光導波路の製造方法。The method according to claim 1, wherein the core-forming curable resin is an ultraviolet curable resin or a thermosetting resin. 前記鋳型形成用硬化性樹脂を硬化した層の表面エネルギーが、10dyn/cm〜30dyn/cmであることを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method according to claim 1, wherein a surface energy of a layer obtained by curing the curable resin for forming a mold is 10 dyn / cm to 30 dyn / cm. 3. 前記鋳型形成用硬化性樹脂を硬化した層のシェア(Share)ゴム硬度が15〜80であることを特徴とする請求項1に記載の高分子光導波路の製造方法。2. The method of claim 1, wherein a layer obtained by curing the curable resin for forming a mold has a shear rubber hardness of 15 to 80. 3.
JP2002347948A 2002-11-29 2002-11-29 Method for producing polymer optical waveguide Expired - Fee Related JP4534415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347948A JP4534415B2 (en) 2002-11-29 2002-11-29 Method for producing polymer optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347948A JP4534415B2 (en) 2002-11-29 2002-11-29 Method for producing polymer optical waveguide

Publications (2)

Publication Number Publication Date
JP2004184480A true JP2004184480A (en) 2004-07-02
JP4534415B2 JP4534415B2 (en) 2010-09-01

Family

ID=32750995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347948A Expired - Fee Related JP4534415B2 (en) 2002-11-29 2002-11-29 Method for producing polymer optical waveguide

Country Status (1)

Country Link
JP (1) JP4534415B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136565B1 (en) 2005-05-23 2006-11-14 Imation Corp. Optical waveguide disk
KR100678342B1 (en) 2004-12-02 2007-02-05 전자부품연구원 Fabrication method for optical waveguide device
JP2007129238A (en) * 2005-11-04 2007-05-24 Asml Netherlands Bv Imprint lithography
JP2012014123A (en) * 2010-07-05 2012-01-19 Nitto Denko Corp Method for manufacturing optical waveguide
JP2013539429A (en) * 2010-09-27 2013-10-24 エルジー・ハウシス・リミテッド Three-dimensional pattern forming molding mold and method for manufacturing home appliance packaging material using the same
US8652569B2 (en) 2010-10-27 2014-02-18 Nitto Denko Corporation Optical waveguide production method
US8771562B2 (en) 2010-06-02 2014-07-08 Nitto Denko Corporation Optical waveguide production method
US8778451B2 (en) 2010-07-05 2014-07-15 Nitto Denko Corporation Method of manufacturing optical waveguide

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138903A (en) * 1984-12-12 1986-06-26 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide
JPH0477705A (en) * 1990-07-19 1992-03-11 Brother Ind Ltd Manufacture of optical waveguide
JPH06114845A (en) * 1992-10-02 1994-04-26 Toshiba Silicone Co Ltd Silicone rubber mold
JPH06304933A (en) * 1993-04-21 1994-11-01 Toppan Printing Co Ltd Production of flesnel lens
JPH08160239A (en) * 1994-12-05 1996-06-21 Sharp Corp Production of polymer optical waveguide
JP2001269958A (en) * 2000-03-27 2001-10-02 Fjc:Kk Manufacturing method of resin molding and mold
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
JP2002086462A (en) * 2000-09-20 2002-03-26 Seiko Epson Corp Method and device for producing substrate
JP2002086515A (en) * 2000-09-14 2002-03-26 Tohoku Munekata Co Ltd Method and mold for injection-molding thermoplastic resin
JP2002090565A (en) * 2000-09-19 2002-03-27 Toshiba Corp Optical waveguide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138903A (en) * 1984-12-12 1986-06-26 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide
JPH0477705A (en) * 1990-07-19 1992-03-11 Brother Ind Ltd Manufacture of optical waveguide
JPH06114845A (en) * 1992-10-02 1994-04-26 Toshiba Silicone Co Ltd Silicone rubber mold
JPH06304933A (en) * 1993-04-21 1994-11-01 Toppan Printing Co Ltd Production of flesnel lens
JPH08160239A (en) * 1994-12-05 1996-06-21 Sharp Corp Production of polymer optical waveguide
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
JP2001269958A (en) * 2000-03-27 2001-10-02 Fjc:Kk Manufacturing method of resin molding and mold
JP2002086515A (en) * 2000-09-14 2002-03-26 Tohoku Munekata Co Ltd Method and mold for injection-molding thermoplastic resin
JP2002090565A (en) * 2000-09-19 2002-03-27 Toshiba Corp Optical waveguide
JP2002086462A (en) * 2000-09-20 2002-03-26 Seiko Epson Corp Method and device for producing substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678342B1 (en) 2004-12-02 2007-02-05 전자부품연구원 Fabrication method for optical waveguide device
US7136565B1 (en) 2005-05-23 2006-11-14 Imation Corp. Optical waveguide disk
JP2007129238A (en) * 2005-11-04 2007-05-24 Asml Netherlands Bv Imprint lithography
US7677877B2 (en) 2005-11-04 2010-03-16 Asml Netherlands B.V. Imprint lithography
US8771562B2 (en) 2010-06-02 2014-07-08 Nitto Denko Corporation Optical waveguide production method
JP2012014123A (en) * 2010-07-05 2012-01-19 Nitto Denko Corp Method for manufacturing optical waveguide
US8778452B2 (en) 2010-07-05 2014-07-15 Nitto Denko Corporation Method of manufacturing optical waveguide
US8778451B2 (en) 2010-07-05 2014-07-15 Nitto Denko Corporation Method of manufacturing optical waveguide
JP2013539429A (en) * 2010-09-27 2013-10-24 エルジー・ハウシス・リミテッド Three-dimensional pattern forming molding mold and method for manufacturing home appliance packaging material using the same
US8652569B2 (en) 2010-10-27 2014-02-18 Nitto Denko Corporation Optical waveguide production method

Also Published As

Publication number Publication date
JP4534415B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2004144987A (en) Manufacturing method of polymeric optical waveguide
JP3945322B2 (en) Optical element and manufacturing method thereof
JP4007113B2 (en) Polymer optical waveguide with alignment mark and manufacturing method of laminated polymer optical waveguide
JP2004086144A (en) Method for manufacturing macromolecular optical waveguide
JP2004069743A (en) Manufacture method for macromolecular optical waveguide
US7604758B2 (en) Process for producing polymer optical waveguide
JP4196839B2 (en) Method for producing polymer optical waveguide
JP2006126568A (en) Method for manufacturing polymer optical waveguide device
JP4144468B2 (en) Multilayer polymer optical waveguide and method for manufacturing the same
JP4265293B2 (en) Method of manufacturing polymer optical waveguide integrated with mold and connector
JP4534415B2 (en) Method for producing polymer optical waveguide
JP2004069955A (en) Method for manufacturing macromolecular optical waveguide
JP2004226941A (en) Method for manufacturing polymer optical waveguide and optical element, and optical element
JP2004361613A (en) Method for manufacturing polymer optical waveguide
JP2007233303A (en) Method of manufacturing polymer optical waveguide module
JP4292892B2 (en) Method for producing laminated polymer optical waveguide and laminated polymer optical waveguide produced by this method
JP2007086330A (en) Method for manufacturing polymer optical waveguide device
JP2005043784A (en) Master disk for manufacturing polymer optical waveguide and method for magnetic polymer optical waveguide, and aperture conversion type polymer optical waveguide
JP4193616B2 (en) Laminated polymer waveguide and method of manufacturing the same
JP4337559B2 (en) Mold for producing polymer optical waveguide and method for producing polymer optical waveguide
JP4517704B2 (en) Method for producing polymer optical waveguide
JP4273975B2 (en) Method for producing flexible polymer optical waveguide
JP2008077112A (en) Method for manufacturing polymer optical waveguide
JP4457599B2 (en) Method for producing polymer optical waveguide
JP4281548B2 (en) Method for producing flexible polymer optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees