JP2004184192A - Capacitance type sensor - Google Patents

Capacitance type sensor Download PDF

Info

Publication number
JP2004184192A
JP2004184192A JP2002350518A JP2002350518A JP2004184192A JP 2004184192 A JP2004184192 A JP 2004184192A JP 2002350518 A JP2002350518 A JP 2002350518A JP 2002350518 A JP2002350518 A JP 2002350518A JP 2004184192 A JP2004184192 A JP 2004184192A
Authority
JP
Japan
Prior art keywords
conductive layer
sensor according
layer
capacitance
center conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350518A
Other languages
Japanese (ja)
Other versions
JP4116409B2 (en
Inventor
Yasuyoshi Inoue
保良 井上
Ayako Miyawaki
綾子 宮脇
Akiisa Morino
暁勇 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Watty Corp
Original Assignee
Nissei Electric Co Ltd
Keihin Sokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd, Keihin Sokki Corp filed Critical Nissei Electric Co Ltd
Priority to JP2002350518A priority Critical patent/JP4116409B2/en
Publication of JP2004184192A publication Critical patent/JP2004184192A/en
Application granted granted Critical
Publication of JP4116409B2 publication Critical patent/JP4116409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost capacitance type sensor excellent in stability, simple in structure, and superior in productivity, detectable, without problems, even in the case of detecting the liquide level of a non-conductive liquid such as purified water or oil. <P>SOLUTION: This capacitance type sensor is characterized in that its electrode part is formed by partly unsheathing a terminal of a coaxial cable 1 having two concentrically disposed conductive layers 3 and 4 each comprising a metallic braid layer, surrounding a center conductor 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、静電容量式センサに関し、更に詳しくは、電極間の静電容量を利用して液面レベルあるいは粉体量を検出するセンサ、特に純水や油等の非導電性液体の液面レベルを検出するのに適した静電容量式センサに関するものである。
【0002】
【従来の技術】
従来、液体の液面レベルを検出する導電式液面センサ(以下、単に“センサ”と称することがある)には、単芯または2芯以上の多芯ケーブルが利用されている。(特許文献1〜3参照)
ところが、このセンサでは、検出する液体の導電性を利用しているため、非導電性の純水や油等あるいは粉体の検出には適用できないという限界がある。また、電極部はカーボンに代表される導電剤を含む導電性樹脂部が被覆されていることから、電極部が検出液体に接液した際、カーボンが溶出してしまい、被検出液体の純度が劣化するという問題もあった。更には、このセンサでは電気を電極間を通じて検出液体またはその液体雰囲気に電気を流す方式であるので、引火性液体には使用不可という問題もあった。
そこで、この問題を解決する別の手法として、静電容量式液面センサが種々提案されてきた。その一例として、被検出パイプの外側に、外径の異なる同心状の円筒形導体を2個配置するとともに、円筒形導体を同軸ケーブルに接続した静電容量式液面センサが知られている。(特許文献4参照)
ところが、この静電容量式液面センサでは、パイプと円筒形導体からなる検出部とこれらに接続する同軸ケーブルが別体であるため、構成が複雑になるという欠点がある。また、検出方法が、1個の検出信号と同電位同波形の外部導体の2本構成で、センサ自身にはGNDがなく、検出する液体を通じてGNDとしているため、検出安定性に問題があった。
【0003】
【特許文献1】特開2001−99693号公報
【特許文献2】特開平7−325056号公報
【特許文献3】特開平11−304565号公報
【特許文献4】特開平7−280624号公報
【0004】
【発明が解決しようとする課題】
したがって、本発明の課題は、上記の問題点を解消し、検出安定性に優れるとともに構成が簡単で生産性にも優れた安価な液面センサを提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、液面センサの検出部に同軸ケーブルを利用し、なお且つ、該ケーブルを多層シールド構造にすることに着目した結果、従来の問題を容易に解消するに至った。
【0006】
かくして、本発明によれば、中心導体を取り囲む絶縁層の周りに同心円状に配置された、少なくとも2層構造でその層間に絶縁層が介在する導電層が配置され、さらに該導電層の外周が絶縁性樹脂で被覆されてなる同軸ケーブルの該中心導体の一部及び/又は該導電層の一部を露出させて電極を形成するとともに該電極を絶縁性樹脂で被覆してなる静電容量式センサが提供される。
【0007】
【発明の実施の形態】
以下、本発明を、該部導電層として2層構造の金属編組層を適用した同軸ケーブルからなる液面センサの例について、図面を参照しながら説明する。
図1は、本発明の液面センサの一例を示す一部破断縦断面図である。
図1において、(S)は液面センサ、(1)は同軸ケーブルであって、(2)は中心導体(中心電極)、(3)及び(4)は、金属編組層からなる導電層(外側電極)、(5)は中心導体(2)を取り囲む絶縁層、(6)は導電層(3)と(4)との間に介在する絶縁層、(7)は露出した中心導体の一部の長さ部分(L2)を被覆する絶縁性樹脂、(8)は露出した中心導体の他の一部の長さ部分(L1)及び導電層(4)を被覆する絶縁性樹脂、(9)は検出部、そして(10)はシースである。
本発明の第一の特徴は、長尺の同軸ケーブル(1)の端末部を電極部としてそのまま利用し、電極部と外部検出回路(図示せず)とを接続するリード線とを一体化した点にある。こうすることにより、従来、電極部とリード線の2点構成であったものが、本発明では、同軸ケーブルのみの1点構成となり、構成が大幅に簡略化される。
次に、本発明の第二の特徴は、導電層として少なくとも2重構造でその層間に絶縁層を介在させて構成した導電層(図では、2重構造の金属編組層)を適用した点にある。このような構成とした理由は、次のとおりである。
従来のように2線式、即ち、中心導体と1層の導電層の簡易な構成では、中心導体と導電層のどちらか一方を検出信号、他方をアース(GND)とせざるを得ないため、検出信号の位相の“ずれ”が検出できなかった。この結果、同軸ケーブル自体の浮遊容量に起因して、あるいは同軸ケーブル部が屈曲したりあるいは外部物体がケーブルに接触した際に、中心導体と導電層間の静電容量が微妙に変化し、誤動作が発生していたのである。
これに対して、本発明では、上記の誤動作を防止するため、外側電極を構成する導電層の内側に位置する導電層(3)にも、中心導体(2)と同相の検出信号を印加しながらセンサの外部に設けた検出回路(図示せず)にて、位相のずれを検出するという、いわゆる3線式という電気的な検出方法を採用することにより、上記の誤動作の発生を確実に防止しているのである。このとき、外側に位置する導電層(4)はアース電極(GND)として利用される。
さらに、本発明で肝要なこととして、中心電極である中心導体(2)と、外側電極を構成する導電層(3)及び(4)との位置関係が挙げられる。
図からも明らかなように、本発明の代表的な液面センサにあっては、検出端(ここでは、L1+L2の部分)を除くケーブル(1)の周囲に、層間に絶縁層が介在する導電層(3)及び(4)からなる2層構造の導電層が同心円状に配置されている。したがって、中心導体(2)の先端は、これら導電層、特に外側の導電層(4)の先端より突出した構造になる。このときの突出長さ(L1)は、0.5mm以上、5mm以下であるのが好ましい。この理由は、突出量が少ないと中心導体(2)の外表面に十分な量の電荷が蓄積されにくくなり、検出に支障をきたす懸念があるためである。
更に、もう1つ肝要な点は、内側に位置する導電層(3)の先端と外側に位置する導電層(4)の先端との位置関係であり、この場合、内側に位置する導電層(3)の先端が外側に位置する導電層(4)の先端より、(L2)にして0.5mm以上10mm以下で 引込んだ配置となっているのが好ましい。これは、導電層(3)の先端が導電層(4)の先端より飛び出していると、前者の導電層(3)にノイズが乗り易くなり、同時にその外表面への電荷形成が阻害され易くなるからである。
本発明において、中心導体(2)としては、同軸ケーブル(1)の芯線(導体)をそのまま利用すればよく、その形態は単線または撚線のいずれでもよく、撚線の場合には撚線のサイズは素線、素線径0.03mm〜0.3mmの素線 5本〜30本を撚り合わせて外径0.15mm〜1mmとしたものが望ましい。また、単線自体の材質は、軟銅線、銅被鋼線、ステンレス線、あるいは銅合金線等から適宜選択すればよい。
次に、外側電極を構成する(3)及び(4)の導電層は、上記の編組層の他に、横巻層、金属箔層、あるいは金属蒸着フイルム層等から構成されるが、シールド性の点から編組層が好ましい。編組の条件としては、金属素線径0.03mm〜0.2mm、打数8〜24、持数3〜10、編組密度50%〜100%が望ましい。また、編組の材質としては、中心導体と同様の材質でよく、軟銅線、ステンレス線、あるいは銅合金線等から適宜選択すればよい。さらに、シールド性、形状保持性向上のため、編組に金属をコーティングしてもよい。
一方、(5)〜(6)の絶縁層の材質、および(7)〜(8)の絶縁性樹脂については、当然のことながら耐熱性と耐薬品性を兼備した樹脂が採用され、なかでもフッ素樹脂が好ましく用いられる。フッ素樹脂の具体例としては、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)等が挙げられる。その際、絶縁層(5)〜(6)は押出被覆にて、また絶縁性樹脂(7)〜(8)の部分はインジェクションモールド又はプレスモールドにより形成されるのが有利である。
シース(10)に関しては、絶縁層(5)〜(6)あるいは絶縁性樹脂(7)〜(8)に適用される樹脂と同じフッ素樹脂でも、また別の樹脂のいずれでもよいが、加工性および封止性の点から絶縁層(5)〜(6)あるいは絶縁性樹脂(7)〜(8)と同じフッ素樹脂が望ましい。このシース(10)用として供されるフッ素樹脂以外のものとしては、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリオレフィン(PO)、ポリスチレン(PS)、ポリウレタン(PU)等の樹脂が使用できる。
シース(10)と絶縁性樹脂(8)間は接合点(P)で熱融着させる必要がある。このとき、熱融着も、外周の一部でなく、全周に亘っていることが望ましい。なお、中心導体(2)を取り囲む絶縁層(5)の厚さは絶縁性、外径を小さくするため、0.1mm〜0.5mmが望ましく、また導電層(3)と(4)との間に介在する絶縁層(6)の厚さは0.1mm〜2mmが望ましい。また、検出部(9)の先端部(L1+L3)を除く側面部は厚さ0.2mm以上のフッ素樹脂でモールドされていることが望ましい。一方、検出性能上から、検出部(9)の先端部については、中心導体(2)の先端が該センサ端部より長さ(L3)にして1mm〜3mm の範囲で内側に位置するようにフッ素樹脂でモールドされていることが望ましい。
また、以上の説明では、絶縁性樹脂(7)と(8)とが別体であるが、これらは一体であってもよいことは言うまでもない。
以上に述べた液面センサ(S)を実際に機能させるにあたっては、液面センサ(S)に、中心導体(2)と外側に位置する導電層(4)との間の静電容量の変化に応じた発振波形で発振する駆動回路(図示せず)を接続するとともに、液面センサ自身(S)の浮遊容量の影響を抑制するため、内側に位置する導電層(3)に中心導体(2)と同相の検出信号を印加する。この際、外側に位置する導電層(4)はアース電極(GND)として利用されることは前述のとおりである。
更に、上記の態様では、導電層である金属編組層は2層構造の例を説明したが、本発明は、これに限定されることなく、3重以上としてもよい。この場合には、最外層の導電層をシールド層として利用し、耐ノイズを向上させたり、2相以上の検出信号を印加して、多点液面レベルセンサへの展開が可能となる。
また、検出信号、同相信号、GNDの位置に関しても、必ずしも、中心導体(2)に検出信号を印加する必要はなく、逆に中心導体をGNDとし、外側の導電層に同相信号を印加したりする等各種の応用・展開が可能であることは言うまでもない。
【0008】
以下に、本発明の液面センサの具体例を図面に基づき説明する。
(A)同軸ケーブルの作成
素線径が0.14mmのSUS線7本を同心撚りして得た撚線(外径:0.42mm;全長:502mm)を中心導体(2)とし、その周りに絶縁層(5)としてETFE樹脂を0.25mmの厚さで押出被覆した。次いで、該絶縁層(5)の周りに線径が0.05mmのスズメッキ軟銅線を用いて編組構造の導体層(3)を形成し、さらに該導体層(3)の周りに外部絶縁層(6)としてETFE樹脂を0.25mmの厚さで押出被覆した。最後に、該絶縁体層(6)の周りに線径が0.08mmのスズメッキ軟銅線を用いて編組構造の導体層(4)を形成することにより、外径が2.57mm、長さ500mmの2層の導体層(3)及び(4)を含む同軸ケーブルを用意した。
(B)同軸ケーブルの端末加工
上記(A)で作成した同軸ケーブルの一方の端部に端末加工を施して、中心導体(1)の先端が導電層(4)の先端より2mm(L1)突出し、且つ導電層(4)の先端が導電層(3)の先端より2mm(L2)突出している端末加工された同軸ケーブルを作成した。
(C)センサ先端部のモールド
上記(B)で作成した端末加工同軸ケーブルの絶縁性樹脂(7)の部分(L2)はETFE樹脂を熱融着(プレスモールド)によりモールドして形成した。続いて、絶縁性樹脂(8)の部分については、ETFE樹脂を用い、接合点(P)から導電層(4)の先端に至る45mmの距離に亘って該導電層(4)の周囲に0.2mmの厚さに熱融着(プレスモールド)によりモールドし、他方センサ先端部については、中心導体(2)の先端がセンサ先端から2mmの距離(L3)で内側に位置するよう熱融着(プレスモールド)によりモールドした。最後に、シース(10)の部分にも同様にETFE樹脂を被覆し、絶縁性樹脂(8)との接合点(P)で、センサ全周に亘って熱融着して、全長が502mm、外径が3mm、検出部(9)の長さが4mmの本発明の液面センサを得た。
(D)液面センサの評価
上記(C)で得た液面センサを純水が貯蔵されている絶縁性のプラスチックタンクに取付けて、センサの作動状況をチェックした結果、何ら作動上の問題は発生せず、本発明の液面センサの有効性が確認された。
【0009】
【発明の効果】
本発明の液面センサは、中心導体の周りに少なくとも2層構造の導電層を有する同軸ケーブルから構成されるので、従来のものと比較し、その構成が簡略化されるとともに飛躍的に向上した検出安定性を呈する。しかも、このようなセンサは静電容量式センサとして利用できるので、従来の導電式液面センサでは検出できなかった、純水、油等の非導電性液体の検出を可能にする。
さらに、センサ自身の構成が簡単であることから製品のコストダウン化および省スペース化が実現されるばかりでなく、作業性が格段に改善されるので、センサ使用時の生産性も一層向上する。
【図面の簡単な説明】
【図1】図1は、本発明の液面センサの一例を示す縦断面図である。
【符号の説明】
S 液面センサ
1 同軸ケーブル
2 中心導体(中心電極)
3、4 導電層(外側電極)
5、6 絶縁層
7、8 絶縁性樹脂
9 検出部
10 シース
L1 同軸ケーブル(1)の長手方向に沿った、中心導体(2)の先端と外側の導電層(4)の先端との距離
L2 同軸ケーブル(1)の長手方向に沿った、内側の導電層(3)の先端と外側の導電層(4)の先端との距離
L3 同軸ケーブル(1)の長手方向に沿った、中心導体(2)の先端とセンサ先端との距離
P 絶縁性樹脂(8)とシース(10)との接合部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacitance-type sensor, and more particularly, to a sensor that detects a liquid level or a powder amount by using a capacitance between electrodes, particularly a liquid of a non-conductive liquid such as pure water or oil. The present invention relates to a capacitance type sensor suitable for detecting a surface level.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a single-core cable or a multi-core cable having two or more cores is used as a conductive liquid level sensor (hereinafter, may be simply referred to as a “sensor”) for detecting a liquid level of a liquid. (See Patent Documents 1 to 3)
However, this sensor uses the conductivity of the liquid to be detected, and thus has a limit that it cannot be applied to detection of non-conductive pure water, oil, or the like, or powder. Further, since the electrode portion is covered with a conductive resin portion containing a conductive agent represented by carbon, when the electrode portion comes into contact with the detection liquid, the carbon is eluted, and the purity of the liquid to be detected is reduced. There was also a problem of deterioration. Furthermore, in this sensor, electricity is passed between the electrodes to the detection liquid or its liquid atmosphere, so that there is a problem that it cannot be used for a flammable liquid.
Therefore, as another method for solving this problem, various capacitance-type liquid level sensors have been proposed. As one example, a capacitive liquid level sensor in which two concentric cylindrical conductors having different outer diameters are arranged outside a pipe to be detected and the cylindrical conductor is connected to a coaxial cable is known. (See Patent Document 4)
However, this capacitance type liquid level sensor has a drawback that the configuration becomes complicated because the detection unit composed of the pipe and the cylindrical conductor and the coaxial cable connected thereto are separate bodies. In addition, since the detection method is a two-layer configuration of the outer conductor having the same potential and the same waveform as one detection signal, the sensor itself has no GND, and the detection liquid is used as the GND, so there is a problem in detection stability. .
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-99693 [Patent Document 2] Japanese Patent Application Laid-Open No. 7-325056 [Patent Document 3] Japanese Patent Application Laid-Open No. 11-304565 [Patent Document 4] Japanese Patent Application Laid-Open No. 7-280624 [0004] ]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide an inexpensive liquid level sensor having excellent detection stability, a simple configuration, and excellent productivity.
[0005]
[Means for Solving the Problems]
The present inventors have focused on using a coaxial cable for the detection unit of the liquid level sensor and making the cable a multilayer shield structure, and as a result, have easily solved the conventional problems.
[0006]
Thus, according to the present invention, a conductive layer having at least a two-layer structure and an insulating layer interposed therebetween is disposed concentrically around the insulating layer surrounding the center conductor, and the outer periphery of the conductive layer is An electrostatic capacitance type in which a part of the central conductor and / or a part of the conductive layer of a coaxial cable coated with an insulating resin is exposed to form an electrode and the electrode is coated with an insulating resin. A sensor is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings with respect to an example of a liquid level sensor comprising a coaxial cable to which a two-layer metal braided layer is applied as the conductive layer.
FIG. 1 is a partially broken longitudinal sectional view showing an example of the liquid level sensor of the present invention.
In FIG. 1, (S) is a liquid level sensor, (1) is a coaxial cable, (2) is a center conductor (center electrode), and (3) and (4) are conductive layers made of a metal braided layer ( Outer electrode), (5) an insulating layer surrounding the central conductor (2), (6) an insulating layer interposed between the conductive layers (3) and (4), and (7) an exposed central conductor. (8) is an insulating resin covering the other part of the length of the exposed central conductor (L1) and the conductive layer (4); (9) ) Is a detection unit, and (10) is a sheath.
A first feature of the present invention is that a terminal portion of a long coaxial cable (1) is used as an electrode portion as it is, and a lead wire connecting an electrode portion and an external detection circuit (not shown) is integrated. On the point. By doing so, the conventional configuration having two points of the electrode portion and the lead wire is changed to a single point configuration of only the coaxial cable in the present invention, and the configuration is greatly simplified.
Next, a second feature of the present invention resides in that a conductive layer (in the figure, a metal braided layer having a double structure) configured with at least a double structure and an insulating layer interposed therebetween is used as the conductive layer. is there. The reason for such a configuration is as follows.
In the conventional two-wire system, that is, in the simple configuration of the center conductor and one conductive layer, one of the center conductor and the conductive layer must be a detection signal, and the other must be a ground (GND). The "shift" of the phase of the detection signal could not be detected. As a result, the capacitance between the center conductor and the conductive layer changes slightly due to the stray capacitance of the coaxial cable itself, or when the coaxial cable part is bent or an external object comes into contact with the cable, and malfunctions occur. It was happening.
On the other hand, in the present invention, in order to prevent the above malfunction, a detection signal having the same phase as that of the center conductor (2) is applied to the conductive layer (3) located inside the conductive layer constituting the outer electrode. However, the detection circuit (not shown) provided outside the sensor employs a so-called three-wire electrical detection method of detecting a phase shift, thereby reliably preventing the above malfunction. It is doing. At this time, the outer conductive layer (4) is used as a ground electrode (GND).
Further, what is important in the present invention is a positional relationship between the center conductor (2) as the center electrode and the conductive layers (3) and (4) constituting the outer electrode.
As is apparent from the figure, in the typical liquid level sensor of the present invention, a conductive layer having an insulating layer interposed between the layers around the cable (1) except for the detection end (here, L1 + L2). Conductive layers having a two-layer structure composed of layers (3) and (4) are arranged concentrically. Therefore, the tip of the center conductor (2) has a structure protruding from the tips of these conductive layers, particularly the outer conductive layer (4). The projection length (L1) at this time is preferably 0.5 mm or more and 5 mm or less. The reason for this is that if the amount of protrusion is small, it becomes difficult for a sufficient amount of electric charge to be accumulated on the outer surface of the center conductor (2), and there is a concern that detection may be hindered.
Another important point is the positional relationship between the tip of the conductive layer (3) located inside and the tip of the conductive layer (4) located outside. In this case, the conductive layer ( It is preferable that the tip of (3) is disposed so as to be recessed by not less than 0.5 mm and not more than 10 mm as (L2) from the tip of the conductive layer (4) located outside. This is because when the tip of the conductive layer (3) protrudes from the tip of the conductive layer (4), noise tends to ride on the former conductive layer (3), and at the same time, charge formation on the outer surface thereof is easily hindered. Because it becomes.
In the present invention, as the central conductor (2), the core wire (conductor) of the coaxial cable (1) may be used as it is, and the form may be either a single wire or a stranded wire. It is desirable that the outer diameter is 0.15 mm to 1 mm by twisting 5 to 30 strands having a strand diameter of 0.03 mm to 0.3 mm. The material of the single wire itself may be appropriately selected from a soft copper wire, a copper-coated steel wire, a stainless steel wire, a copper alloy wire, or the like.
Next, the conductive layers (3) and (4) constituting the outer electrode are formed of a horizontal winding layer, a metal foil layer, a metal vapor-deposited film layer, or the like in addition to the braided layer described above. In view of this, a braided layer is preferable. The braiding conditions are desirably a metal wire diameter of 0.03 mm to 0.2 mm, 8 to 24 hits, 3 to 10 holdings, and a braid density of 50% to 100%. Further, the material of the braid may be the same as the material of the center conductor, and may be appropriately selected from a soft copper wire, a stainless steel wire, a copper alloy wire, or the like. Further, the braid may be coated with a metal for improving the shielding property and the shape retaining property.
On the other hand, as the material of the insulating layer of (5) and (6) and the insulating resin of (7) and (8), naturally, a resin having both heat resistance and chemical resistance is used. Fluororesins are preferably used. Specific examples of the fluororesin include tetrafluoroethylene-ethylene copolymer (ETFE), polytetrafluoroethylene resin (PTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA), tetrafluoroethylene / hexafluoro Propylene copolymer (FEP) and the like. In this case, it is advantageous that the insulating layers (5) and (6) are formed by extrusion coating, and the portions of the insulating resins (7) and (8) are formed by injection molding or press molding.
The sheath (10) may be the same fluororesin as the resin applied to the insulating layers (5) to (6) or the insulating resin (7) to (8), or may be another resin. From the viewpoint of sealing properties, the same fluororesin as the insulating layers (5) to (6) or the insulating resins (7) to (8) is desirable. Other than the fluororesin used for the sheath (10), resins such as polyvinyl chloride (PVC), polyethylene (PE), polyolefin (PO), polystyrene (PS), and polyurethane (PU) can be used. .
It is necessary to heat-bond the sheath (10) and the insulating resin (8) at the joint (P). At this time, it is desirable that the heat fusion is not limited to a part of the outer periphery but extends over the entire periphery. The thickness of the insulating layer (5) surrounding the center conductor (2) is desirably 0.1 mm to 0.5 mm in order to reduce the outer diameter and insulation properties. The thickness of the insulating layer (6) interposed therebetween is desirably 0.1 mm to 2 mm. Further, it is desirable that the side surface portion of the detection portion (9) except for the front end portion (L1 + L3) is molded with a fluororesin having a thickness of 0.2 mm or more. On the other hand, from the viewpoint of detection performance, the distal end of the detecting section (9) is arranged such that the distal end of the center conductor (2) is located inward within a range of 1 mm to 3 mm in length (L3) from the end of the sensor. Desirably, it is molded with a fluororesin.
In the above description, the insulating resins (7) and (8) are separate bodies, but it goes without saying that they may be integrated.
When the liquid level sensor (S) described above is actually operated, the liquid level sensor (S) is required to have a change in capacitance between the central conductor (2) and the conductive layer (4) located outside. In addition to connecting a drive circuit (not shown) that oscillates with an oscillation waveform corresponding to the above, a central conductor (3) is provided on the conductive layer (3) located inside to suppress the influence of the stray capacitance of the liquid level sensor itself (S). A detection signal having the same phase as in 2) is applied. At this time, the outer conductive layer (4) is used as a ground electrode (GND) as described above.
Further, in the above embodiment, the example in which the metal braided layer as the conductive layer has a two-layer structure has been described. However, the present invention is not limited to this, and the metal braided layer may have three or more layers. In this case, the outermost conductive layer is used as a shield layer to improve noise resistance or to apply a detection signal of two or more phases, thereby enabling development to a multipoint liquid level sensor.
Also, regarding the positions of the detection signal, the in-phase signal, and GND, it is not always necessary to apply the detection signal to the center conductor (2). Conversely, the center conductor is set to GND, and the in-phase signal is applied to the outer conductive layer. It goes without saying that various applications and developments are possible.
[0008]
Hereinafter, specific examples of the liquid level sensor of the present invention will be described with reference to the drawings.
(A) Preparation of Coaxial Cable A stranded wire (outer diameter: 0.42 mm; total length: 502 mm) obtained by concentrically twisting seven SUS wires each having a wire diameter of 0.14 mm is used as a central conductor (2) and around it. An ETFE resin was extrusion-coated to a thickness of 0.25 mm as an insulating layer (5). Next, a conductor layer (3) having a braided structure is formed around the insulating layer (5) using a tin-plated soft copper wire having a wire diameter of 0.05 mm, and an external insulating layer (3) is formed around the conductor layer (3). As 6), the ETFE resin was extrusion-coated with a thickness of 0.25 mm. Finally, a conductor layer (4) having a braided structure is formed around the insulator layer (6) using a tin-plated soft copper wire having a wire diameter of 0.08 mm, so that the outer diameter is 2.57 mm and the length is 500 mm. A coaxial cable including the two conductor layers (3) and (4) was prepared.
(B) Termination of coaxial cable One end of the coaxial cable prepared in (A) is subjected to termination so that the tip of the center conductor (1) protrudes 2 mm (L1) from the tip of the conductive layer (4). A terminal-processed coaxial cable in which the tip of the conductive layer (4) protruded 2 mm (L2) from the tip of the conductive layer (3) was produced.
(C) Molding of Sensor End The portion (L2) of the insulating resin (7) of the terminal-processed coaxial cable prepared in (B) was formed by molding ETFE resin by heat fusion (press molding). Subsequently, with respect to the portion of the insulating resin (8), ETFE resin is used, and 0% is applied around the conductive layer (4) over a distance of 45 mm from the junction (P) to the tip of the conductive layer (4). .2 mm in thickness by heat fusion (press molding), while the other end of the sensor is heat-sealed such that the tip of the center conductor (2) is located at a distance (L3) of 2 mm from the tip of the sensor. (Press molding). Finally, the sheath (10) is coated with ETFE resin in the same manner, and is thermally fused over the entire periphery of the sensor at the joint (P) with the insulating resin (8) to have a total length of 502 mm. The liquid level sensor of the present invention having an outer diameter of 3 mm and a length of the detecting portion (9) of 4 mm was obtained.
(D) Evaluation of liquid level sensor The liquid level sensor obtained in the above (C) was mounted on an insulated plastic tank storing pure water, and the operation status of the sensor was checked. No occurrence was observed, confirming the effectiveness of the liquid level sensor of the present invention.
[0009]
【The invention's effect】
Since the liquid level sensor of the present invention is composed of a coaxial cable having at least a two-layered conductive layer around the center conductor, the configuration is simplified and dramatically improved as compared with the conventional one. It exhibits detection stability. In addition, since such a sensor can be used as a capacitance type sensor, it is possible to detect a non-conductive liquid such as pure water or oil, which cannot be detected by a conventional conductive type liquid level sensor.
Furthermore, since the configuration of the sensor itself is simple, not only cost reduction and space saving of a product are realized, but also workability is remarkably improved, so that productivity when using the sensor is further improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a liquid level sensor of the present invention.
[Explanation of symbols]
S liquid level sensor 1 coaxial cable 2 center conductor (center electrode)
3, 4 conductive layer (outer electrode)
5, 6 Insulating layer 7, 8 Insulating resin 9 Detector 10 Sheath L1 Distance L2 between the tip of center conductor (2) and the tip of outer conductive layer (4) along the longitudinal direction of coaxial cable (1). Distance L3 between the tip of the inner conductive layer (3) and the tip of the outer conductive layer (4) along the longitudinal direction of the coaxial cable (1) L3 The center conductor ( 2) Distance P between tip of sensor and sensor tip Joint of insulating resin (8) and sheath (10)

Claims (12)

中心導体を取り囲む絶縁層の周りに同心円状に配置された、少なくとも2層構造でその層間に絶縁層が介在する導電層が配置され、さらに該導電層の外周が絶縁性樹脂で被覆されてなる同軸ケーブルの該中心導体の一部及び/又は該導電層の一部を露出させて電極を形成するとともに該電極を絶縁性樹脂で被覆したことを特徴とする静電容量式センサ。A conductive layer having at least a two-layer structure and having an insulating layer interposed therebetween is disposed concentrically around the insulating layer surrounding the central conductor, and the outer periphery of the conductive layer is covered with an insulating resin. An electrostatic capacitance type sensor wherein a part of the central conductor and / or a part of the conductive layer of a coaxial cable is exposed to form an electrode and the electrode is covered with an insulating resin. 該導電層において、外側に位置する導電層の先端が、内側に位置する導電層の先端より、検出端部に向かって突出している請求項1に記載の静電容量式センサ。2. The capacitive sensor according to claim 1, wherein, in the conductive layer, an end of the outer conductive layer protrudes toward a detection end from an end of the inner conductive layer. 3. 突出長さが0.5mm以上である請求項2に記載の静電容量式センサ。3. The capacitance type sensor according to claim 2, wherein the protrusion length is 0.5 mm or more. 該中心導体の露出部の先端が、該外側に位置する導電層の先端より0.5mm以上突出している請求項1〜3のいずれかに記載の静電容量式センサ。The capacitance-type sensor according to any one of claims 1 to 3, wherein a tip of the exposed portion of the center conductor protrudes by 0.5 mm or more from a tip of the conductive layer located outside. 該導電層が少なくとも2層構造の金属編組層である請求項1〜4のいずれかに記載の静電容量式センサ。The capacitance type sensor according to any one of claims 1 to 4, wherein the conductive layer is a metal braided layer having at least a two-layer structure. 該中心導体を取り囲む絶縁層の厚さが0.1mm〜0.5mmである請求項1〜5のいずれかに記載の静電容量式センサ。The capacitance type sensor according to any one of claims 1 to 5, wherein the thickness of the insulating layer surrounding the center conductor is 0.1 mm to 0.5 mm. 該導電層間に介在する絶縁層の厚さが0.1mm〜2mmである請求項1〜6のいずれかに記載の静電容量式センサ。The capacitive sensor according to any one of claims 1 to 6, wherein a thickness of the insulating layer interposed between the conductive layers is 0.1 mm to 2 mm. 該絶縁層がフッ素樹脂からなる請求項1〜7のいずれかに記載の静電容量式センサ。The capacitive sensor according to any one of claims 1 to 7, wherein the insulating layer is made of a fluororesin. 該絶縁性樹脂がフッ素樹脂である請求項1〜7のいずれかに記載の静電容量式センサ。The capacitive sensor according to any one of claims 1 to 7, wherein the insulating resin is a fluororesin. 該中心導体の先端がセンサ先端より1mm〜3mm の範囲で内側に位置する請求項1〜9のいずれかに記載の静電容量式センサ。The capacitive sensor according to any one of claims 1 to 9, wherein a tip of the center conductor is located inward of the sensor tip within a range of 1 mm to 3 mm. 該中心導体と該外側に位置する導電層との間の静電容量の変化に応じた発振波形で発振する駆動回路を接続するとともに該内側に位置する導電層に該中心導体と同相の検出信号を印加し、これによりセンサ自身の浮遊容量の影響を抑制する構造とした請求項1〜10のいずれかに記載の静電容量式センサ。A drive circuit that oscillates with an oscillating waveform according to a change in capacitance between the center conductor and the outer conductive layer is connected, and a detection signal in-phase with the center conductor is connected to the inner conductive layer. The capacitive sensor according to any one of claims 1 to 10, wherein the capacitance sensor is configured to suppress the influence of the stray capacitance of the sensor itself. 該外側に位置する導電層をアース電極とした請求項11に記載の静電容量式センサ。The capacitance-type sensor according to claim 11, wherein the conductive layer located outside is a ground electrode.
JP2002350518A 2002-12-02 2002-12-02 Capacitive sensor Expired - Fee Related JP4116409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350518A JP4116409B2 (en) 2002-12-02 2002-12-02 Capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350518A JP4116409B2 (en) 2002-12-02 2002-12-02 Capacitive sensor

Publications (2)

Publication Number Publication Date
JP2004184192A true JP2004184192A (en) 2004-07-02
JP4116409B2 JP4116409B2 (en) 2008-07-09

Family

ID=32752701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350518A Expired - Fee Related JP4116409B2 (en) 2002-12-02 2002-12-02 Capacitive sensor

Country Status (1)

Country Link
JP (1) JP4116409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516347A (en) * 2009-12-30 2013-05-13 タカタ アーゲー Capacitance detection assembly
KR20130095869A (en) * 2012-02-21 2013-08-29 삼성테크윈 주식회사 Embedded capacitive level sensor by using insulator hose and manufacturing method of the same
JP2013195068A (en) * 2012-03-15 2013-09-30 Nidec Copal Electronics Corp Capacitive sensor, measuring device, and measuring method
WO2019129503A1 (en) * 2017-12-28 2019-07-04 Kautex Textron Gmbh & Co. Kg Method for determining an aggregate state of an aqueous operating liquid in an operating liquid container for a motor vehicle, and operating liquid container for carrying out the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7071733B2 (en) 2018-05-10 2022-05-19 山本電機工業株式会社 Sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516347A (en) * 2009-12-30 2013-05-13 タカタ アーゲー Capacitance detection assembly
KR20130095869A (en) * 2012-02-21 2013-08-29 삼성테크윈 주식회사 Embedded capacitive level sensor by using insulator hose and manufacturing method of the same
JP2013195068A (en) * 2012-03-15 2013-09-30 Nidec Copal Electronics Corp Capacitive sensor, measuring device, and measuring method
WO2019129503A1 (en) * 2017-12-28 2019-07-04 Kautex Textron Gmbh & Co. Kg Method for determining an aggregate state of an aqueous operating liquid in an operating liquid container for a motor vehicle, and operating liquid container for carrying out the method
CN111615626A (en) * 2017-12-28 2020-09-01 考特克斯·特克斯罗恩有限公司及两合公司 Method for determining the state of aggregation of an aqueous working fluid in a working fluid container for a motor vehicle and working fluid container for carrying out the method
US11774386B2 (en) 2017-12-28 2023-10-03 Kautex Textron Gmbh & Co. Kg Method for determining an aggregate state of aqueous operating liquid in an operating liquid container for a motor vehicle, and operating liquid container for carrying out the method
CN111615626B (en) * 2017-12-28 2024-01-16 考特克斯·特克斯罗恩有限公司及两合公司 Method for determining the aggregation state of an aqueous working fluid in a working fluid container for motor vehicles and working fluid container for carrying out the method

Also Published As

Publication number Publication date
JP4116409B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US8487184B2 (en) Communication cable
JP5508614B2 (en) High-speed differential cable
US20110247856A1 (en) Shielded cable
KR100979599B1 (en) High-speed differential transmission cable
US9805844B2 (en) Twisted pair cable with shielding arrangement
TW202003216A (en) Electrical cable with electrically conductive coating
KR20100014156A (en) Differential transmission cable and composite cable having the same
CN101946198B (en) Stepped connector
JP2015185323A (en) probe cable and harness using the same
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP5330888B2 (en) High-speed differential cable
JP4116409B2 (en) Capacitive sensor
JP2017033837A (en) Flat cable and flat cable with connector
JP2011501160A (en) Detection cable
JP2010287355A (en) High-speed transmission cable
US20190387652A1 (en) Cable having shielding tape with conductive shielding segments
WO2019131500A1 (en) Two-core parallel cable
JP6146901B2 (en) cable
JP5568358B2 (en) Coaxial cable processed product
US7978944B2 (en) Laser light cable
JP2009134997A (en) Connector terminal structure
JP3402758B2 (en) sensor
JP2005241475A (en) Liquid level sensor
JP5224843B2 (en) coaxial cable
JP2009272210A (en) Cable

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees